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Abstract

Large-scale variations of terrestrial water storages and fluxes are key aspects in the
Earth system, as they control ecosystem processes, feed back on weather and climate,
and form the basis for water resources management. However, relevant observations
are limited and process models used for estimation are highly uncertain. These models5

rely on approximations of terrestrial processes as well as on location-specific param-
eters (e.g. soil types, topography) to translate atmospheric forcing (e.g. precipitation,
net radiation) into terrestrial water variables (e.g. soil moisture, river flow). To date it is
unclear which processes and parameters should be included to model terrestrial water
systems on regional to global scales. Using a data driven approach we show, that skill-10

ful estimates of monthly water dynamics in Europe can be derived from information on
atmospheric drivers alone and that the inclusion of land parameters does not improve
the estimate. The results highlight that substantial parts of terrestrial water dynamics
are controlled by atmospheric forcing, which dominates over land parameters. This is
not reflected in current model developments, which are striving at incorporating an in-15

creasing number of small scale processes and related parameters. Our results thus
point at major potential for theory and model development, with important implications
for water resources modelling, seasonal forecasting and climate change projections.

1 Introduction

Models of terrestrial water systems, commonly termed “Land Surface Models” (LSMs)20

or “Global Hydrological Models” (GHMs), are currently used to estimate terrestrial wa-
ter dynamics at continental and global scales (Koster and Milly, 1997; Oki and Kanae,
2006; Dirmeyer et al., 2006; Haddeland et al., 2011; Mueller et al., 2011b; Gudmunds-
son et al., 2012a, b; Seneviratne et al., 2012) – either in offline mode (focusing on
terrestrial water) or embedded into Global Climate Models. These models relate at-25

mospheric forcing variables (e.g. precipitation, net radiation) to terrestrial water vari-
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ables such as soil moisture, evapotranspiration or runoff. Their common structure can
be summarised using the vertical water balance equation, which describes temporal
changes in Sx ,t , the water stored in a land unit at location x and time step t , as

dSx ,t

dt
= Px ,t −Ex ,t −Qx ,t , (1)

where Px ,t is precipitation, Ex ,t is evapotranspiration and Qx ,t is runoff, the water that5

drains out of the system and eventually feeds into rivers. In LSMs/GHMs, evapotran-
spiration and runoff are modelled as functions of the terrestrial water storage such that
Ex ,t = G(Sx ,t ,Epx ,t ,Πx ) and Qx ,t = H(Sx ,t ,Px ,t ,Πx ), where Epx ,t is the atmospheric wa-
ter demand, also referred to as potential evapotranspiration, and Πx is a set of locally
varying land parameters related e.g. to soil types, topography, or vegetation cover. Dif-10

ferent LSMs/GHMs are then defined by differences in the functions G(·) and H(·), which
are representations of the relevant physical processes. These processes include e.g.
the percolation of water through soils or root water uptake by plants. In practice, Eq. (1)
is solved for discreet land units, so called grid cells. For offline simulations, these grid
cells have typically dimensions comparable to the size of headwater catchments, i.e.15

hundreds to thousands square kilometres (Gudmundsson et al., 2012a). Consequently
many of the processes that determine terrestrial water movements cannot be repre-
sented explicitly but have to be parametrised for the scale of implementation. Uncer-
tainties in both the parametrisation (Sivapalan et al., 2003; Koster and Milly, 1997;
Clark et al., 2011; Gupta et al., 2012) as well as in mapped values of land parameters20

