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Abstract

This study exploits the Meteosat Second Genergfid8G)—Spinning Enhanced Visible and
Infrared Imager (SEVIRI) observations to evaludte tain class at high spatial and temporal
resolutions and, to this aim, proposes the RairsCEvaluation from Infrared and Visible
observation (RainCEIV) technique. RainCEIV is cosgd of two modules: a cloud
classification algorithm which individuates and dw@erizes the cloudy pixels, and a supervised
classifier that delineates the rainy areas accgrtbrthe three rainfall intensity classes, tiom-
rainy (rain rate value<0.5 mmxf class, thdight-to-moderate rainylass (0.5 mmxfxrain rate
value<4 mmxH), and theheavyto-very-heavy-rainyclass (rain rate valad mmxh'). The
second module considers in input the spectral artlital features of the infrared and visible
SEVIRI observations for the cloudy pixels detedbgdhe first module. It also takes the temporal
differences of the brightness temperatures linkedhe SEVIRI water vapour channels as
indicative of the atmospheric instability stronghfated to the occurrence of rainfall events.

The rainfall rates used in the training phase étained through the Precipitation Estimation at
Microwave frequencies, PEMW (an algorithm for raate retrievals based on Atmospheric
Microwave Sounder Unit (AMSU)-B observations). RaiElV provides a continuous
monitoring both of the cloud coverage and rainda#nts without using real-time ancillary data.
Its principal aim is that of supplying preliminagyalitative information on the rainy areas within
the Mediterranean basin where there is no radawvamktcoverage. The results of RainCEIV

have been validated against radar-derived raimfasurements from the Italian Operational
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Weather Radar Network for some case studies limitedthe Mediterranean area. The
dichotomous assessment related to daytime (nigtg}tvalidation shows that RainCEIV is able
to detect rainy/non rainy areas with an accuracglmiut 97% (96%), and when all the rainy
classes are considered, it shows a Heidke skiteseb67% (62%), a Bias score of 1.36 (1.58),

and a Probability of Detection of rainy areas o¥8B1%).

1. Introduction

A wealth of techniques based on geostationary lgatdR/VIS observations have been
developed in order to estimate rain rate (RR) \@lreconfidences. A recent overview is given
by Kidd and Levizzani (2011). The geostationaryelliéé techniques perform better over areas
where rainfall originates from deep convection th@arthe areas where it originates from the
stratiform systems. In particular, Negri and Ad{#881) examined the relation between cloud
top temperature and RR by analysing Geostationggr&ional Environmental Satellite (GOES)
and radar data associated to a series of thundesstoAdler et al. (1985) proposed a
Thunderstorm Index (TI) to give probability to obse heavy precipitation. Successively, Adler
et al. (1988) extended their interest to stratifqurecipitation (produced under the anvils of
mature and decaying convective systems) from GCHSlise infrared data. Wu and Weinman
(1985) used GOES data in order to estimate raibfatheans of a pattern recognition algorithm
trained and tested on different sets of RR measem&snobtained from NOAA operational
radars. They classify rain into three classes (@omy, light rainy, heavy rainy classes). Adler et
al. (1993) were the first to successfully combihe a&dvantages of both types of instrument by
using matched MW and IR data. Vicente et al. (1988pduced the auto-estimator in order to
estimate rainfall from GOES measurements focusmfpeavy precipitation. The auto-estimator
differs from the previous IR methods for rainfadttienation because it considers other factors in
addition to the IR window cloud top temperaturepérticular, information about environmental
moisture is used to obtain a more correct estimatfaainfall as well as for the screening of the
non-rainy pixels. Ba and Gruber (2001) used the S®iBible (0.65m), near infrared (3.Am),
water vapour (64/m) and window channels (1 and 12.0um) to estimate rainfall rate,
distinguishing raining from non-raining clouds laking into account the cloud top temperature,

the effective radius of cloud particles and thegemature gradient. Moreover, in an attempt to
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give more reliable values of rain rates, Ba andb@r2001) used the moisture factor correction
developed by Scofield (1987) and modified by Vieeet al. (1998). Other authors used artificial
neural networks to derive precipitation estimatssg satellite IR images (Hsu et al., 1997,
Behrangi et al., 2009; Capacci and Porcu, 2009)nyMauthors developed techniques to
determine RR from Meteosat data, both physical statistical. Physical techniques consist of
brightness temperature difference threshold testewosider effective radius as well as cloud top
height/temperature in order to determine rainfaterand/or probability by the use of look-up
tables. The look-up tables are usually built by sidering rainfall measurements obtained
through rain-gauge instruments or radar as welRRsvalues determined by MW data. An
example of IR method that uses RR values determiyelll\WW observations was developed by
Jobard and Desbois (1994), the RAIn and Cloud @Giesson method (RACC), that used the
SSM/I and Meteosat data in order to classify theéddsat images into several categories of rain.
Turk et al. (2000) proposed a blended geostatiermacyowave technique for the retrieval of RR
measurements. This technique has been taken ds model by several investigators (Kidd et
al., 2003; Marzano et al., 2004), including Heinemat al. (2002) who developed the Multi-
Sensor Precipitation Estimate (MPE) technique dpeyaat the European agency for the
deployment of meteorological satellites (EUMETSAMPE product consists of the near-real-
time RR maps for each Meteosat Second Generati@GM Spinning Enhanced Visible and
Infrared Imager (SEVIRI) images in original pixelsolution Moreover, recently Mugnai et al.
(2013) implemented the blended technique by Turkalet(2000) among the precipitation
products of the Satellite Application Facility omgort to Operational Hydrology and Water
Management (H-SAF) H-SAF. Roebeling and Hollemad0® proposed an algorithm for the
RR estimation from the cloud physical propertiegfsas cloud condensed water path and cloud
top height) retrieved from SEVIRI observations. Kldin et al. (2010) also investigated the
SEVIRI potential to determine RR, assuming a refeghip between RR and optical thickness as
well as effective radius. In particular they hawtablished a relation between the reflectance
observations acquired at fud and 1.em — which give information about cloud optical
thickness and effective radius - and the grounedbasainfall rate. Recently, Feidas and
Giannakos (2012) have proposed an algorithm thatksvavith SEVIRI observations by
combining physical and statistical methods to cott@r&ze convective and stratiform

precipitation areas. They calibrated the algoritbeing RR measurements derived from a
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substantial number of rain gauge stations in Gre@tger techniques are based on cloud motion
and exploit IR observations to provide an estinohteloud movement to be used for transporting
the more direct MW rainfall observations (Joycealet2004). Di Paola et al. (2012) proposed the
Precipitation Evolving Technique (PET) for conveetirain cell continuous monitoring. PET
propagates forward in space and time the latestnRR inferred by AMSU and MHS MW
observations by using SEVIRI IR brightness tempgeatmaps. This technique is able to
propagate the latest rain field available for 2e€iis. The aim of this study is to propose a
techniqgue based on a statistical classificatiororétlyn that uses the spectral and textural
features of SEVIRI IR/VIS observations to classihe cloudy pixels ason-rainy, light-to-
moderate-rainy or heavy-to-very-heavy-rainy The technique proposed, the Rain Class
Evaluation from Infrared and Visible observatiof&ainCEIV), operates in a fixed area, the
Mediterranean basin, approximately between 35 &degrees North, and 20 degrees West and
20 degrees East. RainCEIV firstly discriminatesudlp from non-cloudy pixels, then it
determines the rain class only for the pixels di@sk as cloudy. It deploys the k-Nearest
Neighbour Mean classifier (k-NNM) which considessiaput the spectral and textural features
derived from the SEVIRI VIS/IR images and the btiglss temperatures differences of SEVIRI
water vapour channels acquired 15, 30, and 45 esrhgfore the time of interest. RainCEIV has
been validated against the radar-derived RR vabl#ained from the ItaliarOperational
Weather Radar Networkbservations managed by the Italian Departmertieil Protection
(DPC). RainCEIV is proposed as a useful tool toieaah a real-time monitoring of rainfall

events, both the intense convective and the siratilmoderate ones.

