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Abstract 1 

The challenge of streamflow predictions at ungauged locations is primarily attributed to 2 

various uncertainties in hydrological modelling. Many studies have been devoted to 3 

addressing this issue. The similarity regionalization approach, a commonly used strategy, is 4 

usually limited by subjective selection of similarity measures. This paper presents an 5 

application of a partitioned update scheme based on the ensemble Kalman filter (EnKF) to 6 

reduce the prediction uncertainties. This scheme performs real-time updating for states and 7 

parameters of a distributed hydrological model by assimilating gauged streamflow. The 8 

streamflow predictions are constrained by the physical rainfall-runoff processes defined in the 9 

distributed hydrological model and by the correlation information transferred from gauged to 10 

ungauged basins. This scheme is successfully demonstrated in a nested basin with real-world 11 

hydrological data where the subbasins have immediate upstream and downstream neighbours. 12 

The results suggest that the assimilated observed data from downstream neighbours have 13 

more important roles in reducing the streamflow prediction errors at ungauged locations. The 14 

real-time updated model parameters remain stable with reasonable spreads after short-period 15 

assimilation, while their estimation trajectories have slow variations, which may be 16 

attributable to climate and land surface changes. Although this real-time updating scheme is 17 

intended for streamflow predictions in nested basins, it can be a valuable tool in separate 18 

basins to improve hydrological predictions by assimilating multi-source datasets, including 19 

ground-based and remote-sensing observations.  20 

21 
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1 Introduction 1 

The streamflow prediction plays a central role in hydrology because it is an important 2 

element for water resources management, the design of hydraulic infrastructures and flood 3 

risk mapping (Srinivasan et al., 2010). Because it is an important component in the terrestrial 4 

water budget, streamflow is also a direct diagnostic variable measuring the impact of climate 5 

changes and human activities that act on a given watershed. Streamflow prediction depends 6 

highly on reliable hydrological data and sophisticated hydrological models. However, 7 

hydrological data are often insufficient due to ungauged or poorly gauged basins in many 8 

parts of the world (Sivapalan, 2003). Because of the scarcity of data, hydrological modelling 9 

is also plagued by various sources of uncertainties. To reduce uncertainties from those 10 

hydrological data and hydrological modelling, the International Association of Hydrological 11 

Sciences (IAHS) launched an initiative on Predictions in Ungauged Basins (PUB) (Sivapalan, 12 

2003; Sivapalan et al., 2003).  13 

Through the past PUB decade, major advances have been achieved including data 14 

acquisition and exploitation, modelling strategies and uncertainty analysis, and catchment 15 

classification and new theory (Hrachowitz et al., 2013). There is a growing consensus that 16 

remote sensing techniques provide valuable data for understanding the land surface 17 

hydrological system (Yang et al., 2013). Moreover, considerable progress has been made on 18 

hydrological models (typically the distributed hydrological models) to capture the physical 19 

process associated with the basin rainfall–runoff and snowmelt–runoff responses. This 20 

progress has fostered specific problem areas in the field: uncertainty quantification with 21 

respect to model input forcing, model structures and parameters (Ajami et al., 2007; Vrugt et 22 

al., 2008; Gupta et al., 2012). To reduce the uncertainty from model parameters, one common 23 

practice is the parameter calibration by adjusting model parameters to make the simulated 24 

water discharges correspond to the observations (typically the data from the outlet of a 25 

watershed) (Duan et al., 1992; Duan et al., 1994). However, a calibrated parameter set with 26 

acceptable streamflow simulation performance at the watershed outlet does not guarantee the 27 
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performance at interior locations (Zhang et al., 2008). 1 

The essence of PUB is to transfer information from neighbouring basins to the basins of 2 

interest (Sivapalan et al., 2003). Such process is generally referred to as hydrological 3 

regionalization, based on either regression methods or measureable distances (with respect to 4 

physical similarity or spatial proximity) between gauged and ungauged locations (Hrachowitz 5 

et al., 2013). Regionalization techniques regarding model parameters are popular for 6 

discharge prediction in ungauged basins. Merz and Blöschl (2004) evaluated the performance 7 

of various regionalization methods for parameters of a conceptual catchment model, 8 

determining that spatial proximity is able to represent the unknown controls on the runoff 9 

regime and the relationships of model parameters within neighbouring basins. Sellami et al. 10 

(2013) presented a model parameter regionalization approach based on physical similarity 11 

between gauged and ungauged catchments, indicating that similar hydrological behaviour 12 

may appear due to physically similar catchments in the same geographic and climatic region. 13 

Parajka et al. (2013) reported that the spatial proximity and geostatistics probably perform 14 

better than the regression or regionalization with a simple averaging of model parameters 15 

from gauged catchments. One drawback of the regionalization of model parameters is that it 16 

often confronts an arbitrary criterion for selecting the “behavioural” model parameter sets 17 

from the gauged catchment (Sellami et al., 2013). Hrachowitz et al. (2013) provides a 18 

comprehensive review of the parameter regionalization and catchment similarity. 19 

In addition to those parameter regionalization approaches, newly developed data 20 

assimilation methods are also encouraging and are capable to address some issues associated 21 

with PUB. They are generally based on physical correlations between the neighbouring basins, 22 

and they can combine multi-source observations to transfer information from gauged to 23 

ungauged basins (Sivapalan et al., 2003; Troch et al., 2003; Chen et al., 2011). As a typical 24 

sequential data assimilation approach, ensemble Kalman filter (EnKF) is popular in hydrology 25 

(Reichle et al., 2002; Evensen, 2003; Evensen, 2009). EnKF is attractive in hydrology 26 

primarily because it can perform real-time updating with simple implementation and it 27 
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considers various uncertainties in modelling and observations (Blöschl et al., 2008). The 1 

feature of real-time updating is very important for flood forecasting (Norbiato et al., 2008). In 2 

some current applications, EnKF is mainly dedicated to dynamic state estimations in which 3 

the model parameters are defined with prior values or calibrated in advance (Vrugt et al., 2005; 4 