(Sivapalan et al., 2003; Bastidas et al., 2006; Teuling et al., 2009; Fischer et al., 2011)
are regularly highlighted as key limitations of model performance. While possible ways
to improve LSMs/GHMs are vividly debated by the community (van den Hurk et al.,
2011; Wood et al., 2011, 2012; Beven and Cloke, 2012), it remains unclear whether
current limitations in model performance are mostly related to uncertain estimates of25

land parameters, or if a refinement of model formulation is necessary.
In order to discriminate between the impacts of model structure and land parameters

on LSM/GHM performance, we confront here the above outlined representation of
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terrestrial water systems with the radical hypothesis that hydrological variability at any
location in space does solely depend on present and past atmospheric conditions –
and not on locally varying land parameters. This so-called “Constant Land Parameter
Hypothesis” (CLPH) assumes that one single set of model parameters is valid at every
location in space (Fig. 1). This Hypothesis is based on observations that suggest that5

runoff dynamics in Europe can be separated in small- and large-scale phenomena
(Sect. 2). The CLPH is formally introduced in Sect. 3 and tested in Sect. 4, where
we first introduce a CLPH based null-model which we subsequently try to reject using
a suite of alternative models. Finally, the results are discussed, emphasising possible
implications for large-scale hydrological modelling.10

2 Separation of scales

2.1 Theory

It is a common notion that hydrological phenomena have characteristic space and time
scales (Klemeš, 1983; Blöschl and Sivapalan, 1995). Although the term scale is only
vaguely defined in the context of hydrology, we adopt here the qualitative definition that15

the spatial (temporal) scale of a process is the characteristic length (duration) of the
related phenomenon (Storch and Zwiers, 1999). For non periodic phenomena the char-
acteristic length (duration) can be quantified using the de-correlation distance (time),
i.e. the distance (time interval) at which two observations do not share common vari-
ations (Skøien et al., 2003; Storch and Zwiers, 1999). Empirically the de-correlation20

distance (time) is often estimated as the lag at which the spatial (temporal) autocorre-
lation function reaches 1/e.

For the analysis of terrestrial water systems, it is useful to recall that early consid-
erations on the related physics have shown that a statistical model of soil moisture
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corresponds to a first-order Markov process with the autocorrelation function

r (τ) = exp
(
− τ

Tc

)
(2)

where τ is a time lag and Tc is the de-correlation time (Delworth and Manabe, 1988).
Later, empirical investigations (Vinnikov et al., 1996; Robock et al., 1998; Entin et al.,

2000) have led to the development of the hypothesis that soil moisture dynamics has5

two separated space and time scales: A short scale (order of 10 of meters and 1 day),
where heterogeneous land properties dominate soil moisture dynamics and a large
scale (order of 100 km and 1 month) where large features of the atmospheric forcing are
dominating. More formally, the separation of time scales can be expressed as a mixture
of two autocorrelation functions such that10

r (τ) = ζ exp
(
− τ

TL

)
+ (1− ζ )exp

(
− τ

TA

)
(3)

where TL is the time scale related to heterogeneous land properties, TA the time scale
related to the atmospheric forcing and ζ ε [0,1] is the fraction of variance related to TL.
Note also that TL < TA. Similarly the separation of space scales can be expressed as

r (λ) = ηexp
(
− λ

LL

)
+ (1−η)exp

(
− λ

LA

)
(4)15

where λ is the lag distance, LL is the length scale related to heterogeneous land prop-
erties, LA the length scale related to the atmospheric forcing and η ε [0,1] is the fraction
of variance related to LL.

2.2 Testing the separation of scales for runoff in Europe

While the separation of scales is well documented for soil moisture (Vinnikov et al.,20

1996; Robock et al., 1998; Entin et al., 2000; Crow et al., 2012; Mittelbach and Senevi-
ratne, 2012), its application for other terrestrial water storages and fluxes is less clear.
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The analysis of river flow time series in North America (Lins, 1997) and Europe (Gud-
mundsson et al., 2011a, b) has revealed continental scale regions of temporally ho-
mogeneous runoff variability. These correspond to features in the atmospheric forcing
variables (Barlow et al., 2001; Tootle and Piechota, 2006; Gudmundsson et al., 2011b)
and not to continental scale drainage basins (Lins, 1997). For small scales, some stud-5

ies (e.g. Wood et al., 1988; Blöschl et al., 1995; Woods et al., 1995) highlight that
locally heterogeneous land parameters start to dominate runoff production at spatial
scales smaller than one kilometre. In contrast, a recent investigation (Skøien et al.,
2003) suggested that the spatial scale of runoff lies between 18 and 59 kilometres.
Note, however, that that Skøien et al. (2003) did not assess the existence of two dif-10

ferent characteristic scales, which limits the interpretation of the results in the present
context.