Section 2 provides a description of the satelkiiesers whose observations and/or products have
been used for the RainCEIV implementation; Sectbdescribes the two modules of RainCEIV
(the C_MACSP cloud classification algorithm and R&nCEIV k-NNM classifier); Section 4
shows the statistical scores obtained by comparfgnCEIV and radar-derived RR

measurements.

2. Instruments and data description

The spectral and textural features of MSG-SEVIRhg®s are used as input for both the
C_MACSP cloud classification algorithm and the RV k-NNM classifier. SEVIRI is the

4
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main payload on board the MSG series, composed Gl (Meteosat 8), MSG-2 (Meteosat
9), MSG-3 (Meteosat 10), and future MSG-4 (Metedd3t planned for launch in 2014. SEVIRI
is a 50 cm-diameter-aperture line-by-line scannmagliometer and observes the Earth-
atmosphere system in 11 channels at (a) full disk &v3km spatial sampling at the sub-satellite
point. In addition, the High Resolution Visible (MRchannel covers half the full disk with a
1km spatial sampling at the sub-satellite pointe Hetual instantaneous field of view is about
4.8 km at the sub-satellite point for all the chalsrexcept for the HRV channel where it is 1.67
km. The major improvements with respect to previ@emsors are its enhanced spectral
characteristics, its higher temporal resolution (di®), the improved signal-to-noise ratio, and
the higher precision of data storing which rangesnf8 bits (256 levels) on Meteosat-7 to 10
bits (1024 levels) on Meteosat-8 (Schmetz et a022.

The RainCEIV k-NNM classifier has been trained be RR product from the Precipitation
Estimation at Microwave Frequencies (PEMW). PEMWsvageveloped by Di Tomaso et al.
(2009) at the Institute of Methodologies for Enwineental Analysis of the National Research
Council of Italy (IMAA-CNR) to infer surface rainntensity from satellite MW LEO
observations provided by the Advanced Microwave rfémg Unit-B (AMSU-B) and the
Microwave Humidity Sounder (MHS) on board the Na#b Oceanic and Atmospheric
Administration (NOAA) satellites and the Europeaold? Satellite MetOp-A, respectively.
AMSU-B and MHS are cross-track, line-scanning MWioaneters which measure radiances in
five channels in the 89GHz-t0-190GHz frequency eanbhe centre frequencies for the two
window channels are 89 GHz, 150 GHz, while thedhospaque (water vapour) channels are
centred at 1881, 1833, and 1837 GHz. The AMSU-B and MHS fields of view (FOV) haae
circular shape (with a diameter of about 16 kmpadir, while their shape become ellipsoidal
away from the nadir (the axes length is 51 km F& ¢ross-track direction and 25 km for the
along-track direction at the maximum scanning an{Bennartz, 2000). The purpose of these
instruments is to measure the radiation from deffiedayers of the atmosphere in order to obtain
global data on humidity profiles. The PEMW RR valgeassigned to the SEVIRI pixel only
when the latter is entirely enclosed in the comesing AMSU-B/MHS FOV. PEMW RR
values are re-sampled on the SEVIRI grid by catmgathe area of each AMSU-B/MHS FOV
on the basis of the orbital parameters describg@@mnartz, 2000). The temporal matching is

carried out considering a maximum difference of MiButes between the acquisition time of the
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SEVIRI pixel and that of the AMSU/MHS FOV. For sitigity, the SEVIRI pixel, to which the
PEMW-RR value is assigned, will be denominated PENBEVIRI while the corresponding
PEMW:-RR value will be denominated PEMWINSEVIRIv.

The RainCEIV results have been validated on theslzdthe RR values derived from the Italian
Weather Radar Network which is coordinated by DR@Igiani et al., 2008) in collaboration
with the regional authorities, the research centies Air Traffic Control service (ENAV), and
the Meteorological Service of the Italian Air For@&\MCA). It consists of twenty microwave
weather radars belonging to the regional authsriften C-band radars), ENAV (two C-band
radars) and DPC (six C-band radars and two X-basldrimetric radars). The surface rate
intensity (sri, in mmxH) and other products such as the Vertical Maximatarisity (VMI), the
Constant Altitude Plan Position Indicator (CAPPtdathe one-hour-accumulated surface rain
total (srt, in mm), are retrieved from measuredecgivity volumes. Procedures for mitigating
ground clutter, an anomalous propagation, beamkblpe effects are applied (Vulpiani et al.,
2008a). The sri product is derived applying a alaty-rainfall (Z-R) relationship to the
Lowest Beam Map (LBM), i.e. the reflectivity valuas the lowest level of the corrected radar
volumes. The sri product used here representsdsiedstimate from the radar network available
for the period under analysis, and it has alreagBnbused to validate satellite rainfall estimates
(Cimini et al., 2013), including EUMETSAT H-SAF mocts (Puca et al., 2013). Procedures to
improve the quality of the sri product, includingeamuation compensation, polarimetric rainfall
inversion techniques, and adaptive algorithms tigene= the mean vertical profiles of reflectivity
have recently been developed at DPC (Vulpiani gt 2012; Rinollo et al., 2013). All the
products are available on a grid of 1400x1400 With a spatial resolution of circa 1 km and a
temporal resolution of 15 minutes. For simplicitye radar samples completely included into the
SEVIRI pixels will be denominated RS samples. Toiocation process of the radar-derived RR
measurements into the SEVIRI grid consists in daating the RS samples to each SEVIRI pixel.
If the percentage of the rainy RS samples is higfeen 80%, the SEVIRI pixel is considered for
the validation and classified &ght-to-moderate-rainyr heavy-to-very-heavy-raingn the basis

of the RS-RR value average. In some cases, theR8aRie average is strongly influenced by
the lowest RR values of thight-to-moderate-rainyRS samples also if the numberh&avy-to-
very-heavyrainy RS samples is higher than that of tight-to-moderate-rainyone. Because of

this, when the percentage of theavy-to-very-heavy-rainRS samples is higher than 50% and it
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is higher than that of thikght-to-moderate-rainyRS samples, the SEVIRI pixel is flagged as
heavy-to-very-heavy-raingegardless of the RS-RR value average. If thegméage of the non-
rainy RS samples is 100%, the SEVIRI pixel is cdesd for the training and validation. In the
other cases, the SEVIRI pixel is flagged as “uraettand not considered for the training and
validation purposes. For simplicity, the pixel SIRV] to which the radar-derived-RR value is
assigned, will be denominated RADARINSEVIRI, whilee corresponding RR value will be
denominated RADARINSEVIRIv.

3. RainCEIV description
The RainCEIV technique consists of two modules:

I- a cloud classification algorithm that discrimiesitlear from cloudy pixels and further

classifies the cloudy pixels;

II- a k-Nearest Neighbour Mean (k-NNM) classifier tkeatluates the rain class for each

pixel classified as cloudy by the first module.

