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Abstract 9 

This study exploits the Meteosat Second Generation (MSG)–Spinning Enhanced Visible and 10 

Infrared Imager (SEVIRI) observations to evaluate the rain class at high spatial and temporal 11 

resolutions and, to this aim, proposes the Rain Class Evaluation from Infrared and Visible 12 

observation (RainCEIV) technique. RainCEIV is composed of two modules: a cloud 13 

classification algorithm which individuates and characterizes the cloudy pixels, and a supervised 14 

classifier that delineates the rainy areas according to the three rainfall intensity classes, the non-15 

rainy (rain rate value<0.5 mm×h-1) class, the light-to-moderate rainy class (0.5 mm×h-1≤rain rate 16 

value<4 mm×h-1), and the heavy-to-very-heavy-rainy class (rain rate value≥4 mm×h-1). The 17 

second module considers in input the spectral and textural features of the infrared and visible 18 

SEVIRI observations for the cloudy pixels detected by the first module. It also takes the temporal 19 

differences of the brightness temperatures linked to the SEVIRI water vapour channels as 20 

indicative of the atmospheric instability strongly related to the occurrence of rainfall events.  21 

The rainfall rates used in the training phase are obtained through the Precipitation Estimation at 22 

Microwave frequencies, PEMW (an algorithm for rain rate retrievals based on Atmospheric 23 

Microwave Sounder Unit (AMSU)-B observations). RainCEIV principal aim is that of supplying 24 

preliminary qualitative information on the rainy areas within the Mediterranean basin where 25 

there is no radar network coverage. The results of RainCEIV have been validated against radar-26 

derived rainfall measurements from the Italian Operational Weather Radar Network for some 27 

case studies limited to the Mediterranean area. The dichotomous assessment related to daytime 28 
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(night-time) validation shows that RainCEIV is able to detect rainy/non rainy areas with an 1 

accuracy of about 97% (96%), and when all the rainy classes are considered, it shows a Heidke 2 

skill score of 67% (62%), a Bias score of 1.36 (1.58), and a Probability of Detection of rainy 3 

areas of 81% (81%). 4 

 5 

1. Introduction 6 

A wealth of techniques based on geostationary satellite IR/VIS observations have been 7 

developed in order to estimate rain rate (RR) values or confidences. A recent overview is given 8 

by Kidd and Levizzani (2011). The geostationary satellite techniques perform better over areas 9 

where rainfall originates from deep convection than in the areas where it originates from the 10 

stratiform systems. In particular, Negri and Adler (1981) examined the relation between cloud 11 

top temperature and RR by analysing Geostationary Operational Environmental Satellite (GOES) 12 

and radar data associated to a series of thunderstorms. Adler et al. (1985) proposed a 13 

Thunderstorm Index (TI) to give probability to observe heavy precipitation. Successively, Adler 14 

et al. (1988) extended their interest to stratiform precipitation (produced under the anvils of 15 

mature and decaying convective systems) from GOES satellite infrared data. Wu and Weinman 16 

(1985) used GOES data in order to estimate rainfall by means of a pattern recognition algorithm 17 

trained and tested on different sets of RR measurements obtained from NOAA operational 18 

radars. They classify rain into three classes (non-rainy, light rainy, heavy rainy classes). Adler et 19 

al. (1993) were the first to successfully combine the advantages of both types of instrument by 20 

using matched MW and IR data. Vicente et al. (1998) introduced the auto-estimator in order to 21 

estimate rainfall from GOES measurements focusing on heavy precipitation. The auto-estimator 22 

differs from the previous IR methods for rainfall estimation because it considers other factors in 23 

addition to the IR window cloud top temperature. In particular, information about environmental 24 

moisture is used to obtain a more correct estimation of rainfall as well as for the screening of the 25 

non-rainy pixels. Ba and Gruber (2001) used the GOES visible (0.65µm), near infrared (3.9 µm), 26 

water vapour (6.7µm) and window channels (10.7µm and 12.0 µm) to estimate rainfall rate, 27 

distinguishing raining from non-raining clouds by taking into account the cloud top temperature, 28 

the effective radius of cloud particles and the temperature gradient. Moreover, in an attempt to 29 

give more reliable values of rain rates, Ba and Gruber (2001) used the moisture factor correction 30 
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developed by Scofield (1987) and modified by Vicente et al. (1998). Other authors used artificial 1 

neural networks to derive precipitation estimates using satellite IR images (Hsu et al., 1997; 2 

Behrangi et al., 2009; Capacci and Porcù, 2009). Many authors developed techniques to 3 

determine RR from Meteosat data, both physical and statistical. Physical techniques consist of 4 

brightness temperature difference threshold tests or consider effective radius as well as cloud top 5 

height/temperature in order to determine rainfall rate and/or probability by the use of look-up 6 

tables. The look-up tables are usually built by considering rainfall measurements obtained 7 

through rain-gauge instruments or radar as well as RR values determined by MW data. An 8 

example of IR method that uses RR values determined by MW observations was developed by 9 

Jobard and Desbois (1994), the RAin and Cloud Classification method (RACC), that used the 10 

SSM/I and Meteosat data in order to classify the Meteosat images into several categories of rain. 11 

Turk et al. (2000) proposed a blended geostationary-microwave technique for the retrieval of RR 12 

measurements. This technique has been taken as a role model by several investigators (Kidd et 13 

al., 2003; Marzano et al., 2004), including Heinemann et al. (2002) who developed the Multi-14 

Sensor Precipitation Estimate (MPE) technique operating at the European agency for the 15 

deployment of meteorological satellites (EUMETSAT). MPE product consists of the near-real-16 

time RR maps for each Meteosat Second Generation (MSG)- Spinning Enhanced Visible and 17 

Infrared Imager (SEVIRI) images in original pixel resolution. Moreover, recently Mugnai et al. 18 

(2013) implemented the blended technique by Turk et al. (2000) among the precipitation 19 

products of the Satellite Application Facility on Support to Operational Hydrology and Water 20 

Management (H-SAF) H-SAF. Roebeling and Holleman (2009) proposed an algorithm for the 21 

RR estimation from the cloud physical properties (such as cloud condensed water path and cloud 22 

top height) retrieved from SEVIRI observations. Kuhnlein et al. (2010) also investigated the 23 

SEVIRI potential to determine RR, assuming a relationship between RR and optical thickness as 24 

well as effective radius. In particular they have established a relation between the reflectance 25 

observations acquired at 0.6µm and 1.6µm – which give information about cloud optical 26 

thickness and effective radius - and the ground-based rainfall rate. Recently, Feidas and 27 

Giannakos (2012) have proposed an algorithm that works with SEVIRI observations by 28 

combining physical and statistical methods to characterize convective and stratiform 29 

precipitation areas. They calibrated the algorithm using RR measurements derived from a 30 

substantial number of rain gauge stations in Greece. Other techniques are based on cloud motion 31 
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and exploit IR observations to provide an estimate of cloud movement to be used for transporting 1 

the more direct MW rainfall observations (Joyce et al., 2004). Di Paola et al. (2012) proposed the 2 

Precipitation Evolving Technique (PET) for convective rain cell continuous monitoring. PET 3 

propagates forward in space and time the latest RR map inferred by AMSU and MHS MW 4 

observations by using SEVIRI IR brightness temperature maps. This technique is able to 5 

propagate the latest rain field available for 2-3 hours. The aim of this study is to propose a 6 

technique based on a statistical classification algorithm that uses the spectral and textural 7 

features of SEVIRI IR/VIS observations to classify the cloudy pixels as non-rainy, light-to-8 

moderate-rainy, or heavy-to-very-heavy-rainy. The technique proposed, the Rain Class 9 

Evaluation from Infrared and Visible observations (RainCEIV), operates in a fixed area, the 10 

Mediterranean basin, approximately between 35 and 50 degrees North, and 20 degrees West and 11 

20 degrees East. RainCEIV firstly discriminates cloudy from non-cloudy pixels, then it 12 

determines the rain class only for the pixels classified as cloudy. It deploys the k-Nearest 13 

Neighbour Mean classifier (k-NNM) which considers as input the spectral and textural features 14 

derived from the SEVIRI VIS/IR images and the brightness temperatures differences of SEVIRI 15 

water vapour channels acquired 15, 30, and 45 minutes before the time of interest. RainCEIV has 16 

been validated against the radar-derived RR values obtained from the Italian Operational 17 

Weather Radar Network observations managed by the Italian Department of Civil Protection 18 

