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Response to the Referee for article hess-2013-463 

Note: The text in black is the original comments from the referee, and the text in 

blue, headed with “Reply”, is the response from the authors. 

General comment 

This is a re-review of the paper. I will focus on the theory, not the results. The theory 

and implementation of the EnKF for joint parameter and state estimation is 

questionable - even though it is based on previous work by others, the methodology is 

incorrect and statistically invalid. Of course the results of this (and other papers that 

use this methodology) are affected by this wrong implementation.  

Reply: We appreciate the reviewer for a few useful suggestions to ameliorate the 

paper. We have incorporated these suggestions in the study and revised the manuscript 

accordingly. Although the methodology used in this study is not perfect, we argue it is 

valid and effective for the steamflow simulations/predictions at ungauged locations. 

Similar methodologies have already been successfully applied by a number of 

scientists in hydrology and hydrogeology. In this response, moreover, we provided a 

simple case to validate the methodology (reply to comment 10). Please see 

point-by-point replies below.  

Review Comment 1 

Equation 2: You use Q_t to denote the covariance matrix of the model error. This 

might be confusing because "Q" is often used to denote streamflow - whereas in this 

case you use it for the states. Would suggest to use another symbol. 

Reply: In this revised manuscript, we used W to replace Q in equation (2). Thanks.  

Review Comment 2   

With equation (2) an immediate question that pops up is: how did you decide which 

covariance matrix of Q to use? Problem is that you perturb different states - each of 
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those states has a different magnitude and time behavior. How do you know that your 

state perturbations are realistic when measured in the output (streamflow) space? This 

constitutes a serious problem. That is why I strongly recommend to do the 

perturbation in the streamflow space and then to compute the analysis streamflow 

which you then use to compute the corresponding analysis states. It is much easier to 

define the model error in the streamflow space rather than the state space! For 

instance is your model error heteroscedastic? Does it increase with simulated flow 

level? When done directly in the state space this is very difficult to tune and derive an 

appropriate covariance matrix that can do this. You can circumvent this by problem 

doing the Kalman analysis in the streamflow space, and then to derive the 

corresponding analysis states.  

Reply: We agree with the reviewer on the perturbation. Equation (2) is written in a 

general form to represent the forecast step with representative errors (i.e., tω ) for 

state and fluxes. In implementation, we only perturbed the streamflow and soil 

moisture (Note precipitation as an input is also perturbed). SWAT modeling error 

generally increases with the level of simulated streamflow (Clark et al., 2008; Xie and 

Zhang, 2010, 2013).  

Soil moisture is a very active variable in controlling runoff generation and other 

hydrological processes. It is usually perturbed to reflect modeling uncertainties and 

thereby produce more reasonable uncertainty for streamflow simulation (Chen et al., 

2008; Crow and Ryu, 2009).  

The general form of equation (2) may confuse the reviewer. Thus we provided a 

few more explanations and descriptions (line 12-15, page 7; line 14-17, page 14).  

Review Comment 3 

The kernel smoothing technique and state augmention method for parameter 

estimation. Does this converge to the "correct" posterior target distribution. Vrugt et al. 

(2013) demonstrate it does not and discusses why this is the case. I consider this a 

serious flaw in the current work (and previous work by others this work is based on). 

Also, the settings for the smoothing and shrinkage factor, etc. strongly affect the 
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results - and different settings are required for different problems. This is not desirable. 

A universal method is available that does not rely on subjective algorithmic parameter 

values and incorrect theory.  

Reply: Thanks for providing the information about discussions by Vrugt et al. 

(2013). We didn’t find the associated literature even after visiting the publication list 

at Jasper Vrugt’s homepage. Despite the potential different opinions by Vrugt et al., 

we argue that the state augmentation method and the kernel smoothing technique are 

capable of approaching the optimal/suboptimal (or true) estimates of parameters. Our 

argument is based on following three reasons:  

(1) Many researchers have successfully applied the state augmentation method to 

retrieve model parameters, including the cases in hydrology (e.g., Moradkhani et al., 

2005; Wang et al., 2009; Xie and Zhang, 2010, 2013; Tran et al., 2014), hydrogeology 

(e.g., Chen and Zhang, 2006; Liu et al., 2008; Xue and Zhang, 2014), and ecology 

(e.g., Chen et al., 2008);  

(2) The state augmentation method still relies on the basic tenet of data assimilation: 

spreading information from easily-observed variables to model variables (and 

parameters) that are difficult to be observed and in some way connected to the 

observations (Reichle, 2008). In this case, model parameters are assumed as an 

conceptual extension and they could vary slowly with time, in response to changes of 

environmental forcing inputs (Liu and Gupta, 2007); 

And (3) for the kernel smoothing technique, the smoothing factor α in equation (3) 

is the only one factor that is subject to prescription prior to applications (the shrinkage 

factor h can be estimated by 
21 α− ). Although the setting for the smoothing factor 
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partly depends on trial and error experimentation, it generally ranges in [0.95, 

0.99].The kernel smoothing is just one of the techniques used to perturb parameters 

and thereby avoid ensemble shrinkage in data assimilation (Moradkhani et al., 2005). 