To check whether the hypothesised separation of scales is a valid assumption for
runoff, we test whether Eqs. (3) and (4) are applicable for daily streamflow observations
in Europe. The investigation is based on 426 streamflow series from small undisturbed15

catchments, which are a subset (Stahl et al., 2010) of the European Water Archive
(EWA). The EWA is collected by the European Flow Regimes from International Ex-
perimental and Network Data (Euro-FRIEND) project (http://ne-friend.bafg.de/servlet/
is/7413/, accessed: 26 September 2013) and held by the Global Runoff Data Cen-
tre (GRDC, http://grdc.bafg.de, accessed: 26 September 2013). Following a previous20

study (Skøien et al., 2003), daily runoff rates were log transformed and seasonal effects
were removed. The deseasonalisation strictly follows recommendations on an optimal
removal of the seasonal cycle in the mean and the variance using harmonic regres-
sion (Hipel and McLeod, 1994; McLeod and Gweon, 2013). Temporal correlation was
first estimated for each gauging station separately. The maximum time lag was limited25

to 120 days to reduce effects of climate induced interannual variability, which is report-
edly strong in the data under investigation (Gudmundsson et al., 2011b). The estimated
temporal autocorrelation functions from the individual stations were finally averaged as
in previous studies (Entin et al., 2000; Skøien et al., 2003; Vinnikov et al., 1996) to
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obtain an estimate of the mean runoff autocorrelation function in Europe. Spatial cor-
relation was estimated using Morans I (Moran, 1950; Legendre and Legendre, 1998)
for each time step separately with a spatial bin width of 10 km. This bin width is a com-
promise between having enough station pairs per bin and the ability to resolve small
scale processes (the first bin contains 31 pairs, the median number of pairs: 490). The5

analysis of spatial correlation was limited to a maximum lag distance of 400 kilometres
to reduce the effect of large scale climate gradients, which impact European runoff dy-
namics (Gudmundsson et al., 2011a, b). Finally the spatial correlation functions were
then averaged over all time steps, resulting in an estimate of mean spatial correlation
for the time period under investigation.10

Figure 2 shows the estimated temporal and spatial correlation functions for runoff in
Europe and Table 1 reports the parameters of Eqs. (3) and (4) fitted to the data. Note,
however, that the lower limit of LL was set to 10 km for the estimation procedure, to
account for the limited resolution of the observed spatial autocorrelation function. The
small p values of all parameters show that the hypothesised separation of scales is15

supported by observations.

3 The constant land parameter hypothesis

Several processes underlying terrestrial water dynamics are best understood on small
scales. The associated equations (e.g. Richards equation) depend on locally varying
land parameters (e.g. hydraulic conductivity) and capture phenomena occurring on20

a length scale of meters (e.g.: infiltration of water into soils). This reductionistic under-
standing, however, comes with a series of issues if larger scale phenomena such as the
catchment or grid-cell scale water balance are targeted: Many of the necessary land
parameters cannot be observed with the required spatial resolution, and the computa-
tional demand makes the implementation at spatial scales resolving these processes25

infeasible. Consequently, developing macroscopic theories that capture spatial and
temporal averages of the target phenomena is necessary. Such developments will in
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the following be referred to as process up-scaling. Following previous studies (Blöschl
and Sivapalan, 1995; Wood, 1998) process up-scaling can be expressed as follows:
A small scale representation of a water flux vs,t (e.g. evapotranspiration, drainage or
runoff) at the spatial location x and the time t is given by

vx ,t = f (sx ,t , ix ,t ,πx ) (5)5

where sx ,t , ix ,t and πx stand for storage (e.g. soil moisture), input (e.g. precipitation) and
land parameters (e.g. hydraulic conductivity). An up-scaled process representation can
then be deduced by integrating over a large spatial domain (X ) and a long time interval
(T ) such that:

V =
∫

tεT

∫
xεX

f (sx ,t , ix ,t ,πx )dt dx = F (S, I,Π) (6)10

where F (·) is the up-scaled process description, V is the total water flux, S the total
storage, I the total input and Π a large scale summary of land parameters relevant
for F (·). For some processes, Eq. (6) can be solved analytically, but the nonlinearity of
the system have limited these approaches to special cases with strong assumptions
(see e.g. Beven, 2006b, and references therein). An alternative (and often considered)15

approach is to specify F (·) in an ad-hoc fashion based on simple abstractions of the
system. A classical example for this are (linear) reservoir (or bucket) models. (See
e.g. Clark et al. (2008, 2011) for a comprehensive overview on popular formulations).
Such models often appeal through their simplicity but lack a rigorous physical basis.
Moreover the resulting land parameters do often not have an unambiguous physical20

interpretation, making it difficult to derive them from observable land properties.
Assuming that F (·) is known and that S and I can be satisfactorily approximated by

other means, the major challenge for application is the identification of Π. Unfortunately
many of the relevant land parameters are neither directly observable nor spatially ho-
mogenous, hampering precise estimation. Therefore hydrology has traditionally used25
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inverse modelling approaches, identifying Π by calibration. While this can provide prac-
tical solutions for specific systems, it comes with several scientific caveats. It has for
example long been noted that the calibration procedure can render an unambiguous
physical interpretation impossible (Beven, 2006a). Moreover, the inverse problem can-
not be solved for systems that have insufficient observations for calibration (Sivapalan5

et al., 2003), limiting the application to well monitored systems.
The above outlined separation of scales of terrestrial water storages and fluxes

(Sect. 2, Fig. 2) raises question of the role of land parameters in process up-scaling. In
particular, one can ask which effect this separation of scales has on the upscaling inte-
gral (Eq. 6) if the integration time and/or the area of integration exceed the small scale10

at which the influence of land parameters is dominating (i.e.: T � TL and/or
√

X � LL).
Here we hypothesise that the impact of changes in land parameters on F (·) is small
compared to the influence of the atmospheric input if the integration domain exceeds
the space or time scale at which land properties dominate terrestrial water dynamics.
More formally this implies15

O
(∣∣∣∣∂F (·)

∂Π

∣∣∣∣)� O
(∣∣∣∣∂F (·)

∂I

∣∣∣∣) (7)

and suggests that process up-scaling may result in parametrisations that are indepen-
dent of locally varying land parameters such that

V = F ∗(S, I), (8)

where F ∗(·) is an up-scaled process description that is independent of locally vary-20

ing land parameters. We refer to Eq. (8) as the Constant Land Parameter Hypothesis
(CLPH, see also Fig. 1).
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4 Testing the CLPH

4.1 Setup

In the following we test the CLPH by first constructing a null-model, based on the as-
sumption that terrestrial water dynamics can be predicted on the basis of atmospheric
forcing only. The explanatory power of the resulting model is then compared to the5

power of more sophisticated models that explicitly account for spatially varying land
parameters. We reject the CLPH only if any of the alternative models performs signif-
icantly better. The rationale underlying this approach is motivated by Occam’s razor,
which emphasises that theories based on parsimonious assumptions are more pow-
erful than their complex counterparts. In other words, an increased level of detail in10

system description needs to be justified by a higher explanatory power of the resulting
model.

4.1.1 The CLPH model

To quantitatively assess the CLPH, a few pragmatic assumptions have to be made: (1)
As systematic model evaluation relies on the abundance of observations, we focus on15

runoff from small catchments in Europe, a quantity that has been monitored for decades
with relatively high spatial coverage; (2) Spatial and temporal resolution are chosen to
be well above the space and time scales at which land properties are expected to
have a dominating influence on terrestrial water dynamics (Fig. 2). Spatial resolution is
set to 0.5◦ ×0.5◦, which is a typical resolution of LSMs/GHMs and corresponds to the20

resolution of global scale estimators of atmospheric variables. Temporal resolution is
chosen to be monthly, which is well above the typical LSM/GHM resolution but also
a common resolution for many large scale applications. Having these assumptions in
mind, it is possible to formulate the hypothesis that runoff (Qx ,t ) at a land unit (x) and
at any time step (t) solely depends on present and past atmospheric conditions, and25
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not on land properties. More specifically this hypothesis is expressed as:

