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Interactive comment on “A statistical approach for rain class evaluation using Meteosat 
Second Generation-Spinning Enhanced Visible and InfraRed Imager observations” by E. 
Ricciardelli et al. 
 
Anonymous Referee #1 
 
This paper presents a new technique (RainCEIV) to classify cloudy scenarios in terms of rain 
categories by exploiting the MSG-SEVIRI spectral channels. The final purpose is to provide an 
operational tool for continuous rainfall event monitoring (convective and stratiform), which takes 
advantage of the high spatial and temporal resolution of geostationary VIS and IR data in spectral 
and textural tests. The algorithm is composed by two modules, a cloud classification algorithm to 
identify clear and cloudy pixels (taking into account different cloud categories), and a second 
module for the delineation of the raining areas according to three rainfall intensity classes. The 
training processes of the two modules are presented together with the validation results for selected 
case studies. 
General comments In my opinion the manuscript needs a deep revision to improve the description 
of the algorithm, which sometimes is not so sharp at the expense of the correct comprehension of 
the text. In particular section 3.2 and sub-sections should be improved because they represent the 
core of this work and I have some specific requests and/or suggestions with respect to this part. 
Authors should better emphasise the novelty and main strengths of their methodology with respect 
to similar products. Also the Conclusions section is in my opinion incomplete because it simply 
summarizes the results from the validation but it does not provide any perspectives about the future 
work. From the validation some abilities of the algorithm in discriminating raining from non-
raining pixels are apparent with a tendency to the overestimation of precipitating areas, but there are 
problems with the precipitation class attribution, especially with C2 class. I think that the authors 
should include in the conclusions how you will proceed to improve the performances of your 
algorithm. 
Moreover I suggest to the authors a general revision of English. 
 
Author Comment (A.C.): 
We would like to thank the referee for the detailed and useful comments on our paper. We accept 
all the suggestions as specified in our responses to the specific comments included in this document. 
The abstract and the introduction are modified in order to explain the utility of the RainCEIV 
technique better. The RainCEIV main purpose is to supply a continuous monitoring of convective 
and stratiform rainfall events without using any near real-time ancillary data. Its novelty is the use 
of the temporal differences of the brightness temperatures related to the SEVIRI water vapour 
channels that are indicative of the atmosphere instability and, as a consequence, give useful 
information for the detection of rainy areas. 
The validation section has been updated by enlarging the validation dataset, in the attempt both to 
analyse more night-time scenes and increase the number of the test samples belonging to the C2 

class (both for daytime and night time). The responses to the specific comments 11 and 12 give a 
more in-depth explanation of how the validation dataset has been revised. 
The conclusions have been extended and modified on the basis of the updated statistical scores. 
 
1.Specific comments 1. Page 13675 lines 5-13 The blended technique by Turk et al.(1999) was also 
implemented among the precipitation products of the Satellite Application Facility on Support to 
Operational Hydrology and Water Management (H-SAF) (Mugnai et al., NHESS, 13, 1959-1981, 
2013).  
A.C.: 
Agreed. A sentence has been added to specify that the blended technique by Turk et al. (1999) is 
implemented among the precipitation products of H-SAF. 
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2. Page 13676 lines 23-25 Some information about MSG satellites is wrong. MSG-1 was launched 
in August 2002 and MSG-4 is planned for launch in 2015. I do not understand the sentence “MSG-
2 was designated as the first satellite on 11 April 2007.”Now the prime operational geostationary 
satellite is MSG-3 since January 2013, while MSG-1 data are available since January 2004. 
A.C.: 
Thank you very much for the correction. The sentence now reads: 
“SEVIRI is the main payload on board the MSG series, composed of MSG-1 (Meteosat 8), MSG-2 
(Meteosat 9), MSG-3 (Meteosat 10), and future MSG-4 (Meteosat 11), planned for launch in 2014.” 
 
3. Page 13679 lines 6-25 “The training dataset used in the previous version of MACSP has been 
updated in order to get a better distinction of the cloudy classes.” I think that it is better at least to 
include a reference to Table 5 of Ricciardelli et al. (2008) to have an idea of the previous version of 
the training data set, and then some further details are needed about this new version of the training 
data set. I understand that the C_MACSP module derives from a previous work (Ricciardelli et al., 
2008), but nevertheless I think that a short description of the methodology and in particular of the 
used spectral features are necessary.  
A.C.: 
Agreed. Section “3.1- Cloud classification algorithm description” has been modified following 
your suggestion and it now reads as: 
 

3.1 “Cloud classification algorithm description 

The cloud Mask Coupling of Statistical and Physical methods algorithm - MACSP (Ricciardelli et 
al., 2008) - is used for distinguishing cloudy from non-cloudy pixels. The version used for 
RainCEIV purposes is called C_MACSP, which stands for cloud Classification Mask Coupling of 
Statistical and Physical methods. The current version has been updated to give information about 
the cloud class and in particular to split the MACSP “high cloud” in the high optically thin and high 
optically thick cloud classes. Furthermore, the convective cloud class has been added, not just for 
module II but also to individuate the possible occurrence of extreme events. A pixel can be 
classified in 5 different classes considered both over land and sea: clear, low/middle cloud, high 
optically thin cloud, high optically thick cloud and convective cloud. In detail, the C_MACSP 
physical algorithm uses the same physical threshold tests as the MACSP earlier version with the 
addition of a new threshold test involving the difference between the brightness temperature of the 
SEVIRI water vapour channel centred at 6.2µm and of the SEVIRI window channel centred at 
10.8µm, ∆���.�µ��	
.�µ�. This difference is very small for convective cloud as asserted by Mosher 
(2001, 2002) in the Global Convective Diagnostic approach. The C_MACSP statistical algorithm 
considers in input the same spectral and textural features described and listed in section 3.2.1 and 
table 4, respectively, of Ricciardelli et al. (2008), but the training dataset has been updated in order 
to build the training samples for the convective cloud class. The training samples were collected in 
the Mediterranean basin, where RainCEIV operates. The cloud classification for the training dataset 
has been made through a careful visual inspection of the SEVIRI images. The clear and cloudy 
pixels have been selected manually after observing the spectral characteristics in SEVIRI IR/VIS 
images as well as in their RGB composition, a useful practice for distinguishing cloudy classes 
(Lensky and Rosenfeld, 2008). In order to collect the training samples for the convective cloud 
class, the cloudy SEVIRI pixels have been matched with the corresponding PEMW-RR and radar-
derived RR values, if available. The collocation process both of the radar-derived RR values and the 
PEMW-RR values in the SEVIRI grid is described in Section 2. The SEVIRI pixel is considered for 
the training when: 
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• both the RADARinSEVIRI pixel and PEMWinSEVIRI pixel are available and the relation: 
(RADARinSEVIRIv ≥4mm×h-1).and.(PEMWinSEVIRIv≥4mm×h-1) is satisfied; 

• both the RADARinSEVIRI pixel and PEMWinSEVIRI pixel are available and the relation: 
(RADARinSEVIRIv≥4mm×h-1).and.(PEMWinSEVIRIv<4mm×h-1) is satisfied and the 
percentage of the rainy RS samples is higher than 80%; 

• only the PEMWinSEVIRI pixel is available (the AMSU-B/MHS observation is outside the 
area covered by the Radar Network) and the relation (PEMWinSEVIRIv≥4mm×h-1) is 
satisfied; 

When both the RADARinSEVIRI pixel and the PEMWinSEVIRI pixel are available and the 
relations at points 2 and 3 are not satisfied, the SEVIRI pixel is not considered for the initial 
training dataset. The SEVIRI images listed in table 5 of Ricciardelli et al (2008) and in particular 
the ones used for the training of the Mediterranean basin (enclosed in the areas B, C, and G of 
Figure 3 of Ricciardelli et al (2008)) have been used for the training of C_MACSP. The SEVIRI 
images used for the training are those acquired on 29 September 2009 at 16:57 UTC, on 1 October 
2009 (at 05:12 UTC, at 08:27 UTC, and at 15:57 UTC), on 04 March 2010 (at 14:27 UTC, 15:57 
UTC, and at 20:12 UTC), on 28 April 2010 (at 12:27 UTC and 15:43 UTC), on 4 August 2010 (at 
10:43 UTC and 15:12 UTC), on 2 February 2010 at 22:57 UTC, on 8 January 2010 at 13:57 UTC, 
on 1 October 2009 (at 05:13 UTC and 19:13 UTC). The procedure described in Appendix A has 
been applied in order to refine the training dataset by eliminating the redundant as well as the 
misclassified samples. For RainCEIV purposes, the C_MACSP screening is useful to: 

• reduce the number of the input pixels to the RainCEIV k-NNM classifier by removing the 
pixels classified as clear and high thin cloud; 

• define the components of the feature vector in input to the RainCEIV classifier (as will be 
described in the following sub-section. The components chosen for each cloud class are 
shown in Tables 5 and 6).” 

 
In this paragraph is presented also the validation of the C_MACSP module but without comments 
about the related statistical scores. These scores are shown in Table 1, which was never cited in the 
text. 
A.C.: 
In the previous version of the manuscript, Table 1 was related to Section 3.1 and listed the accuracy 
scores for cloud and clear classes. We considered a fixed number of test samples for each cloud 
class and for the clear class, making no distinction between the samples acquired during night-time 
and those acquired during daytime.  
In the revised version, the accuracy has been determined for each C_MACSP class for night-time 
and daytime samples, separately. Moreover, a new sub-section of Section 4 has been added, 
dedicated to the discussion of the validation of C_MACSP. As a consequence, Section 4 
“Validation results” presents now two sub-section (“4.1 C_MACSP validation results” and “4.2 
RainCEIV validation results”) and Table 1 is renamed Table 7: 
 

4.1 C_MACSP validation results 

The validity of the C_MACSP algorithm has been tested by applying it to an independent dataset of 
which each class is made 300 samples taken from the SEVIRI images acquired on 12 November 
2010 at 11:27 UTC, 22 November 2010 at 09:27 UTC and at 11:43 UTC, 5 May 2012 at 20:27 
UTC, 19 May 2012 at 10:57 UTC, 23 July 2012 at 10:27 UTC, 5 December 2012 at 08:43 UTC, 19 
September 2009 at 19:13 UTC, 6 July 2010 at 11:27 UTC and 12:27 UTC, 4 August 2010 at 14:27 
UTC, 26 December 2013 at 04:57 UTC, 8 October 2013 at 18:57 UTC, 7 October 2013 at 00:57 
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UTC and 20 January 2014 at 11:57 UTC. The validation has been carried out separately for samples 
acquired during night-time and daytime by comparing the C_MACSP classification results and the 
samples manually collected from the independent dataset images. The manual classification has 
been made through a careful observation of the SEVIRI RGB composition so as to get the same 
number of samples for each class. The convective cloud classification results have been validated 
considering the RR maps derived both from the weather radar network and the PEMW rain rate 
maps. The latter have been used for the areas where radar information is missing. The accuracy 
(defined as the ratio between the number of the test samples classified correctly and the total 
number of the test samples) has been determined for each class and Table 7 shows the results 
obtained. On the basis of the samples examined, it is possible to assert that C_MACSP is able to 
classify high thick clouds as well as convective clouds, both over land and sea during daytime and 
night-time, with an accuracy higher than 95%. Moreover, it shows an accuracy higher than 91% in 
detecting low/middle clouds both during daytime and night-time over land and over sea. The 
accuracy in detecting high thin class over sea is 87,6% during daytime and night-time, and it is 
slight lower over land both during daytime (85%) and night-time (84%).” 

Table 7. Accuracy of the C_MACSP algorithm on an independent dataset 

Classes  Classification accuracy  
(for test samples acquired during 
daytime) 

Classification accuracy  
(for test dataset acquired during 
night-time) 

Clear over land 
Clear over sea 
Low/middle clouds over land 
Low/middle clouds over sea  

    High thin clouds over land 
High thin clouds over sea 
High thick clouds over land 
High thick clouds over sea 
Convective clouds over land 
Convective clouds over sea 

95.0 %  
96.7 %  
91.6 %  
92.6 %  
85.0 %  
87.6 %  
98.3 %  
99.0 %  
96.0 %  
96.7 %  

95.0 %  
96.7 %  
91.0 %  
91.3 %  
84.0 %  
87.6 %  
97.3 %  
99.0 %  
96.7 %  
96.7 %  

 

 
4. Page 13680 lines 12-16 This comment concerns the rainfall intensity classes. In my opinion the 
non-rainy class should range from 0 to 0.1 or 0.5 mm h-1 because estimates of so light rainfall 
intensities (< 0.1 or 0.5 mm h-1) can be very unreliable and it could be safer to include them in the 
non-rainy class. Could you, please, comment on. 
A.C.: 
In agreement with your suggestion, the definition of the C0 and C1 class (line 13 on page 13680) has 
been modified as follows: 

1. Non-rainy (rain rate <0.5mm×h-1) (C0) 
2. Light-to-moderate rain (0.5≤rain rate≤4mm×h-1) (C	) 

and, consequently, in the validation against radar-derived rain rate values the number of the non-
rainy pixels as well as that of the light-to-moderate-rainy pixel has been updated. The training of the 
non-rainy and of the light-to-moderate-rainy class has been reconsidered on the basis of the 
modified RR range related to these classes. 
 
