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Abstract 9 

Drought monitoring is a key component to mitigate impacts of droughts. Lack of reliable and 10 

up-to-date precipitation datasets is a common challenge across the Globe. This study 11 

investigates different datasets and drought indicators on their capability to improve drought 12 

monitoring in Africa.  The study was performed for four river basins located in different 13 

climatic regions (the Oum er-Rbia in Morocco, the Blue Nile in Eastern Africa, the Upper 14 

Niger in Western Africa, and the Limpopo in South-Eastern Africa) as well as the Greater 15 

Horn of Africa.  16 

The five precipitation datasets compared are the ECMWF ERA – Interim reanalysis, the 17 

Tropical Rainfall Measuring Mission satellite monthly rainfall product 3B-43, the Global 18 

Precipitation Climatology Centre gridded precipitation dataset, the Global Precipitation 19 

Climatology Project Global Monthly Merged Precipitation Analyses, and the Climate 20 

Prediction Center Merged Analysis of Precipitation. The set of drought indicators used 21 

includes the Standardized Precipitation Index, the Standardized Precipitation-Evaporation 22 

Index, Soiland Soil Moisture Anomalies. Potential Evapotranspiration was also compared 23 

with the different drought indicators since it’s a key process in the water cycle that can 24 

influence drought conditions. 25 

A comparison of the annual cycle and monthly precipitation time series shows a good 26 

agreement in the timing of the rainy seasons. The main differences between the datasets are in 27 

the ability to represent the magnitude of the wet seasons and extremes. Moreover, for the 28 

areas affected by drought, all the drought indicators agree on the time of drought onset and 29 
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recovery although there is disagreement on the extent of the affected area. In regions with 1 

limited rain gauge data the estimation of the different drought indicators is characterised by a 2 

higher uncertainty. Further comparison suggests that the main source of differences in the 3 

computation of the drought indicators is the uncertainty in the precipitation datasets rather 4 

than the estimation of the distribution parameters of the drought indicators. 5 

  6 

1 Introduction 7 

Assessment of drought impacts requires understanding of regional historical droughts as well 8 

as the bearingsbehaviours on human activities during their occurrences. Traditional methods 9 

for drought assessment are mainly based on water supply indices derived from precipitation 10 

time-series alone (Heim 2002). A sparse distribution of rain gauges and short or incomplete 11 

historical rainfall records may, however, lead to significant errors in the estimation of water 12 

supply indices derived from precipitation time-series.  13 

As a consequence of drought, many countries in Africa have seen recurrent famines that 14 

affected millions of people (Rojas et al., 2011). Since precipitation is fundamental for rain-fed 15 

crops in these drought-prone regions, improvements in drought monitoring and early warning 16 

will improve our capacity to detect, anticipate, and mitigate famine (Wilhite et al, 2000, 17 

Rowland et al., 2005). However, the lack of reliable and up-to-date climatological data in 18 

many regions of Africa hinders the development of effective real-time drought monitoring 19 

and early warning systems.  20 

Recently, several rain gauge and remote sensing based estimations of precipitation became 21 

available, which exhibit discrepancies and limitations in representing rainfall at local and 22 

regional scale. This has been highlighted for daily and monthly precipitation datasets by 23 

Dinku et al (2007; 2008) and Hirpa et al (2010). The authors studied a relatively dense station 24 

network over the Ethiopian highlands and found that at a monthly time scale and a spatial 25 

resolution of 2.5º CMAP and TRMM 3B-43 performed very well with a bias of less than 10% 26 

and a root mean square error of about 25%. Thiemig et al. (2012; 2013) found that the 27 

Rainfall Estimation Algorithm and TRMM 3B-42 showed a high potential in reproducing the 28 

interannual variability, the spatial and quantitative distribution and the timing of rainfall 29 

events. 30 
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Liebmann et al., 2012, studied the spatial variations in the annual cycle comparing GPCP with 1 

TRMM and gauge-based Famine Early Warning System datasets. They found that GPCP 2 

estimates are generally higher than TRMM in the wettest parts of Africa, but the timing of the 3 

annual cycle and onset dates are consistent. Dutra et al., 2013a, found significant differences 4 

(mainly in the equatorial area) in the quality of the precipitation between the ERA-Interim, 5 

GPCP and the Climate Anomaly Monitoring System – Outgoing Longwave Radiation 6 

Precipitation Index (CAMS-OPI) datasets for different river basins in Africa. From these 7 

studies it is evident that the question on which dataset best represents African precipitation is 8 

still not sufficiently answered.  9 

The difficulty in establishing a “ground truth” of precipitation in Africa also affects the 10 

uncertainty in the calculation of derivatives of precipitation, like drought indicators, since the 11 

relationship between the quality of a precipitation product and any drought indicator is 12 

nonlinear. This means that errors in the precipitation can be amplified or dampened when a 13 

drought index is computed. Previous works have reviewed and compared several drought 14 

indicators (Heim 2002; Anderson et al 2011, Shukla et al 2011; Vicente-Serrano et al 2012). 15 

However, an agreement between different indicators is not necessarily observed as the 16 

capability to detect droughts changes between indicator, system and region.  17 

The main goal of this study was to identify the main sources of uncertainty in the computation 18 

of the drought indicators. Furthermore, an assessment was done on the ability of the different 19 

datasets and drought indicators (SPI, SPEI, PET and SMA) to represent the spatio-temporal 20 

features of droughts in different climate regimes across Africa.  21 

 22 

2 Data and Methods 23 

2.1 Study area 24 

The analysis was performed at continental level over Africa with particular focus on the areas 25 

falling in four river basins (Oum er-Rbia, Limpopo, Niger, and Eastern Nile) as well as the 26 