One can use another alternative technique, i.e., the random walk scheme (Wang et al., 

2009).  

As the reviewer mentioned, Vrugt et al. (2013) may have different opinions on the 

state augmentation method and the kernel smoothing technique. We have emailed Dr. 

Vrugt, and expect to make further discussions on the methods in future work. It is 

interesting to reveal their robustness and appropriateness for state and parameter 

estimation under different hydrological models. In this study, we focused on 

streamflow prediction at ungauged locations using a data assimilation scheme (i.e., 

PU_EnKF). There are optional and capable methods, such as the Particle-DREAM 

method (Vrugt et al., 2013), the Maximum Likelihood Ensemble Filter with state 

augmentation scheme (Tran et al., 2014). It will be an encouraging attempt to 

implement these methods with distributed hydrological models for hydrological 

predictions in ungauged basins. A brief discussion on this point was incorporated (line 

3-5, page 6; line 14 – 17, page 21). 

Review Comment 4 

Equation (7) - the model states are updated using the standard Kalman analysis 

equation. It would be much more productive however to use an alternative scheme 

that takes into consideration how much water is originating from what tank. For 

instance, during high flows, it does not make sense to update the groundwater 

(baseflow) reservoir, and vice versa during low flows it would not be productive to 

update the quick flow reservoirs. Instead, if one first computes the contribution of 

each constituent component of the discharge then one can use this information to 
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appropriately update (according to percentage contribution) the respective reservoirs 

where these fluxes originate from. For instance, during low flow, the large majority of 

the streamflow will constitute baseflow - for instance 90%, the other 10% can come 

from the other thanks. Then, 90% of the difference between the analysis discharge and 

forecasted discharge should be attributed to the slow flow tank, and not an equal 

distribution among the tanks. This will significantly enhance the implementation of 

the filter and the quality of the results as water is entered into the right tanks.  

Reply: It is a good idea. We incorporated it in this study and re-did all cases 

(Figure 2-6 were updated). Specifically, the model states are divided into three groups: 

(1) quick water storage regarding surface runoff (marked with QW in Table 2), (2) 

slow water storage associated with baseflow and groundwater flow and soil moisture 

(marked with SW), and (3) river channel storage and flow (marked with CW). When 

precipitation occurs at the time steps, the states of the quick water storage are updated; 

otherwise, the states of the slow water storage are updated. The states regarding the 

river channel storage and flow are updated at every time step. In this way, the 

streamflow prediction is improved to some degree comparing with the 

implementation of updating all states at every time step (Figure 2 and 3 in the 

manuscript). Necessary description is presented in the manuscript (line 26 -27, page 

11; line 1-3, page 12; line 4- 8, page 16). 

Review Comment 5 

 5) Equation (8) --> sentence just prior "....these variables...". which variable are 

referred to? It seems unrealistic to describe rainfall errors with a Gaussian distribution. 

Dry days are not corrected and will remain without precipitation even after 

perturbation.  

Soil moisture errors are homosecdastic and not heteroscedastic. About 0.01 to 0.02 

m3/m3 error seems realistic independent of measured/simulated value. 

Reply: These variables which are perturbed in data assimilation are referred to 

rainfall, streamflow and soil moisture. Please note the standard deviation for rainfall is 
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proportional to the magnitude of rainfall. In dry days without rainfall, the ensemble 

members of rainfall are equal to zero, which seems realistic to describe the rainfall 

field. The Gaussian distribution has been successfully used in a few studies (e.g., 

Moradkhani et al., 2005; Xie and Zhang, 2013). Optional distributions to describe the 

rainfall errors do exist, such as the uniform distribution (Clark et al., 2008), the 

lognormal distribution (Crow and Ryu, 2009; Chen et al., 2011) . But there is no 

consensus regarding which distribution is significantly better than others. The 

associated sentences were reworded (line 11 – 17, page 14) 

It is a useful suggestion of using homoscedastic errors for soil moisture. We set the 

standard deviation for soil moisture as 0.03 m
3
/m

3
 according to studies using the 

SWAT model (which is also used in this study) and the Sacramento model (Crow and 

Ryu, 2009; Chen et al., 2011). See line 15 – 16, page 14 

Review Comment 6 

parameter estimations --> parameter estimates.  

Reply: We corrected the misuses of “estimation”, but kept “parameter estimation” 

in some sentences. Thanks. 

There are minor differences between “estimation” and “estimate”. An “estimation” 

is the process of approximately calculating or evaluating, and an “estimate” is an 

approximate calculation or evaluation. So an “estimate” is the result of “estimation” 

(http://grammarist.com/usage/). 

Review Comment 7 

Papers needs editing. Grammar / syntax still needs to be further improved.  
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Reply: We made language editing throughout the manuscript (some marked with 

blue). Thanks.  

Review Comment 8 

Conclusion section: Accumulative?  