(DPC). RainCEIV is proposed as a useful tool to achieve a real-time monitoring of rainfall 19 

events, both the intense convective and the stratiform moderate ones.  20 

Section 2 provides a description of the satellite sensors whose observations and/or products have 21 

been used for the RainCEIV implementation; Section. 3 describes the two modules of RainCEIV  22 

(the C_MACSP cloud classification algorithm and the RainCEIV k-NNM classifier); Section 4 23 

shows the statistical scores obtained by comparing RainCEIV and radar-derived RR 24 

measurements. 25 

 26 

2. Instruments and data description 27 

The spectral and textural features of MSG-SEVIRI images are used as input for both the 28 

C_MACSP cloud classification algorithm and the RainCEIV k-NNM classifier. SEVIRI is the 29 

main payload on board the MSG series, composed by MSG-1 (Meteosat 8), MSG-2 (Meteosat 30 
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9), MSG-3 (Meteosat 10), and future MSG-4 (Meteosat 11), planned for launch in 2015. SEVIRI 1 

is a 50 cm-diameter-aperture line-by-line scanning radiometer and observes the Earth-2 

atmosphere system in 11 channels at (a) full disk with a 3km spatial sampling at the sub-satellite 3 

point. In addition, the High Resolution Visible (HRV) channel covers half the full disk with a 4 

1km spatial sampling at the sub-satellite point. The actual instantaneous field of view is about 5 

4.8 km at the sub-satellite point for all the channels except for the HRV channel where it is 1.67 6 

km. The major improvements with respect to previous sensors are its enhanced spectral 7 

characteristics, its higher temporal resolution (15 min), the improved signal-to-noise ratio, and 8 

the higher precision of data storing which ranges from 8 bits (256 levels) on Meteosat-7 to 10 9 

bits (1024 levels) on Meteosat-8 (Schmetz et al., 2002). 10 

The RainCEIV k-NNM classifier has been trained on the RR product from the Precipitation 11 

Estimation at Microwave Frequencies (PEMW). PEMW was developed by Di Tomaso et al. 12 

(2009) at the Institute of Methodologies for Environmental Analysis of the National Research 13 

Council of Italy (IMAA-CNR) to infer surface rain intensity from satellite MW LEO 14 

observations provided by the Advanced Microwave Sounding Unit-B (AMSU-B) and the 15 

Microwave Humidity Sounder (MHS) on board the National Oceanic and Atmospheric 16 

Administration (NOAA) satellites and the European Polar Satellite MetOp-A, respectively. 17 

AMSU-B and MHS are cross-track, line-scanning MW radiometers which measure radiances in 18 

five channels in the 89GHz-to-190GHz frequency range. The centre frequencies for the two 19 

window channels are 89 GHz, 150 GHz, while the three opaque (water vapour) channels are 20 

centred at 183±1, 183±3, and 183±7 GHz. The AMSU-B and MHS fields of view (FOV) have a 21 

circular shape (with a diameter of about 16 km) at nadir, while their shape become ellipsoidal 22 

away from the nadir (the axes length is 51 km for the cross-track direction and 25 km for the 23 

along-track direction at the maximum scanning angle) (Bennartz, 2000). The purpose of these 24 

instruments is to measure the radiation from different layers of the atmosphere in order to obtain 25 

global data on humidity profiles. The PEMW RR value is assigned to the SEVIRI pixel only 26 

when the latter is entirely enclosed in the corresponding AMSU-B/MHS FOV. PEMW RR 27 

values are re-sampled on the SEVIRI grid by calculating the area of each AMSU-B/MHS FOV 28 

on the basis of the orbital parameters described in (Bennartz, 2000). The temporal matching is 29 

carried out considering a maximum difference of 7.5 minutes between the acquisition time of the 30 

SEVIRI pixel and that of the AMSU/MHS FOV. For simplicity, the SEVIRI pixel, to which the 31 
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PEMW-RR value is assigned, will be denominated PEMWinSEVIRI while the corresponding 1 

PEMW-RR value will be denominated PEMWinSEVIRIv. 2 

The RainCEIV results have been validated on the basis of the RR values derived from the Italian 3 

Weather Radar Network which is coordinated by DPC (Vulpiani et al., 2008) in collaboration 4 

with the regional authorities, the research centres, the Air Traffic Control service (ENAV), and 5 

the Meteorological Service of the Italian Air Force (CNMCA). It consists of twenty microwave 6 

weather radars belonging to the regional authorities (ten C-band radars), ENAV (two C-band 7 

radars) and DPC (six C-band radars and two X-band polarimetric radars). The surface rate 8 

intensity (sri, in mmxh-1) and other products such as the Vertical Maximum Intensity (VMI), the 9 

Constant Altitude Plan Position Indicator (CAPPI) and the one-hour-accumulated surface rain 10 

total (srt, in mm), are retrieved from measured reflectivity volumes. Procedures for mitigating 11 

ground clutter, an anomalous propagation, beam blockage effects are applied (Vulpiani et al., 12 

2008). The sri product is derived applying a reflectivity-rainfall (Z-R) relationship to the Lowest 13 

Beam Map (LBM), i.e. the reflectivity values at the lowest level of the corrected radar volumes. 14 

The sri product used here represents the best estimate from the radar network available for the 15 

period under analysis, and it has already been used to validate satellite rainfall estimates (Cimini 16 

et al., 2013), including EUMETSAT H-SAF products (Puca et al., 2014). Procedures to improve 17 

the quality of the sri product, including attenuation compensation, polarimetric rainfall inversion 18 

techniques, and adaptive algorithms to retrieve the mean vertical profiles of reflectivity have 19 

recently been developed at DPC (Vulpiani et al., 2012; Rinollo et al., 2013). All the products are 20 

available on a grid of 1400x1400 km2 with a spatial resolution of circa 1 km and a temporal 21 

resolution of 15 minutes. For simplicity, the radar samples completely included into the SEVIRI 22 

pixels will be denominated RS samples. The collocation process of the radar-derived RR 23 

measurements into the SEVIRI grid consists in associating the RS samples to each SEVIRI pixel. 24 

If the percentage of the rainy RS samples is higher than 80%, the SEVIRI pixel is considered for 25 

the validation and classified as light-to-moderate-rainy or heavy-to-very-heavy-rainy on the basis 26 

of the RS-RR value average. In some cases, the RS-RR value average is strongly influenced by 27 

the lowest RR values of the light-to-moderate-rainy RS samples also if the number of heavy-to-28 

very-heavy rainy RS samples is higher than that of the light-to-moderate-rainy one. Because of 29 

this, when the percentage of the heavy-to-very-heavy-rainy RS samples is higher than 50% and it 30 

is higher than that of the light-to-moderate-rainy RS samples, the SEVIRI pixel is flagged as 31 
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heavy-to-very-heavy-rainy regardless of the RS-RR value average. If the percentage of the non-1 

rainy RS samples is 100%, the SEVIRI pixel is considered for the training and validation. In the 2 

other cases, the SEVIRI pixel is flagged as “uncertain” and not considered for the training and 3 

validation purposes. For simplicity, the pixel SEVIRI, to which the radar-derived-RR value is 4 

assigned, will be denominated RADARinSEVIRI, while the corresponding RR value will be 5 

denominated RADARinSEVIRIv. 6 

 7 

3. RainCEIV description 8 

The RainCEIV technique consists of two modules: 9 

I - a cloud classification algorithm that discriminates clear from cloudy pixels and further 10 

classifies the cloudy pixels;  11 

II-  a k-Nearest Neighbour Mean (k-NNM) classifier that evaluates the rain class for each 12 

pixel classified as cloudy by the first module. 13 

3.1 Cloud classification algorithm description 14 

The cloud Mask Coupling of Statistical and Physical methods algorithm - MACSP (Ricciardelli 15 

et al., 2008; Di Paola et al., 2014) - is used for distinguishing cloudy from non-cloudy pixels. The 16 

version used for RainCEIV purposes is called C_MACSP, which stands for cloud Classification 17 