Greater Horn of Africa (GHA). The regions were defined as the land areas inside each 27 

bounding box (see Figure 1). The area and geographical extent of the study areas are provided 28 

in Table 1. The regional study areas selected cover a range of climates and socio-economic 29 

systems in Africa.  30 
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 1 

2.2 Precipitation Data  2 

The five precipitation datasets used were the “ECMWF ERA-INTERIM (ERA-I) Reanalysis” 3 

(approximately 0.7°x0.7°, bilinear interpolation to 0.5°x0.5°), “Tropical Rainfall Measuring 4 

Mission” (TRMM) satellite monthly rainfall product 3B-43 (0.25°x0.25°), the “Global 5 

Precipitation Climatology Centre” (GPCC) gridded precipitation dataset V.5 (0.5°x0.5°), the 6 

Global Precipitation Climatology Project (GPCP) Global Monthly Merged Precipitation 7 

Analyses (2.5°x2.5°) and the CPC Merged Analysis of Precipitation (CMAP, 2.5°x2.5°) 8 

(Table 2).  9 

This work uses the TRMM Multisatellite Precipitation Analysis  estimation computed at 10 

monthly intervals as TRMM 3B-43 dataset for the period 1998-2010 (Huffman et al., 2007). 11 

This product combines the estimates generated by the TRMM and other satellite products 12 

(3B-42) with the Climate Anomaly Monitoring System gridded rain gauge data and/or the 13 

GPCC global rain gauge data at 0.25°x0.25° resolution. The GPCC full reanalysis version 5 14 

(Rudolf et al., 1994) was used for 1979 to 2010. This dataset is based on quality-controlled 15 

precipitation observations from a large number of stations (up to 43,000 globally) with 16 

irregular coverage in time. 17 

The ECMWF ERA-I reanalysis, the latest global atmospheric reanalysis produced by 18 

ECMWF extends from 1 January 1979 to the present date. See Dee et al. (2011) for detailed 19 

descriptions of the atmospheric model used in ERA-I, the data assimilation system, the 20 

observations used, and various performance aspects. The ERA-I configuration has a spectral 21 

T255 horizontal resolution (about 0.7°x0.7° in the grid-point space) with 60 model vertical 22 

levels. For the present application, the monthly precipitation means were spatially 23 

interpolated (bilinear) to a regular 0.5°x0.5° grid. Three-hourly ERA-I precipitation estimates 24 

are produced by 12 h model integrations starting at 00UTC and 12UTC daily from initial 25 

conditions provided by the data assimilation system. These short-range forecasts are therefore 26 

mainly constrained by the analysis of upper-air observations of temperature and humidity, 27 

from satellites and in situ instruments.  28 

The Global Precipitation Climatology Project (GPCP, Huffman et al., 2009) combines the 29 

precipitation information available from several sources such as the Special Sensor 30 
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Microwave/Imager (SSM/I) data from the United States Defence Meteorological Satellite 1 

Program  satellites, infrared precipitation estimates computed primarily from geostationary 2 

satellites, low-Earth orbit estimates including the Atmospheric Infrared Sounder  Television 3 

Infrared Observation Satellite Program (TIROS) Operational Vertical Sounder (TOVS), and 4 

Outgoing Longwave Radiation Precipitation Index data from the NOAA series satellites. The 5 

gauge data included are assembled and analyzed by the Global Precipitation Climatology 6 

Centre (GPCC). The latest version of GPCP v2.2 that was used is available since January 7 

1979 to December 2010 in a regular 2.5°x2.5° grid. 8 

The CPC Merged Analysis of Precipitation ("CMAP") is a technique which produces pentad 9 

and monthly analyses of global precipitation in which observations from rain gauges are 10 

merged with precipitation estimates from several satellite-based algorithms sensors (infrared 11 

and microwave). The analysis are on a 2.5 x 2.5 degree latitude/longitude grid and extend 12 

back to 1979. For further information refer to Xie and Arkin, (1997). 13 

2.3 Drought indicators 14 

 The set of hydro-meteorological indicators analysed included the Standardized 15 

Precipitation Index (SPI), Standardized Precipitation-Evaporation Index (SPEI), Potential 16 

Evapotranspiration (PET) and Soil Moisture Anomalies (SMA). A discussion on the possible 17 

relation of Potential Evapotranspiration (PET) with the different indicators is also presented. 18 

Even if EvaporationPET is not a drought indicator itself, it is one of the key processes in the 19 

water cycle and usually gives a more complete accounting of drought variability andthat can 20 

help to understand differences in drought indicators. However, the estimation of continental 21 

evapotranspiration fluxes is complex and can be a source of uncertainties when assessing 22 

drought conditions (Trambauer et al., 2014). The SPI was computed with all the datasets 23 

(ERA-I, TRMM, and GPCP) since it only uses precipitation data. The SPEI was computed 24 

with precipitation and potential evapotranspiration from ERA-I, as well as with precipitation 25 

from GPCP and potential evapotranspiration from ERA-I. SMA and PET were directly 26 

obtained from the ERA-I reanalysis. The individual drought episodes from the time series of 27 

all indicators were determined by considering different thresholds of the standardized 28 

indicators. The duration of each dry event was determined as the number of consecutive 29 

months with negative values of the drought indices (positive for PET) over the period 1998-30 
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2010. The monthly drought fractional area was computed for different thresholds but is only 1 

shown for the values below the -1.0 threshold. 2 

2.3.1 Standardized Precipitation Index (SPI) 3 

The Standardized Precipitation Index (SPI) was developed by McKee et al. (1993, 1995) to 4 

provide a spatially and temporally invariant measure of the precipitation deficit (or surplus) 5 

for any accumulation timescale (e.g. 3, 6, 12 months). It is computed by fitting a parametric 6 