Clark et al., 2008).  5 

The EnKF method also provides a general framework to perform state-parameter 6 

estimation which is the core of PUB issues. It is has been successfully used for parameter 7 

estimation of hydrological models. Moradkhani et al. (2005b) proposed a dual state-parameter 8 

estimation of hydrological models and made an acceptable application of this method for a 9 

lumped hydrological model. Wang et al. (2009) presented three constrained schemes with 10 

EnKF to prevent the violation of parameter physical constraints. Most of these studies 11 

performed parameter estimations for lumped hydrological models with a small number of 12 

parameters to be estimated. Xie and Zhang (2010) successfully demonstrated a joint 13 

state-parameter estimation based on EnKF for a distributed hydrological model, i.e., Soil and 14 

Water Assessment Tool (SWAT), focusing on one dominant parameter in SWAT. For multiple 15 

types of parameter estimation, Xie and Zhang (2013) developed a partitioned update scheme 16 

and indicated the potential of this scheme for streamflow predictions in ungauged basins 17 

based on distributed hydrological models.  18 

In this study, we present the application of the partitioned update scheme to improve 19 

streamflow predictions in ungauged locations by assimilating gauged streamflow. This data 20 

assimilation algorithm is fully coupled with the distributed hydrological model, i.e., SWAT. 21 

The state vector and parameters in ungauged subbasins are estimated when information is 22 

transferred from gauged subbasins. To our knowledge, this study is the first one which 23 

explicitly employs a data assimilation method with state-parameter estimation to improve 24 

streamflow predictions in ungauged locations. Although a few applications of data 25 

assimilation methods are dedicated to streamflow predictions based on distributed models 26 

(Clark et al., 2008; Chen et al., 2011; Lee et al., 2012; Rakovec et al., 2012; McMillan et al., 27 
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2013), the model parameter estimation, which is important for PUB, is not systematically 1 

considered. In addition to the EnKF-based scheme, note that the other data assimilation 2 

methods, e.g., the particle filter (Moradkhani et al., 2005a; DeChant and Moradkhani, 2012), 3 

the Particle-DREAM (Vrugt et al., 2013) and the Maximum Likelihood Ensemble Filter (Tran 4 

et al., 2014), may also be optional for state-parameter estimation.  5 

In the following sections, we first introduce the EnKF-based data assimilation scheme and 6 

give a brief description of the SWAT model. We then present an application case concerning a 7 

real-world problem in the Zhanghe River basin in China in which river channels are 8 

connected and subbasins have nested upstream and downstream neighbours. Three scenarios 9 

regarding different combinations of observed streamflow are designed to discuss the impact 10 

of gauged locations on streamflow predictions. Finally, conclusions are given in the last 11 

section.  12 

2 Methodology 13 

2.1 EnKF-based state and parameter estimation scheme  14 

To describe the information transfer process from gauged to ungauged locations, we define 15 

a joint state vector X that contains gauged (xg) and ungauged (xu) states: ],[ ug xxX = . 16 

Moreover, we consider the diagnostic variables, i.e., the water discharge and the 17 

evapotranspiration, as model states and include them in the vector X to perform streamflow 18 

updating in the data assimilation. The joint state vector X and the parameter vector θ 19 

estimation at time t are conditioned on measurements (yt) from gauged basins. The 20 

information transfer process, i.e., the posterior probability density function (pdf) ),( ttt yXp θ , 21 

can be expressed within Bayes’ framework, 22 

),,(),(),( 11 −−⋅∝ tttttttttt XXpXypyXp θθθθ ,                         (1)  23 

where ),( ttt Xyp θ  is the likelihood function of measurements given model estimations at 24 
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time t. Moreover, ),,( 11 −− tttt XXp θθ  is the prior pdf of X and θ at time t that represents 1 

model forecasting and parameter evolutions.  2 

The updating framework defined in equation (1) is well included in and effectively solved 3 

by sequential data assimilation strategies, typically, the EnKF strategy (Evensen, 1994). The 4 

EnKF strategy operates sequentially with a forecast step and a filter update step. In the 5 

forecasting process, uncertainty propagation is characterised by an ensemble of model 6 

realisations: 7 
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where “–” and “+” denote the forecast and analysis for the state vectors X and the parameter 9 

vector θ, t is the time step, u is the input forcing vector, and N is the ensemble size. The model 10 

error vector ω is assumed to follow a Gaussian distribution with zero mean and covariance 11 

tW . Equation (2) is a general expression with representative errors for all state variables. In 12 

implementation, one may define errors for only a few of the state variables (e.g., soil moisture) 13 

to reflect realistic modeling uncertainties. Detailed prescription of the errors will be given in 14 

section 3.2.  15 

Prior to model forecasting using equation (2), the model parameters can be perturbed, 16 

similar to the forecast of the state vector, to avoid the shrinkage of the parameter ensemble 17 

during the updating (Wang et al., 2009). However, the parameter perturbation is susceptible to 18 

over-dispersion in sampling (Moradkhani et al., 2005b). A kernel smoothing technique is 19 

effective to address the over-dispersion while maintaining a reasonable ensemble spread for 20 

the parameters (Liu, 2000; Moradkhani et al., 2005b; Xie and Zhang, 2013). This technique is 21 

briefly expressed as  22 
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( )+= 1-
2 var tt hT θ ,                                                 (5) 1 

where α is the shrinkage factor typically within [0.95, 0.99], h is the smoothing factor, and tT  2 

is the covariance constrained by the ensemble variance ( )+

tθvar . The smoothing factor h is 3 

defined as 21 α−  to maintain equal variances of the parameter before and after the 4 

perturbation. This kernel smoothing technique has been discussed based on synthetic cases 5 