5. Page 13680 line 18 “. . . determines the mean value dmin(x,Ci )” and also the eq.(1). I think that 
dmin should be replaced by dmean. 
A.C.: 
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Ok, done. Thank you for spotting this typo.  
 
6. Page 13681 line 21 “In fact, in stratiform clouds the precipitation processes are strongly related to 
the microphysical structure of the cloud top and, in particular, rain rate confidence is high for cloud 
top with large cloud droplets or in presence of ice(Lensky and Rosenfeld, 1997).” This is true not 
only for stratiform clouds but for all precipitating clouds. Thus considering spectral channels 
connected with cloud microphysical properties allows to identify raining clouds also in presence of 
“warm” clouds, when tests based only on IR brightness temperatures are not successful. 
A.C.: 
Thank you for the correction. Taking into account your correction and the suggestion of the other 
referees, sub-section 3.2.1, from line 12 on page 13681 to line 24 on page 13681, has been modified 
as follows:  

“All the spectral and textural features defined for the IR/VIS SEVIRI images acquired at 0.6 µm, 
0.8 µm, 1.6 µm, 3.9 µm, 6.2 µm, 7.3 µm, 10.8 µm, and 12 µm were initially considered as 
components of the feature vector ��. Some of the above-listed spectral channels are usually utilized 
to infer information on cloud-top microphysical properties. In particular, the observations acquired 
at 10.8 µm and 12.0 µm are used to provide information on cloud top temperature and cloud optical 
thickness, the observations at 0.6 µm are also used to get information about cloud optical thickness, 
while the 3.9 µm and 1.6 µm observations are used to infer information on the cloud 
thermodynamic phase and cloud drop size distribution. The precipitation processes are strongly 
related to the cloud-top microphysical structure and, in particular, the rain rate confidence is high 
for cloud tops with large cloud droplets or in the presence of ice (Lensky and Rosenfeld, 1997). 
Consequently, in this study the use of features derived from spectral channels connected with cloud 
microphysical properties could allow the identification of raining clouds.” 

 
7. Page 13682 line 15 I do not understand when the Fisher criterion (eq. 6) is really applied in the 
K-NNM module to reduce the number of elements in the feature vectors, because in section 3.2.2 it 
seems to me that you do not use this criterion, when you describe the methodology to determine the 
dimension d of the feature vectors. Improve the description of this part and all sub-section 3.2.2. 
(especially the procedure to determine the best values of d and k). 
A.C.: 
In order to elucidate the use of the Fisher criterion in determining the features to be included in the 
feature vector, sub-section 3.2.1 has been modified. In particular, the description of the Fisher 
criterion has been moved from sub-section 3.2.1 to the Appendix A (reported at the end of this 
document for convenience). The sentence from line 14 on page 13682 to line 7 on page 13683 has 
been modified  as follows: 

“For this purpose, the Fisher distance criterion (Ebert, 1987; Parikh, 1977), described in Appendix 
A, has been applied in order to evaluate the discriminatory power of the individual features. The 
Fisher distance has been determined for the following combinations: (�
 , �	); (�
, ��); (�	, ��). The 
features have been ordered in a descending way on the basis of the correspondent Fisher distance 
value, so that the features characterized by higher Fisher distances have been chosen as components 
of the feature vector. The definitive values of the feature vector components d and the RainCEIV k-
NNM classifier k parameter have been determined as described in the following sub-section.” 

Moreover, in order to clarify how the training dataset has been carried out, how the process to refine 
the training dataset works and how the best values for d and k are chosen sub-section 3.2.2 has been 
modified as follows: 

“The training dataset has been built by coupling cloudy SEVIRI pixels with the corresponding RR 
value obtained by the PEMW algorithm and, where available, with the radar-derived RR values. 
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When no radar-derived RR value is available (because the AMSU-B/MHS observation is outside 
the area covered by the Radar Network) the SEVIRI pixel is classified as belonging to one of the 
classes C0, C1, and C2 on the basis of the corresponding PEMWinSEVIRIv and it is included in the 
initial training dataset. When the RADARinSEVIRIv is available and agrees with the 
PEMWinSEVIRI in determining the rainy/non-rainy class the SEVIRI pixel belongs to, this is 
included in the initial training dataset. Otherwise, when the RADARinSEVIRIv and 
PEMWinSEVIRIv do not agree, the SEVIRI pixel is included in the initial training dataset only if 
the correspondent RADARinSEVIRI pixel belongs to a rainy class C1 or C2 and the percentage of 
the rainy RS is higher than 80%. This choice is very useful for the training of the rainy events 
localized over an area smaller than the AMSU-B/MHS FOV area. The training samples have been 
considered separately for land and sea, and grouped on the basis of the Solar Zenith Angle (SZA) 
ranges. Finally, in order to refine the training dataset, the process described in Appendix A has been 
applied to the initial training dataset. The availability of the SEVIRI samples double matched with 
PEMW and radar-derived RR values is useful both for the mitigation of uncertainty due to the 
collocation process and the refinement of the original training dataset especially for the removal of 
the misclassified samples. Successively, in order to decide the best values for d and k, a set of test 
samples have been classified by varying d and k combinations. Moreover, an artificial dataset, 
smoother and more versatile than the initial one, has been obtained by applying the bootstrap 
method (described by Hamamoto et al. (1997)) to the initial test samples. In order to make a more 
robust choice for d and k, the same d and k combinations chosen for the classification of the initial 
test dataset have been used to classify the artificial dataset. The best choice of d and k has been 
made by comparing the statistical scores obtained by classifying the two dataset separately.  

Let � = �(y���, ��)� be the independent test dataset built by examining the PEMW-RR values related 
to the AMSU/MSH overpasses of 12 February 2012 at 01:35UTC, 12 November 2011 at 
08:50UTC, 22 November 2010 at 09:34 UTC, 4 August 2010 at 14:46 UTC, 26 April 2010 at 12:26 
UTC, 01 October 2009 at 19:50UTC, 02 October 2009 at 05:00UTC. The pairs (y���, ��) indicate the 
test samples y��� belonging to the class ��, j=1, 2, ..., Nc, Nc is the number of the classes, i=1, 2, 
...,Nc,j, Nc,j is the number of the test samples for the class ��. 

The bootstrap samples for each class have been determined as follows: 

1. the sample (y���, ��) was selected; 
2. r was chosen equal to Nc,j/4 and the r nearest neighbours (NN) of the sample (y���, ��) 

(indicated as �(���,�, ��)� 	,!�) were found. The Nearest Neighbour decision rule is explained 
in Appendix A;  

3. the ith component of the bootstrap sample was calculated by applying the equation  

 "��
# = 	

!  ∑ ��,�
#!

� 	                                                                                                                     (7) 

to all the components of the �(���,�, ��)� 	,!� For simplicity the generic ith component of the 
(���,�, ��)� 	,! is indicated as ��,�

#  without indicating the belonging class Cj, in the same way 

"��
#  is the ith component of the bootstrap sample ("�������, ��) obtained by starting from the 

sample (���, ��). 

4. Points 2 and 3 were repeated for % = &',�
5) , &',�

10) , &',�
2) − 8, &',�

2) − 6, &0,�
2) −

4, &',�
2) − 2; 

5. the process restarted from point 1 with another sample and points 2, 3 and 4 were applied 
until all the test samples were considered for each class. 
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A careful screening has been done to eliminate the redundant bootstrap samples. The bootstrap 
samples and the initial test samples have been classified separately by means of the k-NNM (using 
the original training dataset). The statistical scores obtained for the two datasets are quite similar 
and they change in the same way varying d and k as can be noted in Tables 2, 3 and 4 that list the 
statistical scores for k=3, d=10, d=16, d=20 (Table 2); k=5, d=10, d=16, d=20 (Table 3); k=7; d=10, 
d=16, d=20 (Table 4). Other combinations of d and k have been investigated obtaining results worse 
than the ones listed in tables 2, 3 and 4. In particular, both for the original and artificial test dataset, 
for 2 < 3, 5 < 10 the FAR related to the moderate class is higher than 40% and POD is lower than 
60%, while for k>7 the FAR for all the classes is higher than 44% and the other statistical scores are 
lower than those obtained for the other k and d combinations. The statistical scores obtained by 
classifying the initial and artificial samples agree in suggesting k=5 and d=16 as the best choice of 
the parameters for the k-NNM classifier. The features chosen as components of the feature vector �� 
related to daytime and night-time acquisition are listed in Table 5 and Table 6, respectively.”  

In the revised manuscript Tables 3, 4 and 5 have been renamed Tables 2, 3 and 4  
 
8. Page 13685 line 1-13 “The final bootstrap training set contains the bootstrap samples obtained for 
r=Nj/4, Nj/5, Nj/10, Nj/2 −8, Nj/2 −6, Nj/2 −4, Nj/2 −2.”. You try 7 values of the r parameter in the 
construction of bootstrap samples, which is the final value of r?  
A.C.: 
All the values listed for r parameter were used in order to obtain an artificial test- dataset smoother 
and more versatile than the initial one. The above-reported updated version of sub-section 3.2.2 
should give a more in-depth explanation of the bootstrap sample construction and of how the r 
parameter is used in the bootstrap method. 
 
“The statistical scores obtained by classifying the bootstrap samples...” I did not understand which 
data were used as reference data set in the validation of the K-NNM results obtained for the 
bootstrap data set. Specify this point in the text. 
A.C.: 
We apologize for not being clear enough. To clarify this point, the test dataset in sub-section 3.2.2 
is now described as follows: 
“the independent test dataset built by examining the PEMW RR values related to AMSU-B/MSH 
overpasses of 21 February 2013 at 13:10 UTC, 12 February 2012 at 01:35UTC, 12 November 2011 
at 08:50UTC, 22 November 2010 at 09:34 UTC, 4 August 2010 at 12:19 UTC and 14:46 UTC, 26 
April 2010 at 12:26 UTC, 01 October 2009 at 19:50UTC, 02 October 2009 at 05:00UTC, 29 
September 2009 at 15:16 UTC“. 
Furthermore, the AMSU-B/MSH overpasses whose samples were used to carry out the test dataset 
are removed from Table 2. The test dataset has been enlarged respect to the previous version, as can 
be noted from the above-mentioned description. 
 
9. Page 13685 line 15 The Table 6 caption is not sufficient to explain the Table content; in 
particular the features are absolutely cryptic. 
 
A.C. 
Table 6 is now split into two tables: Tables 5 and 6 list the features to be used during daytime and 
night-time, respectively. The captions of Tables 5 and 6 have been re-written so to be clearer. A 
description of Tables 5 and 6 is now added at the end of sub-section 3.2.2 as follows: 
 
“The features chosen as components of the feature vector 6�� related to daytime and night-time 
acquisition are listed in Table 5 and Table 6, respectively. The features used over land and over sea 
are the same, but in some cases they vary for different cloud classes, e.g. the max value of the ASM 
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is very useful in order to determine the confidence that a low/middle cloud is precipitating, but its 
discriminatory power is not so high as to individuate the precipitating high thick clouds. On the 
contrary, the minimum and maximum values of Entropy, Mean and Contrast give an useful 
contribution in detecting both light-to-moderate rainy class and heavy-to-very-heavy-rainy class for 
all the cloudy classes.”  

Table 5. Summary of the features considered for use in the RainCEIV k-NNM classifier during 
daytime. Label “A” means that the feature is used for all the C-MACSP classes; “LM” means that 
the feature is used for the low/middle cloud class; “ HT/C” means that the feature is used for the 
high thick and convective cloud class. 

 
 
  

Features MSG-SEVIRI spectral bands (µm) 

VIS 
0.6 

VIS 
0.8 

NIR 
1.6 

IR 
3.9 

IR  
6.2 

IR 
7.3 

IR 
10.8 

IR 
12.0 

Max Gray level       A  
Min Gray level       A  
Mean Gray level A        
Max/Min(Gray level)         
Max(Contrast 0º, 45o, 90o, 135o)       A  
Max(Entropy  0º, 45o, 90o, 135o)   A      
Max (Mean 0º, 45o, 90o, 135o)   A   A   
Max (ASM 0º, 45o, 90o, 135o)    LM     
Min(Contrast 0º, 45o, 90o, 135o)  A       
Min(Entropy  0º, 45o, 90o, 135o)       A  
Min (Mean 0º, 45o, 90o, 135o)     A   A 
Min (ASM 0º, 45o, 90o, 135o)        A 

∆��	7�8
     A HT/C   
∆��	7�97     A A   
∆��8
�97         
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Table 6. Summary of the features considered for use in the RainCEIV k-NNM classifier during 
night-time. Label “A” means that the feature is used for all the C-MACSP classes; “LM” means that 
the feature is used for the low/middle cloud class; “ HT/C” means that the feature is used for the 
high thick and convective cloud class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Features 
MSG-SEVIRI spectral bands (µm) 
IR 
3.9 

IR  
6.2 

 IR 
7.3 

IR 
10.8 

IR 
12.0 

Max Gray level    A  
Min Gray level A   A  
Mean Gray level      
Max/Min(Gray level)      
Max(Contrast 0º, 45o, 90o, 135o)    A  
Max(Entropy  0º, 45o, 90o, 135o) A     
Max (Mean 0º, 45o, 90o, 135o)   A LM  
Max (ASM 0º, 45o, 90o, 135o) LM     
Min(Contrast 0º, 45o, 90o, 135o)     HT/C 
Min(Entropy  0º, 45o, 90o, 135o)    A  
Min (Mean 0º, 45o, 90o, 135o)  A   A 
Min (ASM 0º, 45o, 90o, 135o)     A 

∆��	7�8
  A HT/C   
∆��	7�97  A A   
∆��8
�97   A   
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10. Page 13685 line 16 The title of section 4 (Validation and comparisons results) suggests that, in 
addition to the validation results against DPC radar rain rates, the authors present comparisons 
between their results and other similar products from other methodologies. But I do not see these 
comparisons, so I think the title should be modified by removing “comparisons”. 
A.C.: 
Thank you for the correction. Section 4 is now renamed “Validation results”. 
 