Cumulative Distribution Function (CDF) to a homogenized precipitation time-series and 7 

applying an equi-probability transformation to the standard normal variable. This gives the 8 

SPI in units of number of standard deviations from the median.  9 

Typically, the gamma distribution is the parametric CDF chosen to represent the precipitation 10 

time-series (e.g. McKee et al., 1993, 1995; Lloyd-Hughes and Saunders 2002; Husak et al., 11 

2007) since it has the advantage of being bounded on the left at zero and positively skewed 12 

(Thom 1958; Wilks 2002). Moreover, Husak et al. (2007) and Naumann et al. (2012) have 13 

shown that the gamma distribution adequately models precipitation time-series in most of the 14 

locations over Africa. In this study we use the Maximum-Likelihood Estimation (MLE) 15 

method to estimate the parameters of the gamma distribution. 16 

A persistent negative anomaly of precipitation is the primary driver of drought, resulting in a 17 

successive shortage of water for different natural and human needs. Since SPI values are 18 

given in units of standard deviation from the standardised mean, negative values correspond 19 

to drier periods than normal and positive values correspond to wetter periods than normal. 20 

The magnitude of the departure from the median is a probabilistic measure of the severity of a 21 

wet or dry event.  22 

2.3.2 Standardized Precipitation-Evaporation Index (SPEI) and 23 

Potential Evapotranspiration (PET) 24 

The Standardized Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano et al., 2010) 25 

is based on precipitation and temperature data, and it has the advantage of combining 26 

different time dimensions (like the SPI) with the capacity to include the effects of temperature 27 

variability on drought. The calculation combines a climatic water balance, the accumulation 28 

of a water deficit/surplus at different time scales, and an adjustment to a log-logistic 29 

probability distribution. SPEI is similar to SPI, but it includes the temperature impact via the 30 



 

 7 

potential evapotranspiration (PET) that is calculated following Thornthwaite (1948). In the 1 

current work, we used ERA-I 2-meter temperature to derive PET, and the multiscalar index is 2 

calculated as P-PET over the different time-scales and normalized (like the SPI) using the log-3 

logistic probability distribution.  4 

2.3.32.3.2 Soil Moisture Anomalies (SMA) 5 

Soil moisture anomalies were derived from ERA-I simulations by removing the mean annual 6 

cycle. Further standardization could be achieved by fitting the soil moisture distribution to a 7 

probability distribution (similar to SPI or, SPEI) such as the Beta distribution (Sheffield et al., 8 

2004) or just a simple z-score (Dutra et al., 2008). In the current work we compare the SMA 9 

z-score following the considerations depicted in Dutra et al., 2008. By normalizing the soil 10 

moisture with the z-score, a classification scheme is obtained that is similar and comparable to 11 

that of McKee et al. (1993) and Vicente Serrano et al. (2012). 12 

2.4 Evaluation metrics 13 

The precipitation datasets and drought indicators were assessed using different scores 14 

available in the hydroGOF R-Package (Zambrano-Bigarini, 2013): Spearman’s correlation 15 

coefficient (r), Mean Absolute Error Difference (MAEMAD), Percent Bias (PBIAS) between 16 

two products and the Index of Agreement (d). Details of the Evaluation scores are listed in the 17 

appendix. 18 

A direct quantitative assessment at continental level is difficult due to the lack of an actual 19 

validation dataset that represents the ground truth with adequately high spatial or temporal 20 

resolution. The performance metrics (mean absolute errordifference, relative bias and index of 21 

agreement) were used to diagnose the relative reliability of each indicator over different 22 

drought properties. This analysis does not assume that a single dataset or indicator is better 23 

than the other but highlights their temporal and spatial coherency.  24 

 25 
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3 Results and discussion 1 

3.1 Comparison of global precipitation datasets 2 

The datasets analysed are based on in-situ data (GPCC), remote sensing estimations (TRMM, 3 

GPCP) and a global circulation model (ERA-I). The datasets are not completely independent. 4 

For example, TRMM and GPCP are mainly based on remote sensing data and GPCP uses 5 

GPCC over land). Figure 2 shows the mean annual precipitation for the ERA-I, GPCC, 6 

GPCP, CMAP and TRMM datasets over Africa. There is an overall agreement between the 7 

datasets with respect to the mean as well as the general spatial patterns of annual 8 

precipitation. These datasets agree on the north-south gradient from the Sahara desert areas in 9 

the North to the tropical savannahs in the Sahel (an area centered at approximately 10°N 10 

spanning from the Atlantic Ocean in the west to the Red Sea in the east).  The datasets also 11 

agree in the areas of maximum precipitation maximum over the African rainforests related to 12 

the location of the Inter-tropical Convergence Zone (ITCZ), as well as  in the drier climate of 13 

the south-western part of Africa. The main differences are observed in the tropical area and 14 

over un-gauged areas. In transition regions from the Sahel to the Sahara TRMM estimations 15 

can exceed GPCC more than twofold while TRMM is substantially lower than the other 16 

estimations along the southwestern coast of West Africa (Liebmann et al., 2012). There is 17 

also a tendency of higher precipitation in the tropical rainforest in GPCP (Liebmann et al., 18 