Mask Coupling of Statistical and Physical methods. The current version has been updated to give 18 

information about the cloud class and in particular to split the MACSP “high cloud” in the “high 19 

optically thin” and “high optically thick” cloud classes. Furthermore, the convective cloud class 20 

has been added, not just for module II but also to individuate the possible occurrence of extreme 21 

events. A pixel can be classified in 5 different classes considered both over land and sea: clear, 22 

low/middle cloud, high optically thin cloud, high optically thick cloud and convective cloud. In 23 

detail, the C_MACSP physical algorithm uses the same physical threshold tests as the MACSP 24 

earlier version with the addition of a new threshold test involving the difference between the 25 

brightness temperature of the SEVIRI water vapour channel centred at 6.2µm and of the SEVIRI 26 

window channel centred at 10.8µm, ∆���.�µ��	
.�µ�. This difference is very small for 27 

convective cloud as asserted by Mosher (2001, 2002) in the Global Convective Diagnostic 28 

approach. The C_MACSP statistical (temporal) algorithm considers in input the same spectral 29 
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and textural features described and listed in section 3.2.1 (section 3.4) and Table 4 (Table 7), 1 

respectively, of Ricciardelli et al. (2008), but the training dataset has been updated in order to 2 

build the training samples for the convective cloud class. The training samples were collected in 3 

the Mediterranean basin, where RainCEIV operates. The cloud classification for the training 4 

dataset has been made through a careful visual inspection of the SEVIRI images. The clear and 5 

cloudy pixels have been selected manually after observing the spectral characteristics in SEVIRI 6 

IR/VIS images as well as in their RGB composition, a useful practice for distinguishing cloudy 7 

classes (Lensky and Rosenfeld, 2008). In order to collect the training samples for the convective 8 

cloud class, the cloudy SEVIRI pixels have been matched with the corresponding PEMW-RR 9 

and radar-derived RR values, if available. The collocation process both of the radar-derived RR 10 

values and the PEMW-RR values in the SEVIRI grid is described in Section 2. The SEVIRI 11 

pixel is considered for the training when: 12 

• both the RADARinSEVIRI pixel and PEMWinSEVIRI pixel are available and the 13 

relation: 14 

(RADARinSEVIRIv≥4mm×h-1).and.(PEMWinSEVIRIv≥4mm×h-1) is satisfied; 15 

• both the RADARinSEVIRI pixel and PEMWinSEVIRI pixel are available and the 16 

relation: 17 

(RADARinSEVIRIv≥4mm×h-1).and.(PEMWinSEVIRIv<4mm×h-1) is satisfied and the 18 

percentage of the rainy RS samples is higher than 80%; 19 

• only the PEMWinSEVIRI pixel is available (the AMSU-B/MHS observation is outside 20 

the area covered by the Radar Network) and the relation (PEMWinSEVIRIv≥4mm×h-1) 21 

is satisfied. 22 

When both the RADARinSEVIRI pixel and the PEMWinSEVIRI pixel are available and the 23 

relations at points 2 and 3 are not satisfied, the SEVIRI pixel is not considered for the initial 24 

training dataset. The SEVIRI images listed in table 5 of Ricciardelli et al (2008) and in particular 25 

the ones used for the training of the Mediterranean basin (enclosed in the areas B, C, and G of 26 

Figure 3 of Ricciardelli et al (2008)) have been used for the training of C_MACSP. The SEVIRI 27 

images used for the training are those acquired on 29 September 2009 at 16:57 UTC, on 1 28 

October 2009 (at 05:12 UTC, at 08:27 UTC, and at 15:57 UTC), on 04 March 2010 (at 14:27 29 

UTC, 15:57 UTC, and at 20:12 UTC), on 28 April 2010 (at 12:27 UTC and 15:43 UTC), on 4 30 
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August 2010 (at 10:43 UTC and 15:12 UTC), on 2 February 2010 at 22:57 UTC, on 8 January 1 

2010 at 13:57 UTC, on 1 October 2009 at 05:13 UTC and 19:13 UTC. The procedure described 2 

in Appendix A has been applied in order to refine the training dataset by eliminating the 3 

redundant as well as the misclassified samples. The C_MACSP statistical and physical 4 

algorithms are applied separately to each SEVIRI pixel, and the results are compared. If they 5 

agree, the SEVIRI pixel is classified consequently, otherwise the temporal algorithm is applied 6 

in order to remove the ambiguity and classify the SEVIRI pixel definitively. For RainCEIV 7 

purposes, the C_MACSP screening is useful to: 8 

• reduce the number of the input pixels to the RainCEIV k-NNM classifier by removing the 9 

pixels classified as clear and high thin cloud; 10 

• define the components of the feature vector in input to the RainCEIV classifier (as will be 11 

described in the following sub-section. The components chosen for each cloud class are 12 

shown in Tables 5 and 6). 13 

3.2 k- Nearest Neighbour Mean classifier description 14 

The classifier pattern used to evaluate the rainy class is the k-Nearest Neighbour Mean (k-NNM) 15 

non-parametric supervised classifier proposed by Viswanath and Sarma (2011). This classifier 16 

has been chosen for its simplicity and good performance (Dasarathy, 1991; Dasarathy 2002; 17 

Babu and Viswanath, 2009) and because, unlike the Bayes classifier, it does not assume any a 18 

priori  known probabilities, which are estimated directly from the design samples. It implements 19 

the decision rule locally. The k-NNM classifier has demonstrated to perform better than the k-20 

NN classifier and it is suitable for parallel implementation so as to reduce the classification time, 21 

as asserted by Viswanath and Sarma (2011).  22 

Let �

� be the vector of features related to the pixel to be classified and �� the rainy/non-rainy 23 

class with i=0,1,2 defined as follows: 24 

1. non-rainy class (RR<0.5mm×h-1) (�
) 25 

2. light-to-moderate rainy class (0.5≤RR≤4mm×h-1) (�	) 26 

3. heavy-to-very-heavy rainy class (RR>4mm×h-1) (��) 27 

For each class �� the k-NNM classifier finds the k (where 1≥k ) nearest neighbours of �
� and 28 

determines the mean value �����(�
�, ��) of their distances (�(�
�, �
��,�)) from �
�. 29 
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�����(�
�, ��) = ∑ �(�
�,�
��,�)�
� !

"                                    i=0,1,2     (1) 1 

where �(�
�, �
�$,%) is the Euclidean distance between �
� and �
��,� which is the &'( nearest training 2 

sample for the class ��. The pixel is labelled as the class characterized by the lowest mean 3 

distance �)*+,(�

�, ��): 4 

• (�����(�

�, �
) < �����(�
�, �	))./�(�����(�
�, �
) < �����(�
�, ��)) → �
� ∈ �
             (2) 5 

• (�����(�
�, �	) < �����(�
�, �
))./�(�����(�
�, �	) < �����(�
�, ��)) → �
� ∈ �	             (3) 6 

• (�����(�
�, ��) < �����(�
�, �
))./�(�����(�
�, ��) < �����(�
�, �	)) → �
� ∈ ��             (4) 7 

Fig. 1 shows the scheme of the RainCEIV technique.  8 

3.2.1 Features selection and description 9 

The k-NNM classifier uses textural and spectral features estimated in 3×3-pixel boxes in order to 10 

associate each SEVIRI pixel to a rainy/non-rainy class. The textural and spectral features used in 11 

this study and their different weights in the grid element, where both textural and tonal features 12 

have significant values, are described in Ricciardelli et al. (2008). In detail, the spectral features 13 

used are the maximum and minimum grey levels and the ratio between them. The textural 14 

features considered are the maximum and the minimum of the Entropy (a measure of the spatial 15 

randomness of the image), the Angular Second Moment (ASM, a measure of homogeneity of the 16 

image), the Contrast (a measure of local variation of the grey-level differences) and the Mean (a 17 

measure of the mean grey-level differences). The maximum and minimum values are calculated 18 

among the values calculated for the four directions (0º, 45º, 90º, 135º) in the 3×3-pixel box. All 19 

the spectral and textural features defined for the IR/VIS SEVIRI images acquired at 0.6 µm, 0.8 20 

µm, 1.6 µm, 3.9 µm, 6.2 µm, 7.3 µm, 10.8 µm, and 12 µm were initially considered as 21 

components of �
�. Some of the above-listed spectral channels are usually utilized to infer 22 

information on cloud-top microphysical properties. In particular, the observations acquired at 23 

10.8 µm and 12.0 µm are used to provide information on cloud top temperature and cloud optical 24 

thickness, the observations at 0.6 µm are also used to get information about cloud optical 25 

thickness, while the 3.9 µm and 1.6 µm observations are used to infer information on the cloud 26 

thermodynamic phase and cloud effective radius. The precipitation processes are strongly related 27 

to the cloud-top microphysical structure and, in particular, the rain rate confidence is high for 28 
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cloud tops with large cloud droplets or in the presence of ice (Lensky and Rosenfeld, 1997). 1 

Consequently, in this study the use of features derived from spectral channels connected with 2 

cloud microphysical properties could allow the identification of raining clouds.  3 