(Liu, 2000; Moradkhani et al., 2005b; Xie and Zhang, 2013), so we do not provide any more 6 

experiments to demonstrate the properties of the kernel smoothing. The prescription of the 7 

shrinkage factor α is subject to trial and error experimentation, but it has limited impact on the 8 

parameter estimation (An illustrative case was shown in the response to the reviewers’ 9 

comments at version 4 of this paper). In this study, it is specified with 0.98 according to the 10 

suggestions by Moradkhani et al., (2005b) and Xie and Zhang, (2013). 11 

With the forecast of the states and parameters, the filter update step is performed when 12 

observations are available. This updating is actually the solving process for equation (1). Here 13 

we intentionally create an explicit expression of the updating for gauged and ungauged states 14 

and parameters: 15 
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where i

ty  is the observation vector, which is appropriately perturbed using covariance of R 17 

to account for uncertainties in observations, and H is the observation operator and it is linear 18 

in this study. The Kalman gain matrix Kt is expressed as 19 
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where cov(·) is the covariance operator that is computed from the ensembles of states and 21 
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parameters. Please note the size of the matrix Kt is n × m, where n is the total number of state 1 

variables and parameters and m is the number of observations.  2 

The above two equations rely on EnKF with a state-augmentation technique. This 3 

technique is valid and able to retrieve correct parameter estimates in real time primarily 4 

because it allows for parameter dynamics and performs the parameter evolution. Specifically, 5 

model parameters are assumed as an extension of state variables and they can travel slowly 6 

with time, in response to changes in environmental forcing inputs (Liu and Gupta, 2007). Like 7 

the model state forecasting, the parameters are perturbed/evolved using the kernel smoothing 8 

technique. In this way, the evolution of model parameters is consistent with the forecasting of 9 

model state variables. Thus the model parameters can be appended to the state vector 10 

(Moradkhani et al., 2005; Xie and Zhang, 2010, 2013). When observations are available, the 11 

parameters are updated along with state variables by assimilating these observations. 12 

Therefore, their estimates are expected to converge to the “correct” posterior target 13 

distribution (Xie and Zhang, 2013). This technique has been successfully used in many cases 14 

for real-time state and parameter estimation (Moradkhani et al., 2005b; Wang et al., 2009; Xie 15 

and Zhang, 2010, 2013).  16 

Moreover, we can see that EnKF provides a general framework to transfer information 17 

from gauged to ungauged basins. However, when used for parameter estimations in 18 

distributed hydrological models, it is vulnerable to corruption due to spurious covariance 19 

computation in equation (7), primarily resulting from a large degree of freedom for 20 

high-dimensional vectors of the augmented state. To relieve this problem, Xie and Zhang 21 

(2013) proposed a partitioned forecast-update scheme (PU_EnKF) that is inspired by the dual 22 

state-parameter estimation algorithm (Moradkhani et al., 2005b). In the partitioned 23 

forecast-update scheme, the parameter set of a hydrological model is partitioned into different 24 

types (Np types in total) based on their sensitivities. Each type is estimated in an individual 25 

loop by repeated forecasting and updating. Here, the parameter type maintains an aggregation 26 

connotation. A parameter type can contain only one parameter (e.g., for lumped hydrological 27 



                                             10 / 39 
 

models) or many parameters associated with the same number of computational units in 1 

distributed hydrological models. For example, the parameter CN2 in SWAT (will be 2 

introduced in subsection 2.2) is considered as a parameter type.  3 

At time t, the PU_EnKF is iteratively applied as follows for Np loops: 4 

(I) Perform parameter evolution using equation (3) for the jth parameter type, producing a 5 

new ensemble of parameters.  6 

(II) Run the model N times following equation (2) to obtain ensemble predictions for gauged 7 

and ungauged state variables. In the prediction, the jth parameter type is prescribed with a 8 

member of the ensemble produced in step (I), while the others are set with the ensemble 9 

means that are estimated from previous loops at this time step and from the previous time 10 

step.  11 

(III) Compute the Kalman gain matrix using equation (7) based on the ensembles of states and 12 

parameters when observations become available at time t.  13 

(IV) Update the state vector and the jth parameter type using equation (6).  14 

(V) Compute the ensemble means of the jth parameter type. The means are the estimates of 15 

the parameters and will be used in step (II) in the subsequent loops to estimate the other 16 

parameter types.  17 

(VI) Return to step (I) if j < Np. Otherwise, go to the next time step t + 1. The updated state 18 

vector from the loop j = Np is considered as estimates of gauged and ungauged state variables; 19 

and all estimates of parameters are also obtained.  20 

We can see that the partitioned update scheme employs an iterative algorithm to update 21 

each parameter type at each time step, not only is one parameter considered at a time. At time 22 

t, the new estimated parameter values from previous loops are used for the model forecasting 23 

(Eq. (2)) in the current loop in which a target parameter type (the jth parameter type) is 24 

estimated. This iterative update is expected to push the estimates towards their optimal values. 25 
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Therefore, this scheme is quite suitable for distributed hydrological models to estimate 1 

high-dimensional parameters. Its capability has been demonstrated using synthetic cases and 2 

it has been successfully used in a real watershed for state and parameter estimation (Xie and 3 

Zhang, 2013). In this study, we apply this scheme to improve the streamflow prediction in 4 

ungauged sites and to estimate model parameters.  5 

2.2 Model description  6 

The distributed hydrologic model, SWAT, is a basin-scale hydrological model developed by 7 

the USDA Agricultural Research Service (Arnold et al., 1998; Arnold and Fohrer, 2005). In 8 

implementation of SWAT, a basin is partitioned into multiple subbasins that are then divided 9 

into hydrologic response units (HRUs), which consist of unique land cover, management, and 10 

soil characteristics (Neitsch et al., 2001; Gassman et al., 2007). The HRUs are the basic 11 

computational units in which the overall hydrologic balance is simulated, including 12 

precipitation partitioning, surface runoff generation, evapotranspiration (ET), soil water and 13 

groundwater movement.  14 

The surface runoff generation is commonly simulated using the Soil Conservation Service 15 