2012) and ERA-I (Dutra et al., 2013a, b) compared with the other datasets. ERA-I 19 

overestimates the rainfall in the central African region which is likely to be associated with a 20 

substantial warm bias in the model due to an underestimation of aerosol optical depth in the 21 

region (Dee et al., 2011).  22 

For all the datasets and regions analysed the mean annual cycle of precipitation shows good 23 

agreement with respect to the onset and end of the rainy season. This is true even for the GHA 24 

region which is characterized by two rainy seasons (Figure 3).  However, with respect to 25 

intensity the results are more heterogeneous. Although in the Limpopo and Oum er-Rbia 26 

basins there is a good agreement between the datasets, for the basins located in the tropical 27 

band the discrepancies are higher with an overestimation of ERA-I in the Eastern Nile Basin 28 

and GHA and an underestimation in the Niger basin.  29 

Apparently the density of rain gauges plays a role in determining the agreement between 30 

datasets. The best gauged regions (Oum er-Rbia and Limpopo; Table 1) are those with the 31 
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lowest dispersion in terms of annual cycle.  These two regions (Oum er-Rbia and Limpopo) 1 

are located outside the tropical region, and their precipitation variability is mainly controlled 2 

by large-scale synoptic weather systems, while in the tropical region small-scale convective 3 

events play an important role. In these regions, model uncertainties (for example land-4 

atmosphere coupling), uncertainties in satellite retrievals as well as poor gauge cover 5 

contribute to the large spread in the mean annual cycles computed with the different datasets. 6 

The monthly datasets show a reasonable agreement over all regions in terms of the correlation 7 

coefficients which are usually greater than 0.8 (Table 3). The CMAP dataset deviates with 8 

values below 0.7 in some regions. Oum er-Rbia and Limpopo areas show the best agreement 9 

between datasets with MAE values below 10 mm/month. The bias in those two regions is 10 

below 20 % in all the cases except when TRMM and CMAP are compared (30%).  11 

The biggest differences were observed for ERA-I in the Blue Nile and GHA regions. In these 12 

regions the overestimation of monthly precipitation reached 40 mm/month and the bias can 13 

reach 90% in the Blue Nile and around 50% in the GHA. These discrepancies are mainly due 14 

to the problems of representation of the mean annual cycle of precipitation by atmospherics 15 

models and the lack of in-situ observations (Mariotti et al., 2011, Dutra et al., 2013b).   16 

3.2 Comparison of drought indicators 17 

The monthly patterns of drought over Africa for January 2000, 2003, 2006 and 2009 show 18 

that dry areas (indicators with negative values) are generally depicted in more than one 19 

indicator, but their consistency varies with the drought characteristics, as well as the spatial 20 

and temporal coverage (Figure 4). Although there is in general a good spatial correspondence 21 

between all the indicators over the study period, there are also areas where there is no 22 

agreement between some indicators, such as in Central Africa between SPI and SPEI.    23 

Figure 5 shows the index of agreement (d) between all the drought indicators computed with 24 

ERA-I. Overall, the index of agreement shows that there is a good correspondence between 25 

indicators in all regions with mean d values greater than 0.5 for almost all the comparisons. 26 

PET seems to be uncoupled with the other indicators with showing low values of d. Maybe 27 

using different PET products could improve the index of agreement, since This may reflect 28 

the high disparities between different PET products that still is observed in the continethave 29 

been reported for Africa (Trambauer et al., 2014). However, the effect on the computations of 30 
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the SPEI is not major, since the agreement of this indicator with the others is still high.  Only 1 

the inner Niger Delta is characterized by a weaker agreement, where d is often below 0.5.   2 

Figure 6 shows the evolution of drought areas in 2000, 2003, 2006 and 2009 characterized by 3 

the number of indicators below a certain threshold. In almost all areas there is a good 4 

agreement, with usually more than 3 indicators reporting drought conditions per grid cell. 5 

However, there are some areas with only one indicator below the defined threshold, mostly 6 

over Central Africa. There is scope to take advantage of these discrepancies and agreements 7 

and propose the construction of a composite indicator (Svoboda et al., 2002; Sepulcre-Canto 8 

et al., 2012; Hao and AghaKouchak, 2013). The development of a single composite drought 9 

indicator could improve the detection of the onset of a drought and help to monitor its 10 

evolution more efficiently, at the same time providing information on the uncertainty in the 11 

data. This will allow decision makers and stakeholders to better handle uncertainties in early 12 

warning systems. 13 

The individual drought episodes were computed from the time series of all indicators 14 

considering as dry periods all values of standardized indicators below zero. The duration of 15 

each dry event was determined as the number of consecutive months with negative values 16 

(positive for PET) for the period 1998-2010.  The average duration of dry episodes lasted 17 

between 2 to 6 months for all indicators, with the largest differences in duration for different 18 

indicators being found in the Niger basin and in the GHA (Figure 7). Overall, dry periods 19 

measured with SPEI tend to be 1 or 2 months more persistent if compared with the other 20 

estimations, while PET is the indicator variable with less memory.   21 

Figure 8 shows the monthly fractional area under standardised values below -1.0. For the 22 

areas that are under drought, all the datasets agree with the time of onset and recovery but 23 

there are sometimes disagreements on the area affected and this disagreement tends to be 24 

dependent on the threshold selected. In general there is a better agreement if the areas covered 25 

by any standardised indicator below -1.0 are considered. In this analysis the Niger basin and 26 