Qx ,t = F ∗(τn(I1
x ,t ),τn(I2

x ,t ), . . .,τn(Ip
x ,t )), (9)

where I1
x ,t , . . ., I

p
x ,t are atmospheric forcing variables such as precipitation, temperature

or humidity. The time lag operator τn is defined as τn(Ix ,t ) = [Ix ,t , Ix ,t−1, . . ., Ix ,t−n] and
gives access to atmospheric conditions over the past n time steps (months), allowing5

to approximate the time integration in Eq. (6). The practical challenge is then to identify
F ∗, which is achieved using a machine learning tool called Random Forest (Breiman,
2001), an approach that is inspired by recent advances in estimating land-atmosphere
fluxes using similar techniques (Jung et al., 2009, 2010, 2011; Zeng et al., 2012). (Note
that these previous studies rely on location specific vegetation indices and are thus not10

compatible with the CLPH). The application of machine learning tools such as Random
Forests to identify F ∗ has the advantage that no prior assumptions on the relevance of
specific processes has to be made. The resulting model is referred to as the CLPH-
Random Forest Model (CLPH-RFM).

The CLPH-RFM is set up assuming Eq. (9) and taking the atmospheric conditions15

of the past year into account (n = 11 months). We found that the results were more
stable if the observed runoff-rates were log-transformed before model training. Details
on Random Forests (Breiman, 2001) and specific parameter choices can be found in
the Appendix A.

The CLPH-RFM is trained using runoff estimates based on streamflow observations20

from the EWA. As in previous studies (Gudmundsson et al., 2012a, b) streamflow ob-
servations from the 426 catchments where first converted into runoff rates per unit area
and the coordinates of the corresponding gauging stations were assigned to the 0.5◦

grid cells defined by the atmospheric forcing data. If more than one gauging station
occurred in one catchment the area weighted average runoff rate was used. This pro-25

cedure results in 298 grid-cells with observed runoff. Estimates of atmospheric near-
surface variables were taken from the WATCH (Water and Global Change) project
(http://www.eu-watch.org/, accessed: 26 September 2013) Forcing Data (WFD) (Wee-

13201

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/13191/2013/hessd-10-13191-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/13191/2013/hessd-10-13191-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.eu-watch.org/


HESSD
10, 13191–13229, 2013

Do land parameters
matter?

L. Gudmundsson and
S. I. Seneviratne

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

don et al., 2011). The analysis is based on the full WFD covering the following set of
variables: Rainfall, snowfall, air temperature, incoming long and short wave radiations,
humidity, surface pressure and wind speed.

4.1.2 Alternative models

The CLPH is tested by comparing the skill of the CLPH-RFM to an alternative model,5

which considers land parameters such that

Qx ,t = F (τn(I1
x ,t ),τn(I2

x ,t ), . . .,τn(Ip
x ,t ),Πx ), (10)

where Πx incorporates slope and information on soil texture, both being widely used in
LSM/GHM parameterisations. Median grid-cell slope was derived from the HYDRO1k
dataset available from the US Geological Survey. Information on soil texture for each10

grid-cell (median fraction of clay, silt, sand, gravel) were taken from the Harmonized
World Soil Database (version 1.2) (FAO et al., 2012). The setup of this alternative model
is identical to the CLPH-RFM, except for the inclusion locally varying land parameters.