11. Page 13687 lines 14-20 About the case study II you stated: “The RainCEIV is able to detect 
rainy samples with a POD of 85 %.” But there is still a remarkable overestimation (BIAS=1.91) of 
the precipitating area, and moreover the statistical scores get worse when you try the rainfall class 
attribution with increasing FAR and Bias values and decreasing POD and HSS. So, please, add 
some further comments. 
A.C.: 
In the revised version the statistical scores related to the RainCEIV validation carried out against 
the RR radar-derived measurements have been updated for all the cases study analyzed by applying 
the following changes: 

• reconsidering the collocation process for the C2 samples, that is now described at the end of 
section 2 as follows: 
“For simplicity, the radar samples completely included into the SEVIRI pixels will be 
denominated RS samples. The collocation process of the radar-derived RR measurements 
into the SEVIRI grid consists in associating the RS samples to each SEVIRI pixel. If the 
percentage of the rainy RS samples is higher than 80%, the SEVIRI pixel is considered for 
the validation and classified as light-to-moderate-rainy or heavy-to-very-heavy-rainy on the 
basis of the RS-RR value average. In some cases, the RS-RR value average is strongly 
influenced by the lowest RR values of the light-to-moderate-rainy RS samples also if the 
number of heavy-to-very-heavy rainy RS samples is higher than that of the light-to-
moderate-rainy one. Because of this, when the percentage of the heavy-to-very-heavy-rainy 
RS samples is higher than 50% and it is higher than that of the light-to-moderate-rainy RS 
samples, the SEVIRI pixel is flagged as heavy-to-very-heavy-rainy regardless of the RS-RR 
value average. If the percentage of the non-rainy RS samples is 100%, the SEVIRI pixel is 
considered for the training and validation. In the other cases, the SEVIRI pixel is flagged as 
“uncertain” and not considered for the training and validation purposes.” 

• Handling the “uncertain” RADARinSEVIRI pixels correctly. In fact, in the previous version 
the “uncertain” (that are the “dark-gray” pixels in the “radar-derived RR results” panels of 
Figures 2, 3 and 4) were not defined and were wrongly considered as non-rainy samples in 
the validation process. The wrong inclusion of the “uncertain” RADARinSEVIRI pixels in 
the validation process resulted in the high number of false alarms. 

• Updating and enlarging the training dataset on the basis of the suggestion of the referee#2. 
• Enlarging the validation dataset and determining the statistical scores for daytime and night-

time samples separately. 
• Changing the RR values ranges of the non-rainy and light-to-moderate-rainy classes on the 

basis of your suggestion (at point 4 of this document) both for the training and the validation 
dataset. 

• recalculating the RainCEIV results on the basis of the updated training dataset. 
 

In the light of the above-listed updates/changes, Table 1 (that lists the AMSU-B/MHS passes 
considered for the training dataset) has been updated and sub-section 4.2 now presents the 
following updates: 

• Table 8 (that lists the cases study used for the validation) has been updated; 
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• Table 9 (that sums up the contingency values for the RainCEIV dichotomous statistical 
assessment) has been updated and related only to the daytime validation dataset, while Table 
10 has been added to sum up the contingency values related to the night-time validation 
dataset; 

• Table 11 (Table 9 in the previous version that shows the statistical scores for daytime 
validation) has been updated and now shows statistical scores for night-time and daytime 
validation separately; 

• Table 12 (Table 10 in the previous version), that shows the statistical scores related to I, II 
and III cases study, has been updated: 

• Figures 3, 4 and 5 (Figure 2, 3 and 4 in the previous version) have been updated. 
 
In particular for the case study II the updated statistical results are discussed approximately from 
line 14 on page 13687 as follows: 

“RainCEIV detects rainy samples with a POD of 89% strongly related to the correct detection of the 
C1 samples. In detail, POD is 82% for the C1 class and 66% for the C2 class resulting from the fact 
that the number of misses related to the C2 class is higher than that of the C1 class. It is important to 
note that 70% of the C2 misses is misclassified as belonging to the C1 class. Furthermore, the 
number of the false alarms related to the C1 class is higher than that of the C2 class and this leads to 
a lower value both of FAR (38%) and BIAS (1.08) related to the C2 class with respect to that related 
to the C1 class (FAR=56% and BIAS=1.86).” 

 
“Also in this case, RainCEIV detects as rainy pixels that are no-rainy for the radar network (FAR is 
0.27), but it is able to monitor the areas characterized by very heavy precipitation as well as by 
moderate precipitation (POD is 0.62) both on the east cost of Sicily and on Southern Calabria.” The 
statistical score values reported in this sentence do not agree with the values in Table 10 for the case 
study III (FAR=0.26 and POD=0.59 for C1,C2, FAR=0.27 and POD=0.59 for C1, and FAR=0.93 
and POD=0.03 for C2). In this case the algorithm underestimate the precipitating areas, and in 
particular for the C2 class it seems that all precipitating pixel identified by the algorithm are 
actually non-precipitating (FAR=0.93), and almost all true precipitating pixels are missed 
(POD=0.03). Thus I think that it is not possible to state that the algorithm is able to identify regions 
characterized by heavy precipitation, at least for this case study. 
 
A.C.: 
Also for this case study (III), the dichotomous statistical scores have been updated by applying the 
above-listed updates/changes. The discussion about the case study III is modified as follows: 
 

“The case study III is related to the analysis of an extreme convective event characterized by very 
heavy precipitations occurred on 21th February 2013 on the east cost of Sicily which caused a flash 
flood over Catania. The RainCEIV detects all the rainy areas with a POD of 87%, that becomes 
50% when only the C2 samples are considered. The number of false alarms is higher for the C1 class 
(FAR=37%) than for the C2 class (FAR=24%), but while the C1 samples are overestimated, 
RainCEIV missed the 50% of them (BIAS=0.67). It is evident that RainCEIV is missing many 
heavy-rainy samples, which should be due to the high temporal variability of this rainy event. 
Nevertheless, it is able to monitor the evolution of all the rainy areas on the east cost of Sicily and 
on Southern Calabria with a good approximation.” 

 
12. Page 13688 lines 3-6 “Regarding the convective events, the RainCEIV is a useful tool for the 
study and characterization of the rainfall events characterized by short duration, high temporal 
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variability, and small size area (of the order of the MSG-SEVIRI spatial resolution).” I think that it 
is not possible to draw this kind of conclusions on the basis of the results obtained for the case study 
I, statistical scores are not so good. Perhaps you could analyze other case studies of this type and 
consider the average behavior of the algorithm. A single case study can penalize the algorithm 
performances. 
A.C.: 
The validation dataset has be enlarged by adding more daytime and night-time scenes and choosing 
cases study characterized by more convective events both for daytime and night-time.  
 
For the same reasons discussed in point 11, the statistical scores related to the case study I (29 
September 2009 at 13:00 UTC) have been corrected by: 

• removing the “uncertain” RADARinSEVIRI pixels from the validation samples; 
• considering as non-rainy the RADARinSEVIRI and PEMWinSEVIRI pixels with 

RR<0.5mm×h-1 both for the training and the validation dataset; 
• considering as light-to-moderate-rainy the RADARinSEVIRI and PEMWinSEVIRI pixels 

with RR≥0.5mm×h-1 both for the training and the validation dataset; 
• recalculating the RainCEIV results on the basis of the updated training dataset . 

In particular, the number of the false alarms varies from 9 to 5 for the C1 class and from 6 to 2 for 
the C2 class, the number of the misses samples passes from 4 to 2 for the C1 class. Consequently, 
the dichotomous statistical results have changed and the discussion about the case study I is 
modified as follows: 
“The case I was chosen because it highlights the RainCEIV ability in detecting very small rainy 
areas. On 29th September 2009 approximately at 13:00 UTC a very rapid and heavy rainfall event 
affected a small area between the Basilicata and Calabria regions in Southern Italy. The accuracy 
score is high (99%) due to the high occurrence of the non-rainy pixels detected correctly. POD 
shows that RainCEIV detects 67% of the rainy samples correctly, while Bias and FAR scores reveal 
the RainCEIV tendency to overestimate rainy samples (the FAR score is 47% and the Bias score is 
1.25). In detail, the Bias score related to the C1 class (Bias=1.37) is higher than that related to the C2 
class (Bias=1.00), on the contrary FAR related to the C1 class (FAR=46%) is lower than that related 
to the C2 class (FAR=50%). This means that there is an overestimation of the heavy rainy area but 
(C1inC2+C0inC2) and the number of the C2 misses is balanced with the number of the C2 hits. This 
is not true for the C1 class that shows a higher number of hits than that of the C2 class, and this 
results in a higher POD (75% and 50% for the C1 and C2 class respectively). In remarking this 
statistical results, it is worth noting that they are significantly influenced by the low number both of 
the C2 RADARinSEVIRI samples (4) and C1 RADARinSEVIRI samples (8). Moreover, the 
temporal distance between the SEVIRI and RADAR acquisitions that is about 5 minutes can be 
determinant in the detection of the rainy events characterized by a high variability. It is argued that 
parts of the false alarms as well as the misses are brought about by the collocation errors in the 
SEVIRI grid.” 

 
Technical corrections  
1.Page 13674 lines 16 and 21 “Mamoudou and Gruber (2001)” The correct citation is: Ba and 
Gruber (2001). Please, correct also the reference in the bibliography. Ok, done. 
 
2. Page 13676 line 4 “ -20_ W and 20_ E”. Replace with “ 20_ W and 20_ E”. Ok, done. 
3. Page 13676 line 21 Pay attention to the name of algorithm modules. From the Introduction the 
name of the cloud classifier module is C_MACSP, not MACSP. Ok, done. 
 
4. Page 13678 line 2 Replace DCP with DPC. Ok, done. 
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5. Page 13679 line 5 I think that the Table 2 cited in this sentence is not the correct one. Table 2 
contains the AMSU-B overpasses used to build the training data set of the K-NNM module; I 
expected a table with the MSG-SEVIRI features, which actually are displayed in Table 6. Ok, done. 
 
6. Page 13862 line 6 “. . . largest variance across the design set. . .” Is this the training data set? 
Replace design set with training data set. Ok, done  
 
7. Page 13682 line 13 Replace K-NN with K-NNM. Ok, done. 
 
8. Page 13683 line 25 AMSU-B observations used for the K-NNM training data set are displayed in 
Table 2, not in Table 3. Ok, it is right. Now table 2 is renamed Table 1. 
 
9. Page 13684 line 13 The reference Efron (1979) was not included in the bibliography. 
Considering that the sentence “Consequently, the bootstrap training set obtained is smoother than 
the one presented by Efron (1979)”, does not add information useful for the comprehension of the 
bootstrap technique, we have removed this sentence from the new version of the manuscript. We 
apologize for the confusion. 
 
10. Page 13684 line 21 and eq.7 I do not understand the mathematical notation used for the r nearest 
neighbour vectors used in the bootstrap data set construction. In my opinion yrj,y(y=1,r) should be 
replaced with ykj,z(z=1,...,r). bykj (line 25) should be corrected, moreover specify the range of the 
index i. 
 
We apologize for the confusion. The description of the bootstrap method and the mathematical 
notation is now changed as described at the point 7 of this document where the updated 3.2.2 sub-
section is shown. 
 
13. Page 13686 line 7 “The Bias score higher for C2 ...” Replace with “The higher Bias score...”. 
Thank you for the correction. 
 
14. Page 13686 lines 24-25 “The statistical scores calculated for each case are listed in Table 11 (for 
all classes), Table 12 (for C1 class), and Table 13 (for C2 class).” In the manuscript there is only 
Table 10, which summarizes the results for the three case studies, so correct the sentence 
accordingly. Thank you for the correction. 
 
15. Page 13687 line 4 The Bias value (1.67) is not correct according to Table 10, which reports a 
Bias value of 1.64. Thank you for the correction. 
 
16. Page 13687 line 11 Replace “...larger temporal and spatial distribution” with “...larger temporal 
and spatial extent”. Ok, done. Thank you for the correction. 
 