Greater Horn of Africa present more discrepancies reaching a difference of more than 50% 27 

between SPI and SPEI estimations during the 2009/2010 and 2005/2006 periods respectively. 28 

The soil moisture anomalies tend to define less generalised droughts as it is hard to reach half 29 

the region under dry conditions. However, even if the magnitude of the area is smaller with 30 
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respect to the other indicators, the soil moisture shows a good correspondence except for the 1 

period 2000/2002 in the inner Niger delta.  2 

In order to define how the selected threshold could affect the agreement between datasets a 3 

correlation analysis was performed between different thresholds of SPI and the areas affected 4 

by droughts in each region. Here the results of the different SPI estimations are presented, 5 

however similar results were found for the other indicators (not shown). For almost all 6 

regions (except for Oum er-Rbia where this relationship is almost constant) the correlation 7 

between the different SPI’s is higher for thresholds closer to zero (Figure 9). To consider a 8 

higher threshold (i.e. less negative) to define areas affected by drought (e.g. -0.8 or -1), 9 

therefore, will reduce the disagreement between indicators. However it puts a limit to the 10 

detection of the significance and severity of a drought. These results highlight that the main 11 

differences between the indicators appear in the extreme events.  12 

Also, the bias between estimations indicates an acceptable departure between estimations 13 

from normal conditions until values near -0.5 (Figure 10). Below this threshold the bias 14 

increases exponentially surpassing quickly a bias of 100% around SPI values of -1. For Niger 15 

and GHA regions there is only a reasonable agreement between ERA-I and GPCC 16 

estimations.   17 

Generally in the Oum er-Rbia and Limpopo basins, both extra-tropical regions, the agreement 18 

is high, possibly due to the greater number of in-situ observations and the importance of 19 

large- scale synoptic weather systems in these areas.  20 

For the basins located between the tropics a greater disagreement is observed due to different 21 

factors. The main common factor is the remarkable absence of observations to calibrate and 22 

test the datasets. These deficiencies are also more evident in complex mountainous areas such 23 

as the Eastern Nile basin. Furthermore, droughts in equatorial regions are mainly driven by 24 

the absence of convective events during the rainy season. These mesoscale dimension events 25 

are hard to be reproduced by models and even difficult to monitor in areas with scarce in-situ 26 

rain gauges.  27 

For drier regions, such as the inner Niger delta and the GHA, the estimation of the distribution 28 

parameters needed for the computation of the standardized indicators can be biased (or lower 29 

bounded) by the large amount of zero or near null precipitation observations. As depicted in 30 

Wu et al. (2007), the estimation of the gamma probability density function and the limited 31 
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sample size in dry areas reduce the confidence of the SPI values. In these cases, the SPI may 1 

never attain very negative values, failingthe necessary threshold and hence failing to detect 2 

some drought occurrences (e.g. SPI always above -1 in Niger and GHA). The discrepancies 3 

between indicators for lower thresholds over regions with limited rain gauge data is 4 

characterised by the uncertainties of extreme values. This suggests that the main sources of 5 

error are the uncertainties in the precipitation datasets that are propagated in the estimation of 6 

the distribution parameters of the drought indicators. 7 

The above discussion underlines the fact that drought monitoring and assessment is a difficult 8 

task, not only due to the nature of the phenomenon, but also due to the limitations inherent in 9 

the availability of long-term and high quality datasets for extended regions. The 10 

meteorological datasets as well as the indicators and models used must be selected carefully 11 

and their limitations need to be taken into account. As a consequence no definite conclusion 12 

can be drawn for the use of a single dataset or indicator. Depending on the region to be 13 

studied, different combinations may have to be chosen.  14 

Our results further underline the value of maintaining an operational monitoring network at 15 

country, continental or even global level since indirect observations have their intrinsic 16 

uncertainties linked to the availability and reliability of ‘ground truth’ for their calibration. 17 

Without constant proper calibration, model (ERA-I) or algorithm (TRMM)- inherent errors 18 

can propagate up to the same magnitude of the phenomena (or indicator) to be analysed. In 19 

fact, the resulting in large drought indicator uncertainties, bringing no added value with 20 

respect to using standard climatology. can be so big that for certain events such as droughts 21 

with a severity corresponding to an SPI of -2 it is difficult to get an additional value with 22 

respect to standard climatologies. 23 

The development of a combined indicator based on a probabilistic approach (e.g., Dutra et al., 24 

2013c) could be useful as a monitoring product at continental level in this case. However, at 25 

local scale the kind of indicator and the source of data must be chosen carefully taking into 26 

account their limitations. 27 

 28 

4 Conclusions 29 

This study evaluated the capabilities of different drought indicators, (including SPI, SPEI, and 30 