(SCS) model (Rallison and Miller, 1981; Ponce et al., 1996). This model has only one 16 

parameter, i.e., the curve number at moisture condition II (CN2), which is also the dominant 17 

parameter in SWAT. Actual ET is formulated based on potential ET to account for evaporation 18 

from the plant canopy, transpiration, sublimation and evaporation from the soil. The soil water 19 

movement is characterised by a storage routing technique that uses the field capacity to 20 

dominate redistribution of water between layers. By infiltration or percolation, a fraction of 21 

water below the soil profile enters groundwater storage as recharge and is partitioned between 22 

shallow and deep aquifers. Base flow from the shallow aquifer is also routed to river channels. 23 

Details regarding these processes can be found in the SWAT user’s manual (Neitsch et al., 24 

2001). 25 

SWAT contains a large number of spatially varying parameter types to be prescribed before 26 

hydrologic simulation and prediction. These parameters consist of the surface roughness, soil 27 
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properties, land-cover pattern and hydraulic conditions of the river channel. Although their 1 

default values can be prescribed according to lookup tables, the optimal values must be 2 

calibrated on the basis of modelling behaviour and observations. To reduce the number of 3 

calibrating parameters, a sensitivity analysis is usually required (van Griensven et al., 2006). 4 

Considerable effort has been devoted to sensitivity analysis for SWAT; several parameters are 5 

recognised as the most influential ones that dominate the model behaviour (Holvoet et al., 6 

2005; Muleta and Nicklow, 2005; van Griensven et al., 2006). Based on these studies, seven 7 

parameters (also called parameter types) are selected and shown in Table 1. They underpin 8 

different hydrologic processes in a basin involving the surface runoff, soil water, baseflow, 9 

groundwater, evapotranspiration and channel water processes. Their ranges are determined in 10 

terms of the lookup tables (Neitsch et al., 2001) and the specific soil and land use properties 11 

of the Zhanghe River basin (Post and Jakeman, 1999).  12 

In addition to these sensitive parameter types, ten hydrologic variables are selected to be 13 

updated in data assimilation (Table 2). They can be divided into three groups: (1) Quick water 14 

storage (marked with QW in Table 2) regarding surface runoff, (2) Slow water storage 15 

(marked with SW) associated with baseflow and groundwater flow and soil moisture, and (3) 16 

river channel storage (marked with CW) and flow. The first nine variables are the dynamic 17 

states that characterise water storage status in HRUs or subbasins and partially influence the 18 

diagnostic variables, i.e., ET and the water discharge (Qr). Therefore, along with both outputs, 19 

these states should be updated to guarantee consistent model behaviour. In this study, ET is 20 

excluded from the state vector because there are no ET observations and its passive update in 21 

data assimilation does not impact other state estimations.  22 

The SWAT model is used for this study for two main reasons. First, SWAT is a very popular 23 

distributed hydrological model to predict water, sediment, and agricultural chemical yields in 24 

large, complex watersheds (Gassman et al., 2007). An improved version of this model has 25 

been used to simulate the water movement in the Zhanghe River basin, an irrigation district 26 

with paddy rice planting (Xie and Cui, 2011). Second, we have coupled it with the 27 
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EnKF-based algorithms with a few successful applications (Xie and Zhang, 2010; Xie, 2013; 1 

Xie and Zhang, 2013). Therefore, such a coupled SWAT-EnKF data assimilation platform is 2 

expected to be more powerful and widely used for real-time hydrological predictions. SWAT 3 

requires a significant amount of data including model input and system response data (e.g., 4 

streamflow, evapotranspiration), which seems not consistent with effort of predictions in 5 

ungauged basins. But this issue can be eased to some degree because streamflow data from 6 

just a few locations at downstreams (e.g. the outlet) can favour estimation for the entire basin 7 

by the data assimilation scheme used in this study.  8 

3 Application to a real case 9 

3.1 Study area and database 10 

The data assimilation scheme is applied in the Zhanghe River basin in Hubei Province, 11 

China (Figure 1). The Zhanghe drains an area of 1129 km2, and the elevation difference 12 

between the north and the south is more than 400 m. It has a typical subtropical climate with 13 

an annual mean temperature of 17 °C. The annual rainfall in the catchment is approximately 14 

970 mm per year, although rainfall varies substantially from year to year depending upon the 15 

monsoon strength. This basin is actually an agricultural irrigation area and its cultivated area 16 

accounts for 59%. Paddy rice is the primary cultivated plant, which, from May to August, 17 

requires irrigation water from the Zhanghe reservoir and thousands of local ponds. Owing to 18 

intense human activities, including cultivation, irrigation and drainage, streamflow prediction 19 

in this basin is challenge with large uncertainties (Cai, 2007; Xie and Cui, 2011). 20 

We choose the Zhanghe River basin as a study area because there are relatively sufficient 21 

datasets associated with weather conditions, land use and soil properties, and hydrological 22 

information. This area has been chosen for a few modelling studies (Cai, 2007; Xie and Cui, 23 

2011). The land use classification with resolution of 14.25 m was retrieved based on remote 24 

sensing data (Landsat ETM+) for years 2000 and 2001 (Figure 1 (b)). The land use pattern in 25 

this basin exhibits only small changes since 2000. Therefore, we assume the land use pattern 26 
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in the period 2004-2006 is the same as in 2000-2001. The soil map with soil properties, which 1 

is used to derive model parameters, is obtained from the local agriculture department. The 2 

weather dataset, including daily temperature, radiation, wind speed and relative humidity, 3 

from January 2000 to December 2006 is available from five stations distributed in and around 4 

this basin as shown in Figure 1 (c). Moreover, four streamflow gauges were installed, marked 5 

as A, B, C and D for simple referencing. Gauge D is the outlet of the basin. Gauge A is 6 

located at the outlet of a small source subbasin. Because these four gauges observe the river 7 

stages and then transform the data into streamflow according to calibrated rating curves, daily 8 

streamflow data for the period 2003-2006 are available.  9 

The Zhanghe River basin is divided into 20 subbasins based on a digital elevation model 10 