The CLPH-RFM is further confronted with runoff simulations from nine state-of-the-
art LSMs/GHMs (Gudmundsson et al., 2012a, b), developed by the WATCH project.15

Details on the simulation setup, key features of the participating models and further
model validation can be found in the literature (Gudmundsson et al., 2012a, b). All par-
ticipating models were forced using the WFD which guarantees a fair comparison with
the CLPH-RFM introduced in this study. The LSM runoff simulations were augmented
by the multi-model mean (MMM).20

4.1.3 Model skill and hypothesis testing

Model skill of all participating models at locations with observations is evaluated using
the skill score

S =
A−Aref

Aperf −Aref
, (11)
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where A is a measure of accuracy between the observed and the modelled values, Aref
is the measure of accuracy computed for a reference model, and Aperf is the perfect
accuracy (Wilks, 2011). Here the mean annual cycle of monthly runoff observations is
used as reference. The accuracy (A) is quantified using the mean square error com-
puted on the logarithm of the observed and modelled values. The logarithmic transfor-5

mation is necessary, as runoff has a very skewed distribution which would bias model
skill toward extremely wet conditions.

The skill of the Random Forest Models (RFM) (Eqs. 9 and 10) in estimating runoff
variability at locations that were not used for model training is assessed using a ten-fold
cross validation. For this, the grid cells with observations were randomly stratified into10

ten subsamples. The CLPH-RFM was then trained using only nine of the subsamples
and its skill was quantified using the grid cells of the remaining subsample. This proce-
dure was repeated ten times, until model skill at each grid cell was estimated. Note that
this validation strategy makes the analysis compatible with the Prediction of Ungauged
Basins (PUB) initiative (Sivapalan et al., 2003; Hrachowitz et al., 2013; Parajka et al.,15

2013) of the International Association of Hydrological Sciences.
The CLPH is tested by comparing the skill of the CLPH-RFM to the skill of all

alternative models. To do so, the median of the pairwise difference in skill, δskill =
median(SCLPH

x −SALT
x ), is assessed, where SCLPH

x is the skill of the CLPH-RFM and
SALT

x is the skill of an alternative model at locations with observations (x). Positive val-20

ues indicate that the performance of the CLPH-RFM is superior in more than halve
of the instances. Significance is assessed using 95 % confidence intervals of δskill

(bias corrected and accelerated bootstrap estimates, (Mudelsee, 2010), 104 repli-
cations). The CLPH is rejected if δskill < 0 (including confidence intervals) for any
of the alternative models. The analysis of median difference in skill is augmented25

by Prskill = Pr(SCLPH
x > SALT

x ), the proportion of locations with observations where the
CLPH-RFM outperforms the alternative model. Values of Prskill > 0.5 indicate that that
the CLPH-RFM has superior performance in more than 50 % of the cases. Signifi-
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cance is assessed using 95 % bootstrap confidence intervals. The CLPH is rejected if
Prskill < 0.5.

4.2 Results

4.2.1 Validating the CLPH-RFM

The CLPH-RFM (Eq. 9) proves, despite its limited assumptions, to be a reason-5

able estimator of monthly runoff at locations that were not used for model training
(Fig. 3a–c, Appendix B). In 69 % of the grid cells it is found to be closer to the obser-
vations than a primitive model based on repetitions of the mean annual cycle and has
an average skill well above zero (median skill: 0.35). This shows that the CLPH-RFM
captures important aspects of runoff dynamics in Europe, even though some features10

remain unexplained. The CLPH-RFM proves further to be a reliable basis for estimating
river discharge from pan-European river basins (Fig. 3d–g). (Observed continental river
discharge and corresponding drainage areas are a subset of a previously assembled
collection, Mueller et al., 2011a.)

In order to get an impression of the physical integrity of the CLPH-based runoff esti-15

mates with respect to other variables the long-term difference between the forcing pre-
cipitation and CLPH-RFM runoff was compared to a comprehensive estimate of land
evapotranspiration from the LandFlux-EVAL synthesis product (Mueller et al., 2013).
Figure 4 shows the mean evapotranspiration derived from the CLPH-RFM and the
LandFlux-EVAL synthesis product. Overall the two products agree well (R2 = 0.66),20

and the CLPH-RFM based estimate lies in the majority of the cases within the un-
certainty bounds of the LandFlux-EVAL product. Note that the CLPH-RFM estimate
does have small negative values in some parts of Scandinavia, which is related to
a previously documented bias in the precipitation forcing (Gudmundsson et al., 2012b;
Kauffeldt et al., 2013).25

The reasonable performance of the CLPH-RFM with respect to (1) grid cell runoff,
(2) discharge from continental drainage basins and (3) large-scale Evapotranspiration
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demonstrates the fidelity of the CLPH-RFM out of its expected comfort zone. Conse-
quently these results suggest that the CLPH-RFM is a suitable null-hypothesis to as-
sess the added value of more complex models. Note also that the CLPH-RFM can be
used as a pragmatic estimator of continental scale terrestrial water dynamics (Fig. 5).
Such reconstructions can be produced in near real time, as they solely rely on esti-5

mates of atmospheric variables, which are readily available from weather services.