SMA, as well as PET estimations and SMA), in detecting the timing and extension of drought 31 
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across Africa, using five different precipitation datasets (TRMM, ERA-Interim, GPCC, GPCP 1 

and CMAP). The analysis was performed on a Pan-African scale and on a regional scale 2 

focused on four river basins and on the Greater Horn of Africa.   3 

A comparison of the annual cycle and monthly precipitation time series shows a good 4 

agreement in the timing of the peaks, including the Greater Horn of Africa where there are 5 

two rainy seasons.  The main differences are observed in the ability to represent the 6 

magnitude of the wet seasons and the extremes.  7 

The monthly mean precipitation datasets shows good agreement agree over all regions with 8 

the only exception of the CMAP dataset that shows a lower agreement. In the Oum er-Rbia 9 

and Limpopo basins there is a good agreement between the datasets with mean absolute errors 10 

differences below 10 mm/month. The bias in those two regions is below 20 %. The worst 11 

performance of ERA-I was observed in the Blue Nile basin, overestimating the monthly 12 

precipitation up to 40 mm/month with a bias of up to 92% with respect to the other datasets of 13 

up to 92%. Also in the GHA region the bias is around 50% with an overestimation of up to 17 14 

mm/month. 15 

The comparative analysis between TRMM, ERA-I, GPCP and GPCC datasets suggests that it 16 

is feasible to use TRMM time series with high spatial resolution for reliable drought 17 

monitoring over parts of Africa. It is possible to take advantage of this dataset mainly at 18 

regional level due to its high spatial resolution. However, higher discrepancies in SPI 19 

estimations are shown in mountainous areas and areas with a sparse in situ station density.  20 

On the other hand, drought monitoring at continental level with ERA-I performs better 21 

outside the areas influenced by the ITCZ. 22 

The comparison between drought indicators suggests that the main discrepancies are due to 23 

the uncertainties in the datasets (driven by a lack of ground information, uncertainties in the 24 

estimation algorithms or the parameterization of the convection) rather than to the estimation 25 

of the distribution parameters.  This is why the SPI estimations for the Oum er-Rbia and 26 

Limpopo regions exhibit a better agreement between estimations. While for the other regions 27 

the discrepancies between datasets are in many cases acceptable, greater discrepancies are 28 

observed for the inner Niger Delta when comparing ERA-I estimations with the other 29 

datasets.    30 
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Regarding the areas that are under drought, all the indicators agree with the time of onset and 1 

recovery but there are sometimes disagreements with respect to the area affected, and the 2 

level of disagreement tends to be dependent on the threshold selected.   3 

It is proposed to integrate different indicators and accumulation periods in the form of a 4 

multivariate combined indicator in order to take advantage of their different drought 5 

properties. The probabilistic nature of such an approach would be very helpful for decision 6 

makers and for the combined analysis of multiple risks. 7 
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Appendix A 1 

The Spearman correlation represents the Pearson correlation coefficient computed using the 2 

ranks of the data. Conceptually, the Pearson correlation coefficient is applied to the ranks of 3 

the data rather than to the data values themselves. The Spearman coefficient is a more robust 4 

and resistant alternative to the Pearson product-moment correlation coefficient (Wilks, 2002). 5 

Computation of the Spearman rank correlation can be described as: 6 

                                                                                                           (1) 7 

where Ri is the difference in ranks between the ith pair of data values. In cases of ties, where a 8 

particular data value appears more than once, all of these equal values are assigned their 9 

average rank before computing the Ri’s. 10 

The Mean Absolute Error Difference (MAD) measures the average magnitude of the errors 11 

differences in a set of different estimations of a certain indicator. It measures accuracy for 12 

continuous variables without considering the direction of the error. Also, this quantity is 13 

usually used to measure how close are two datasets or indicators simulated forecasts or 14 

predictions (sim)dataset-1 are to the eventual observations (obs)dataset-2 as shown in 15 

equation 2 16 

                                                                                                      (2) 17 

where X1 and X are the values of precipitation or drought indicator of dataset 1 and n 18 

represents the number of pairs where n represents the number of pairs of the simulated 19 

(sim)dataset-1 and observed dataset-2 (obs) indicators.  20 

The percent bias (PBIAS) measures the average tendency of the simulated values of a certain 21 

dataset to be larger or smaller than the a reference observed ones. 22 

                                                                                                    (3) 23 

The optimal value of PBIAS is 0, with low-magnitude values indicating accurate 24 

representation of drought indicators. Positive values indicate an overestimation bias, whereas 25 
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negative values indicate an underestimation bias. It must be taken into account that this metric 1 

depends on which dataset is considered to represent the observations.   2 

The Index of Agreement (d) developed by Willmott (1981) as a standardized measure of the 3 

degree of model prediction error varies between 0 and 1.  A value of 1 indicates a perfect 4 

match, and 0 indicates no agreement at all (Willmott, 1981). The index of agreement can 5 

detect additive and proportional differences in the observed and simulated means and 6 

variances; however, it is overly sensitive to extreme values due to the squared differences 7 

(Legates and McCabe, 1999). 8 

                                                                                               (4) 9 

10 
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 1 

Table 1. Geographical extent of the African regions and number of grid cells analysed for 2 

each dataset. For GPCC, the percentage of stations per grid and the percentage of pixels 3 

without stations are respectively shown between brackets. 4 

Region Area (106xKm2) Longitude-Latitude GPCC Grid cells 

A - Oum er-Rbia 0.49 [10ºW-0ºE]X[31ºN-35ºN] 36 (52, 65) 

B - Niger 1.48 [10ºW-0ºE]X[6ºN-18ºN] 120 (23, 70) 

C - Eastern Nile 1.23 [30ºE-40ºE]X[7ºN-17ºN] 100 (23, 75) 

D -Limpopo 0.94 [25ºE-34ºE]X[26ºS-20ºS] 54 (56, 44) 

E -GHA 2.22 [40ºE-52ºE]X[2ºS-12ºN] 180 (15, 85) 