3.1 Cloud classification algorithm description

The cloud Mask Coupling of Statistical and Physio@thods algorithm - MACSP (Ricciardelli
et al., 2008) - is used for distinguishistpudy from non-cloudypixels. The version used for
RainCEIV purposes is called C_MACSP, which starmscfoud Classification Mask Coupling
of Statistical and Physical methods. The curremsive has been updated to give information
about the cloud class and in particular to spkt KRACSP ‘high cloud in the “high optically
thin” and ‘high optically thick cloud classes. Furthermore, tbenvective cloudlass has been
added, not just for module Il but also to indivitkithe possible occurrence of extreme events. A
pixel can be classified in 5 different classes @ered both over land and setear, low/middle
cloud, high optically thin cloudhigh optically thick cloudand convective cloudin detail, the
C_MACSP physical algorithm uses the same physizashold tests as the MACSP earlier
version with the addition of a new threshold tesiving the difference between the brightness
temperature of the SEVIRI water vapour channelreehat 6.g2m and of the SEVIRI window

channel centred at 1, AT B¢ 2, m-10.8um- This difference is very small for convective aou

as asserted by Mosher (2001, 2002) in the Globalvédive Diagnostic approach. The

7
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C_MACSP statistical algorithm considers in inpute teame spectral and textural features
described and listed in section 3.2.1 and tabtespectively, of Ricciardelli et al. (2008), buéeth
training dataset has been updated in order to iddraining samples for thewnvective cloud
class. The training samples were collected in thedidrranean basin, where RainCEIV
operates. The cloud classification for the traindagaset has been made through a careful visual
inspection of the SEVIRI images. The clear and @jopixels have been selected manually after
observing the spectral characteristics in SEVIRIVIS images as well as in their RGB
composition, a useful practice for distinguishingudly classes (Lensky and Rosenfeld, 2008).
In order to collect the training samples for tmnvective cloudlass, the cloudy SEVIRI pixels
have been matched with the corresponding PEMW-RRatar-derived RR values, if available.
The collocation process both of the radar-derivédvRlues and the PEMW-RR values in the
SEVIRI grid is described in Section 2. The SEVIR{gb is considered for the training when:

* both the RADARINSEVIRI pixel and PEMWINSEVIRI pixedre available and the
relation:
(RADARINSEVIRIV>4mmxHh").and.(PEMWInSEVIRI#4mmxh?) is satisfied;

* both the RADARINSEVIRI pixel and PEMWInSEVIRI pixedre available and the
relation:
(RADARINSEVIRIV>4mmxHh).and.(PEMWInSEVIRIv<4mmxT) is satisfied and the
percentage of the rainy RS samples is higher tbéf; 8

» only the PEMWINSEVIRI pixel is available (the AMSBIMHS observation is outside
the area covered by the Radar Network) and théigrl@PEMWInSEVIRN-4mmxh?)
is satisfied.

When both the RADARINSEVIRI pixel and the PEMWInSIRV pixel are available and the
relations at points 2 and 3 are not satisfied, SE®/IRI pixel is not considered for the initial
training dataset. The SEVIRI images listed in tdblef Ricciardelli et al (2008) and in particular
the ones used for the training of the Mediterraneasin (enclosed in the areas B, C, and G of
Figure 3 of Ricciardelli et al (2008)) have beerdifor the training of C_MACSP. The SEVIRI
images used for the training are those acquire@®rSeptember 2009 at 16:57 UTC, on 1
October 2009 (at 05:12 UTC, at 08:27 UTC, and abA%JTC), on 04 March 2010 (at 14:27
UTC, 15:57 UTC, and at 20:12 UTC), on 28 April 20H0 12:27 UTC and 15:43 UTC), on 4
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August 2010 (at 10:43 UTC and 15:12 UTC), on 2 kBehbr 2010 at 22:57 UTC, on 8 January
2010 at 13:57 UTC, on 1 October 2009 at 05:13 UmE ¥9:13 UTC. The procedure described
in Appendix A has been applied in order to refile training dataset by eliminating the
redundant as well as the misclassified samples. RF&@nCEIV purposes, the C_MACSP

screening is useful to:

» reduce the number of the input pixels to the RaiMJENNM classifier by removing the
pixels classified aslear andhigh thin cloud

» define the components of the feature vector intinpthe RainCEIV classifier (as will be
described in the following sub-section. The commisiehosen for each cloud class are
shown in Tables 5 and 6).

3.2 k- Nearest Neighbour Mean classifier description

The classifier pattern used to evaluate the rdiayscs the k-Nearest Neighbour Mean (k-NNM)
non-parametric supervised classifier proposed wehath and Sarma (2011). This classifier
has been chosen for its simplicity and good peréote (Dasarathy, 1991; Dasarathy 2002;
Babu and Viswanath, 2009) and because, unlike thee®classifier, it does not assume any
priori known probabilities, which are estimated diredtym the design samples. It implements
the decision rule locally. The k-NNM classifier hdsmonstrated to perform better than the k-
NN classifier and it is suitable for parallel impientation so as to reduce the classification time,
as asserted by Viswanath and Sarma (2011).

Let ¥ be the vector of features related to the pixebéoclassified and; the rainy/non-rainy
class with i=0,1,2 defined as follows:

1. non-rainyclass (RR<0.5mnmh™) (C,)

2. light-to-moderate rainylass (0.5RR<4mmxh™) (C,)

3. heavy-to-very-heavy raimfass (RR>4mih™) (C,)

For each clasg; the k-NNM classifier finds the k (wherk>1) nearest neighbours & and

determines the mean valdg,.., (X, C;) of their distancesd(X, X;;)) fromX.

YK d® %)

dmean (X C;) = X i=0,1,2 1)
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whered(%,%;;) is the Euclidean distance betwe2randX;; which is thej"" nearest training

sample for the clasé;. The pixel is labelled as the class characterizgdhe lowest mean

distanced, .., (X, C;):

(dmean(})’ CO) < dmean()_()» Cl))and(dmean()_(: CO) < dmean(i CZ)) - )_() € CO (2)
(dmean()_()’ Cl) < dmean()_()’ CO))and(dmean(i Cl) < dmean()_()’ CZ)) - )_() € Cl (3)
(dmean()_()’ CZ) < dmean(i)’ CO))and(dmean(i Cz) < dmean()_()» Cl)) - )_() € CZ (4)

Fig. 1 shows the scheme of the RainCEIV technique.

3.2.1 Features selection and description

The k-NNM classifier uses textural and spectraless estimated in 3x3-pixel boxes in order to
associate each SEVIRI pixel to a rainy/non-rairassl The textural and spectral features used in
this study and their different weights in the gelément, where both textural and tonal features
have significant values, are described in Riccidirdeal. (2008). In detail, the spectral features
used are themaximumand minimum grey levels and the ratio between them. The taktur
features considered are thmaximumand theminimumof the Entropy (a measure of the spatial
randomness of the image), the Angular Second MoV, a measure of homogeneity of the
image), the Contrast (a measure of local variatiothe grey-level differences) and the Mean (a
measure of the mean grey-level differences). Theitman and minimum values are calculated
among the values calculated for the four directi@9s 45°, 90°, 135°) in the 3x3-pixel box. All
the spectral and textural features defined forlR¥IS SEVIRI images acquired at 0.6 um, 0.8
pm, 1.6 pm, 3.9 um, 6.2 pm, 7.3 um, 10.8 um, andud®? were initially considered as
components ofX. Some of the above-listed spectral channels awallysutilized to infer
information on cloud-top microphysical propertiés. particular, the observations acquired at
10.8 pm and 12.0 um are used to provide informationloud top temperature and cloud optical
thickness, the observations at 0.6 um are also tsaget information about cloud optical
thickness, while the 3.Am and 1.6um observations are used to infer information ondlioed
thermodynamic phase and cloud drop size distribufidhe precipitation processes are strongly
related to the cloud-top microphysical structurd,an particular, the rain rate confidence is high

for cloud tops with large cloud droplets or in hresence of ice (Lensky and Rosenfeld, 1997).

10



N

© 00 N o 0o b~ W

10
11
12
13
14
15
16
17

18
19
20
21

22

23
24

25
26

27
28
29

Consequently, in this study the use of featuresvél@érfrom spectral channels connected with

cloud microphysical properties could allow the itigcation of raining clouds.

The spectral channels centred at 6.2 um and 7.&nenindicative of the water vapour (WV)
content in the troposphere at levels lower thanh®3a0and 500hPa, respectively. The WV
channel features when considered alone do not ggedul information on the presence of a
raining cloud, on the contrary, when considerechwite other channel features, in particular
those related to the 1018n channel, they are useful to individuate convecgevents (Mosher,
2001, 2009). Moreover, the WV temporal changesirateative of the atmospheric instability
that is a useful index in the detection of the jpié&ting area. Because of this, the temporal
differences ATB(2)15-30 ATB(62)15-450 ATB62)30-45. ATBz3)15-30 TB(7.3)15-45,
TB(7.3)30-45 between the WV brightness temperatures relatedetGEVIRI acquisitions made
15, 30 and 45 minutes before the time of interestexploited to get information on the WV
temporal changes at different atmosphere levelsvidDbly, the temporal change of WV
brightness temperature related to a pixel doesahays mean that the pixel is rainy, and as for
the other features, it gains usefulness in disaatmg rainy/non-rainy classes when used in
combination with the other features opportunelysam as will be described in the following
sub-section.