The spectral channels centred at 6.2 µm and 7.3 µm are indicative of the water vapour (WV) 4 

content in the troposphere at pressure levels lower than 400hPa and 600hPa, respectively. The 5 

WV channel features when considered alone do not give useful information on the presence of a 6 

raining cloud, on the contrary, when considered with the other channel features, in particular 7 

those related to the 10.8 µm channel, they are useful to individuate convective events (Mosher, 8 

2001, 2002). Moreover, the WV temporal changes are indicative of the atmospheric instability 9 

that is a useful index in the detection of the precipitating area. Because of this, the temporal 10 

differences ∆��(�.�)	2�3
, ∆��(�.�),	2�42, ∆��(�.�),3
�42, ∆��(5.3)	2�3
, ��(5.3),	2�42, 11 

��(5.3),3
�42 between the WV brightness temperatures related to the SEVIRI acquisitions made 12 

15, 30 and 45 minutes before the time of interest are exploited to get information on the WV 13 

temporal changes at different atmosphere levels. Obviously, the temporal change of WV 14 

brightness temperature related to a pixel does not always mean that the pixel is rainy, and as for 15 

the other features, it gains usefulness in discriminating rainy/non-rainy classes when used in 16 

combination with the other features opportunely chosen, as will be described in the following 17 

sub-section. 18 

Before defining and listing the final components of the feature vector, it is important to explain 19 

how these features have been normalized so as to prevent the features (6�  ) characterized by the 20 

largest variance across the training data set from dominating the Euclidean distance. The 21 

normalization formula applied to each feature is: 22 

67�=
89�8̅9 

;9            (5) 23 

where 6� is the <'( component of the feature vector �
� to be normalized, 67� is the ith component of 24 

the normalized �7
�, 6̅� and  =� are, respectively, the mean and the standard deviation for the feature 25 

6� calculated considering all the training set samples. This equation is also applied to the feature 26 

vector related to the pixels to be classified. 27 

By bearing in mind that the k-NNM classifier performance generally decreases with the 28 

dimension of the feature vector, the number of the feature vector components (6�  ) has been 29 
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reduced. For this purpose, the Fisher distance criterion (Ebert, 1987; Parikh, 1977), described in 1 

Appendix A, has been applied in order to evaluate the discriminatory power of the individual 2 

features. The Fisher distance has been determined for the following combinations: (�
 , �	); 3 

(�
, ��); (�	, ��). The features have been ordered in a descending way on the basis of the 4 

correspondent Fisher distance value, so that the features characterized by higher Fisher distances 5 

have been chosen as components of the feature vector. The definitive values of the feature vector 6 

components d and the RainCEIV k-NNM classifier k parameter have been determined as 7 

described in the following sub-section. 8 

3.2.2 Training procedure 9 

The training dataset has been built by collecting a set of SEVIRI images during day- and night-10 

time with collocated RR values inferred from AMSU-B/MHS observations processed with the 11 

PEMW algorithm (Di Tomaso et al., 2009), both over land and sea. PEMW exploits the window 12 

and water vapour channel observations.. PEMW estimates show a very good agreement with 13 

ground-based observations in the detection of rainfall and a reasonably good estimation of RR 14 

values. The Probability of Detection (POD) of precipitation is 75% and 90% for RR greater than 15 

1mm×h-1 and 5mm×h-1, respectively (Di Tomaso et al., 2009). At present, the PEMW algorithm 16 

operative version (OPEMW) is operationally run 24/7 at IMAA-CNR. OPEMW has been 17 

validated by Cimini et al. (2013) against radar-derived RR values and rain gauge surface rain 18 

intensity. The analysis shows an accuracy of 98% in identifying rainy and non-rainy areas and a 19 

Heidke skill score of 45% (with respect to radar-derived RR values) and 42% (with respect to 20 

rain gauge RR values). The accuracy, Bias Score, Probability of Detection, False Alarm Ratio 21 

(FAR), Heidke Skill Score (HSS) are described in Ebert (2013). The AMSU-B/MHS 22 

observations used for building the training database are collected during the NOAA satellite 23 

passes over the Mediterranean area on the dates listed in Table 1. 24 

The training dataset has been built by coupling cloudy SEVIRI pixels with the corresponding RR 25 

value calculated by the PEMW algorithm and, where available, with the radar-derived RR 26 

values. When no radar-derived RR value is available (because the AMSU-B/MHS observation is 27 

outside the area covered by the Radar Network) the SEVIRI pixel is classified as belonging to 28 

one of the classes C0, C1, and C2 on the basis of the corresponding PEMWinSEVIRIv and it is 29 

included in the initial training dataset. When the RADARinSEVIRIv is available and agrees with 30 
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the PEMWinSEVIRIv in determining the rainy/non-rainy class the SEVIRI pixel belongs to, this 1 

is included in the initial training dataset. Otherwise, when the RADARinSEVIRIv and 2 

PEMWinSEVIRIv do not agree, the SEVIRI pixel is included in the initial training dataset only 3 

if the correspondent RADARinSEVIRI pixel belongs to a rainy class C1 or C2 and the percentage 4 

of the rainy RS is higher than 80%. This choice is very useful for the training of the rainy events 5 

localized over an area smaller than the AMSU-B/MHS FOV area. The training samples have 6 

been considered separately for land and sea and grouped on the basis of the Solar Zenith Angle 7 

(SZA). Finally, in order to refine the training dataset, the process described in Appendix A has 8 

been applied to the initial training dataset. The availability of the SEVIRI samples double 9 

matched with PEMW and radar-derived RR values is useful both for the mitigation of 10 

uncertainty due to the collocation process and the refinement of the original training dataset 11 

especially for the removal of the misclassified samples. Figure 2 describes the training 12 

procedure. 13 

Successively, in order to decide the best values for d and k, a set of test samples have been 14 

classified by varying d and k combinations. Moreover, an artificial dataset, smoother and more 15 

versatile than the initial one, has been obtained by applying the bootstrap method (described by 16 

Hamamoto et al. (1997)) to the initial test samples. In order to make a more robust choice for d 17 

and k, the same d and k combinations chosen for the classification of the initial test dataset have 18 

been used to classify the artificial dataset. The best choice of d and k has been made by 19 

comparing the statistical scores obtained by classifying the two dataset separately. Both the 20 

initial and the artificial dataset contains the same number of samples for each class. 21 

Let > = ?(y
�A, �B)C be the independent test dataset built by examining the PEMW-RR values 22 

related to the AMSU-B/MSH overpasses of 12 February 2012 at 01:35UTC, 12 November 2011 23 

at 08:50UTC, 22 November 2010 at 09:34 UTC, 4 August 2010 at 14:46 UTC, 26 April 2010 at 24 

12:26 UTC, 01 October 2009 at 19:50UTC, 02 October 2009 at 05:00UTC. The pairs (y
�A, �B) 25 

indicate the test samples y
�A belonging to the class �B, j=1, 2, ..., Nc, Nc is the number of the 26 

classes (for RainCEIV �B, j=0, 1, 2, Nc=3 ) i=1, 2, ...,Nc,j, Nc,j is the number of the test samples 27 

for the class �B. 28 

The bootstrap samples for each class have been determined as follows: 29 
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1. the sample (y
�D, �B) was selected; 1 

2. r was chosen equal to Nc,j/4 and the r Nearest Neighbours (NN) of the sample (y
�D, �B) 2 

(indicated as ?(E�",F, �B)FG	,HC) were found. (the NN decision rule is explained in 3 

Appendix A); 4 

3. the ith component of the bootstrap sample was calculated by applying the equation  5 

 IE"
� = 	

H  ∑ E",F
�H

FG	          (7) 6 

to all the components of the ?(E�",F, �B)FG	,HC. For simplicity the generic ith component of the 7 

(E�",F, �B)FG	,H is indicated as E",F
�  without indicating the belonging class Cj, in the same way 8 

IE"
�  is the ith component of the bootstrap sample (IE



�" , �B) obtained by starting from the 9 

sample (E�", �B). 10 

4. Points 2 and 3 were repeated for each of the following r values: 11 

J = KL,B
5N , KL,B

10N , KL,B
2N − 8, KL,B

2N − 6, KU,B
2N − 4, KL,B

2N − 2; 12 

5. the process restarted from point 1 with another sample and points 2, 3 and 4 were applied 13 

until all the test samples were considered for each class. 14 

A careful screening has been done to eliminate the redundant bootstrap samples. The bootstrap 15 