(DEM) with a resolution of 90 m (Figure 1 (c)). Thereafter, 98 HRUs are obtained according 11 

to land use and the soil map. With this delineation, Gauge A drains runoff from a source 12 

subbasin, Gauge B drains four, Gauge C drains ten, and Gauge D drains all the basins.  13 

3.2 Error quantification 14 

The success of ensemble-based data assimilation methods depends partly on ensemble 15 

generations to quantify errors from model input forcing, parameters and model structures. 16 

Moreover, quantifying observation errors is also critical to account for uncertainties from 17 

measurements and derivations. Due to the dynamics of the SWAT model, the 18 

errors/uncertainties from the input forcing, parameters and the model structure are transferred 19 

to the water storages (e.g., soil moisture and channel storages) and diagnostic variables (e.g., 20 

streamflow). Although ten selected variables require updating in SWAT, two of them are 21 

perturbed in this study to represent the modelling uncertainties, i.e., soil moisture and 22 

streamflow, because the other variables are internal and their uncertainties are transferred to 23 

the soil moisture and the simulated streamflow (Xie and Zhang, 2013). Moreover, 24 

precipitation as a major forcing input is also perturbed to represent the uncertainty probably 25 

derived from weather forecasting and other sources. 26 

Perturbations to the above three variables are conducted based on zero-mean Gaussian 27 
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distributions. The standard deviation (σ) for SWAT-simulated soil moisture is set as 0.03 1 

m3/m3 as suggested by Chen et al. (2011). The standard deviations for streamflow and 2 

precipitation are assumed to be proportional to their values (Clark et al., 2008),  3 

xxx ⋅= ησ ,                                                    (8) 4 

where η is the fractional factor of the standard deviation to the variable x. Thus, there are three 5 

fractional factors corresponding to the simulated streamflow (ηQm), observed streamflow (ηQo) 6 

and precipitation (ηp). Therefore the PU_EnKF scheme used in this study is also applicable to 7 

hydrological prediction when measured rainfall data is unavailable but could be derived from 8 

various sources (e.g., weather forecasting). With this error quantification, the three standard 9 

deviations vary with time, depending on the magnitudes of the four variables.  10 

These fractional factors should not only represent the related uncertainties in modelling and 11 

the observations but also produce ensemble streamflow predictions with reasonable ensemble 12 

spread (Clark et al., 2008). Based on the uncertainty analysis by Xie and Cui (2011), the 13 

prediction errors with the SWAT model are more than 10% of the variables due to the 14 

irrigation and drainage practices in the Zhanghe River basin; the measurement of precipitation 15 

also has the same level of uncertainty. Therefore, various combinations of factor values are 16 

evaluated by running the data assimilation procedure. Table 3 presents the final choice of the 17 

three fractional factors. 18 

Note the error quantification remains challenging for land surface data assimilation. A few 19 

newly developed approaches may be a good attempt, e.g., adaptive filtering (Crow and 20 

Reichle, 2008; Reichle et al., 2008). However, we quantify the model and observation 21 

uncertainties in terms of an experiential and practical perspective in which large storm events 22 

normally induce larger uncertainties in modelling and observations. Moreover, an 23 

overestimation of uncertainties is a better practice than underestimation to avoid the ensemble 24 

shrinkage (Crow and Van Loon, 2006; Clark et al., 2008).  25 
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3.3 Assimilation setup and scenario design 1 

The assimilation process is performed with three successive periods (Xie and Zhang, 2013). 2 

First, the model is prescribed with prior parameters and spun-up within the period 1/1/2003 to 3 

6/30/2003 to initialise the model states. At the end of this period, the seven parameters of the 4 

SWAT model are perturbed using the Latin hypercube method (Helton and Davis, 2003) with 5 

Gaussian distributions. The parameter means regarding the Gaussian distributions are set 6 

according the lookup table suggested in SWAT (Neitsch et al., 2001); the associated variances 7 

are constrained to ensure that random samples are within their respective physically or 8 

model-required ranges in Table 2. Please note the uniform distribution is more intuitive than 9 

the Gaussian and often also used in sampling (Moradkhani et al., 2005b). In this study, we use 10 

the Gaussian because the lookup table provides prior estimates for the parameters. The 11 

number of parameter samples (i.e., the ensemble size) is 80. After the parameter perturbations, 12 

the second period begins (7/1/2003 – 12/31/2003) to perturb the model input forcing, model 13 

states and diagnostic variables as described in subsection 3.2. The aim of this perturbation 14 

period is to quantify the uncertainties in prediction and to generate reasonable ensemble 15 

spread for subsequent data assimilation. The third period is the data assimilation period 16 

(1/1/2004 – 12/31/2005) in which the streamflow observations are assimilated when data are 17 

available. Given that streamflow originates primarily from either surface runoff or subsurface 18 

runoff in different periods, the variables of quick water storage (QW in Table 2) are updated 19 

only when precipitation occurs. The variables of slow water storage (SW) are updated during 20 

dry periods (no precipitation), and variables of channel water storage (CW) are updated at 21 

every time step.  22 

To demonstrate the improvement of streamflow prediction in ungauged locations, we only 23 

assimilate streamflow from one or two of the four gauges and the remaining gauges, regarded 24 

as pseudo-ungauged locations, are used to validate the performance of data assimilation. 25 

Three scenarios with different combinations of data from the four gauges are designed:  26 

(I) ASS_D: The observed data of streamflow from Gauge D are assimilated; Gauges A, B 27 
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and C are assumed as pseudo-ungauged. This scenario is similar to a common calibration 1 

practice for which only the outlet (Gauge D) discharge data are employed to calibrate the 2 

parameters and to extrapolate streamflow of ungauged subbasins.  3 

(II) ASS_BD: The observed data of streamflow from Gauge B and D are assimilated; the 4 

other two are regarded as pseudo-ungauged subbasins. This scenario adds the data from 5 