Before defining and listing the final componentstioé feature vector, it is important to explain
how these features have been normalized so agvemrthe featuresc{) characterized by the
largest variance across the training data set fdwminating the Euclidean distance. The

normalization formula applied to each feature is:

(5)

wherex! is theit" component of the feature vectto be normalizedy! is the " component of
the normalize&, ¥ and o' are, respectively, the mean and the standard ti@vir the feature

x! calculated considering all the training set sasipldis equation is also applied to the feature

vector related to the pixels to be classified.

By bearing in mind that the k-NNM classifier perftance generally decreases with the
dimension of the feature vector, the number of feraure vector componentst() has been
reduced. For this purpose, the Fisher distancerioit (Ebert, 1987; Parikh, 1977), described in

11
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Appendix A, has been applied in order to evalubte discriminatory power of the individual
features. The Fisher distance has been determimrethé following combinations:C(, C;);

(Co, C3); (Cy,Cy). The features have been ordered in a descendaygom the basis of the
correspondent Fisher distance value, so that titerfes characterized by higher Fisher distances
have been chosen as components of the featurervéhwdefinitive values of the feature vector
componentsd and the RainCEIV k-NNM classifiek parameter have been determined as

described in the following sub-section.

3.2.2 Training procedure

The training dataset was built by collecting adeSEVIRI images during day- and night-time
with collocated RR values inferred from AMSU-B/MH8servations processed with the PEMW
algorithm (Di Tomaso et al., 2009), both over laaml sea. PEMW exploits the window and
water vapour channel observatio®EMW estimates show a very good agreement withrgrou
based observations in the detection of rainfall angasonably good estimation of RR values.
The Probability of Detection (POD) of precipitatias 75% and 90% for RR greater than
1mmxh' and 5mmh™; respectively (Di Tomaso et al., 2009). At presém: PEMW algorithm
operative version (OPEMW) is operationally run 247 IMAA-CNR. OPEMW has been
validated by Cimini et al. (2013) against radarnkt RR values and rain gauge surface rain
intensity. The analysis shows an accuracy of 984dentifying rainy and non-rainy areas and a
Heidke skill score of 45% (with respect to radarhdel RR values) and 42% (with respect to
rain gauge RR values). Thaecuracy Bias ScoreProbability of DetectionFalse Alarm Ratio
(FAR), Heidke Skill Score(HSS) are described in Ebert (2013). The AMSU-BSIH
observations used for building the training database collected during the NOAA satellite
passes over the Mediterranean area on the datasilnsTable 1.

The training dataset has been built by coupling@yoSEVIRI pixels with the corresponding RR
value obtained by the PEMW algorithm and, wherelabke, with the radar-derived RR values.
When no radar-derived RR value is available (bex#ivs AMSU-B/MHS observation is outside
the area covered by the Radar Network) the SEViRdI s classified as belonging to one of the
classes g C;, and G on the basis of the corresponding PEMWINSEVIRI @ris included in
the initial training dataset. When the RADARINSEWRis available and agrees with the
PEMWINSEVIRIv in determining the rainy/non-rainyask the SEVIRI pixel belongs to, this is
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included in the initial training dataset. Otherwiseshen the RADARINSEVIRIV and
PEMWINSEVIRIv do not agree, the SEVIRI pixel is limged in the initial training dataset only
if the correspondent RADARINSEVIRI pixel belongsateainy class Cor G, and the percentage
of the rainy RS is higher than 80%. This choicedsy useful for the training of the rainy events
localized over an area smaller than the AMSU-B/MHSV area. The training samples have
been considered separately for land and sea angbgploon the basis of the Solar Zenith Angle
(SZA). Finally, in order to refine the training dataséie fprocess described in Appendix A has
been applied to the initial training dataset. Thailability of the SEVIRI samples double
matched with PEMW and radar-derived RR values isfullsboth for the mitigation of
uncertainty due to the collocation process andréimement of the original training dataset
especially for the removal of the misclassified pls. Figure 2 describes the training
procedure.

Successively, in order to decide the best valuesdfandk, a set of test samples have been
classified by varyingl andk combinations. Moreover, an artificial dataset, sther and more
versatile than the initial one, has been obtainedpplying the bootstrap method (described by
Hamamoto et al. (1997)) to the initial test samplesorder to make a more robust choicedor
andk, the sameal andk combinations chosen for the classification ofithigal test dataset have
been used to classify the artificial dataset. Tlest lchoice ofd and k has been made by
comparing the statistical scores obtained by didsgi the two dataset separately. Both the

initial and the artificial dataset contains the samumber of samples for each class.

Let Y = {(¥:,C;)} be the independent test dataset built by examitfiegPEMW-RR values
related to the AMSU-B/MSH overpasses of 12 Febr2&i2 at 01:35UTC, 12 November 2011
at 08:50UTC, 22 November 2010 at 09:34 UTC, 4 Au@040 at 14:46 UTC, 26 April 2010 at
12:26 UTC, 01 October 2009 at 19:50UTC, 02 Octdti#9 at 05:00UTC. The pai(§;, C;)
indicate the test samplgs belonging to the clas§;, j=1, 2, ..., N, N is the number of the
classes (for RainCEI\;, j=0, 1, 2, N=3) i=1, 2, ...,N;, Nc;jis the number of the test samples

for the clasg;.

The bootstrap samples for each class have beemet¢el as follows:

1. the sampl€yy, C;) was selected;
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2. r was chosen equal to.j¥ and ther Nearest Neighbours (NN) of the samig, C;)

(indicated as{(xs, Cj)s=1,}) Were found. (the NN decision rule is explained in

Appendix A);
3. the " component of the bootstrap sample was calculatepplying the equation
byf == X5-1Vks (7)

to all the components of t{€yy s, C;)s=1,}. For simplicity the generid®icomponent of the
(Fks» Cj)s=1,r Is indicated ay,‘;,s without indicating the belonging clasg @ the same way
byt is the " component of the bootstrap samp@k,cj) obtained by starting from the
sample(yy, C;).

. N.is Ngj N ; N, ; Nc,;
4. Points 2 and 3 were repeated fo= "/, %/, %/, 8,7/, —6, C’/Z—

N, ; )
4,75 = 2;

5. the process restarted from point 1 with anothempdamnd points 2, 3 and 4 were applied
until all the test samples were considered for eda$s.

A careful screening has been done to eliminateedandanbootstrapsamples. Th&ootstrap
samples and the initial test samples have beemsiidas separately by means of the k-NNM
(using the original training dataset). The statatiscores obtained for the two datasets are quite
similar and they change in the same way vardimgdk as can be noted in Tables 2, 3 and 4 that
list the statistical scores for k=3, d=10, d=16208 able 2); k=5, d=10, d=16, d=20 (Table 3);
k=7; d=10, d=16, d=20 (Table 4). Other combinatimisd and k have been investigated
obtaining results worse than the ones listed itetap, 3 and 4. In particular, both for the origina
and artificial test dataset, far< 3,d < 10 the FAR related to the moderate class is highan th
40% and POD is lower than 60%, while fer7 the FAR for all the classes is higher than 44%
and the other statistical scores are lower thasdlubtained for the oth&randd combinations.
The statistical scores obtained by classifyingititgal and artificial samples agree in suggesting
k=5 and d=16 as the best choice of parameterhiéokNNM classifier. The features chosen as
components of the feature vectmrelated to daytime and night-time acquisition bseed in
Table 5 and Table 6, respectively. The featured vser land and over sea are the same, but in

some cases they vary for different cloud classes.tiee max value of the ASM is very useful in
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order to determine the confidence that a low/midditeid is precipitating, but its discriminatory
power is not so high as to individuate the preaipig high thick clouds. On the contrary, the
minimum and maximum values of Entropy, Mean and t@2mh give an useful contribution in
detecting bothlight-to-moderate rainyclassand heavy-to-very-heavy-rainglass for all the
cloudy classes.