(artificial) samples and the initial test samples have been classified separately by means of the k-16 

NNM (using the original training dataset). The statistical scores obtained for the two datasets are 17 

quite similar and they change in the same way varying d and k as can be noted in Tables 2, 3 and 18 

4 that list the statistical scores for k=3, d=10, d=16, d=20(Table 2); k=5, d=10, d=16, d=20 19 

(Table 3); k=7; d=10, d=16, d=20 (Table 4). Other combinations of d and k have been 20 

investigated obtaining results worse than the ones listed in tables 2, 3 and 4. In particular, both 21 

for the original and artificial test dataset, for W < 3, � < 10 the FAR related to the moderate 22 

class is higher than 40% and POD is lower than 60%, while for k>7 the FAR for all the classes is 23 

higher than 44% and the other statistical scores are lower than those obtained for the other k and 24 

d combinations. The statistical scores obtained by classifying the initial and artificial samples 25 

agree in suggesting k=5 and d=16 as the best choice of parameters for the k-NNM classifier. The 26 

features chosen as components of the feature vector �
� related to daytime and night-time 27 

acquisition are listed in Table 5 and Table 6, respectively. The features used over land and over 28 

sea are the same, but in some cases they vary for different cloud classes, e.g. the max value of 29 
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the ASM is very useful in order to determine the confidence that a low/middle cloud is 1 

precipitating, but its discriminatory power is not so high as to individuate the precipitating high 2 

thick clouds. On the contrary, the minimum and maximum values of Entropy, Mean and Contrast 3 

give an useful contribution in detecting both light-to-moderate rainy class and heavy-to-very-4 

heavy-rainy class for all the cloudy classes. 5 

 6 

4. Validation results 7 

4.1 C_MACSP validation results 8 

The validity of the C_MACSP algorithm has been tested by applying it to an independent dataset 9 

of which each class is made 300 samples taken from the SEVIRI images acquired on 12 10 

November 2010 at 11:27 UTC, 22 November 2010 at 09:27 UTC and at 11:43 UTC, 5 May 2012 11 

at 20:27 UTC, 19 May 2012 at 10:57 UTC, 23 July 2012 at 10:27 UTC, 5 December 2012 at 12 

08:43 UTC, 19 September 2009 at 19:13 UTC, 6 July 2010 at 11:27 UTC and 12:27 UTC, 4 13 

August 2010 at 14:27 UTC, 26 December 2013 at 04:57 UTC, 8 October 2013 at 18:57 UTC, 7 14 

October 2013 at 00:57 UTC and 20 January 2014 at 23:57 UTC. The validation has been carried 15 

out separately for samples acquired during night-time and daytime by comparing the C_MACSP 16 

classification results and the samples manually collected from the independent dataset images. 17 

The manual classification has been made through a careful observation of the SEVIRI RGB 18 

composition so as to get the same number of samples for each class. The convective cloud 19 

classification results have been validated considering the RR maps derived both from the 20 

weather radar network and the PEMW rain rate maps. The latter have been used for the areas 21 

where radar information is missing. The accuracy (defined as the ratio between the number of the 22 

test samples classified correctly and the total number of the test samples) has been determined 23 

for each class and Table 7 shows the results obtained. On the basis of the samples examined, it is 24 

possible to assert that C_MACSP is able to classify high thick clouds as well as convective 25 

clouds, both over land and sea during daytime and night-time, with an accuracy higher than 95%. 26 

Moreover, it shows an accuracy higher than 91% in detecting low/middle clouds both during 27 

daytime and night-time over land and over sea. The accuracy in detecting high thin class over sea 28 

is 87,6% during daytime and night-time, and it is slight lower over land both during daytime 29 

(85%) and night-time (84%). 30 
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 1 

4.2 RainCEIV validation results 2 

The RainCEIV results have been validated against the RR values derived from the weather radar 3 

network operated by the DPC. Table 8 lists the case studies used for validation. Tables 9 and 10 4 

sum up the contingency values for the RainCEIV dichotomous statistical assessment related to 5 

the daytime and night-time measurements, respectively. The statistical scores (shown in Table 6 

11) have been calculated for all the classes considered together and for the light-to-moderate-7 

rainy (C1) and the heavy-to-very-heavy-rainy (C2) classes separately. The accuracy scores for all 8 

the rainy/non-rainy pixels are 97% and 96% for daytime and night-time, respectively, when all 9 

the rainy classes are considered. High values for accuracy scores are related also to the C1 and C2 10 

classes considered separately both for daytime and night-time. These results are significantly 11 

influenced by the number of the correct negatives. The Bias scores indicate the RainCEIV 12 

tendency to overestimate the rainy events for all the rainy classes (Bias=1.36 for daytime, 13 

Bias=1.58 for night-time) as well as the C1 (Bias=1.33 for daytime, Bias=1.55 for night-time) 14 

and C2 (Bias=1.65 for daytime, Bias=1.89 for night-time) classes considered separately. FARs, 15 

that gives the same information as Bias score without considering the misses, related to all the 16 

rainy classes are 39% and 48% for the daytime and night-time validations, respectively. POD, 17 

that indicates the ability to detect rainy areas without considering the false alarms, is 81% for all 18 

the rainy classes both for night-time and daytime validations. POD indicates the ability of 19 

RainCEIV to detect rainy areas with a good approximation, but FAR shows its tendency to 20 

overestimate the number of rainy pixels. This tendency of RainCEIV will be analysed more in 21 

detail considering the statistical scores related to the C1 and C2 classes separately. In order to be 22 

clearer it is necessary to give the following definitions:  23 

• the percentage of the C2inC1 samples (that are the samples classified as belonging to the 24 

C2 class but that actually belong to the C1 class) out of the total number of the C1 samples 25 

used for validation will be indicated as %C2inC1; 26 

• the percentage of the C1inC2 samples (that are the samples classified as belonging to the 27 

C1 class but that actually belong to the C2 class) out of the total number of the C2 samples 28 

used for validation will be indicated as %C1inC2; 29 



 

17 
 

• the percentage of the C2inC0 samples (that are the samples classified as belonging to the 1 

C2 class but that actually belong to the C0 class) out of the total number of the C0 samples 2 

used for validation will be indicated as %C2inC0; 3 

• the percentage of the C0inC1 samples (that are the samples classified as belonging to the 4 

C1 class but that actually belong to the C0 class) out of the total number of the C0 samples 5 

used for validation will be indicated as %C0inC1. 6 

In detail, the Bias score is higher for the C2 class than for the C1 one, and this proves the general 7 

RainCEIV tendency to overestimate the “heavy-to-very-heavy-rainy” pixels. Moreover, 8 

FAR/POD related to the C2 class is 47%/86% and 65%/65% for daytime and night-time 9 

validation, respectively. It is worth remarking that the FAR high values are due prevalently to the 10 

lower number of the C2 samples. FAR related to the C2 class is mainly affected by %C2inC1. In 11 

fact, %C2inC0 (0.2% for daytime and 0.3% for night-time) is lower than %C2inC1 (2.4% for 12 

daytime and 5.6% for night-time). This means that RainCEIV detects prevalently rainy areas, as 13 

testified by the POD value, but tends to misclassify C1 samples as C2 samples. In many cases 14 

RADARinSEVIRIv related to the misclassified C1 samples is higher than 3mm×h-1. The 15 

FAR/POD score related to the C1 class is 41%/77% for daytime and 51%/75% for night-time. 16 

%C0inC1 (2.0% for daytime and 2.8% for night-time) is lower than %C2inC1 (11.0% for daytime 17 

and 28.2% for night-time).This points out both that RainCEIV is inclined to misclassify the C2 18 

samples as C1 samples and the overestimation of the rainy area is mainly due to the 19 

misclassification of the non-rainy pixels as belonging to the C1 class. The POD score related to 20 

the night-time validation is quite similar to the POD score related to the daytime validation for 21 

all the rainy classes and the C1 class (81% and 75% respectively), and it is lower for the C2 class 22 

(65%). The worst values of the night-time statistical scores especially for the C2 class are mainly 23 

due to the unavailability of the spectral/textural features related to the VIS/NIR observations, that 24 

are characterized by a discriminatory power higher than that related to the spectral/textural 25 

features of the 3.9 µm and 12.0 µm observations. HSS has also been considered. It is a measure 26 

of the correct forecasts after eliminating those whose correctness would be due exclusively to a 27 

random chance. The HSS value obtained for RainCEIV and related to the daytime (night-time) 28 

validation is 67% (62%) when all the rainy classes are considered together, and it is respectively 29 