Appendix A. “Procedure adopted for the training set refinement” 

The RainCEIV and C_MACSP original training datasets have been refined by applying the same 
procedure to the samples of each class.  

The refinement process consists in using the Nearest Neighbour decision rule described by Cover 
and Hart (1967) in order to classify each sample of the initial training classes. Here the aim of this 
process is to eliminate the redundant and misclassified training samples, which is similar to the 
CNN rule described in Hart (1968) but the main purpose of CNN is to get a training subset 
performing as well as the original one. Before the description of the refinement process, a brief 
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description of the NN decision rule and of the Fisher criterion (used to reduce the number of the 
components of the feature vector) will be given. 

Let To={( ��#, ��)} be the original training dataset, where the pairs (6��:, ��) indicate the training 
samples ;���< of the class ��, j=1, 2, ..., Nc, Nc is the number of the classes, i=1, 2, ...,Nc,j, Nc,jis the 
number of the training samples for the class ��. Given a vector =��� to be the classified, the NN rule 
establishes that =��� belongs to the class �� when the minimum distance is that from the training 
sample ;���< that belongs to class ��, and then ;���< is the Nearest Neighbourof =���. 

Before applying the RR decision rule, it is important to define the dimension of the feature vector. 
In fact, since the k-NN classifier performance generally decreases with the dimension of the feature 
vector, the number of the components (�#) of 6�� has been reduced by applying the Fisher criterion 
(Ebert, 1987; Parikh, 1977) to evaluate the discriminatory power of the individual features  and to 
choose the features characterized by the higher Fisher distance value. Let �>?@  and A�

# be the mean and 
standard deviation of the feature �# for the training set from class ��, thus the Fisher distance is 
defined as: 

B#�� = CDEFGGG�DH
FGGGGC

IJK
L�JH

L M
.                                                                                                                                (1) 

It measures the ability of the feature �# to differentiate class �� from class ��. The features xj, 
within 6��, have been ordered in a decreasing way on the basis of the B#�� values and the first d 
features have been chosen as the components of the feature vectors used. The dimension d has been 
fixed by following the suggestions in Jain and Chandrasekaran (1982), who point out that the ratio 
between the number of the training samples for each class and the feature vector dimension d 
should be at least five. 

The procedure to obtain the refined training dataset, Tr, starting from the original training dataset 
To, consists in: 

1. Considering the ith pattern (��#, ��) of To,  
2. Applying the NN decision rule and determining the following action on the basis of the 

three possible classification results: 
- the NN belongs to the initial belonging class ��and the Euclidean distance is higher than 

zero, consequently the sample is put in Tr; 
- The NN belongs to a different class �# ≠ ��, consequently the sample is reanalyzed and 

included in the NN class; 
- the Euclidean distance from the NN is zero, the sample is considered redundant and it is 

removed from To and not included in Tr. 
3. restarting from point 2 with another sample and applying the entire process until all the 

training samples have been analyzed. 
Tr, determined for each class is used as the definitive training dataset. 
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Interactive comment on “A statistical approach for rain class evaluation using Meteosat 
Second Generation-Spinning Enhanced Visible and InfraRed Imager observations” by E. 
Ricciardelli et al. 
 
Anonymous Referee #2 
 
The authors propose a new algorithm for rainfall intensity classification with high spatial and 
temporal resolution based on MSG SEVIRI. The technique uses a k-nearest neighbor mean 
classifier that is trained with rain rate from AMSU-B data. Different spatial and spectral features 
extracted from MSG SEVIRI channels are considered in the classification algorithm. I think the 
manuscript needs some major revisions before I would recommend it for full publication. 
The presentation of the different steps in section 3 should be better structured and more precise. 
The authors should elaborate more on deficiencies of existing retrieval techniques and the potential 
benefit of the presented technique, especially of the rain intensity differentiation. 
The training and validation dataset should be extended. 
 
Author Comment (A.C.): 
We would like to thank the referee for the detailed and useful comments on our paper. We accepted  
your suggestions in the revised manuscript, improving the structure of Section 3, extending the 
training and validation datasets, and explaining in more detail the benefits of the presented 
technique. 
Specific comments are addressed below. 
 
The title ". . . rain class evaluation . . .” is misleading. I suggest changing it to “. . . rain intensity 
differentiation . . .”. 
A.C. 
Agreed. The title now reads: 
“A statistical approach for rain intensity differentiation using Meteosat Second Generation-Spinning 
Enhanced Visible and InfraRed Imager observations” 
 
The English should be revised. 
Section 1: 

The authors should focus more on the deficiencies of existing satellite-based techniques. 
Why is the present study necessary? What would be the advantage in contrast to other existing 
techniques?  
A.C.: 
The abstract and the introduction as well as each section of the paper has been improved in order to 
explain the utility of the RainCEIV technique more in-depth. In particular the abstract now reads:  
 
“This study exploits the Meteosat Second Generation (MSG)–Spinning Enhanced Visible and 
Infrared Imager (SEVIRI) observations to evaluate the rain class at high spatial and temporal 
resolutions and, to this aim, proposes the Rain Class Evaluation from Infrared and Visible 
observation (RainCEIV) technique. RainCEIV is composed of two modules: a cloud classification 
algorithm which characterizes and individuates the cloudy pixels, and a supervised classifier that 
delineates the rainy areas according to the three rainfall intensity classes, the non-rainy (rain rate 
value<0.5 mm×h-1) class, the light-to-moderate rain class (0.5 mm×h-1≤rain rate value<4 mm×h-1), 
and the heavy-to-very-heavy rain class (rain rate value≥4 mm×h-1). The second module considers in 
input the spectral and textural features of the infrared and visible SEVIRI observations for the 
cloudy pixels detected by the first module. It also uses the temporal differences of the brightness 
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temperatures related to the SEVIRI water vapour channels indicative of the atmospheric instability 
strongly related to the occurrence of rainfall events. 
The rainfall rates used in the training phase are obtained through the Precipitation Estimation at 
Microwave frequencies, PEMW (an algorithm for rain rate retrievals based on Atmospheric 
Microwave Sounder Unit (AMSU)-B observations). RainCEIV provides a continuous monitoring 
both of the cloud coverage and rainfall events without using real–time ancillary data. Its principal 
aim is that of supplying preliminary qualitative information on the rainy areas within the 
Mediterranean basin where there is no radar network coverage. The results of RainCEIV have been 
validated against radar-derived rainfall measurements by the Italian Operational Weather Radar 
Network. The dichotomous assessment related to daytime (night-time) validation shows that 
RainCEIV is able to detect rainy/non rainy areas with an accuracy of about 97% (96%), and when 
all the rainy classes are considered, it shows a Heidke skill score of 67% (62%), a Bias score of 1.36 
(1.58), and a Probability of Detection of rainy areas of 81% (81%).” 

What would be benefit of the presented rain class differentiation for further satellite based rain 
retrievals? 
A:C.: 
RainCEIV is based on a training dataset built by double-matching radar-derived rain rate values and 
the rain rate values obtained from the Passive MicroWave (PMW) observations from AMSU-
B/MHS radiometers at a better spatial resolutions than the other PMW sensors. The PMW 
observations have been processed by the operative PEMW algorithm (Di Tomaso et al., 2009), 
whose performance has been validated by Cimini et al. (2013). Moreover, both the training phase 
and the RainCEIV classification algorithm are based on the C_MASCP cloud classification mask so 
to get more reliable results. 
 

Section 2: 

The information on MSG is not correct. Please correct this. 
A.C.: 
Ok, done. The sentence now reads: 
“SEVIRI is the main payload on board the MSG series, composed of MSG-1 (Meteosat 8), MSG-2 
(Meteosat 9), MSG-3 (Meteosat 10), and future MSG-4 (Meteosat 11), planned for launch in 2014.” 
 
It would be interesting to evaluate the performance of the proposed technique separately from 
uncertainties introduced by the PEMW algorithm. For comparison I suggest to train and validate the 
technique with independent data from the radar network. 
A.C.: 
The training phase has been carried out by collecting a set of SEVIRI pixels with co-located Rain 
Rate (RR) values inferred from AMSU-B/MHS observations processed by the PEMW algorithm, 
and when available with co-locate radar-derived RR values. The choice to use principally PEMW 
RR values instead of the radar RR values for the training of RainCEIV dataset has been made 
because PEMW-RR values are available on a larger area than that covered by the Radar network. 
Nevertheless, the choice of the double matching of PEMW and radar-derived RR values, when 
available, in order to decide the rainy/non-rainy class of the SEVIRI pixels results very useful in the 
refinement of the initial training dataset. We apologize for not being clear. The paragraph that 
describes the training procedure has been modified as follows: 
 
“The training dataset has been built by coupling cloudy SEVIRI pixels with the corresponding RR 
value obtained by the PEMW algorithm and, where available, with the radar-derived RR values. 
When no radar-derived RR value is available (because the AMSU-B/MHS observation is outside 
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the area covered by the Radar Network) the SEVIRI pixel is classified as belonging to one of the 
classes C0, C1, and C2 on the basis of the corresponding PEMWinSEVIRIv and it is included in the 
initial training dataset. When the RADARinSEVIRIv is available and agrees with the 
PEMWinSEVIRI in determining the rainy/non-rainy class the SEVIRI pixel belongs to, this is 
included in the initial training dataset. Otherwise, when the RADARinSEVIRIv and 
PEMWinSEVIRIv do not agree, the SEVIRI pixel is included in the initial training dataset only if 
the correspondent RADARinSEVIRI pixel belongs to a rainy class C1 or C2 and the percentage of 
the rainy RS is higher than 80%. This choice is very useful for the training of the rainy events 
localized over an area smaller than the AMSU-B/MHS FOV area. The training samples have been 
considered separately for land and sea, and grouped on the basis of the Solar Zenith Angle (SZA) 
ranges. Finally, in order to refine the training dataset, the process described in Appendix A has been 
applied to the initial training dataset. The availability of the SEVIRI samples double matched with 
PEMW and radar-derived RR values is useful both for the mitigation of uncertainty due to the 
collocation process and the refinement of the original training dataset especially for the removal of 
the misclassified samples.” 
 
Your suggestion is very interesting, but due to the training procedure we adopted, the comparison 
results obtained by training the RainCEIV with only radar-derived RR values are the same obtained 
by double matching PEMW and radar derived RR values during the RainCEIV training phase. 
 
Section 3.1: 

The authors should describe the extensions of the original MACSP algorithm mentioned in section 
3.1 in more detail. This should include a description of the considered features as well as the 
approach for cloud type classification. Given the mentioned update of the MACSO algorithm the 
training dataset and the validation dataset should be increased. 
A.C.: 
We accept the suggestion; Section 3.1 has been changed as follows: 
 

“The cloud Mask Coupling of Statistical and Physical methods algorithm - MACSP (Ricciardelli et 
al., 2008) - is used for distinguishing cloudy from non-cloudy pixels. The version used for 
RainCEIV purposes is called C_MACSP, which stands for cloud Classification Mask Coupling of 
Statistical and Physical methods. The current version has been updated to give information about 
the cloud class and in particular to split the MACSP “high cloud” in the high optically thin and high 
optically thick cloud classes. Furthermore, the convective cloud class has been added, not just for 
module II but also to individuate the possible occurrence of extreme events. A pixel can be 
classified in 5 different classes considered both over land and sea: clear, low/middle cloud, high 
optically thin cloud, high optically thick cloud and convective cloud. In detail, the C_MACSP 
physical algorithm uses the same physical threshold tests as the MACSP earlier version with the 
addition of a new threshold test involving the difference between the brightness temperature of the 
SEVIRI water vapour channel centred at 6.2µm and of the SEVIRI window channel centred at 
10.8µm, ∆���.�µ��	
.�µ�. This difference is very small for convective cloud as asserted by Mosher 
(2001, 2002) in the Global Convective Diagnostic approach. The C_MACSP statistical algorithm 
considers in input the same spectral and textural features described and listed in section 3.2.1 and 
table 4, respectively, of Ricciardelli et al. (2008), but the training dataset has been updated in order 
to build the training samples for the convective cloud class. The training samples were collected in 
the Mediterranean basin, where RainCEIV operates. The cloud classification for the training dataset 
has been made through a careful visual inspection of the SEVIRI images. The clear and cloudy 
pixels have been selected manually after observing the spectral characteristics in SEVIRI IR/VIS 
images as well as in their RGB composition, a useful practice for distinguishing cloudy classes 
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(Lensky and Rosenfeld, 2008). In order to collect the training samples for the convective cloud 
class, the cloudy SEVIRI pixels have been matched with the corresponding PEMW-RR and radar-
derived RR values, if available. The collocation process both of the radar-derived RR values and the 
PEMW-RR values in the SEVIRI grid is described in Section 2. The SEVIRI pixel is considered for 
the training when: 

• both the RADARinSEVIRI pixel and PEMWinSEVIRI pixel are available and the relation: 
(RADARinSEVIRIv≥4mm×h-1).and.(PEMWinSEVIRIv≥4mm×h-1) is satisfied; 

• both the RADARinSEVIRI pixel and PEMWinSEVIRI pixel are available and the relation: 
(RADARinSEVIRIv≥4mm×h-1).and.(PEMWinSEVIRIv<4mm×h-1) is satisfied and the 
percentage of the rainy RS samples is higher than 80%; 

• only the PEMWinSEVIRI pixel is available (the AMSU-B/MHS observation is outside the 
area covered by the Radar Network) and the relation (PEMWinSEVIRIv≥4mm×h-1) is 
satisfied. 