4. Validation results
4.1 C_MACSP validation results

The validity of the C_MACSP algorithm has beendddty applying it to an independent dataset
of which each class is made 300 samples taken tft®@mSEVIRI images acquired on 12
November 2010 at 11:27 UTC, 22 November 2010 &08TC and at 11:43 UTC, 5 May 2012
at 20:27 UTC, 19 May 2012 at 10:57 UTC, 23 July2@t 10:27 UTC, 5 December 2012 at
08:43 UTC, 19 September 2009 at 19:13 UTC, 6 JOB02at 11:27 UTC and 12:27 UTC, 4
August 2010 at 14:27 UTC, 26 December 2013 at 0WbBZ, 8 October 2013 at 18:57 UTC, 7
October 2013 at 00:57 UTC and 20 January 2014 :&723TC. The validation has been carried
out separately for samples acquired during nighetand daytime by comparing the C_MACSP
classification results and the samples manualliectdd from the independent dataset images.
The manual classification has been made throughrefud observation of the SEVIRI RGB
composition so as to get the same number of sanfpiesach class. The convective cloud
classification results have been validated consigethe RR maps derived both from the
weather radar network and the PEMW rain rate maps. latter have been used for the areas
where radar information is missing. The accuragfif@d as the ratio between the number of the
test samples classified correctly and the total memof the test samples) has been determined
for each class and Table 7 shows the results @ata®n the basis of the samples examined, it is
possible to assert that C_MACSP is able to cladsifh thick clouds as well as convective
clouds, both over land and sea during daytime agiat#time, with an accuracy higher than 95%.
Moreover, it shows an accuracy higher than 91%éteating low/middle clouds both during
daytime and night-time over land and over sea.adueiracy in detecting high thin class over sea
is 87,6% during daytime and night-time, and it lighg lower over land both during daytime
(85%) and night-time (84%).
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4.2 RainCEIlV validation results

The RainCEIV results have been validated agairsRR values derived from the weather radar
network operated by the DPC. Tables 9 and 10 sutheaipontingency values for the RainCEIV
dichotomous statistical assessment related to thginde and night-time measurements,
respectively. The statistical scores have beerulzbtd for all the classes considered together
and for the light-to-moderate-rainy (C;) and the heavy-to-very-heavy-rainy(C,) classes
separately. The accuracy scores for all the raoryhainy pixels are 97% and 96% for daytime
and night-time, respectively, when all the raingssles are considered. High values for accuracy
scores are related also to theadd G classes considered separately both for daytimenayid-
time. These results are significantly influencedttey number of theorrect negativesThe Bias
scores indicate the RainCEIV tendency to overesértize rainy events for all the rainy classes
(Bias=1.36 for daytime, Bias=1.58 for night-timey well as the € (Bias=1.33 for daytime,
Bias=1.55 for night-time) and ;(OBias=1.65 for daytime, Bias=1.89 for night-timepsses
considered separately. FARs, that gives the safoamation as Bias score without considering
the misses, related to all the rainy classes afé 388d 48% for the daytime and night-time
validations, respectively. POD, that indicatesabdity to detect rainy areas without considering
the false alarms, is 81% for all the rainy classeth for night-time and daytime validations.
POD indicates the ability of RainCEIV to detecthsaareas with a good approximation, but FAR
shows its tendency to overestimate the numberiny faixels. This tendency of RainCEIV will
be analysed more in detail considering the stedsistscores related to the; @nd G classes
separatelyin order to be clearer it is necessary to givefoewing definitions:

» the percentage of the)@C, samples (that are the samples classified as belpng the
C, class but that actually belong to thedlass) out of the total number of the €amples
used for validation will be indicated as %C;;

» the percentage of theil@C, samples (that are the samples classified as belpng the
C, class but that actually belong to thedlass) out of the total number of the amples
used for validation will be indicated as YhaCs;
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» the percentage of the)@C, samples (that are the samples classified as belpng the
C,class but that actually belong to thedlass) out of the total number of the $amples
used for validation will be indicated as %Co;

» the percentage of theylB8C; samples (that are the samples classified as belpng the
C, class but that actually belong to thgdlass) out of the total number of the $amples

used for validation will be indicated as ;.

In detail, the Bias score is higher for thgdlass than for the {&ne, and this proves the general
RainCEIV tendency to overestimate thée&vy-to-very-heavy-rainy”’pixels. Moreover,
FAR/POD related to the Lclass is 47%/86% and 65%/65% for daytime and righe
validation, respectively. It is worth remarking thilae FAR high values are due prevalently to the
lower number of the &samples. FAR related to the €lass is mainly affected by %@C;. In
fact, %GinCy (0.2% for daytime and 0.3% for night-time) is lowtean %GIinC; (2.4% for
daytime and 5.6% for night-time). This means thainREIV detects prevalently rainy areas, as
testified by the POD value, but tends to misclgs€if samples as £samples. In many cases
RADARINSEVIRIv related to the misclassified; Gamples is higher than 3mnixhThe
FAR/POD score related to the Class is 41%/77% for daytime and 51%/75% for nighe.
%CoinC; (2.0% for daytime and 2.8% for night-time) is lovikan %GinC; (11.0% for daytime
and 28.2% for night-time).This points out both tRainCEIV is inclined to misclassify the,C
samples as L samples and the overestimation of the rainy aseamainly due to the
misclassification of the non-rainy pixels as beloggto the G class. The POD score related to
the night-time validation is quite similar to th©B score related to the daytime validation for
all the rainy classes and the &lass (81% and 75% respectively), and it is lowertfie G class
(65%). The worst values of the night-time statadt®cores especially for the Class are mainly
due to the unavailability of the spectral/textdestures related to the VIS/NIR observations, that
are characterized by a discriminatory power higthemn that related to the spectral/textural
features of the 3.fm and 12.0 um observations. HSS has also beendevedi It is a measure
of the correct forecasts after eliminating thoseseéncorrectness would be due exclusively to a
random chance. The HSS value obtained for RainCGHil¥ related to the daytime (night-time)
validation is 67% (62%) when all the rainy clasaes considered together, and it is respectively
65% (57%) and 65% (45%) when the &d G classes are considered separately.
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The case studies related to 29 September 2009 [casd 3:00 UTC, 4 August 2010 at 14:15
UTC (case Il), and 21 February 2013 at 15:00 UT&s€clll) are analysed separately and the
RainCEIV results are shown in Figures 3, 4, anddgether with the C_MACSP results and the
rain classes obtained from the radar-derived RRsarements. The statistical scores calculated
for each case are listed in Table 12.

The case | was chosen because it highlights the@®dV ability in detecting very small rainy
areas. On 29 September 2009 approximately at 13:00 UTC a vapjidr and heavy rainfall
event affected a small area between the Basil@ataCalabria regions in Southern Italhe
accuracy score is high (99%) due to the high oecwe of the non-rainy pixels detected
correctly. POD shows that RainCEIV detects 67%hefrainy samples correctly, while Bias and
FAR scores reveal the RainCEIV tendency to ovares® rainy samples (the FAR score is 47%
and the Bias score is 1.25). In detail, the Biagescelated to the {lass (Bias=1.37) is higher
than that related to the,Class (Bias=1.00), on the contrary FAR relatedthe G class
(FAR=46%) is lower than that related to the €lass (FAR=50%). This means that there is an
overestimation of the heavy rainy area bufifC,+CoinC,) and the number of the,@nisses is
balanced with the number of the Bits. This is not true for the;&lass that shows a higher
number of hits than that of the €lass, and this results in a higher POD (75% %8 for the

C; and G class respectively). In remarking this statistiesults, it is worth noting that they are
significantly influenced by the low number bothtbé G RADARINSEVIRI samples (4) and C1
RADARINSEVIRI samples (8). Moreover, the temporastance between the SEVIRI and
RADAR acquisitions that is about 5 minutes can b&ninant in the detection of the rainy
events characterized by a high variability. Itigwed that parts of the false alarms as well as the

misses are brought about by the collocation errotise SEVIRI grid.