 5 

 6 

 7 

8 
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Table 2. Description of global datasets available in near-real time that could be used for 1 

monitoring precipitation conditions at continental level. 2 

Datasets resolution period Source Update 

ERA 

INTERIM 

 

0.5ºx0.5º 1979-

present 

ECMWF Reanalysis ½ month 

TRMM 3B-43 

v.6  

0.25ºx0.25 1998-

present 

Remote Sensing Estimate (combination 3B-42, 

CAMS and/or GPCC) 

1 or 2 

months 

GPCC v.5 

(Combined) 

0.5ºx0.5º 

(1ºx1º) 

1901-2010 

(-present) 

In-situ data 1 month 

GPCP v.2.2 2.5ºx2.5º 1979-2010  Remote Sensing Estimate(merged from 

microwave, infrared and sounder data and 

precipitation gauge analyses (GPCC). 

irregular 

CMAP 2.5ºx2.5º 1979-2009 Remote Sensing Estimate (GPI, OPI,S SM/I 

scattering, SSM/I emission and MSU + 

NCEP/NCAR Reanalysis ) 

irregular 

 3 

 4 

5 



 

 23 

Table 3. Correlation coefficient (r), Mean absolute error difference (MAEMAD) and percent 1 

bias (%) between the different precipitation datasets averaged over each region for the 2 

common period 1998-2010. All correlations are significant at 99%. 3 

  TRMM GPCC GPCP CMAP ERA-I 

r MAD BIAS r MAD BIAS r MAD BIAS r MAD BIAS r MAD BIAS 

OER 
  
  

TRMM - - - 0.99 2.5 2.7 0.99 2.9 6.7 0.74 7.8 42.8 0.95 7.3 26.3 

GPCC 0.99 2.5 -2.6 - - - 0.99 2.5 4.2 0.94 4.7 23.1 0.95 6.7 24.4 

GPCP 0.99 2.9 -6.2 0.99 2.5 -4 - - - 0.73 6.5 33.9 0.95 5.7 18.4 

CMAP 0.74 7.8 -30 0.94 4.6 -18.7 0.73 6.5 -25.3 - - - 0.68 7.0 -11.6 

ERA-I 0.95 7.3 -20.8 0.95 6.6 -19.6 0.95 5.7 -15.5 0.68 7.0 13.1 - - - 

  
NIG 

  
  
  

TRMM - - - 0.99 5.8 -1.9 0.98 13.6 -14.5 0.8 13.9 7.2 0.94 23.2 8 

GPCC 0.99 5.8 1.9 - - - 0.99 11.6 -14.1 0.97 6.9 -1 0.95 22.2 8.3 

GPCP 0.98 13.6 17 0.99 11.5 16.4 - - - 0.82 16.7 25.4 0.95 25.8 26.4 

CMAP 0.8 13.8 -6.7 0.97 6.9 1 0.82 16.8 -20.3 - - - 0.78 25.8 0.7 

ERA-I 0.94 23.1 -7.4 0.95 22.2 -7.7 0.95 25.8 -20.9 0.78 25.8 -0.7 - - - 

  
ENL 

  
  
  

TRMM - - - 0.94 17.6 -23.7 0.93 17.4 -22.4 0.82 15.3 -0.6 0.93 43.9 -48.1 

GPCC 0.94 17.6 31 - - - 1 2.7 1.9 0.97 12.1 22.5 0.97 29.9 -32.3 

GPCP 0.93 17.4 28.9 1 2.66 -1.9 - - - 0.85 14.3 28.2 0.97 30.1 -33.1 

CMAP 0.82 15.3 0.6 0.97 12.1 -18.4 0.85 14.3 -22 - - - 0.86 43.4 -47.8 

ERA-I 0.93 43.9 92.8 0.97 29.9 47.6 0.97 30.1 49.5 0.86 43.4 91.7 - - - 

  
LIM 

  
  
  

TRMM - - - 0.98 7.03 8.9 0.97 8.4 6.7 0.76 12.6 20.6 0.96 10.4 9 

GPCC 0.98 7.0 -8.2 - - - 0.99 5.1 -3.3 0.91 8.3 1.8 0.98 8.1 -1.5 

GPCP 0.97 8.4 -6.3 0.99 5.1 3.4 - - - 0.79 9.9 13 0.97 8.8 2.1 

CMAP 0.76 12.6 -17 0.91 8.3 -1.8 0.79 9.9 -11.5 - - - 0.79 12.8 -9.6 

ERA-I 0.96 10.4 -8.2 0.98 8.1 1.5 0.97 8.8 -2.1 0.79 12.8 10.6 - - - 

  
GHA 

  
  
  

TRMM - - - 0.82 9.8 -4.2 0.88 6.6 1.7 0.72 9.2 11.2 0.84 17.8 -34 

GPCC 0.82 9.8 4.4 - - - 0.9 8.2 7.1 0.84 9.4 8.4 0.83 17.1 -30.9 

GPCP 0.88 6.6 -1.7 0.9 8.2 -6.6 - - - 0.7 9.6 9.3 0.92 16.4 -35.1 

CMAP 0.72 9.2 -10.1 0.84 9.4 -7.8 0.7 9.6 -8.5 - - - 0.61 22.7 -40.6 

ERA-I 0.84 17.8 51.5 0.83 17.1 44.7 0.92 16.4 54.1 0.61 22.7 68.4 - - - 

 4 

 5 

 6 

 7 

 8 

 9 

 10 
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Table 4. Spearman correlation coefficient (r), mean absolute error difference (MAEMAD) 1 

between the different SPI-3 estimations averaged over each region for the common period 2 