65% (57%) and 65% (45%) when the C1 and C2 classes are considered separately. 30 
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The case studies related to 29 September 2009 (case I) at 13:00 UTC, 4 August 2010 at 14:15 1 

UTC (case II), and 21 February 2013 at 15:00 UTC (case III) are analysed separately and the 2 

RainCEIV results are shown in Figures 3, 4, and 5 together with the C_MACSP results and the 3 

rain classes obtained from the radar-derived RR measurements. The statistical scores calculated 4 

for each case are listed in Table 12. 5 

The case I was chosen because it highlights the RainCEIV ability in detecting very small rainy 6 

areas. On 29th September 2009 approximately at 13:00 UTC a very rapid and heavy rainfall 7 

event affected a small area between the Basilicata and Calabria regions in Southern Italy. The 8 

accuracy score is high (99%) due to the high occurrence of the non-rainy pixels detected 9 

correctly. POD shows that RainCEIV detects 67% of the rainy samples correctly, while Bias and 10 

FAR scores reveal the RainCEIV tendency to overestimate rainy samples (the FAR score is 47% 11 

and the Bias score is 1.25). In detail, the Bias score related to the C1 class (Bias=1.37) is higher 12 

than that related to the C2 class (Bias=1.00), on the contrary FAR related to the C1 class 13 

(FAR=46%) is lower than that related to the C2 class (FAR=50%). This means that there is an 14 

overestimation of the heavy rainy area but (C1inC2+C0inC2) and the number of the C2 misses is 15 

balanced with the number of the C2 hits. This is not true for the C1 class that shows a higher 16 

number of hits than that of the C2 class, and this results in a higher POD (75% and 50% for the 17 

C1 and C2 class respectively). In remarking this statistical results, it is worth noting that they are 18 

significantly influenced by the low number both of the C2 RADARinSEVIRI samples (4) and C1 19 

RADARinSEVIRI samples (8). Moreover, the temporal distance between the SEVIRI and 20 

RADAR acquisitions that is about 5 minutes can be determinant in the detection of the rainy 21 

events characterized by a high variability. It is argued that parts of the false alarms as well as the 22 

misses are brought about by the collocation errors in the SEVIRI grid. 23 

The RainCEIV statistical scores related to cases II and III (Figures 4 and 5, respectively) are 24 

better than those related to the case study discussed above. This is because they analyse rainy 25 

events characterized by a larger temporal and spatial distribution. The case study II bears on a set 26 

of heavy and moderate rainfall events that affected Central and Southern Italy on 4th August 27 

2010 at 14:15 UTC. RainCEIV detects rainy samples with a POD of 89% strongly related to the 28 

correct detection of the C1 samples. In detail, POD is 82% for the C1 class and 66% for the C2 29 

class resulting from the fact that the number of misses related to the C2 class is higher than that 30 

of the C1 class. It is important to note that 70% of the C2 misses is misclassified as belonging to 31 
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the C1 class. Furthermore, the number of the false alarms related to the C1 class is higher than 1 

that of the C2 class and this leads to a lower value both of FAR (38%) and BIAS (1.08) related to 2 

the C2 class with respect to that related to the C1 class (FAR=56% and BIAS=1.86). The case 3 

study III is related to the analysis of an extreme convective event characterized by very heavy 4 

precipitations occurred on 21th February 2013 on the east cost of Sicily which caused a flash 5 

flood over Catania. The RainCEIV detects all the rainy areas with a POD of 87%, that becomes 6 

50% when only the C2 samples are considered. The number of false alarms is higher for the C1 7 

class (FAR=37%) than for the C2 class (FAR=24%), but while the C1 samples are overestimated, 8 

RainCEIV missed the 50% of them (BIAS=0.67). It is evident that RainCEIV is missing many 9 

heavy-rainy samples, which should be due to the high temporal variability of this rainy event. 10 

Nevertheless, it is able to monitor the evolution of all the rainy areas on the east cost of Sicily 11 

and on Southern Calabria with a good approximation. 12 

 13 

5. Conclusions 14 

This paper proposes the RainCEIV technique as a useful tool for the continuous monitoring and 15 

characterization of the rainy areas in the Mediterranean region where there is an increased 16 

frequency of the extreme events. RainCEIV, that does not use any near real-time ancillary data, 17 

exploits the temporal differences of the brightness temperatures related to the SEVIRI water 18 

vapour channels. These are indicative of the atmosphere instability and, as a consequence, could 19 

give useful information for the detection of the rainy areas when analysed with the spectral and 20 

textural features related to the other SEVIRI channels. Because of the well-known limitations of 21 

the IR/VIS observations in determining RR values, the RainCEIV main purpose is to provide a 22 

near-real time qualitative characterization of the rainy areas especially in regions not covered by 23 

the radar and rain gauge network. 24 

RainCEIV consists of two modules that use geostationary observations from SEVIRI in order to 25 

detect cloudy pixels and, successively, to associate them to a rainy/non-rainy class. RainCEIV 26 

uses both IR and VIS observations to determine if the SEVIRI pixel belongs to the non-rainy 27 

(C0), light-to-moderate-rainy (C1) or heavy-to-very-heavy-rainy (C2) class. The IR/VIS 28 

observations do not have the same potentiality as MW observations in characterizing rainy areas, 29 

but their high spatial and temporal resolution are used to get a continuous monitoring of the 30 

stratiform and convective events. The RainCEIV training phase has been carried out by 31 
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collecting a set of SEVIRI pixels with co-located RR values inferred from AMSU-B/MHS 1 

observations processed by the PEMW algorithm and, when available, with co-locate radar-2 

derived RR values. This double matching of the SEVIRI pixels is an important aspect of 3 

RainCEIV because it allows to get a reliable training dataset. 4 

RainCEIV has been validated on the basis of the RR observations from the Italian DPC 5 

operational weather radar network. The dichotomous statistical scores indicate that a good 6 

fraction (97% for daytime validation and 96% for night-time validation) of the pixels examined 7 

are correctly identified as rainy or non-rainy by the RainCEIV. The Bias scores (1.36 for daytime 8 

validation and 1.58 for night-time validation) and the FAR scores (39% and 48%) suggest that 9 

RainCEIV tends to overestimate rainy pixels especially during the night-time, while the POD 10 

scores (81% both for daytime and night-time validation) indicate that RainCEIV detects rainy 11 

areas with a good a approximation. The rainy areas overestimation is mainly due to the 12 

misclassification of C0 samples as C1 samples. Moreover, the high FAR values related to the C1 13 

and C2 classes are mainly due to the misclassification of the C1 samples as C2 samples and vice 14 

versa. The statistical scores obtained for the daytime validation are generally better than those 15 

obtained for the night-time validation. This is prevalently due to the fact that the features related 16 

to the VIS/NIR observations (unavailable during night-time) have a strong influence on the 17 

RainCEIV output because of their higher discriminatory power when compared with that of the 18 

features related to the 3.9 µm and 12.0 µm observations. In remarking upon the comparison 19 

results, it is important to bear in mind the different spatial resolutions as well as the temporal 20 

distance between radar and satellite observations that could affect the statistical scores 21 

negatively, especially for rapid convective events, even if the time distance between radar and 22 

SEVIRI acquisitions is little. As far as future developments are concerned, RainCEIV will be 23 

updated to consider in the training phase the RADARinSEVIRI samples characterized by a 24 

percentage of rainy RS samples lower than 80% so as to individuate extreme rainy events located 25 

over an area whose size is smaller than that of the SEVIRI pixel area. To this aim, information 26 

from the Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the Suomi National Polar-27 

orbiting Partnership (NPP) (characterized by higher spatial and spectral resolutions than 28 