4.2.2 Testing the CLPH-RFM

The CLPH is finally tested by comparing the skill of the CLPH-RFM (Eq. 9) to the skill
of the alternative models. The skill of the Random Forest model taking land properties
into account (Eq. 10) cannot be distinguished from the CLPH-RFM (Fig. 6, Appendix10

B and C), implying that the CLPH cannot be rejected on the basis of this experiment.
This result shows that the impact of the tested land parameters on terrestrial water
dynamics is small compared to the influence of atmospheric forcing at the space and
time scales considered.

Overall, the CLPH-RFM displays a significantly higher skill in capturing observed15

monthly runoff rates than any of the LSM/GHM-based estimates (Fig. 6, Appendix
B and C). Also this result does not allow us to reject the CLPH and suggests that
LSMs/GHMs do not fully exploit the information available in the atmospheric forcing.

5 Discussion and conclusions

We note that issues common to all statistical applications can limit the interpretation of20

the presented results. Uncertainty in the used data, correlations between atmospheric
forcing and land parameters, as well as an incomplete list of possible explanatory vari-
ables can influence the analysis. However, these limitations do also imply that the effect
of the considered land parameters on large scale features of terrestrial water dynamics
may have a similar order of magnitude as the mentioned disturbing factors.25
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The fact that the CLPH cannot be rejected on the basis of the presented experiments
suggests that the influence of typically considered land parameters on runoff dynam-
ics is small compared to the impact of atmospheric forcing on the considered tempo-
ral (monthly) and spatial (regional ≈ 50 km) scales. The physics underlying this result
can be understood by recognising the scale dependence of terrestrial water dynamics5

(Sects. 2 and 3, Fig. 2). Only phenomena with small space and time scales are ex-
pected to be strongly controlled by processes that depend on land properties, whereas
large scale phenomena are expected to be dominated by atmospheric drivers. Conse-
quences of this scale dependence are twofold: (1) only models with very high spatial
and temporal resolution can explicitly account for the influence of land parameters on10

terrestrial water dynamics; (2) but, conversely, the representation of large-scale terres-
trial water dynamics is apparently little affected by these high resolution processes.

Current-generation LSMs/GHMs target terrestrial water dynamics at a temporal res-
olution (sub-daily) that requires consideration of small scale processes. However, the
mismatch between their temporal and spatial resolution raises the question of whether15

this can be successful. To date, hydrology has not yet established unambiguous rela-
tions of model parameters to observable land properties (Sivapalan et al., 2003; Beven
and Cloke, 2012; Hrachowitz et al., 2013; Parajka et al., 2013). This, together with the
difficulties associated with a detailed mapping of the sub surface, implies that an in-
crease of model resolution is unlikely to resolve this issue. In addition, these models20

are often used at scales not requiring this detailed process representation (e.g. within
Earth System Models used for climate change scenarios, see Fig. 2).

The good performance of the CLPH-RFM suggests that the influence of land param-
eters may be negligible for phenomena occurring at monthly and regional scales. This
is not reflected in current LSM/GHM development, which is dominated by the attempt25

to incorporate an increasing number of small-scale processes (van den Hurk et al.,
2011). Consequently the presented results open new avenues for theory and model
development. The option to neglect a large number of small scale processes can e.g.
facilitate the analytic assessment and can possibly help to establish well understood
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limits of predictability. Scale analysis of the relevant equations and observations can
help to clarify meaningful model resolutions. Likewise the predictive uncertainty may
be substantially reduced as the number of observationally ill-constrained parameters
decreases.