When both the RADARinSEVIRI pixel and the PEMWinSEVIRI pixel are available and the 
relations at points 2 and 3 are not satisfied, the SEVIRI pixel is not considered for the initial 
training dataset. The SEVIRI images listed in table 5 of Ricciardelli et al (2008) and in particular 
the ones used for the training of the Mediterranean basin (enclosed in the areas B, C, and G of 
Figure 3 of Ricciardelli et al (2008)) have been used for the training of C_MACSP. The SEVIRI 
images used for the training are those acquired on 29 September 2009 at 16:57 UTC, on 1 October 
2009 (at 05:12 UTC, at 08:27 UTC, and at 15:57 UTC), on 04 March 2010 (at 14:27 UTC, 15:57 
UTC, and at 20:12 UTC), on 28 April 2010 (at 12:27 UTC and 15:43 UTC), on 4 August 2010 (at 
10:43 UTC and 15:12 UTC), on 2 February 2010 at 22:57 UTC, on 8 January 2010 at 13:57 UTC, 
on 1 October 2009 (at 05:13 UTC and 19:13 UTC). The procedure described in Appendix A has 
been applied in order to refine the training dataset by eliminating the redundant as well as the 
misclassified samples. For RainCEIV purposes, the C_MACSP screening is useful to: 

• reduce the number of the input pixels to the RainCEIV k-NNM classifier by removing the 
pixels classified as clear and high thin cloud; 

• define the components of the feature vector in input to the RainCEIV classifier (as will be 
described in the following sub-section. The components chosen for each cloud class are 
shown in Tables 5 and 6).” 

 

The validation results should be presented and discussed separately in the results section. 

A.C.: 
We followed this suggestion; Section 4 “Validation results” presents now two sub-sections: 4.1 
C_MACSP validation results and 4.2 RainCEIV validation results. 
“ 

4. Validation results 
4.1 C_MACSP validation results 

The validity of the C_MACSP algorithm has been tested by applying it to an independent dataset of 
which each class is made 300 samples taken from the SEVIRI images acquired on 12 November 
2010 at 11:27 UTC, 22 November 2010 at 09:27 UTC and at 11:43 UTC, 5 May 2012 at 20:27 
UTC, 19 May 2012 at 10:57 UTC, 23 July 2012 at 10:27 UTC, 5 December 2012 at 08:43 UTC, 19 
September 2009 at 19:13 UTC, 6 July 2010 at 11:27 UTC and 12:27 UTC, 4 August 2010 at 14:27 
UTC, 26 December 2013 at 04:57 UTC, 8 October 2013 at 18:57 UTC, 7 October 2013 at 00:57 
UTC and 20 January 2014 at 23:57 UTC. The validation has been carried out separately for samples 
acquired during night-time and daytime by comparing the C_MACSP classification results and the 
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samples manually collected from the independent dataset images. The manual classification has 
been made through a careful observation of the SEVIRI RGB composition so as to get the same 
number of samples for each class. The convective cloud classification results have been validated 
considering the RR maps derived both from the weather radar network and the PEMW rain rate 
maps. The latter have been used for the areas where radar information is missing. The accuracy 
(defined as the ratio between the number of the test samples classified correctly and the total 
number of the test samples) has been determined for each class and Table 7 shows the results 
obtained. On the basis of the samples examined, it is possible to assert that C_MACSP is able to 
classify high thick clouds as well as convective clouds, both over land and sea during daytime and 
night-time, with an accuracy higher than 95%. Moreover, it shows an accuracy higher than 91% in 
detecting low/middle clouds both during daytime and night-time over land and over sea. The 
accuracy in detecting high thin class over sea is 87,6% during daytime and night-time, and it is 
slight lower over land both during daytime (85%) and night-time (84%).” 

In the revised manuscript, Table 1 is renamed Table 7 and it lists  the validation results for daytime 
and night-time, separately. 
 
Table 7. Accuracy of the C_MACSP algorithm on an independent dataset 

Classes  Classification accuracy  
(for test samples acquired during 
daytime) 

Classification accuracy  
(for test dataset acquired during 
nighttime) 

Clear over land 
Clear over sea 
Low/middle clouds over land 
Low/middle clouds over sea  

   High thin clouds over land 
High thin clouds over sea 
High thick clouds over land 
High thick clouds over sea 
Convective clouds over land 
Convective clouds over sea 

95.0 %  
96.7 %  
91.6 %  
92.6 %  
85.0 %  
87.6 %  
98.3 %  
99.0 %  
96.0 %  
96.7 %  

95.0 %  
96.7 %  
91.0 %  
91.3 %  
84.0 %  
87.6 %  
97.3 %  
99.0 %  
96.7 %  
96.7 %  
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Page 13679, line 6 to 7: Please explain in more detail how the training dataset “has been updated”.  
A.C.: 
Ok, done. The training dataset updating process is described in the new version of section 3.1 above 
reported. 
 
Page 13679, line 5: The reference to table 2 is wrong. Please correct.  

A.C.: 
Ok. Table 1 (to whom we wrongly referred as Table 2) is now renamed Table 7 because the 
C_MACSP validation has been moved in sub-section 4.1.  
 

Page 13679, line 12: Please specify “outliers”. 
 
A.C.: 
We define as outliers the samples that during the training phase are misclassified. (e.g. as for 
C_MACSP a thin cloud could be misclassified as clear, or a low/middle cloud could be 
misclassified as high thick cloud, as for RainCEIV heavy rain could be misclassified as moderate 
rainy pixel). This information is now provided in the revised version. 
 
Page 13679, line 11 to 14: Please specify how you “refine“ the “training dataset. 

A.C.: 
As the procedure adopted to refine the training dataset is the same for the two modules C_MACSP 
and RainCEIV, this is now described in appendix A:“Procedure adopted for the training set 
refinement” (For convenience, Appendix A is also reported at the end of this document). 
The sentence: 
“In order to get a reliable training dataset, the outliers have been removed by means of the 
Condensed Nearest Neighbour Rule (CNN) (Hart, 1968) and the cross-validation method has been 
applied so to refine it.” 
 
has been modified as follows: 
“In order to refine the training dataset, by eliminating the redundant samples as well as the 
misclassified samples, the procedure described in appendix A has been adopted.” 
 
Section 3.2: 

Page 13681, line 5: Please provide a flowchart showing the structure and sequence of the procedure 
described in section 3 instead of figure 1. 
 
A.C.: 
The following flowchart, showing the training phase process, is now added to section 3: 
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Figure 2. Flowchart of the RainCEIV training phase. 

 
Section 3.2.1: 
Please explain the considered spectral and spatial features. 
A.C.: 
The following text is added at the beginning of 3.2.1 sub-section: 
“In detail, the spectral features used are the maximum and minimum grey levels and the ratio 
between them. The textural features considered are the maximum and the minimum of the Entropy 
(a measure of the spatial randomness of the image), the Angular Second Moment (ASM, a measure 
of homogeneity of the image), the Contrast (a measure of local variation of the grey-level 
differences) and the Mean (a measure of the mean grey-level differences). The maximum and 
minimum values are calculated among the values calculated for the four directions (0º, 45º, 90º, 
135º) in the 3×3-pixel box.” 
 
Why have you chosen features for cloud detection to classify rain areas? 
A.C.: 
The combination of the features chosen for the classification of the rainy/non-rainy samples differs 
from that used in the C_MACSP statistical algorithm. 
RainCEIV considers in input the maximum and minimum values among all the textural values 
determined for the four directions (0, 45, 90, 135). For the cloud classification purposes, the textural 
values are considered in the specific directions because of their usefulness in the detection of the 
high thin cloud. The spectral and textural features of the WV spectral channels as well as their 
temporal differences are considered as components of the RainCEIV feature vector, but they are not 
considered in the C_MACSP statistical algorithm.  
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An overview of the spectral and spatial features before and after the selection (Table 6) should be 
given. The calculated discriminatory power of the individual features should also be presented and 
discussed. 
A.C.: 
In order to elucidate the use of Fisher criterion in determining the features to be included in the 
feature vector, sub-section 3.2.1 has been modified. In particular, the description of the Fisher 
criterion has been moved from sub-section 3.2.1 to the Appendix A (see at the end of this 
document). The sentence from line 14 on page 13682 to line 7 on page 13683 is now changed as 
follows: 

“For this purpose, the Fisher distance criterion (Ebert, 1987; Parikh, 1977), described in Appendix 
A, has been applied in order to evaluate the discriminatory power of the individual features. The 
Fisher distance has been determined for the following combinations: (�
 , �	); (�
, ��); (�	, ��). The 
features have been ordered in a descending way on the basis of the correspondent Fisher distance 
value, so that the features characterized by higher Fisher distances have been chosen as components 
of the feature vector. The definitive values of the feature vector components d and the RainCEIV k-
NNM classifier k parameter have been determined as described in the following sub-section.” 

Moreover, sub-section 3.2.2 has been modified to clarify how the training dataset is carried out, 
how the process to refine the training dataset works and how the best values for d and k parameters 
have been chosen. 
 
The results should be presented separately for daytime and nighttime scenes. 
A.C.: 
Agree. The RainCEIV validation results are now presented for night-time and daytime scenes 
separately in the revised paper. 
Moreover, Table 6 is now split into two tables (Table 5 and 6) listing the features to be used during 
daytime and night-time, respectively. 
 
Page 13681, line26, 27: Please explain the considered time lags of 15, 30 and 45 minutes in more 
detail. 
A.C.: 
Ok, sub-section 3.2.1, from line 24 on page 13681 to line 4 on page 13682 has been updated as 
follows: 

“ The spectral channels centred at 6.2 µm and 7.3 µm are indicative of the water vapour (WV) 
content in the troposphere at levels lower than 350hPa and 500hPa, respectively. The WV channel 
features when considered alone do not give useful information on the presence of a raining cloud, 
on the contrary, when considered with the other channel features, in particular those related to the 
10.8 µm channel, they are useful to individuate convective events (Mosher, 2001, 2009). Moreover, 
the WV temporal changes are indicative of the atmospheric instability that is a useful index in the 
detection of the precipitating area. Because of this, the temporal differences ∆��(�.�)	7�8
, 
∆��(�.�),	7�97, ∆��(�.�),8
�97, ∆��(O.8)	7�8
, ��(O.8),	7�97, ��(O.8),8
�97 between the WV 
brightness temperatures related to the SEVIRI acquisitions made 15, 30 and 45 minutes before the 
time of interest are exploited to get information on the WV temporal changes at different 
atmosphere levels. Obviously, the temporal change of WV brightness temperature related to a pixel 
does not always mean that the pixel is rainy, and as for the other features, it gains usefulness in 
discriminating rainy/non-rainy classes when used in combination with the other features 
opportunely chosen, as will be described in the following sub-section.” 
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Page 13683, line 4 to 5: This sentence is not clear to me. What is meant by “training samples for 
each class”? I suppose the training set consists of temporally and spatially collocated MSG and 
AMSU-B scenes.  
A.C.: 
Yes, the training set consists of temporally and spatially collocated SEVIRI and AMSU-B/MHS 
scenes. The training samples have been chosen separately for land and sea, for night-time and 
daytime scenes, and they have been grouped on the Solar Zenith Angle (SZA) ranges. 
 
Section 3.2.2: 
The training dataset should be extended over a greater time period and include more nighttime 
scenes. Is the training and application done separately for land and sea areas and for daytime 
and nighttime scenes? If so, explain how 
A.C.: 
The training dataset has been built to characterize all the classes considered separately for land and 
sea and for daytime and night-time scenes. During daytime the C0, C1 and C2 classes were trained 
for different ranges of Solar Zenith Angles (SZA). For this reason we analyzed more scenes during 
daytime than during night-time. This information has been added in sub-section 3.2.2 of the revised 
paper. Anyway, we accepted your suggestion to enlarge the training dataset and the updated list of 
the AMSU-B/MHS passes considered for the training phase is shown in Table 1 of the revised 
version. 
 