Gauge B at the upstream in this basin based on scenario ASS_D.  6 

(III) ASS_AB: The observed data of streamflow only from Gauge A and B are assimilated. 7 

This scenario only uses the streamflow from the two gauges in the upstream subbasins.  8 

3.4 Prediction in ungauged locations 9 

Ensemble streamflow predictions along with parameter estimations are performed for the 10 

three scenarios. To distinguish the improvement of streamflow prediction, a control-run 11 

scenario is conducted in which the model parameters are prescribed with the calibrated 12 

estimates from Xie and Cui (2011). The data assimilation performance is evaluated by 13 

comparing with the four series of observed streamflow. Although the observed streamflow 14 

series still contain uncertainties, we consider them to be a benchmark because the 15 

observations are commonly assumed to be the best estimates of “real” streamflow processes. 16 

Therefore, the series of streamflow prediction errors are computed (predictions minus 17 

observations). The root-mean-square error (RMSE) and the mean absolute error (MAE) are 18 

used as comprehensive indexes for evaluations. To quantify the ensemble spread of 19 

streamflow in data assimilation, we define a measure, i.e., ensemble coverage index (EnCI) 20 

that is a percent of discharge data contained in the 95% ensemble simulation intervals.  21 

Figure 2 shows the streamflow errors from the control-run prediction and scenario ASS_D. 22 

The reason the errors being presented instead of the streamflow observations is that some of 23 

the streamflow observations are so large that the difference between the cases is not notable. 24 

The control-run simulation clearly overestimates the peak flow (in wet periods of rainfall 25 

occurrence) for the four gauges, while underestimates the base flow in some dry periods (e.g., 26 

230th –300th time steps). This poor performance is significantly improved by assimilating the 27 
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observed streamflow and by considering the uncertainties from the input forcing and model 1 

states. It may not be surprising that the Gauge D streamflow errors in ASS_D are less than 2 

those in the control-run scenario because the observed streamflow from Gauge D is 3 

assimilated to update the prediction. For the (pseudo-) ungauged locations, the streamflow 4 

predictions of Gauge A, B and C are also more acceptable than from the control-run scenario. 5 

At Gauge C, for example, the RMSE decreases from 3.539 m3/s to 1.912 m3/s. Moreover, 6 

there is no notable biased prediction due to the slight overestimations and underestimations 7 

for peak flow.  8 

The EnCI for Gauge D is up to 95.72% (see Figure 2). This means that 95.72% discharge 9 

data are contained in the 95% ensemble intervals, except that some discharge data with 10 

considerable magnitudes of flood are outside of the intervals. The lowest EnCI for Gauge A 11 

(75.21%) is partly due to the fact that Gauge A is the farthest gauge to the outlet (Gauge D, its 12 

data are assimilated). Nevertheless, all ensemble spreads for the four gauges are reasonable to 13 

trace and to contain the discharge data. 14 

Figure 3 shows the results for Gauge C from scenarios ASS_BD and ASS_AB. Adding an 15 

observed gauge (Gauge B) at the upstream in the basin, i.e., the ASS_BD scenario, provides 16 

better streamflow predictions in the pseudo-ungauged subbasins than the ASS_D scenario; the 17 

RMSE drops to 1.669 m3/s and the EnCI is up to 90.28%. If assimilating the data from the 18 

upstream locations, i.e., the ASS_AB scenario, the improvement is degraded and the 19 

predictions are only slightly better than the control-run scenario. The improvement of 20 

streamflow prediction using the PU_EnKF scheme depends on the correlation of physical 21 

processes between gauged and ungauged locations. If the two locations are very close (which 22 

means the correlation of flow processes will be strong), quit favorable data assimilation 23 

performance will be shown. In addition to Gauge C (for pseudo-ungauged locations), Gauge 24 

A, B and D have encouraging streamflow predictions due to the fact the data from these 25 

gauges are assimilated to update the predicted streamflow (not shown in Figure 3).  26 

Along with the updating of model states and diagnostic variables, the model parameters are 27 
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also estimated. Figure 4 shows examples of real-time parameter updating from the ASS_D 1 

scenario. After about 130 time steps, the ensemble trajectories are nearly stable with slow 2 

variations which are probably induced by the changes of land surface and river channel 3 

conditions for runoff generation and routing (Liu et al., 2008; Troch et al., 2013). At every 4 

time step in data assimilation, the parameter samples can be approximated with Gaussian 5 

distributions and they are constrained within the prior ranges (Min – Max, see Table 1) as 6 

shown in the histograms in Figure 4. This property is favourable for parameter estimation 7 

with ensemble-based data assimilation. The uncertainties of parameter estimates at every time 8 

step are represented using the ensemble spread (EnSp), which is computed based on sample 9 

variances (see the illustration under Figure 5). At the beginning of the data assimilation, the 10 

parameters have broad ensemble spreads. The spreads quickly shrink after 100 time steps with 11 

the evolution of the streamflow assimilation, and remain stable after 400 time steps. Therefore, 12 

the estimate uncertainties of the parameters decrease with the data assimilation and state 13 

updating. Moreover, the relative stabilities of ensemble trajectories (Figure 4) and the 14 

ensemble spreads (Figure 5) imply an attractive potential that it is possible to use short-term 15 

data to retrieve optimal estimates of parameters. 16 

Even though the three scenarios provide different parameter estimates due to the 17 

assimilation of different observations, encouraging properties of parameter estimations are 18 

achieved in the three scenarios. It is not sure so far whether the parameter estimates converge 19 

to their appropriate values in this real-word application, so the parameter estimates require a 20 

further validation to evaluate the effectiveness of the PU_EnKF scheme. 21 

3.5 Validation for parameter estimates 22 

It is difficult to directly validate the parameter estimates using measurements because the 23 