Reply: “Accumulative” was replaced by “convergent” in the revised manuscript 

(line 23, page 20). That sentence is to interpret that the outlet is a convergent point 

due to runoff routing.  

Review Comment 9 

"big picture" --> not very scientific.  

Reply: The associated sentence was reworded: “the downstream data (especially 

the data from the outlet) have important roles to reflect the runoff generation for the 

entire basin.” (line 25, page 20) 

Review Comment 10 

 10) The parameter estimates might stabilize after relatively few assimilation steps 

but do they converge to their "appropriate" values. The results you get are strongly 

controlled by the settings of your filter. If you change some of the settings for the 

smoother and parameter estimation part, the filter will not converge as rapidly. 

moreover, is the posterior parameter uncertainty reasonable. My experience suggests 

that this is not the case. This is an engineering solution but violates statistical 

principles. A simple test can show this. Create a synthetic streamflow data set of 5 

years where you use completely different parameter values for the first and second 

part of this data set. Then assimilate this data set using your filter. You will see that 

your method will not converge appropriately, and certainly cannot diagnose the 

suddenly varying parameter values. Why? The filter settings are set such that they 

promote very quick convergence of the parameter values. Once the filter has 

converged the parameter uncertainty is too small (and significantly underestimates the 

"actual" understand - the parameters will also be wrong!) - due to this small 

uncertainty the filter cannot travel to the new parameter values that created the second 

part of the time series. I consider this a serious flaw in the methodology - The results 
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are enforced by the user and are statistically not correct. Yes, it might improve the 

discharge estimates - but should one not use a statistically correct methodology? 

Reply: We argue the parameter estimates converge to their “appropriate” values 

with reasonable uncertainties. To validate this argument, we designed a simple 

synthetic experiment according to the reviewer’s suggestion. A synthetic streamflow 

data series of five years (1826 days in total) was generated based on a simulation with 

the SCS model (which has been coupled in the SWAT model as a runoff generation 

and routing modular). For the five-year simulation, different sets of parameter values 

were used for two successive periods (1st – 800th days, 801st – 1826th days). 

Specifically, the parameters have an abrupt change at the 801st time step (see the red 

lines in Figure 1 below). We take this setting as true values for parameters. The 

synthetic streamflow data were perturbed using Gaussian distribution to represent 

observation uncertainties, and then they were assimilated into the model. The initial 

realizations of parameters for data assimilation are intentionally biased to their true 

values.  

Three cases were conducted with different smoothing factors (α = 0.99, 0.97 and 

0.95). As mentioned above (the reply to comment 3), the smoothing factor generally 

ranges from 0.95 to 0.99, and the shrinkage factor is estimated as
21 α−  (Liu, 2000; 

Moradkhani et al., 2005).  

Figure 1 below shows an example of the parameter estimates, i.e., the CN2 in 

SWAT. For the three cases, generally, the CN2’s estimates are able to converge to its 

true values in the two successive periods. About 400 time steps of assimilations are 

required to make the estimates agree with the true. Despite the abrupt change at the 
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801st time step, the estimates can approach to the true value after the 1200th time 

steps during the second period. Moreover, the smoothing factor has a certain impact 

on the performance of parameter estimation. The case of α = 0.95 exhibits obvious 

fluctuations in the estimation process while the estimate captures the general pattern 

of the parameter travel. The case of α = 0.99 provides the best estimates for CN2. In 

addition, the three cases maintain a certain degree of ensemble spreads which are 

favorable to trace the parameter travel. Obviously, the ensemble spread will shrink 

with the increase of α. Note it doesn’t mean that large α can result in better parameter 

estimates in any cases. An appropriate setting for α can be obtained by a trial and error 

strategy.  

We agree that the ensemble of parameters is prone to shrink (means too small 

ensemble spread/uncertainties), if the parameter is not perturbed, and consequently 

the estimates are difficult to trace the parameter travel. The kernel smoothing is a way 

to relax this problem. By adding small perturbations (equation (3)), the ensemble of 

parameters has a relatively broad spread to represent a reasonable uncertainties. That 

is why the kernel smoothing technique facilitates the parameter estimation within our 

data assimilation scheme (i.e., PU_EnKF). 

Therefore, the PU_EnKF scheme with the kernel smoothing used in this study 

can achieve the correct/appropriate values of parameters with reasonable 

uncertainties. The kernel smoothing technique is effective to perturb the 

parameters. The setting for the smoothing factor has impact, to some degree, on 

the parameter estimation, but the performance of PU_EnKF with kernel 
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smoothing is robust due to acceptable convergence of parameter estimates.  

We admit there are alternative methods to address state and parameter estimation 

(e.g., Vrugt et al., 2013; Tran et al., 2014). In future work, it is interesting to make a 

comparison among these methods with different hydrological models (line 16- 19, 

page 21).  

 

Figure 1. A synthetic case of parameter estimates with different smoothing factors (α). 

The blue line denotes the parameter estimate (i.e., the ensemble mean). The light gray 

area indicates the ensemble spread (EnSp) with 95 % confidence intervals. 
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