The RainCEIV statistical scores related to caseandl Il (Figures 4 and 5, respectively) are
better than those related to the case study disdusisove. This is because they analyse rainy
events characterized by a larger temporal andamhstribution. The case study Il bears on a set
of heavy and moderate rainfall events that affecedtral and Southern Italy o' August
2010 at 14:15 UTC. RainCEIV detects rainy samplels & POD of 89% strongly related to the
correct detection of the;Gamples. In detail, POD is 82% for the cass and 66% for the,C
class resulting from the fact that the number cfsms related to the,Class is higher than that

of the G class. It is important to note that 70% of then@isses is misclassified as belonging to
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the G class. Furthermore, the number of the false alasteded to the Cclass is higher than
that of the G class and this leads to a lower value both of F28%6) and BIAS (1.08) related to
the G class with respect to that related to thectass (FAR=56% and BIAS=1.86). The case
study Il is related to the analysis of an extrecoavective event characterized by very heavy
precipitations occurred on $1February 2013 on the east cost of Sicily whichsedua flash
flood over Catania. The RainCEIV detects all thayareas with a POD of 87%, that becomes
50% when only the £samples are considered. The number of false alerimgher for the €
class (FAR=37%) than for the,Class (FAR=24%), but while the; Gamples are overestimated,
RainCEIV missed the 50% of them (BIAS=0.67). lieiddent that RainCEIV is missing many
heavy-rainy samples, which should be due to thé kegnporal variability of this rainy event.
Nevertheless, it is able to monitor the evolutidralb the rainy areas on the east cost of Sicily
and on Southern Calabria with a good approximation.

5. Conclusions

This paper proposes the RainCEIV technique as falusel for the continuous monitoring and
characterization of the rainy areas in the Meduaean region where there is an increased
frequency of the extreme events. RainCEIV doesusetany near real-time ancillary data and it
exploits the temporal differences of the brightnesmsperatures related to the SEVIRI water
vapour channels. These are indicative of the athergpinstability and, as a consequence, could
give useful information for the detection of théngaareas when analysed with the spectral and
textural features related to the other SEVIRI cledsrBecause of the well-known limitations of
the IR/VIS observations in determining RR valuég RainCEIV main purpose is to provide a
near-real time qualitative characterization of thiey areas especially in regions not covered by

the radar and rain gauge network.

RainCEIV consists of two modules that use geostatip observations from SEVIRI in order to
detect cloudy pixels and, successively, to assad¢legm to a rainy/non-rainy class. RainCEIV
uses both IR and VIS observations to determinéef SEVIRI pixel belongs to theon-rainy
(Co), light-to-moderate-rainy (C;) or heavy-to-very-heavy-rainy(C,;) class. The IR/VIS
observations do not have the same potentiality A d¥servations in characterizing rainy areas,

but their high spatial and temporal resolution ased to get a continuous monitoring of the

19



© 00O N O 0o & WODN PP

N D NN NNNDNRRRPR R R B B R R
N o0 00BN W N P O © 0o N O UM WDN RO

28

29
30

stratiform and convective events. RainCEIV has kemned on the AMSU-B/MHS PEMW RR
values double matched with the radar-derived RRResbnd validated on the basis of the RR
observations from the Italian DPC operational weathadar network. The dichotomous
statistical scores indicate that a good fractior@4%or daytime validation and 96% for night-
time validation) of the pixels examined are coiseatientified as rainy or non-rainy by the
RainCEIV. The Bias scores (1.36 for daytime valmatnd 1.58 for night-time validation) and
the FAR scores (39% and 48%) suggest that RainGERs to overestimate rainy pixels
especially during the night-time, while the POD res0(81% both for daytime and night-time
validation) indicate that RainCEIV detects raingas with a good a approximation. The rainy
areas overestimation is mainly due to the misdiaasion of G samples as {samples.
Moreover, the high FAR values related to the &d G classes are mainly due to the
misclassification of the Csamples as £samples and vice versa. The statistical scoresrsut

for the daytime validation are generally bettemtiiaose obtained for the night-time validation.
This is prevalently due to the fact that the feadurelated to the VIS/NIR observations
(unavailable during night-time) have a strong ieflae on the RainCEIV output because of their
higher discriminatory power when compared with tbiathe features related to the 3.9 um and
12.0um observations. In remarking upon the comparisenltg, it is important to bear in mind
the different spatial resolutions as well as thmperal distance between radar and satellite
observations that could affect the statistical ssanegatively, especially for rapid convective
events, even if the time distance between radaiSEMRI acquisitions is little. As far as future
developments are concerned, RainCEIV will be ugti&teconsider in the training phase the
RADARINSEVIRI samples characterized by a percentaigainy RS samples lower than 80%
so as to individuate extreme rainy events locatest an area whose size is smaller than that of
the SEVIRI pixel area. To this aim, informationrrahe Visible Infrared Imaging Radiometer
Suite (VIIRS) on-board the Suomi National Polaringy Partnership (NPP) (characterized by

higher spatial and spectral resolutions than SEMRI be taken into account when available.

Appendix A. “Procedure adopted for the training setrefinement”

The RainCEIV and C_MACSP original training datasedse been refined by applying the same

procedure to the samples of each class.
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The refinement process consists in using the Nehlieghbour decision rule described by Cover
and Hart (1967) in order to classify each sampléhefinitial training classes. Here the aim of
this process is to eliminate the redundant andlagsiied training samples, which is similar to

the CNN rule described in Hart (1968) but the maumnpose of CNN is to get a training subset
performing as well as the original one. Before dlescription of the refinement process, a brief
description of the NN decision rule and of the Erstriterion (used to reduce the number of the

components of the feature vector) will be given.

Let To={(%;, C;)} be the original training dataset, where the p#Ks(;) indicate the training
samples; of the clas<;, j=1, 2, ..., N, N¢ is the number of the classes, i=1, 2, ¢;,Njis the
number of the training samples for the cléssGiven a vectoy to be the classified, the NN rule
establishes thag belongs to the clasg when the minimum distance is that from the trainin

samplex; that belongs to clag}, and ther¥; is the Nearest Neighbourgf

Before applying the RR decision rule, it is impottdao define the dimension of the feature
vector. In fact, since the k-NN classifier perfomoa generally decreases with the dimension of
the feature vector, the number of the componerttsdf X has been reduced by applying the
Fisher criterion (Ebert, 1987; Parikh, 1977) to leate the discriminatory power of the
individual features and to choose the featuresadbarized by the higher Fisher distance value.

Let x} andaji be the mean and standard deviation of the featufer the training set from class

G, thus the Fisher distance is defined as:

_ gl

Dy = E=n]

1)

It measures the ability of the featuré to differentiate clasg; from classCy. The features'x
within X, have been ordered in a decreasing way on the basheD;;, values and the firsi
features have been chosen as the components tdatwee vectors used. The dimenstbhas
been fixed by following the suggestions in Jain &kndrasekaran (1982), who point out that
the ratio between the number of the training sampte each class and the feature vector
dimensiond should be at least five.

The procedure to obtain the refined training ddtakestarting from the original training dataset

To, consists in:
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1. Considering the"l pattern §;, C;) of Ty,
2. Applying the NN decision rule and determining tledwing action on the basis of the
three possible classification results:
- the NN belongs to the initial belonging clagand the Euclidean distance is higher
than zero, consequently the sample is putjin T
- The NN belongs to a different claés+ C;, consequently the sample is reanalyzed
and included in the NN class;
- the Euclidean distance from the NN is zero, the@ans considered redundant and it
is removed from Jand not included in,T
3. restarting from point 2 with another sample andlypg the entire process until all the
training samples have been analyzed.