SEVIRI) will be taken into account when available. The purpose is the integration of the SEVIRI 29 

and VIIRS observations in order to determine the cloud classification and the rainfall occurrence 30 
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probability at a better spatial resolution (from 3 km for SEVIRI to 0.375 km/0.750 km for VIIRS 1 

at the sub-satellite point). 2 

 3 

Appendix A. “Procedure adopted for the training set refinement” 4 

The RainCEIV and C_MACSP original training datasets have been refined by applying the same 5 

procedure to the samples of each class.  6 

The refinement process consists in using the Nearest Neighbour decision rule described by Cover 7 

and Hart (1967) in order to classify each sample of the initial training classes. Here the aim of 8 

this process is to eliminate the redundant and misclassified training samples, which is similar to 9 

the CNN rule described in Hart (1968) but the main purpose of CNN is to get a training subset 10 

performing as well as the original one. Before the description of the refinement process, a brief 11 

description of the NN decision rule and of the Fisher criterion (used to reduce the number of the 12 

components of the feature vector) will be given. 13 

Let To={( 6��, �B)} be the original training dataset, where the pairs (�
��, �B) indicate the training 14 

samples �

�$ of the class �B, j=1, 2, ..., Nc, Nc is the number of the classes, i=1, 2, ...,Nc,j, Nc,jis the 15 

number of the training samples for the class �B. Given a vector Y

� to be the classified, the NN rule 16 

establishes that Y

� belongs to the class �B when the minimum distance is that from the training 17 

sample �

�$ that belongs to class �B, and then �

�$ is the Nearest Neighbourof Y

�. 18 

Before applying the RR decision rule, it is important to define the dimension of the feature 19 

vector. In fact, since the k-NN classifier performance generally decreases with the dimension of 20 

the feature vector, the number of the components (6�) of �
� has been reduced by applying the 21 

Fisher criterion (Ebert, 1987; Parikh, 1977) to evaluate the discriminatory power of the 22 

individual features  and to choose the features characterized by the higher Fisher distance value. 23 

Let 6Z[\  and =B
� be the mean and standard deviation of the feature 6� for the training set from class 24 

�B, thus the Fisher distance is defined as: 25 

]�B" = ^8_̀aaa�8�
`aaaa^

b;�
9�;�

9 c
.                                                                                                                                26 

(1) 27 
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It measures the ability of the feature 6� to differentiate class �B from class �". The features xj, 1 

within �
�, have been ordered in a decreasing way on the basis of the ]�B" values and the first d 2 

features have been chosen as the components of the feature vectors used. The dimension d has 3 

been fixed by following the suggestions in Jain and Chandrasekaran (1982), who point out that 4 

the ratio between the number of the training samples for each class and the feature vector 5 

dimension d should be at least five. 6 

The procedure to obtain the refined training dataset, Tr, starting from the original training dataset 7 

To, consists in: 8 

1. Considering the ith pattern (6��, �B) of To,  9 

2. Applying the NN decision rule and determining the following action on the basis of the 10 

three possible classification results: 11 

- the NN belongs to the initial belonging class �Band the Euclidean distance is higher 12 

than zero, consequently the sample is put in Tr; 13 

- The NN belongs to a different class �� ≠ �B, consequently the sample is reanalyzed 14 

and included in the NN class; 15 

- the Euclidean distance from the NN is zero, the sample is considered redundant and it 16 

is removed from To and not included in Tr. 17 

3. restarting from point 2 with another sample and applying the entire process until all the 18 

training samples have been analyzed. 19 

Tr, determined for each class is used as the definitive training dataset. 20 
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Table 1. List of the NOAA satellite overpasses for the AMSU-B PEMW rain rate maps 1 

considered in the training phase 2 

Date NOAA satellite overpass time (UTC) over Mediterranean area 

29 September 2009 15:16, 17:22 
1 October 2009 04:37, 05:13, 08:30, 13:03, 15:56, 16:37, 19:18 
2 October 2009 01:25, 04:13 
4 March 2010 14:23, 16:03, 16:28, 20:05 
5 March 2010 00:56, 01:48, 04:16, 06:24, 08:20, 11:40 
26 April 2010 12:47, 13:20, 14:49 
28 april 2010 12:26, 15:45 
2 May 2010 15:45, 16:32, 19:44 
20 June 2010 11:42, 11:58, 14:28  
21 June 2010 02:00 
23 June 2010 12:52 
4 August 2010 10:43, 12:19, 16:24, 18:03, 18:56, 20:38 
4 October 2010 03:54, 06:15, 10:16, 13:14, 15:17, 17:44, 19:33 
1 March 2011 11:22, 8:48, 20:15 
12 February 2012 01:08, 01:38 
21 February 2013 11:20, 13:10 
7 October 2013 09:14, 14:38, 20:38 
8 October 2013 08:55, 12:10, 14:30, 20:18, 20:25 
9 October 2013 08:32, 11:56, 19:56 
10 October 2013 08:12, 09:52, 19:35 
17 November 2013 08:25, 10:06, 11:36, 13:17, 19:48 
18 November 2013 08:05, 09:45, 11:25,13:06  
1 December 2013 08:00, 08:36, 20:00 
2 December 2013 07:50, 08:15, 09:55, 19:38 
3 December 2013 09:35, 12:03, 19:16, 21:00 
 3 

 4 

  5 
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Table 2. Statistical scores related to the RainCEIV rain rate results obtained classifying the initial 1 
and artificial test dataset for k=3. The statistical scores are shown for all the rainy classes (C1, 2 
C2), light to moderate rain (C1), and heavy to very heavy rain (C2). 3 
  

Test 
dataset 

C1, 
C2 

C1 C2 C1, 
C2 

C1 C2 C1, 
C2 

C1 C2 

 k=3, d=10 k=3, d=16 k=3,d=20 

Accuracy Artificial  0.72 0.75 0.76 0.81 0.78 0.79 0.81 0.77 0.78 
Initial 0.81 0.81 0.82 0.80 0.76 0.81 0.77 0.74 0.81 

Bias Artificial  0.96 0.99 0.94 1.01 1.02 1.00 1.01 1.01 1.00 
Initial 0.98 0.92 1.04 0.99 1.05 0.92 0.97 1.02 0.92 

POD Artificial  0.77 0.63 0.62 0.86 0.68 0.68 0.86 0.66 0.67 
Initial 0.85 0.69 0.74 0.84 0.68 0.68 0.82 0.63 0.68 

HSS Artificial  0.37 0.44 0.46 0.56 0.50 0.52 0.56 0.48 0.50 
Initial 0.57 0.57 0.59 0.55 0.47 0.57 0.50 0.42 0.57 

FAR Artificial  0.20 0.37 0.34 0.15 0.34 0.32 0.14 0.35 0.33 
Initial 0.13 0.25 0.29 0.14 0.36 0.26 0.16 0.39 0.26 

  4 
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 1 

Table 3. Statistical scores related to the RainCEIV rain rate results obtained classifying the initial 2 
and artificial test dataset for k=5. The statistical scores are shown for all the rainy classes (C1, 3 
C2), light to moderate rain (C1), and heavy to very heavy rain (C2). 4 
  

Test 
dataset 

C1, 
C2 

C1 C2 C1, 
C2 

C1 C2 C1, 
C2 

C1 C2 

 k=5, d=10 k=5, d=16 k=5, d=20 

Accuracy Artificial  0.73 0.76 0.76 0.85 0.79 0.82 0.85 0.79 0.81 
Initial 0.81 0.82 0.84 0.86 0.81 0.85 0.85 0.79 0.84 

Bias Artificial  0.96 0.98 0.94 0.99 1.00 0.98 0.99 1.01 0.97 
Initial 0.97 0.94 0.99 1.00 1.11 0.90 1.00 1.10 0.90 

POD Artificial  0.77 0.64 0.62 0.89 0.70 0.72 0.88 0.68 0.69 
Initial 0.84 0.70 0.74 0.90 0.76 0.74 0.89 0.73 0.72 

HSS Artificial  0.40 0.47 0.46 0.67 0.55 0.59 0.66 0.52 0.56 
Initial 0.59 0.58 0.62 0.68 0.58 0.66 0.67 0.54 0.64 

FAR Artificial  0.19 0.35 0.34 0.11 0.30 0.26 0.11 0.32 0.28 
Initial 0.13 0.25 0.25 0.10 0.31 0.18 0.11 0.33 0.20 

  5 
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Table 4. Statistical scores related to the RainCEIV rain rate results in classifying the initial and 2 
artificial test dataset for k=7. The statistical scores are shown for all the rainy classes (C1, C2), 3 
light to moderate rain (C1), and heavy to very heavy rain (C2). 4 
  

Test 
dataset 

C1, 
C2 

C1 C2 C1, 
C2 

C1 C2 C1, 
C2 

C1 C2 

 k=7, d=10 k=7, d=16 k=7,d=20 

Accuracy Artificial  0.72 0.76 0.77 0.83 0.77 0.81 0.82 0.76 0.81 
Initial 0.78 0.77 0.80 0.80 0.78 0.81 0.80 0.78 0.81 

Bias Artificial  0.97 1.05 0.94 1.00 1.02 0.98 1.00 1.02 0.97 
Initial 1.00 0.94 0.95 1.01 1.09 0.93 1.01 1.09 0.93 