SWAT model is a conceptual hydrological model and most parameters do not have physical 24 

meanings. Only a few parameters (e.g., the SOL_AWC in Table 1) can be measured at local 25 

sites; those parameters regarding HRUs, subbasins and river channels remain difficult to be 26 

obtained by sampling experiments. We perform single-run predictions using the parameter 27 
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estimates from the three scenarios and evaluate the predicted streamflow against observed 1 

streamflow. This is a commonly used strategy to validate parameters of a conceptual 2 

hydrological model. For simplicity and consistency, the three single-run predictions are 3 

named ASS_D, ASS_BD and ASS_AB, although they are neither assimilation-based 4 

predictions nor ensemble predictions. Moreover, the control-run prediction is used for 5 

comparison. All four scenarios are run for the period 1/1/2006 – 10/31/2006. The uncertainties 6 

in the input forcing and the model structure are not considered in these predictions.  7 

Figure 6 shows the streamflow prediction errors from the four scenarios. Only the results of 8 

Gauge C and Gauge D are shown because they are located at the downstream locations in the 9 

Zhanghe River basin. The three scenarios using prescribed parameters with estimates from 10 

data assimilation achieve better predictions for the two gauges than the control-run scenario. 11 

The RMSE of Gauge D from the ASS_D scenario decreases from 5.550 m3/s to 2.324 m3/s. 12 

Moreover, the ASS_BD scenario provides the best predictions among the four scenarios. All 13 

of these improvements are attributable to the appropriate parameter estimates from the data 14 

assimilation. The ASS_BD scenario renders the most reasonable parameter estimates. 15 

Comparably, the parameter estimates from ASS_D are also satisfactory for streamflow 16 

predictions, while the estimates from the ASS_AB scenario lead to slight improvements for 17 

streamflow predictions. Therefore, the parameter estimation performance of the three 18 

scenarios is consistent with the prediction of diagnostic variables (i.e., the water discharge) as 19 

illustrated in subsection 3.4. The assimilated observations from downstream, especially the 20 

outlet of the basin, have more important roles than those from upstream for parameter 21 

estimation and streamflow predictions in ungauged subbasins.  22 

4 Conclusions 23 

We present an application of PU_EnKF for improving streamflow predictions at ungauged 24 

locations. This scheme features real-time updating and simultaneous state-parameter 25 

estimation, considering modelling and observing uncertainties. Moreover, the scheme 26 

constrains the predictions by the physical rainfall-runoff processes that are defined in the 27 
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distributed hydrological model (i.e., the SWAT model), and it accounts for the correlations of 1 

states and parameters between gauged and ungauged subbasins. The correlations are 2 

represented by the covariance matrix in the Kalman gain. With the constraint and the 3 

correlation representation, the observed information is successfully transferred to ungauged 4 

locations and thereby improves streamflow prediction.  5 

The real-word application case suggests that the PU_EnKF scheme performs better than the 6 

control-run simulation (with calibrated parameters) for streamflow predictions at gauged and 7 

ungauged locations. Although only the outlet-gauged data are assimilated, the streamflow 8 

predictions at ungauged sites are still acceptable, since they contain convergent flow 9 

information from all subbasins due to runoff routing. Generally, the downstream data 10 

(especially the data from the outlet) have important roles to reflect the runoff generation for 11 

the entire basin. This data assimilation scheme provides reasonable estimates of model 12 

parameters for all computational units (i.e., subbasins and HRUs), including both gauged and 13 

ungauged sites, as validated by the conventional single-run simulation. Moreover, the 14 

parameter estimates approach nearly stable levels after a small number of time steps (130 15 

steps in this study). The parameter estimates show slow variations that would be an advantage 16 

of PU_EnKF to identify the changes of land surface properties. 17 

Although favourable performance to improve streamflow predictions is obtained using the 18 

EnKF-based scheme, the runoff routing is neglected within the PU_EnKF assimilation setup 19 

because the travel time of generated runoff is less than one day in the Zhanghe River 20 

watershed. In fact, the time lag of runoff routing is an important factor for short-time (e.g., the 21 

hourly step) flood forecasting (Li et al., 2013; Pan and Wood, 2013). Moreover, this scheme is 22 

intent on PUB for the nested basins in which the correlations of states and parameters 23 

between neighbouring subbasins can be constructed. For separate basins in the same climatic 24 

regions and land surface conditions, assimilating other sources of data (e.g., the remotely 25 

sensed soil moisture and bright temperature) is expected to improve the predictions of 26 

hydrological variables (Troch et al., 2003). Nevertheless, this study provides an encouraging 27 
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application for PUB by assimilating streamflow, which is generally regarded as quality 1 

observations compared with the remote sensing data. There are optional methods to address 2 

PUB, e.g., the Particle-DREAM by Vrugt et al., (2013). It will be an encouraging attempt to 3 

compare these methods with distributed hydrological models for hydrological diagnosis and 4 

predictions. 5 
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Table 1. Model parameters to be estimated in data assimilation. 1 

No. 
Parameter 

(Type) 
Description Scale (1) Process Min Max 

1 CN2 SCS runoff curve number for 

moisture condition II (-) 

HRU Runoff 35.0 98.0  

2 CH_K Effective hydraulic conductivity 

of channels alluvium (mm/hour) 

Subbasin Channel 

water 

0.02 76.0  

3 SOL_AWC Available water capacity of the 

soil layer (mm/mm soil) 

HRU Soil  0.0  1.0  

4 SURLAG Surface runoff lag coefficient 

(day) 

HRU Runoff 1.0  10.0  

5 GWQMN Threshold depth of water in the 

shallow aquifer required for 

return flow to occur (mm) 

HRU Groundwater 20.0 1000.0  

6 ESCO Plant evaporation compensation 

factor (-) 

HRU Evaporation 0.0  1.0  

7 ALPHA_BF Baseflow alpha factor (day) HRU Lateral water 0.0  1.0  

* The hydrologic variables are with respect to the scales to reflect the related hydrologic 2 

processes.3 
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Table 2. Dynamic hydrologic states and outputs to be updated in data assimilation. 1 