T, determined for each class is used as the defiritaning dataset.
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Table 1. List of the NOAA satellite overpasses the AMSU-B PEMW rain rate
considered in the training phase

maps

Date NOAA satellite overpass time (UTC) over Medaeean area
29 September 2009  15:16, 17:22

1 October 2009 04:37, 05:13, 08:30, 13:03, 15:6637, 19:18

2 October 2009 01:25, 04:13

4 March 2010

14:23, 16:03, 16:28, 20:05

5 March 2010

00:56, 01:48, 04:16, 06:24, 08:20401:

26 April 2010 12:47, 13:20, 14:49

28 april 2010 12:26, 15:45

2 May 2010 15:45, 16:32, 19:44

20 June 2010 11:42,11:58, 14:28

21 June 2010 02:00

23 June 2010 12:52

4 August 2010 10:43, 12:19, 16:24, 18:03, 18:56320
4 October 2010 03:54, 06:15, 10:16, 13:14, 15:Y744, 19:33
1 March 2011 11:22, 8:48, 20:15

12 February 2012 01:08, 01:38

21 February 2013 11:20, 13:10

7 October 2013

09:14, 14:38, 20:38

8 October 2013

08:55, 12:10, 14:30, 20:18, 20:25

9 October 2013

08:32, 11:56, 19:56

10 October 2013

08:12, 09:52, 19:35

17 November 2013

08:25, 10:06, 11:36, 13:17, 19:48

18 November 2013

08:05, 09:45, 11:25,13:06

1 December 2013

08:00, 08:36, 20:00

2 December 2013

07:50, 08:15, 09:55, 19:38

3 December 2013

09:35, 12:03, 19:16, 21:00
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Table 2. Statistical scores related to the RainCiai¥ rate results obtained classifying the initial
and artificial test dataset for k=3. The statidt®eores are shown for all the rainy classeg (C
C,), light to moderate rain ({, and heavy to very heavy rainyC

Cy, Cy C2 Cy, Cy Cz Cy, Cy C2
Test G C G
dataset | k=3, d=10 k=3, d=16 k=3,d=20
Accuracy| Artificial | 0.72 | 0.75 | 0.76 | 0.81| 0.7 0.79 081l 0.7 0.78
Initial 081 | 081 | 0.82| 080 0.76 0.81 0.77 0.74 10.8
Bias Artificial |0.96 | 0.99 | 0.94| 1.01| 1.02 1.0(¢ 1.0 1.01 1.00
Initial 098 | 092 | 1.04| 099| 105 092 09F 102 20.9
POD Artificial | 0.77 | 0.63 | 0.62| 0.86| 0.68 068 086 0.6 0.67
Initial 085 | 069 | 0.74| 084 068 0.68 082 0.3 80.6
HSS Artificial |0.37 | 0.44 | 0.46| 0.56| 050 052 056 048 0.50
Initial 057 | 057 | 0.59| 055 047, 057 050 042 705
FAR Artificial [ 0.20 | 0.37 | 0.34| 0.15| 0.34 0.32 0.14 0.35 0.33
Initial 013 | 025 | 0.29| 0.14| 036 0.26 0.16 0.39 60.2
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Table 3. Statistical scores related to the RainCiai¥ rate results obtained classifying the initial
and artificial test dataset for k=5. The statidt®eores are shown for all the rainy classeg (C
C,), light to moderate rain ({ and heavy to very heavy rain,JC

Cy, C: C Ci, C1 C, Cy, Ci C
Test G, G C
dataset | k=5, d=10 k=5, d=16 k=5, d=20
Accuracy| Artificial | 0.73 | 0.76 | 0.76 | 0.85| 0.79 082 085 0.79 0.81
Initial 0.81 | 0.82 | 0.84| 0.86| 0.81 0.85 0.8 0.719 40.8
Bias Avrtificial | 0.96 | 0.98 | 0.94| 0.99 1.00 098 099 1.01 0.97
Initial 0.97 | 0.94 | 0.99 1.00 1.11 0.9¢ 1.00 1.10 00.9
POD Avrtificial | 0.77 | 0.64 | 0.62 0.89 0.70 0.72 0.88 0.8 0.69
Initial 0.84 | 0.70 | 0.74| 0.90| 0.76f 0.74 0.8 0.713 20.7
HSS Artificial | 0.40 | 0.47 | 0.46| 0.67| 055 059 066 052 0.56
Initial 0.59 | 058 | 0.62| 0.68| 0.58 0.66 0.6f 054 40.6
FAR Artificial | 0.19 | 0.35 | 0.34| 0.11 0.30 0.26 0.11 0.32 0.28
Initial 0.13 | 0.25 | 0.25| 0.10 0.31 0.18 0.11 0.33 00.2
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Table 4. Statistical scores related to the RainCElY rate results in classifying the initial and
artificial test dataset for k=7. The statisticabises are shown for all the rainy classes, (@),
light to moderate rain ({, and heavy to very heavy rainyC

Cy, C: C Ci, C1 C, Cy, C1 C
Test G, G C
dataset | k=7, d=10 k=7, d=16 k=7,d=20
Accuracy| Artificial | 0.72 | 0.76 | 0.77 0.83 0.77, 0.81 0.8P 0.76 0.81
Initial 0.78 | 0.77 | 0.80| 0.80| 0.78 081 0.8 0.8 10.8
Bias Avrtificial | 0.97 1.05 | 0.94 1.00 1.020 0.98 1.00 1.02 0.97
Initial 1.00 | 094 | 0.95| 1.01| 1.09 0.93 1.0 1.09 30.9
POD Avrtificial | 0.78 | 0.64 | 0.62 0.87 0.67 0.71 0.8y 0.66 0.1
Initial 0.83 | 068 | 0.68| 0.86| 0.72 0.68 0.86 0.12 80.6
HSS Artificial | 0.38 | 0.46 | 0.34| 0.62| 0.50 058 0.6L 048 0.b7
Initial 050 | 0.48 | 0.55| 0.55| 052 057 055 0852 705
FAR Avrtificial | 0.20 | 0.36 | 0.46| 0.12 0.34 0.27 0.1p 0.35 0.28
Initial 0.16 | 0.36 | 0.29| 0.16| 0.34 0.2¢6 0.16 0.34 60.2
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Table 5 Summary of the features considered for use in tia@EIV k-NNM classifier during
daytime. Label “A” means that the feature is usaddll the C-MACSP classes; “LM” means
that the feature is used for the low/middle clola$s;“HT/C” means that the feature is used for
the high thick and convective cloud class.

Features MSG-SEVIRI spectral bandsuif)
VIS |VIS |[NIR [IR IR IR IR IR
06 |08 |16 |39 |6.2 |73 10.8 | 12.0
Max Gray level A
Min Gray level A
Mean Gray level A
Max/Min(Gray level)
Max(Contrast 0°, 4590, 135) A
Max(Entropy 0°, 4% 9Cf, 135) A
Max (Mean 0°, 4% 9(, 135) A A
Max (ASM 0°, 45, 9¢, 135) A LM
Min(Contrast 0°, 4% 9, 135)
Min(Entropy 0°, 45 90, 135) A
Min (Mean 0°, 45 90°, 135) A A
Min (ASM 0Q°, 45, 9¢, 135) A
ATB;5_3q A HT/C
ATByc_4c A A
ATB3g_45

32



Table 6 Summary of the features considered for use in tie@EIV k-NNM classifier during
night-time. Label “A” means that the feature isdiser all the C-MACSP classes; “LM” means
that the feature is used for the low/middle clola$s;“HT/C” means that the feature is used for
the high thick and convective cloud class.