Please explain the bootstrap procedure in more detail using the concrete training dataset. The whole 
purpose is not clear to me. I think it is easier to extend the training dataset by considering more 
precipitation events. Could you please provide a comparison of the training dataset before and after 
the bootstrap procedure? 
A.C.: 
We apologize for the unclearness of the paragraph describing the bootstrap procedure. In the 
previous version, the AMSU-B/MHS passes used for defining the training and test dataset were 
listed in the same Table 2 and this made confusion about the function of the training and the test 
dataset. The bootstrap procedure is applied only to the test dataset. 
We accept your suggestion and consider a test dataset larger than the one used in the previous 
version. The original test dataset and the artificial one obtained by applying the bootstrap process 
have been considered in order to define the best values for k and d parameters. The lines from 5 on 
page 13684 to 15 on page 13685 (sub-section 3.2.2) now reads as follows: 

“Successively, in order to decide the best values for d and k, a set of test samples have been 
classified by varying d and k combinations. Moreover, an artificial dataset, smoother and more 
versatile than the initial one, has been obtained by applying the bootstrap method (described by 
Hamamoto et al. (1997)) to the initial test samples. In order to make a more robust choice for d and 
k, the same d and k combinations chosen for the classification of the initial test dataset have been 
used to classify the artificial dataset. The best choice of d and k has been made by comparing the 
statistical scores obtained by classifying the two dataset separately. 
Let � = �(y���, ��)� be the independent test dataset built by examining the PEMW-RR values related 
to the AMSU/MSH overpasses of 12 February 2012 at 01:35UTC, 12 November 2011 at 
08:50UTC, 22 November 2010 at 09:34 UTC, 4 August 2010 at 14:46 UTC, 26 April 2010 at 12:26 
UTC, 01 October 2009 at 19:50UTC, 02 October 2009 at 05:00UTC. The pairs (y���, ��) indicate the 
test samples y��� belonging to the class ��, j=1, 2, ..., Nc, Nc is the number of the classes, i=1, 2, 
...,Nc,j, Nc,j is the number of the test samples for the class ��. 
The bootstrap samples for each class have been determined as follows: 

6. the sample (y���, ��) was selected; 
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7. r was chosen equal to Nc,j/4 and the r nearest neighbours (NN) of the sample (y���, ��) 
(indicated as �(���,�, ��)� 	,!�) were found. (The Nearest Neighbour decision rule is 
explained in Appendix A)  

8. the ith component of the bootstrap sample was calculated by applying the equation  

 "��
# = 	

!  ∑ ��,�
#!

� 	                                                                                                                     (7) 

to all the components of the �(���,�, ��)� 	,!� For simplicity the generic ith component of the 
(���,�, ��)� 	,! is indicated as ��,�

#  without indicating the belonging class Cj, in the same way 

"��
#  is the ith component of the bootstrap sample ("�������, ��) obtained by starting from the 

sample (���, ��). 

9. Points 2 and 3 were repeated for % = &',�
5) , &',�

10) , &',�
2) − 8, &',�

2) − 6, &0,�
2) −

4, &',�
2) − 2; 

10. the process restarted from point 1 with another sample and points 2, 3 and 4 were applied 
until all the test samples were considered for each class. 

A careful screening has been done to eliminate the redundant bootstrap samples. The bootstrap 
samples and the initial test samples have been classified separately by means of the k-NNM (using 
the original training dataset). The statistical scores obtained for the two datasets are quite similar 
and they change in the same way varying d and k as can be noted in Tables 2, 3 and 4 that list the 
statistical scores for k=3, d=10, d=16, d=20 (Table 2); k=5, d=10, d=16, d=20 (Table 3); k=7; d=10, 
d=16, d=20 (Table 4). Other combinations of d and k have been investigated obtaining results worse 
than the ones listed in tables 2, 3 and 4. In particular, both for the original and artificial test dataset, 
for 2 < 3, 5 < 10 the FAR related to the moderate class is higher than 40% and POD is lower than 
60%, while for k>7 the FAR for all the classes is higher than 44% and the other statistical scores are 
lower than those obtained for the other k and d combinations. The statistical scores obtained by 
classifying the initial and artificial samples agree in suggesting k=5 and d=16 as the best choice of 
parameters for the k-NNM classifier. The features chosen as components of the feature vector �� 
related to daytime and night-time acquisition are listed in Table 5 and Table 6, respectively.”  

In the revised manuscript Tables 3, 4 and 5 are renamed Tables 2, 3 and 4  

Page 13683, line12 to 23: These lines should be included in section 2. 
A.C.: 
The statistical scores shown in this paragraph have been obtained by validating PEMW-RR values 
against radar-derived and rain gauge-derived RR values. The validation was carried out by Di 
Tomaso et al. (2010) and Cimini et al. (2013). These statistical scores have been listed not as 
RainCEIV validation results but in order to give information on the PEMW accuracy, that is why 
this information was included in this sub-section. 
 
Page 13683, line25: The reference to table 3 is wrong. Please correct.  
A.C.: 
Ok, done. Due to the fact that former Table 1 is now renamed Table 7, former Table 2 (wrongly 
named Table 3) is now renamed Table1. 
 
Page 13683, line26-27: Please explain in more detail how the MSG and AMSU-B scenes are 
spatially and temporally collocated for the training dataset? 
A.C.: 
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The collocation of PEMW-derived RR values in the SEVIRI grid is now described in Section “2- 
Instruments and data” at line 25 on page 13677, as follows: 
 
“The PEMW RR value is assigned to the SEVIRI pixel only when the latter is entirely enclosed in 
the corresponding AMSU-B/MHS FOV. PEMW rain rate values are re-sampled on the SEVIRI grid 
calculating the area of each AMSU-B/MHS FOV on the basis of the orbital parameters described in 
(Bennartz, 2000). The temporal matching is carried out considering a maximum difference of 7.5 
minutes between the acquisition time of the SEVIRI pixel and that of the AMSU/MHS FOV.” 
 
Page 13684, line 1: Please explain to what extent the k-NNM classifier is a pattern recognition 
classifier and how patterns are considered by the features in the training dataset. 
 
A.C: 
The k-NNM classifier in a supervised pattern recognition classifier. In this context, the term 
“pattern” is used to indicate the SEVIRI observation both as training sample and as sample to be 
classified. For each pattern (SEVIRI observation), the spectral and textural features are determined 
for the IR brightness temperature and/or for the VIS reflectance. 
 
Page 13684, line 4: Please explain the application of the CNN rule in more detail. 
A.C.: 
As the procedure applied to refine both the C_MACSP and RainCEIV training dataset is the same, 
it is now described in the appendix A “ Description of the procedure for the training set refinement” 
of the revised manuscript. For convenience, Appendix A is also reported at the end of this 
document. 
In the light of this change, sub-section 3.2.1 from line 15 on page 13682 to line 7 on page 13683 is 
modified as follows: 

“For this purpose, the Fisher distance criterion (Ebert, 1987; Parikh, 1977), described in Appendix 
A, has been applied in order to evaluate the discriminatory power of the individual features. The 
Fisher distance has been determined for the following combinations: (�
 , �	); (�
, ��); (�	, ��). The 
features have been ordered in a descending way on the basis of the correspondent Fisher distance 
value, so that the features characterized by higher Fisher distances have been chosen as components 
of the feature vector. The definitive values of the feature vector components d and the RainCEIV k-
NNM classifier k parameter have been determined as described in the following sub-section.” 

Page 13685, line 6 to 12: These lines should be included in the results section. 
A.C.: 
The statistical scores refer to the classification of the test samples (both original and artificial) and 
have been derived in order to determine the best combination of the d and k parameters to be used 
in the RainCEIV k-NNM classifier. 
 
Page 13685, line 13 to 14: What reference dataset was used for the cross-validation? 
A.C.: 
The reference dataset used is now described in sub-section 3.2.2 as follows: 
“Let � = �(y���, ��)� be the independent test dataset built by examining the PEMW-RR values related 
to the AMSU-B/MSH overpass of 12 February 2012 at 01:35UTC, 12 November 2011 at 
08:50UTC, 22 November 2010 at 09:34 UTC, 4 August 2010 at 14:46 UTC, 26 April 2010 at 12:26 
UTC, 01 October 2009 at 19:50UTC, 02 October 2009 at 05:00UTC.” 
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Page 13685, line 14 to 15: Please explain in more detail how the features in table 6 were selected. 
Table 6 should be revised to make it clearer. The presented feature and the expected usefulness for 
rain classification should be explained. 
A.C.: 
Sub-section 3.2.2 has been modified in order to explain more in-depth the process adopted for the 
selection of the features. The modified Sub-section 3.2.2 has been shown above, where the 
“bootstrap process” is described”. 
Table 6 is now split into two tables: Table 5 and 6 list the features to be used during daytime and 
night-time, respectively. The captions of Tables 5 and 6 have been re-written so to be clearer. A 
description of Tables 5 and 6 is now added at the end of sub-section 3.2.2 as follows: 
“The features chosen as components of the feature vector 6�� related to daytime and night-time 
acquisition are listed in Table 5 and Table 6, respectively. The features used over land and over sea 
are the same, but in some cases they vary for different cloud classes, e.g. the max value of the ASM 
is very useful in order to determine the confidence that a low/middle cloud is precipitating, but its 
discriminatory power is not so high as to individuate the precipitating high thick clouds. On the 
contrary, the minimum and maximum values of Entropy, Mean and Contrast give an useful 
contribution in detecting both light-to-moderate rainy class and heavy-to-very-heavy-rainy class for 
all the cloudy classes.”  

Table 5. Summary of the features considered for use in the RainCEIV k-NNM classifier during 
daytime. Label “A” means that the feature is used for all the C-MACSP classes; “LM” means that 
the feature is used for the low/middle cloud class; “ HT/C” means that the feature is used for the 
high thick and convective cloud class. 

 
 
  

Features MSG-SEVIRI spectral bands (µm) 

VIS 
0.6 

VIS 
0.8 

NIR 
1.6 

IR 
3.9 

IR  
6.2 

IR 
7.3 

IR 
10.8 

IR 
12.0 

Max Gray level       A  
Min Gray level       A  
Mean Gray level A        
Max/Min(Gray level)         
Max(Contrast 0º, 45o, 90o, 135o)       A  
Max(Entropy  0º, 45o, 90o, 135o)   A      
Max (Mean 0º, 45o, 90o, 135o)   A   A   
Max (ASM 0º, 45o, 90o, 135o)    LM     
Min(Contrast 0º, 45o, 90o, 135o)  A       
Min(Entropy  0º, 45o, 90o, 135o)       A  
Min (Mean 0º, 45o, 90o, 135o)     A   A 
Min (ASM 0º, 45o, 90o, 135o)        A 

∆��	7�8
     A HT/C   
∆��	7�97     A A   
∆��8
�97         
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Table 6. Summary of the features considered for use in the RainCEIV k-NNM classifier during 
night-time. Label “A” means that the feature is used for all the C-MACSP classes; “LM” means that 
the feature is used for the low/middle cloud class; “ HT/C” means that the feature is used for the 
high thick and convective cloud class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Features 
MSG-SEVIRI spectral bands (µm) 
IR 
3.9 

IR  
6.2 

 IR 
7.3 

IR 
10.8 

IR 
12.0 

Max Gray level    A  
Min Gray level A   A  
Mean Gray level      
Max/Min(Gray level)      
Max(Contrast 0º, 45o, 90o, 135o)    A  
Max(Entropy  0º, 45o, 90o, 135o) A     
Max (Mean 0º, 45o, 90o, 135o)   A LM  
Max (ASM 0º, 45o, 90o, 135o) LM     
Min(Contrast 0º, 45o, 90o, 135o)     HT/C 
Min(Entropy  0º, 45o, 90o, 135o)    A  
Min (Mean 0º, 45o, 90o, 135o)  A   A 
Min (ASM 0º, 45o, 90o, 135o)     A 

∆��	7�8
  A HT/C   
∆��	7�97  A A   
∆��8
�97   A   
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Section 4: 
Table 1 is not mentioned in the text. Please correct. 
 
A.C.: 
Thanks for spotting this typo. Table 1 is now Table 7 and it is related in the new sub-section 4.1. 
 
Please use the same statistical scores for the validation of the cloud mask and for the validation of 
the rain intensity classification. 
A.C.: 
At first we thought of adding the accuracy as defined for the C_MACSP validation to the statistical 
scores used for the RainCEIV statistical assessment, but it does not provide any further information 
on the statistical assessment when compared with the dichotomous statistical scores already used. 
 
The validation dataset should be extended over a greater time period and include nighttime scenes. 
A.C.: 
The validation dataset was enlarged adding night-time scenes and choosing cases study 
characterized by a higher number of convective events both for daytime and night-time.  
 
The presentation of the results should include a discussion of the results in comparison to other 
techniques. 
A.C.: 
We retain that the validation of RainCEIV results against radar-derived rain rate values is sufficient 
for the evaluation of the RainCEIV performance. Moreover, when interpreting the statistical scores 
it is important to take into account that the differences in the detection of rainy areas should depend 
on the temporal distance and should be caused by collocation errors. The comparisons with the 
techniques proposed by other authors should be carried out in cooperation with the authors 
themselves especially regarding the choice of the cases study to be analyzed. 
 