Variable Description Scale (1)  Storage (2) 

Qsufstor Amount of surface runoff stored or lagged (mm) HRU QW 

Qlatstor Amount of lateral flow stored or lagged (mm) HRU QW 

Qpregw Amount of groundwater flow into the main channel 

(mm)  

HRU QW 

Wsol Amount of water stored in the soil layer for each HRU 

(mm) 

HRU×Nlay SW 

SM Amount of water stored in soil profile (mm) Subbasin  SW 

Qshall Amount of shallow water stored or lagged (mm) HRU SW 

Qrchrg Amount of recharge entering the aquifer (mm) HRU SW 

Wr Amount of water stored in the reach (m3) Subbasin  CW 

Wb Amount of water stored in the bank (m3) Subbasin  CW 

Qr Amount of water flow out of reach (Streamflow, m3/s)  Subbasin  CW 

(1) This column indicates the scale at which each variable is simulated. Nlay is the number of 2 

soil layers (Nlay = 4 for this study), and HRU×Nlay means the soil profile of each HRU is 3 

partitioned into Nlay layers. (2) This column denotes water storage condition for each variable: 4 

QW, quick water storage; SW, slow water storage; and CW, river channel storage.  5 

6 
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Table 3. Fractional factors used to perturb the precipitation (ηp), simulated streamflow (ηQm) 1 

and the observed streamflow (ηQo). 2 

Distribution parameter ηp ηQm ηQo 

Values of fractional factor 0.10 0.15 0.10 

3 
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Figure captions 1 

Figure 1. Zhanghe River basin in China (a), the land use (b) and subbasin distribution with 2 

DEM (C). 3 

Figure 2. Streamflow prediction errors from the control-run simulation (left column) and the 4 

data assimilation of scenario ASS_D (right column), i.e., only the observed streamflow from 5 

Gauge D (outlet) is assimilated to update model states and parameters. 6 

Figure 3. Streamflow prediction errors from scenarios ASS_BD and ASS_AB. Only the 7 

results for Gauge C are shown because Gauge C is at the outlet of a pseudo-ungauged 8 

subbasin in both scenarios. 9 

Figure 4. Estimations of two typical parameters (CN2 and CH_K) from the ASS_D scenario. 10 

The histograms in each plot, fitted with the Gaussian distribution function, represent the 11 

ensemble distribution at three time steps. 12 

Figure 5. Ensemble spreads (EnSp) of the seven parameters listed in Table 1: 13 

∑
=

=
Nu

i

En i
Nu

EnSp
1

)(VAR
1 , where Nu is the number of HRUs or subbasins and )(VAR iEn  14 

denotes the ensemble variance at each HRU or subbasin with respect to each parameter. 15 

Figure 6. Streamflow predictions using four scenarios of different parameter sets. Only results 16 

of Gauge C and D are shown.  17 
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Figure 1. Zhanghe River basin in China (a), the land use (b) and subbasin distribution with 2 

DEM (C).  3 
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 1 

Figure 2. Streamflow prediction errors from the control-run simulation (left column) and the 2 

data assimilation of scenario ASS_D (right column), i.e., only the observed streamflow from 3 

Gauge D (outlet) is assimilated to update model states and parameters.4 

0 100 200 300 400 500 600 700
-40

-20

0

20

40

60

80

0 100 200 300 400 500 600 700
-40

-20

0

20

40

60

80

0 100 200 300 400 500 600 700
-20

0

20

40

0 100 200 300 400 500 600 700
-20

0

20

40

0 100 200 300 400 500 600 700
-5

0

5

10

15

0 100 200 300 400 500 600 700
-5

0

5

10

15

0 100 200 300 400 500 600 700

-2

0

2

4

0 100 200 300 400 500 600 700

-2

0

2

4

Gauge D (Outlet)

RMSE = 3.539, MAE = 2.930 RMSE = 1.912, MAE = 0.943

RMSE = 7.780, MAE = 3.022

 

 

 

S
tr
e
a
m
fl
o
w
 E
rr
o
r 
[m

3
/s
]

EnCI = 89.87%

EnCI = 91.37%

EnCI = 95.72%

Gauge D (Outlet)

 

 

 

Gauge C

 

 

 

S
tr
e
a
m
fl
o
w
 E
rr
o
r 
[m

3
/s
]

Gauge C

 

 

 

 

Gauge B RMSE = 0.839, MAE = 0.454

 

 

 

S
tr
e
a
m
fl
o
w
 E
rr
o
r 
[m

3
/s
]

Gauge BRMSE = 1.127, MAE = 0.428

 

 

 

 

RMSE = 2.421, MAE =0.856

Gauge A RMSE = 0.348, MAE = 0.249

 

 

Time Step [day]

S
tr
e
a
m
fl
o
w
 E
rr
o
r 
[m

3
/s
]

EnCI = 75.21%

Gauge ARMSE = 0.492, MAE = 0.307

  
 

Time Step [day]



                                             36 / 39 
 

  1 

Figure 3. Streamflow prediction errors from scenarios ASS_BD and ASS_AB. Only the 2 

results for Gauge C are shown because Gauge C is at the outlet of a pseudo-ungauged 3 

subbasin in both scenarios.  4 
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 1 

Figure 4. Estimations of two typical parameters (CN2 and CH_K) from the ASS_D scenario. 2 

The histograms in each plot, fitted with the Gaussian distribution function, represent the 3 

ensemble distribution at three time steps.  4 
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 1 

Figure 5. Ensemble spreads (EnSp) of the seven parameters listed in Table 1: 2 

∑
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Nu

EnSp
1

)(VAR
1 , where Nu is the number of HRUs or subbasins and )(VAR iEn  3 

denotes the ensemble variance at each HRU or subbasin with respect to each parameter. 4 
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 1 

Figure 6. Streamflow predictions using four scenarios of different parameter sets. Only results 2 

of Gauge C and D are shown. 3 
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