MSG-SEVIRI spectral bandsuf)
Features IR IR IR IR IR
39 |6.2 |73 10.8 | 12.0
Max Gray level A
Min Gray level A A
Mean Gray level
Max/Min(Gray level)
Max(Contrast 0°, 4590, 135) A
Max(Entropy 0°, 4% 9C, 135) | A
Max (Mean 0°, 4% 9(f, 135) A LM
Max (ASM 0°, 48, 9¢f, 135) LM
Min(Contrast 0°, 4% 9, 135) HT/C
Min(Entropy 0°, 45 90°, 135) A
Min (Mean Q°, 45 90°, 135) A A
Min (ASM 0°, 45, 9C°, 135) A
ATB5_3 A HT/C
ATBc_4s A A
ATB3g_45 A
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1
2 Table 7. Accuracy of the C_ MACSP algorithm on asejpendent dataset

Classes Classification accuracy Classification accuracy
(for test samples acquired duripéfor test dataset acquired duri
daytime) nighttime)

Clear over land 95.0 % 95.0 %

Clear over sea 96.7 % 96.7 %

Low/middle clouds over land| 91.6 % 91.0%

Low/middle clouds over sea| 92.6 % 91.3%

High thin clouds over land 85.0 % 84.0 %

High thin clouds over sea 87.6 % 87.6 %

High thick clouds over land 98.3 % 97.3%

High thick clouds over sea 99.0 % 99.0 %

Convective clouds over land| 96.0 % 96.7 %

Convective clouds oversea | 96.7 % 96.7 %
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Table 8. List of case studies used for validation.

Date Radar Measurement tim8atellite overpass time

(UTC) (UTC) over Mediterranean
region

2 May 2009 15:00, 12:30 14:55, 12:25

19 September 2009 09:00, 19:15, 19:30 08:55, 19925

29 September 2009 13:00 (case 1), 13:15 12:55013:1

8 January 2010 11:00, 13:00, 16:30 10:55, 12:52516

9 March 2010 17:00 16:55

23 June 2010 15:00 14:55

1 July 2010 16:45 16:40

6 July 2010 11:30, 12:30 11:25, 12:25

4 August 2010 13:00, 13:15,14:15 (case Il 12:35]10Q, 14:10

21 February 2013 14:30, 15:00 (case Il1), 15:30 58414:25, 15:25

7 October 2013 01:00, 03:00, 02:00 00:55, 02:55H®1

8 October 2013 12:00, 19:00 11:55, 18:55

25 December 2013| 07:00 06:55

18 January 2014 06:00, 18:00, 20:00 05:55, 17:9551

35



Table 9 Contingency table for the dichotomous statisticakessment of the RainCEIV

algorithm for all the pixels used for daytime vailin.

Radar- derived rain rate results

Yes no marginal total
RainCEIV | yes 18,410 12,264 30,674
results no 4,052 536,124 540,176

marginal total| 22,462 548,388 570,850
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Table 10 Contingency table for the dichotomous statisticakessment of the RainCEIV
algorithm for all the pixels used for night-timeidation.

Radar- derived rain rate results

Yes no marginal total
RainCEIV | yes 16,399 15,295 31,694
results no 3,604 470,486 474,090
marginal total| 20,003 485,781 505,784
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Table 10 Dichotomous Statistics scores (RainCEIV versus rrdéaved rain rate

measurements) for the case studies listed in Tabl&e statistical scores are shown for all rainy

classes (¢ ), light to moderate rain ({5 and heavy to very heavy rainC

Statistical Scores| for daytime validation datasér night-time validation dataset
C, & C C C, & C C
Accuracy 0.97 0.97 | 0.99 0.96 0.96 0.99
Bias 1.36 1.33 1.65 1.58 1.55 1.89
POD 0.81 0.77 | 0.86 0.81 0.75 0.65
HSS 0.67 0.65 | 0.65 0.62 0.57 0.45
FAR 0.39 0.41 0.47 0.48 0.51 0.65
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Table 11.Dichotomous statistical scores shown for all rastasses (¢ C,), light to moderate

rain (G), and heavy to very heavy rainyjCfor the case studies |, Il and Ill.

Statistical Case | Case Case lll
score 29 September 2009, 4 August 2010, 21 February 2013,
13:00 UTC 14:15 UTC 15:00 UTC
C, & | C C |GG |G C |GG |G Cz

Accuracy | 0.99 | 0.990.99| 099 | 0.98| 0.99 0.92| 0.92 0.99
Bias score| 1.25 | 1.381.00| 156 | 1.86| 1.08 1.35| 1.38 0.67
POD 0.67 | 0.75050| 0.89 | 0.82| 0.66 0.87| 0.8f 0.50
HSS 0.59 | 0.630.50| 0.68 | 0.56| 0.63 0.70| 0.68 0.60
FAR 0.47 | 045050 | 043 | 0.56| 0.3 0.35] 0.3y 0.24
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Lowimiddle cloud,
high thick cloud,

Brightness Temperatures andior Reflectances
of the MSG-SEVIRI pixel

convective cloud

A

l

dmean(non rainy)=dmean(C0)

Estimation of the
mean distance

(dmean) for each
class by means

dmean(moderate rainj=dmean(C1)4

of the k-NNM
classifier

dmean(heavy rainj=dmean{C2)

Figure 1. Flowchart of the RainCEIV algorithm.

Classification of the pixel

by means of the C_MACSP

if (dmean(CO)<dmean(C1))
and
(dmean(C0)<dmean(C2))

if (dmean(C1)<dmean(C0))
and
(dmean(C1)<dmean(C2))

if (dmean(C2)<dmean(C0))
and
{dmean(C0)<dmean(C1))

Clear,

" high thin cloud

L 4

Non rainy

Light to
moderate
rain

Heavy to
very heavy
rain
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yes

v

(PEMWINSEVIRN=r0).and.(RADARINSEVIRIv.<r0)

((PEMWInSEVIR>=r0).and.(PEMWRINSEVIR<r 1)).

or. (PEMWINSEVIRI and RADARINSEVIRI do not agree
and the percentage of the C1 rainy RS>80%)

and.((RADARINSEVIR>=r0).and.{RADARINSEVIRIV<r 1)).

s the RADARINSEVIRI

taken a PEMWInSEVIRI sample

no

sample available?

(PEMWINSEVIRI==r 1).and.{RADARINSEVIR>=r1).
or.{PEMWInSEVIRIv and RADARINSEVIRIv do not agree
and the percentage of the C2 rainy RS=80%)

ro=0.5mmh
ri=4mmh

Initial training dataset

Refined fraining dataset

Figure 2 Flowchart of the RainCEIV training proceslu

: y
SEYIRI pixel SEVIR| pixel .
is included in isi i
I—"/Tf"“ Is includedin | (pENMAINSEVIRIV<I0)
_SE_\-‘IRI pixe! SEVIRI pixel
is included in ‘_." c1 |" is included in LPEM\MnSE\ﬂth‘:ﬂrI]).and.
’{ ik | (PEMWInSEVIRh=<r1)
SEVIRI pixel SEVIRtp el
is ineluded in isincludedin
el c2 € {PEMWINSEVIRN==r1)
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"_l- . *C_MACSP _ _, RainCEN
B clear sea [] lowimiddle cloud [l non rainy
M clear land [l high thick cloud [ light to moderate rain
| high thin cloud [l convective cloud heavy to very heavy rain

Figure 3. 29 September 2009 at 13:00 UTC. Fron téefight: C_MACSP cloud classification

results, radar-derived rain rate results, RainCElY rate results.
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B clearsea [] lowimiddle cloud [l non rainy
M clearland B high thick cloud M light to moderate rain

[ high thin cloud ] convective cloud heavy to very heavy rain

Figure 4. 4 August 2010 at 14:15 UTC. From leftright: C_MACSP cloud classification

results, radar-derived rain rate results, RainCEl rate results.
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RADAR results RainCEIV

B clearsea [] lowimiddle cloud [l non rainy
B clearland B high thick cloud B light to moderate rain
[ high thin cloud [l convective cloud heavy to very heavy rain

Figure 5. 21 February 2013 at 15:00 UTC. From teftight: C_MACSP cloud classification

results, radar-derived rain rate results, RainCElY rate results.
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