The interpretation of the results for the case studies is too positive. Please rephrase the respective 
sentences. 
A.C.: 
In the revised version the statistical scores related to the RainCEIV validation carried out against 
the RR radar-derived measurements have been updated for all the cases study analyzed by applying 
the following changes: 

• reconsidering the collocation process for the C2 samples, that is now described at the end of 
section 2 as follows: 

“For simplicity, the radar samples completely included into the SEVIRI pixels will be 
denominated RS samples. The collocation process of the radar-derived RR measurements into 
the SEVIRI grid consists in associating the RS samples to each SEVIRI pixel. If the percentage 
of the rainy RS samples is higher than 80%, the SEVIRI pixel is considered for the validation 
and classified as light-to-moderate-rainy or heavy-to-very-heavy-rainy on the basis of the RS-
RR value average. In some cases, the RS-RR value average is strongly influenced by the lowest 
RR values of the light-to-moderate-rainy RS samples also if the number of heavy-to-very-heavy 
rainy RS samples is higher than that of the light-to-moderate-rainy one. Because of this, when 
the percentage of the heavy-to-very-heavy-rainy RS samples is higher than 50% and it is higher 
than that of the light-to-moderate-rainy RS samples, the SEVIRI pixel is flagged as heavy-to-
very-heavy-rainy regardless of the RS-RR value average. If the percentage of the non-rainy RS 
samples is 100%, the SEVIRI pixel is considered for the training and validation. In the other 
cases, the SEVIRI pixel is flagged as “uncertain” and not considered for the training and 
validation purposes.” 
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• Handling the “uncertain” RADARinSEVIRI pixels correctly. In fact, in the previous version 
the “uncertain” (that are the “dark-gray” pixels in the “radar-derived RR results” panels of 
Figures 2, 3 and 4) were not defined and were wrongly considered as non-rainy samples in 
the validation process. The wrong inclusion of the “uncertain” RADARinSEVIRI pixels in 
the validation process resulted in the high number of false alarms. 

• Updating and enlarging the training dataset on the basis of the suggestion of the referee#2. 
• Enlarging the validation dataset and determining the statistical scores for daytime and night-

time samples separately. 
• Changing the RR values ranges of the non-rainy and light-to-moderate-rainy classes on the 

basis of your suggestion (at point 4 of this document) both for the training and the validation 
dataset. 

• recalculating the RainCEIV results on the basis of the updated training dataset. 
 

In the light of the above-listed updates/changes, Table 1 (that lists the AMSU-B/MHS passes 
considered for the training dataset) has been updated and sub-section 4.2 now presents the 
following updates: 

• Table 8 (that lists the cases study used for the validation) has been updated; 
• Table 9 (that sums up the contingency values for the RainCEIV dichotomous statistical 

assessment) has been updated and related only to the daytime validation dataset, while Table 
10 has been added to sum up the contingency values related to the night-time validation 
dataset; 

• Table 11 (Table 9 in the previous version that shows the statistical scores for daytime 
validation) has been updated and now shows the statistical scores for night-time and daytime 
validation separately; 

• Table 12 (Table 10 in the previous version), that shows the statistical scores related to I, II 
and III cases study, has been updated: 

• Figures 3, 4 and 5 (Figure 2, 3 and 4 in the previous version) have been updated. 
 
Section 5: 
The conclusion should be revised. At the moment it just repeats the results section. 
The authors should elaborate more on further steps to improve the presented algorithm and discuss 
the potential benefit of the presented technique in comparison to other retrieval techniques. 
A.C.: 
The conclusion has been be rewritten on the basis of the statistical results obtained examining more 
cases study. 

“Conclusions 
This paper proposes the RainCEIV technique as a useful tool for the continuous monitoring and 
characterization of the rainy areas in the Mediterranean region where there is an increased 
frequency of the extreme events. RainCEIV does not use any near real-time ancillary data and it 
exploits the temporal differences of the brightness temperatures related to the SEVIRI water vapour 
channels. These are indicative of the atmosphere instability and, as a consequence, could give 
useful information for the detection of the rainy areas when analysed with the spectral and textural 
features related to the other SEVIRI channels. Because of the well-known limitations of the IR/VIS 
observations in determining RR values, the RainCEIV main purpose is to provide a near-real time 
qualitative characterization of the rainy areas especially in regions not covered by the radar and rain 
gauge network. 

RainCEIV consists of two modules that use geostationary observations from SEVIRI in order to 
detect cloudy pixels and, successively, to associate them to a rainy/non-rainy class. RainCEIV uses 
both IR and VIS observations to determine if the SEVIRI pixel belongs to the non-rainy (C0), light-
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to-moderate-rainy (C1) or heavy-to-very-heavy-rainy (C2) class. The IR/VIS observations do not 
have the same potentiality as MW observations in characterizing rainy areas, but their high spatial 
and temporal resolution are used to get a continuous monitoring of the stratiform and convective 
events. RainCEIV has been trained on the AMSU-B/MHS PEMW RR values double matched with 
the radar-derived RR values and validated on the basis of the radar-derived RR observations. The 
dichotomous statistical scores indicate that a good fraction (97% for daytime validation and 96% for 
night-time validation) of the pixels examined are correctly identified as rainy or non-rainy by the 
RainCEIV. The Bias scores (1.36 for daytime validation and 1.58 for night-time validation) and the 
FAR scores (39% and 48%) suggest that RainCEIV tends to overestimate rainy pixels especially 
during the night-time, while the POD scores (81% both for daytime and night-time validation) 
indicate that RainCEIV detects rainy areas with a good a approximation. The rainy areas 
overestimation is mainly due to the misclassification of C0 samples as C1 samples. Moreover, the 
high FAR values related to the C1 and C2 classes are mainly due to the misclassification of the C1 
samples as C2 samples and vice versa. The statistical scores obtained for the daytime validation are 
generally better than those obtained for the night-time validation. This is prevalently due to the fact 
that the features related to the VIS observations (unavailable during night-time) have a strong 
influence on the RainCEIV output because of their higher discriminatory power when compared 
with that of the features related to the 3.9 µm and 12.0 µm observations. In remarking upon the 
comparison results, it is important to bear in mind the different spatial resolutions as well as the 
temporal distance between radar and satellite observations that could affect the statistical scores 
negatively, especially for rapid convective events, even if the time distance between radar and 
SEVIRI acquisitions is little. As far as future developments are concerned, RainCEIV will be 
updated to consider in the training phase the RADARinSEVIRI samples characterized by a 
percentage of rainy RS samples lower than 80% so as to individuate extreme rainy events located 
over an area whose size is smaller than that of the SEVIRI pixel area. To this aim, information from 
the Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the Suomi National Polar-orbiting 
Partnership (NPP) (characterized by higher spatial and spectral resolutions than SEVIRI) will be 
taken into account when available.” 

 
Page 13687, line 25: “rainy/non rainy class”. Please use consistent wording throughout the 
manuscript (e.g. “rain intensity classification”).  
A.C.: 
Thank for the suggestion, we accept it. 
 
Appendix A. “Procedure adopted for the training set refinement” 
The RainCEIV and C_MACSP original training datasets have been refined by applying the same 
procedure to the samples of each class.  

The refinement process consists in using the Nearest Neighbour decision rule described by Cover 
and Hart (1967) in order to classify each sample of the initial training classes. Here the aim of this 
process is to eliminate the redundant and misclassified training samples, which is similar to the 
CNN rule described in Hart (1968) but the main purpose of CNN is to get a training subset 
performing as well as the original one. Before the description of the refinement process, a brief 
description of the NN decision rule and of the Fisher criterion (used to reduce the number of the 
components of the feature vector) will be given. 

Let To={( ��#, ��)} be the original training dataset, where the pairs (6��:, ��) indicate the training 
samples ;���< of the class ��, j=1, 2, ..., Nc, Nc is the number of the classes, i=1, 2, ...,Nc,j, Nc,jis the 
number of the training samples for the class ��. Given a vector =��� to be the classified, the NN rule 
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establishes that =��� belongs to the class �� when the minimum distance is that from the training 
sample ;���< that belongs to class ��, and then ;���< is the Nearest Neighbourof =���. 

Before applying the RR decision rule, it is important to define the dimension of the feature vector. 
In fact, since the k-NN classifier performance generally decreases with the dimension of the feature 
vector, the number of the components (�#) of 6�� has been reduced by applying the Fisher criterion 
(Ebert, 1987; Parikh, 1977) to evaluate the discriminatory power of the individual features  and to 
choose the features characterized by the higher Fisher distance value. Let �>?@  and A�

# be the mean and 
standard deviation of the feature �# for the training set from class ��, thus the Fisher distance is 
defined as: 

B#�� = CDEFGGG�DH
FGGGGC

IJK
L�JH

L M
.                                                                                                                                (1) 

It measures the ability of the feature �# to differentiate class �� from class ��. The features xj, 
within 6��, have been ordered in a decreasing way on the basis of the B#�� values and the first d 
features have been chosen as the components of the feature vectors used. The dimension d has been 
fixed by following the suggestions in Jain and Chandrasekaran (1982), who point out that the ratio 
between the number of the training samples for each class and the feature vector dimension d 
should be at least five. 

The procedure to obtain the refined training dataset, Tr, starting from the original training dataset 
To, consists in: 

4. Considering the ith pattern (��#, ��) of To,  
5. Applying the NN decision rule and determining the following action on the basis of the 

three possible classification results: 
- the NN belongs to the initial belonging class ��and the Euclidean distance is higher than 

zero, consequently the sample is put in Tr; 
- The NN belongs to a different class �# ≠ ��, consequently the sample is reanalyzed and 

included in the NN class; 
- the Euclidean distance from the NN is zero, the sample is considered redundant and it is 

removed from To and not included in Tr. 
6. restarting from point 2 with another sample and applying the entire process until all the 

training samples have been analyzed. 
Tr, determined for each class is used as the definitive training dataset. 
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Interactive comment on “A statistical approach for rain class evaluation using Meteosat 
Second Generation-Spinning Enhanced Visible and InfraRed Imager observations” by E. 
Ricciardelli et al. 
 
Anonymous Referee #3 
 
The paper “A statistical approach for rain class evaluation using Meteosat Second Generation-
Spinning Enhanced Visible and InfraRed Imager observations” by Ricciardelli et al., proposes a 
statistical technique to infer precipitation classes from SEVIRI radiances and radiance spatial and 
temporal features. The calibration of the technique is carried out by using AMSU derived estimates 
and it is validated against radar rain fields. The subject of the paper is of some interest for this 
journal, but is poorly written, with a number of serious weaknesses that I do not believe could be 
addressed through a standard major revision. I suggest to reject the paper for a number of reasons: I 
listed below the most relevant ones (page numbers refer to the discussion paper, from 1 to 36). 
 
The aim of the paper seems to provide a tool to benefit short term hydrology and long term climate 
studies (lines 1-3 on page 3): the author should explain the usefulness of a technique that gives as 
output only two precipitation levels. 
 
Author Comment (A.C.): 
The abstract, the introduction as well as all other sections of the paper have been improved in order 
to explain the utility of RainCEIV more in-depth. In particular the abstract now reads: 
 
“This study exploits the Meteosat Second Generation (MSG)–Spinning Enhanced Visible and 
Infrared Imager (SEVIRI) observations to evaluate the rain class at high spatial and temporal 
resolutions and, to this aim, proposes the Rain Class Evaluation from Infrared and Visible 
observation (RainCEIV) technique. RainCEIV is composed of two modules: a cloud classification 
algorithm which characterizes and individuates the cloudy pixels, and a supervised classifier that 
delineates the rainy areas according to the three rainfall intensity classes, the non-rainy (rain rate 
value<0.5 mm×h-1) class, the light-to-moderate rain class (0.5 mm×h-1≤rain rate value<4 mm×h-1), 
and the heavy-to-very-heavy rain class (rain rate value≥4 mm×h-1). The second module considers in 
input the spectral and textural features of the infrared and visible SEVIRI observations for the 
cloudy pixels detected by the first module. It also takes the temporal differences of the brightness 
temperatures related to the SEVIRI water vapour channels as indicative of the atmospheric 
instability strongly linked to the occurrence of rainfall events. 
The rainfall rates used in the training phase are obtained through the Precipitation Estimation at 
Microwave frequencies, PEMW (an algorithm for rain rate retrievals based on Atmospheric 
Microwave Sounder Unit (AMSU)-B observations). RainCEIV provides a continuous monitoring 
both of the cloud coverage and rainfall events without using real–time ancillary data. Its principal 
aim is that of supplying preliminary qualitative information on the rainy areas within the 
Mediterranean basin where there is no radar network coverage. The results of RainCEIV have been 
validated against radar-derived rainfall measurements by the Italian Operational Weather Radar 
Network. The dichotomous assessment related to daytime (night-time) validation shows that 
RainCEIV is able to detect rainy/non rainy areas with an accuracy of about 97% (96%), and when 
all the rainy classes are considered, it shows a Heidke skill score of 67% (62%), a Bias score of 1.36 
(1.58), and a Probability of Detection of rainy areas of 81% (81%).” 

 
In the introduction, there is no need to mention early works on satellite precipitation estimation in 
the ‘80s and ‘90s, since they used very different approaches and instruments. 
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On the other side, many works on SEVIRI data use for precipitation are missing (the mentioned 
Kidd and Levizzani reports on them).  
A.C.: 
The introduction has been updated following your suggestion and including other references missed 
in the previous version of the paper. 
 
The correct reference for Mamoudou and Gruber is Ba and Gruber (page 4 and reference list). 
A.C.: Thanks for the correction. 
 