POD Artificial  0.78 0.64 0.62 0.87 0.67 0.71 0.87 0.66 0.71 
Initial 0.83 0.68 0.68 0.86 0.72 0.68 0.86 0.72 0.68 

HSS Artificial  0.38 0.46 0.34 0.62 0.50 0.58 0.61 0.48 0.57 
Initial 0.50 0.48 0.55 0.55 0.52 0.57 0.55 0.52 0.57 

FAR Artificial  0.20 0.36 0.46 0.12 0.34 0.27 0.12 0.35 0.28 
Initial 0.16 0.36 0.29 0.16 0.34 0.26 0.16 0.34 0.26 

  5 
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Table 5. Summary of the features considered for use in the RainCEIV k-NNM classifier during 2 
daytime. Label “A” means that the feature is used for all the C-MACSP classes; “LM” means 3 
that the feature is used for the low/middle cloud class; “ HT/C” means that the feature is used for 4 
the high thick and convective cloud class. 5 

 6 
  7 

Features MSG-SEVIRI spectral bands (µm) 
VIS 
0.6 

VIS 
0.8 

NIR 
1.6 

IR 
3.9 

IR  
6.2 

IR 
7.3 

IR 
10.8 

IR 
12.0 

Max Gray level       A  
Min Gray level       A  
Mean Gray level A        
Max/Min(Gray level)         
Max(Contrast 0º, 45o, 90o, 135o)       A  
Max(Entropy  0º, 45o, 90o, 135o)   A      
Max (Mean 0º, 45o, 90o, 135o)   A   A   
Max (ASM 0º, 45o, 90o, 135o)  A  LM     
Min(Contrast 0º, 45o, 90o, 135o)         
Min(Entropy  0º, 45o, 90o, 135o)       A  
Min (Mean 0º, 45o, 90o, 135o)     A   A 
Min (ASM 0º, 45o, 90o, 135o)        A 

∆��	2�3
     A HT/C   
∆��	2�42     A A   
∆��3
�42         
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Table 6. Summary of the features considered for use in the RainCEIV k-NNM classifier during 2 
night-time. Label “A” means that the feature is used for all the C-MACSP classes; “LM” means 3 
that the feature is used for the low/middle cloud class; “ HT/C” means that the feature is used for 4 
the high thick and convective cloud class. 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
  31 

Features 
MSG-SEVIRI spectral bands (µm) 
IR 
3.9 

IR  
6.2 

 IR 
7.3 

IR 
10.8 

IR 
12.0 

Max Gray level    A  
Min Gray level A   A  
Mean Gray level      
Max/Min(Gray level)      
Max(Contrast 0º, 45o, 90o, 135o)    A  
Max(Entropy  0º, 45o, 90o, 135o) A     
Max (Mean 0º, 45o, 90o, 135o)   A LM  
Max (ASM 0º, 45o, 90o, 135o) LM     
Min(Contrast 0º, 45o, 90o, 135o)     HT/C 
Min(Entropy  0º, 45o, 90o, 135o)    A  
Min (Mean 0º, 45o, 90o, 135o)  A   A 
Min (ASM 0º, 45o, 90o, 135o)     A 

∆��	2�3
  A HT/C   
∆��	2�42  A A   
∆��3
�42   A   
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Table 7. Accuracy of the C_MACSP algorithm on an independent dataset 2 

Classes  Classification accuracy  
(for test samples acquired during 
daytime) 

Classification accuracy  
(for test dataset acquired during 
nighttime) 

Clear over land 
Clear over sea 
Low/middle clouds over land 
Low/middle clouds over sea  

    High thin clouds over land 
High thin clouds over sea 
High thick clouds over land 
High thick clouds over sea 
Convective clouds over land 
Convective clouds over sea 

95.0 %  
96.7 %  
91.6 %  
92.6 %  
85.0 %  
87.6 %  
98.3 %  
99.0 %  
96.0 %  
96.7 %  

95.0 %  
96.7 %  
91.0 %  
91.3 %  
84.0 %  
87.6 %  
97.3 %  
99.0 %  
96.7 %  
96.7 %  

  3 
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Table 8. List of case studies used for validation. 2 

Date Radar Measurement time 
(UTC) 

Satellite overpass time 
(UTC) over Mediterranean 
region 

2 May 2009 15:00, 12:30 14:55, 12:25 
19 September 2009 09:00, 19:15, 19:30 08:55, 19:10, 19:25 
29 September 2009 13:00 (case I), 13:15 12:55, 13:10 
8 January 2010 11:00, 13:00, 16:30 10:55, 12:55, 16:25 
9 March 2010 17:00 16:55 
23 June 2010 15:00 14:55 
1 July 2010 16:45 16:40 
6 July 2010 11:30, 12:30 11:25, 12:25 
4 August 2010 13:00, 13:15,14:15 (case II) 12:55, 13:10, 14:10 
21 February 2013 14:30, 15:00 (case III), 15:30 14:55, 14:25, 15:25 
7 October 2013 01:00, 03:00, 02:00 00:55, 02:55, 01,55 
8 October 2013 12:00, 19:00 11:55, 18:55 
25 December 2013 07:00 06:55 
18 January 2014 06:00, 18:00, 20:00 05:55, 17:55, 19:55 
 3 
  4 
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Table 9. Contingency table for the dichotomous statistical assessment of the RainCEIV 1 

algorithm for all the pixels used for daytime validation.  2 

 Radar- derived rain rate results 

 

RainCEIV 

results 

 Yes no marginal total 

yes 18,410 12,264 30,674 

no 4,052 536,124 540,176 

marginal total 22,462 548,388 570,850 

8 3 

  4 
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Table 10. Contingency table for the dichotomous statistical assessment of the RainCEIV 1 

algorithm for all the pixels used for night-time validation.  2 

 Radar- derived rain rate results 

 

RainCEIV 

results 

 Yes no marginal total 

yes 16,399 15,295 31,694 

no 3,604 470,486 474,090 

marginal total 20,003 485,781 505,784 

 3 

  4 
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Table 11. Dichotomous Statistical scores (RainCEIV versus radar-derived rain rate 2 

measurements) for the case studies listed in Table 8. The statistical scores are shown for all rainy 3 

classes (C1, C2), light to moderate rain (C1), and heavy to very heavy rain (C2). 4 

Statistical Scores for daytime validation dataset  for night-time validation dataset 

 C1, C2 C1 C2 C1, C2 C1 C2 

Accuracy 0.97 0.97 0.99 0.96 0.96 0.99 

Bias 1.36 1.33 1.65 1.58 1.55 1.89 

POD 0.81 0.77 0.86 0.81 0.75 0.65 

HSS 0.67 0.65 0.65 0.62 0.57 0.45 

FAR 0.39 0.41 0.47 0.48 0.51 0.65 

 5 

  6 
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Table 12. Dichotomous statistical scores shown for all rainy classes (C1, C2), light to moderate 1 

rain (C1), and heavy to very heavy rain (C2), for the case studies I, II and III. 2 

Statistical 

score 

Case I 

29 September 2009, 

13:00 UTC 

Case II 

4 August 2010,  

14:15 UTC 

Case III 

21 February 2013, 

15:00 UTC 

 C1, C2 C1 C2 C1, C2 C1 C2 C1, C2 C1 C2 

Accuracy 0.99 0.99 0.99 0.99 0.98 0.99 0.92 0.92 0.99 

Bias score 1.25 1.38 1.00 1.56 1.86 1.08 1.35 1.38 0.67 

POD 0.67 0.75 0.50 0.89 0.82 0.66 0.87 0.87 0.50 

HSS 0.59 0.63 0.50 0.68 0.56 0.63 0.70 0.68 0.60 

FAR 0.47 0.45 0.50 0.43 0.56 0.38 0.35 0.37 0.24 

 3 

  4 
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 2 

Figure 1. Flowchart of the RainCEIV algorithm. 3 
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Figure 2 Flowchart of the RainCEIV training procedure. 2 
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Figure 3. 29 September 2009 at 13:00 UTC. From  left to right: C_MACSP cloud classification 2 

results, radar-derived rain rate results, RainCEIV rain rate results. 3 
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 1 

Figure 4. 4 August 2010 at 14:15 UTC. From  left to right: C_MACSP cloud classification 2 

results, radar-derived rain rate results, RainCEIV rain rate results. 3 
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 1 

Figure 5. 21 February 2013 at 15:00 UTC. From left to right: C_MACSP cloud classification 2 

results, radar-derived rain rate results, RainCEIV rain rate results. 3 

 4 