1998-2010 3 

  TRMM GPCC  GPCP ERA-I 

r MAD r MAD r MAD r MAD 

  TRMM - - 0.89 0.28 0.81 0.38 0.84 0.37 

Oum GPCC 0.89 0.28 - - 0.81 0.35 0.81 0.34 

er-Rbia GPCP 0.81 0.38 0.81 0.35 - - 0.74 0.5 

  ERA-I 0.84 0.37 0.81 0.34 0.74 0.5 - - 

  TRMM - - 0.85 0.26 0.79 0.38 0.71 0.5 

Niger GPCC 0.85 0.26 - - 0.91 0.29 0.72 0.46 

  GPCP 0.79 0.38 0.91 0.29 - - 0.67 0.65 

  ERA-I 0.71 0.5 0.72 0.46 0.67 0.65 - - 

  TRMM - - 0.54 0.54 0.53 0.55 0.6 0.5 

Blue Nile GPCC 0.54 0.54 - - 0.92 0.27 0.57 0.41 

  GPCP 0.53 0.55 0.92 0.27 - - 0.67 0.46 

  ERA-I 0.6 0.5 0.57 0.41 0.67 0.46 - - 

  TRMM - - 0.91 0.28 0.84 0.39 0.8 0.46 

Limpopo GPCC 0.91 0.28 - - 0.92 0.27 0.91 0.33 

  GPCP 0.84 0.39 0.92 0.27 - - 0.88 0.35 

  ERA-I 0.8 0.46 0.91 0.33 0.88 0.35 - - 

  TRMM - - 0.58 0.4 0.65 0.44 0.61 0.44 

GHA GPCC 0.58 0.4 - - 0.86 0.29 0.58 0.42 

  GPCP 0.65 0.44 0.86 0.29 - - 0.68 0.45 

  ERA-I 0.61 0.44 0.58 0.42 0.68 0.45 - - 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 
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 1 

 2 

Figure 1.  Annual mean precipitation from the GPCC dataset and African regions used in this 3 

analysis as defined in Table 1. (OER: Oum er-Rbia; NIG: Inner Niger Delta; ENL: Eastern 4 

Nile, LIM: Limpopo basin and GHA: Greater Horn of Africa. 5 

 6 

 7 

 8 

 9 
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 1 

 2 

Figure 2.  A-E) Mean annual precipitation (mm/year) from different datasets for the common 3 

period 1998-2010, F) longitudinal cross section at 25°E of mean annual precipitation. 4 

 5 
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 1 

Figure 3. Mean annual cycle of precipitation from the different datasets averaged over the five 2 

regions defined in Figure 1 (OER: Oum er-Rbia, NIG: Inner Niger Delta, NIL: Eastern Nile, 3 

LIM: Limpopo basin and GHA: Greater Horn of Africa)   for the common period 1998-2010. 4 

 5 

 6 

 7 

 8 
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Figure 4. Monthly standardized anomalies in SPI-3 (ERA-I, GPCP, TRMM), SPEI (ERA-I 1 

and GPCP) and Soil Moisture (SMA) for January 2000, 2003, 2006 and 2009. Solid lines 2 

indicates the zero contour. White areas represent regions where it was not possible to compute 3 

the gamma parameters for SPI due the large amount of zeros. 4 

 5 

 6 

Figure 5. Index of agreement (d) between SPI, SPEI, SMA and PET computed using ERA-I 7 

for the five case studies and the whole continent. (OER: Oum er-Rbia, NIG: Inner Niger 8 

Delta, NIL: Eastern Nile, LIM: Limpopo basin and GHA: Greater Horn of Africa). Dashed 9 

lines extend from 5th to 95th percentile of estimations, boxes extend from 25th to 75th 10 

percentile and middle horizontal lines within each box indicate the mean for each region. 11 
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 1 

Figure 6. Month by month evolution of droughts in 2000, 2003, 2006 and 2009 according to 2 

grid cells with SPI-3/SPEI-3 computed using ERA-I GPCP, and TRMM below -1.0. Values 3 

are ranged between 0 (no dataset with SPI-3/SPEI-3 below the threshold) and 5 (all datasets 4 

below threshold). 5 

 6 

 7 

 8 
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 1 

Figure 7. Duration of dry periods for the standardized indicators below zero in the common 2 

period 1998-2010. (OER: Oum er-Rbia, NIG: Inner Niger Delta, NIL: Eastern Nile, LIM: 3 

Limpopo basin and GHA: Great Horn of Africa).  Dashed lines extend from 5th to 95th 4 

percentile of estimations, boxes extend from 25th to 75th percentile and middle horizontal 5 

lines within each box indicate the mean for each region. 6 
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 1 

Figure 8. Fractional area of each region under SPI, SPEI and SM and PET z-scores below -1.0 2 

for the period 1998-2010. (OER: Oum er-Rbia, NIG: Inner Niger Delta, NIL: Eastern Nile, 3 

LIM: Limpopo basin and GHA: Greater Horn of Africa).  4 
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 1 

Figure 9. Correlation coefficient of fractional areas under drought between different datasets 2 

and thresholds. The horizontal axis represents the SPI threshold below which areas are 3 

considered to be under drought.  4 

 5 

 6 

 7 

 8 

 9 



 

 34 

 1 

Figure 10. Relative bias between the estimation of fractional areas under drought for different 2 

datasets and thresholds. The horizontal axis represents the SPI threshold below which areas 3 

are considered to be under drought. 4 