Section 2. The history and launch schedule of Meteosat spacecrafts are not necessary for the aim of 
this paper. Please, add a reference for the Italian radar network, and report on the quality of the data 
used. Since the radar data are used here to validate satellite product, it is mandatory a more detailed 
description of the radar network and its reliability. 
 
A.C.: 
Agreed. We have removed the history and launch schedule of Meteosat spacecrafts from the 
manuscript. References and more details concerning the Italian radar network are now provided in 
Section 2. The following text has been added to provide information on data quality:  
“Procedures for mitigating ground clutter, anomalous propagation, beam blockage effects are 
applied (Vulpiani et al., 2008a). The sri product is derived applying a reflectivity-rainfall (Z-R) 
relationship to the Lowest Beam Map (LBM), i.e. the reflectivity values at the lowest level of the 
corrected radar volumes. The sri product used here represents the best estimate from the radar 
network available for the period under analysis, and it has been already used to validate satellite 
rainfall estimates (Cimini et al., 2013), including EUMETSAT H-SAF products (Puca et al., 2013). 
Procedures to improve the quality of the sri product, including attenuation compensation, 
polarimetric rainfall inversion techniques, and adaptive algorithms to retrieve mean vertical profiles 
of reflectivity have been recently developed at DPC (Vulpiani et al., 2012; Rinollo et al., 2013).” 

 

Section 3. Section 3.1 roughly describes the cloud classification algorithm. Is table 1 related to this 
section?  How is accuracy defined for cloud classes? Are clear sky pixels included in the accuracy 
calculation? 
 
A.C.: 
Yes, Table 1 is related to this section and lists the accuracy scores (defined as the ratio between the 
number of the test samples classified correctly and the total number of the test samples examined) 
for cloud and clear classes. In order to explain more in-depth how C_MACSP works, section 3.1 
“3.1- Cloud classification algorithm description” has been modified in the revised version. 
 
What are the outliers mentioned in line 13 on page 9? Are they damaged pixels, noise, or what? 
 
A.C.: 
We defined as outliers the samples that during the training phase are misclassified. (e.g. as for 
C_MACSP a thin cloud could be misclassified as clear, or a low/middle cloud could be  
misclassified as high thick cloud, as for RainCEIV heavy rain could be misclassified as moderate 
rainy pixel). This information is now provided in the revised version. 
 
Only two images out of the nine used to validate the classification are during nighttime: are there 
enough pixels to verify correct classification of all cloud classes? 
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A.C.: 
In the revised version, the accuracy shown in Table 7 (that was Table 1 in the previous version) has 
been determined for each C_MACSP class for night-time and daytime samples, separately.  
 
I think that the validation dataset should be much larger 
A.C.: 
Agreed. Following your suggestion, the validation dataset has been enlarged to include more night-
time scenes. In addition, we have followed the advice of referee#2 who proposes to show the 
C_MACSP validation results in a sub-section of Section 4. As a consequence, section 4 “Validation 
results” is now divided into two sub-sections: “4.1 C_MACSP validation results” and “4.2 
RainCEIV validation results”. 
 
In section 3.2.1 there are a number of sentences that have to be canceled (my suggestion) or 
discussed with much more detail. I report here few examples, but the entire section should be 
rewritten or canceled. How can SEVIRI observation “individuate precipitation processes” (lines 16-
17 on page 11) ? especially in convective clouds? Which processes can be individuated 
(coalescence, riming, breakup, melting)? 
A.C.: 
We apologize for the incorrect use of the English language, the term “precipitation processes” was 
erroneously used to mean “precipitation events”. The purpose of RainCEIV is to determine a 
precipitation class not the precipitation process. 
 
The radiance measured in the SEVIRI channels comes from the very top layers of the cloud. Few 
lines below it is said that “features related to radiances acquired at 3.9 and 1.6μm bear on the cloud 
drop size distribution”: as a matter of fact, “cloud drop size distribution”, unfortunately, cannot be 
derived by any feature related to SEVIRI channels. 
A.C.: 
The paragraph purpose was to describe the characteristics and the usefulness of the 3.9μm,1.6μm 
12.0µm, 10.8µm, 0.6µm SEVIRI spectral channels to derive some cloud microphysical properties 
in order to make it clear that the choice of these spectral channels was made because of their 
connection with cloud microphysical properties so as to allow the identification of rainy clouds.  
Consequently, sub-section 3.2.1 from line 11 on page 13681 to line 24 on page 13681 is rewritten 
as follows: 
 

“All the spectral and textural features defined for the IR/VIS SEVIRI images acquired at 0.6 µm, 
0.8 µm, 1.6 µm, 3.9 µm, 6.2 µm, 7.3 µm, 10.8 µm, and 12 µm were initially considered as 
components of 6��. Some of the above-listed spectral channels are usually utilized to infer 
information on cloud-top microphysical properties. In particular, the observations acquired at 10.8 
µm and 12.0 µm are used to provide information on cloud top temperature and cloud optical 
thickness, the observations at 0.6 µm are also used to get information about cloud optical thickness, 
while the 3.9 µm and 1.6 µm observations are used to infer information on the cloud 
thermodynamic phase and cloud drop size distribution. The precipitation processes are strongly 
related to the cloud-top microphysical structure and, in particular, the rain rate confidence is high 
for cloud tops with large cloud droplets or in the presence of ice (Lensky and Rosenfeld, 1997). 
Consequently, in this study the use of features derived from spectral channels connected with cloud 
microphysical properties could allow the identification of raining clouds.” 

 

The temperature of WV channels are related with tropospheric moisture content over clear sky 
areas, but in case of mid- and high- level clouds the contribution to the radiance measured by 
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satellite sensor has a dominant contribution from the cloud top. How can the temperature 
differences mentioned on lines 3-4 on page 12 “characterize convective as well as stratiform 
precipitation” ? 
A.C.: 
As before we used the verb “characterize” inappropriately. In fact, the temporal differences have 
been used as input for the classifier in order to associate a pixel to the class C0, C1, or C2. The WV 
temporal differences are useful to distinguish different rainy/non-rainy classes only when used with 
the other components of the feature vector. 
In order to clarify how the WV spectral channels have been considered for the RainCEIV purposes, 
sub-section 3.2.1 from line 24 on page 3681 to line 4 on page 13682 is modified as follows:  
 

“The spectral channels centred at 6.2 µm and 7.3 µm are indicative of the water vapour (WV) 
content in the troposphere at levels lower than 350hPa and 500hPa, respectively. The WV channel 
features when considered alone do not give useful information on the presence of a raining cloud, 
on the contrary, when considered with the other channel features, in particular those related to the 
10.8 µm channel, they are useful to individuate convective events (Mosher, 2001, 2009). Moreover, 
the WV temporal changes are indicative of the atmospheric instability that is a useful index in the 
detection of the precipitating area. Because of this, the temporal differences ∆��(�.�)	7�8
, 
∆��(�.�),	7�97, ∆��(�.�),8
�97, ∆��(O.8)	7�8
, ��(O.8),	7�97, ��(O.8),8
�97 between the WV 
brightness temperatures related to the SEVIRI acquisitions made 15, 30 and 45 minutes before the 
time of interest are exploited to get information on the WV temporal changes at different 
atmosphere levels. Obviously, the temporal change of WV brightness temperature related to a pixel 
does not always mean that the pixel is rainy, and as for the other features, it gains usefulness in 
discriminating rainy/non-rainy classes when used in combination with the other features 
opportunely chosen, as will be described in the following sub-section.” 

 

Section 3.2.2. Probably Table 3 means Table 2 (line 25 on page 13).  

Correct. In the revised version, Table 1 has been renamed Table 7, thus Table 2 (wrongly named 
Table 3) has been renamed Table 1. 
 

On line 26- 28 (page 13) is described the matching between SEVIRI and AMSU rain product. It 
seems that the rain value estimated over an area ranging between 200 km2 (at nadir) and 1000 km2 
(on the edge of the swath) is assigned to a SEVIRI pixel of around 25 km2 in the considered area. 
This implies a number of assumptions on the rainfall spatial and temporal structure that are not 
usually verified in real rain.  
A.C.: 
The collocation of PEMW-derived RR values in the SEVIRI grid is now described in Section “2- 
Instruments and data” approximately at line 25 on page 13677, as follows: 
 
“The PEMW RR value is assigned to the SEVIRI pixel only when the latter is entirely enclosed in 
the corresponding AMSU-B/MHS FOV. PEMW rain rate values are re-sampled on the SEVIRI grid 
calculating the area of each AMSU-B/MHS FOV on the basis of the orbital parameters described in 
(Bennartz, 2000). The temporal matching is carried out considering a maximum difference of 7.5 
minutes between the acquisition time of the SEVIRI pixel and that of the AMSU/MHS FOV.” 
 
Table 6 has to be better introduced and discussed in the text, and the caption should be rewritten 
accordingly. 
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A.C.: 
Table 6 is now split into two tables: Tables 5 and 6 list the features to be used during daytime and 
night-time, respectively. The captions of Tables 5 and 6 have been re-written so to be clearer. A 
description of Tables 5 and 6 is now added at the end of sub-section 3.2.2 as follows: 
 
“The features chosen as components of the feature vector 6�� related to daytime and night-time 
acquisition are listed in Table 5 and Table 6, respectively. The features used over land and over sea 
are the same, but in some cases they vary for different cloud classes, e.g. the max value of the ASM 
is very useful in order to determine the confidence that a low/middle cloud is precipitating, but its 
discriminatory power is not so high as to individuate the precipitating high thick clouds. On the 
contrary, the minimum and maximum values of Entropy, Mean and Contrast give an useful 
contribution in detecting both light-to-moderate-rainy class and heavy-to-very-heavy-rainy class for 
all the cloudy classes.”  

 

Section 4. A good validation practice requires that the datasets used for calibration and validation 
are independent. In the work reported in this paper, it seems this condition is not satisfied for all the 
considered cases. Comparing table 2 and table 6, for 4 out of 11 cases (29/09/09, 23/06/10, 04/08/10 
and 10/10/10) the satellite overpasses used for validation are very close to the slot used for the 
calibration, and this should be avoided. I suggest to remove the mentioned cases from the 
validation, and to add more slots of the other cases. 
 
A.C.: 
Agreed. Although some training and validation samples have been acquired on the same day, the 
Solar Zenith Angle (SZA) ranges of the training and validation samples are different. Consequently, 
the cases study of 29 September 2009 at 13:00UTC and 23 June 2010 at 15:00UTC were not 
classified by using the training samples acquired on the same day.  
In detail, we agree on removing the case related to 04 October 2010 at 19:30 UTC because it is very 
close to the training samples related to the same day, but we would rather leave the other cases for 
validation purposes: 

• 29 September 2009 at 13:00UTC: the training samples related to 29 September 2009 at 
17:00UTC have not been used as training samples to classify the SEVIRI observations 
acquired on 29 September 2009 at 13:00UTC because their SZA ranges do not correspond 
(for the samples acquired at 13:00 UTC SZA<58º, while for the ones acquired at 17:00UTC 
SZA>80º); 

• 23 June 2010 at 15:00UTC: the SZA ranges for the training and validation samples related 
to 23 June 2010 are different, in fact the samples acquired at 15:00UTC for validation are 
characterized by a SZA>48º, while those acquired at 12:52UTC have a SZA<35º. 

 
Moreover, the AMSU-B/MHS passes on 29 September 2009 at 15:16UTC, 4 August 2010 at 12:26 
UTC and 14:46 UTC, 21 February at 13:10 UTC have been removed from Table 2 because they 
were used only to carry out the test dataset as described in sub-section 3.2.2 of the revised version. 
In fact, the AMSU-B/MHS passes used to build both training and test dataset were wrongly listed in 
Table 2 without distinction. This point was not explained in depth in the previous version.  
Table 2 is now renamed Table 1 and has been modified on the basis of the above considerations. 
 
In table 7 the last column title is “satellite overpass time”, but the number reported in the column 
are probably the nominal time of delivery of the SEVIRI slot. Since the SEVIRI starts scanning the 
earth from the South, the Mediterranean region is scanned few minutes before the end of the scan, 
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at 12, 27, 42 and 57 minutes every hour. In this table should be reported the real scan time of the 
Mediterranean region. 
A.C.: 
Correct, the time reported in the column is the nominal time of the acquisition of the SEVIRI slots. 
Following your suggestion, it has been changed indicating the real scan time of Mediterranean 
region, that ends approximately 2 minutes before the end of the scan. 
 
The accuracy indicator is of a very limited meaning in evaluating the technique performances, since 
it includes the number of correct negatives, which is always very high, and can be arbitrarily 
increased by enlarging the considered area. See as an example table 8 and figures 2, 3 and 4. 
A. C.: 
Agree. The accuracy indicator is highly influenced by the number of corrected negatives, because of 
this the other statistical scores (HSS, POD, FAR and Bias) are considered. Moreover, in order to 
increase the number of the light-to-moderate-rainy samples and the heavy-to-very-heavy samples, 
we have enlarged the validation dataset by adding more daytime and night-time scenes and 
choosing cases study characterized by more convective events both during daytime. 