In conclusion, our findings highlight that land parameters are less influential on large5

scale features of terrestrial water systems than commonly assumed and imply that
a rethinking of optimal strategies in land surface and hydrological model development
is necessary. The comparatively high skill of the CLPH-RFM suggests that substan-
tial progress in this field can be achieved in the coming years. Eventually, a better
understanding of terrestrial water systems has important implications in a number of10

research applications ranging from water resources modelling to seasonal forecasting
and climate change projections.

Appendix A

Random Forests

Random Forests, RF, (Breiman, 2001) are based on large ensembles of a modified15

version of Classification and Regression Trees, each grown on a bootstrap sample of
the data. Despite its considerable complexity, the RF algorithm (Breiman, 2001; Liaw
and Wiener, 2002; Hastie et al., 2009) can be summarised in a simplified manner as:

1. Draw B bootstrap samples from the data.

2. For each bootstrap sample, grow a Random Forest tree by recursively repeating20

the following steps:

(a) Select m of the available predictor variables at random.

(b) Among the m selected variables: find the one with the split point that best
partitions the data.
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(c) Split the data into two nodes and repeat the two previous steps on each node
until the terminal node has reached the minimum node size n.

3. The RF prediction for new data is the average of the predictions of the B individual
trees.

The free parameters of RFs need to be specified by the user. We opted for B =5

1000, n = 10, and m = p/3, where p is the number of predictor variables, following
recommendations in the literature (Hastie et al., 2009). In general, we found the results
to be little sensitive to the parameter choice as long as the number of grown trees (B)
was large enough.

An important feature of RF is that they allow for estimating the error rate using the10

training data only:

1. At each of the B bootstrap iterations: Predict the data that are not in the bootstrap
sample (also called “out-of-bag” or OOB data).

2. Average the OOB predictions of the B trees. Note that on average each data point
will be 36 % of the instances OOB.15

3. Calculate the OOB error (in the context of this study: skill score, Eq. (11) by com-
paring the OOB predictions to the observations.

OOB errors are approximately equal to K -fold cross validation errors (Breiman, 2001,
see also Appendix B) and are computationally more efficient to estimate, as they do not
depend on K training iterations. However, in the context of this study, the OOB estimate20

was not suitable as it does not allow to systematically evaluate model performance at
spatial locations that were not used for model training.
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Appendix B

Additional model validation: grid-cell scale

In order to increase confidence in the results, a series of additional validation exper-
iments were made, aiming at assessing the stability of the Random Forest Models
(RFMs) with respect to the influence of (a) the chosen performance metric, (b) the5

(cross-) validation strategy, and (c) the impact of forcing variables. Section B1 briefly
describes the additional validation experiments and Sect. B2 summarises the most
important results.

B1 Setup of additional validation experiments

B1.1 Performance metrics10

It can happen that models perform well with respect to a particular performance metric,
but less well with respect to others. To draw robust conclusions it is thus important to
assess the model performance using several metrics. Therefore we augment the anal-
ysis presented in this study using additional performance metrics. Table B1 provides
an overview of the additional performance metrics that are considered here, most of15

which are based on Eq. 11.

B1.2 Validation strategy

In the main body of the article, model skill is estimated using 10-fold cross-validation,
leaving subsequently 10 % of the grid cells out (later referred to as “cv-space”). This
approach is chosen as it allows for a direct testing of the CLPH. However, the ability of20

the model to estimate runoff variability over time periods that were not used for model
training is also of interest. Therefore a second cross validation experiment has been
conducted, where the data were split into ten continuous time blocks (later referred to
as “cv-time”).
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For future applications of Random Forests in large-scale hydrological modelling, it is
interesting to know whether the OOB estimates of model performance (see Appendix
A) are comparable to cross-validation estimates. The answer to this is not straightfor-
ward, as the strong spatial and temporal correlation of the considered variables could
lead to overly optimistic OOB errors.5

B1.3 Influence of forcing variables

In the main body of article (Figs. 3–6) the full WATCH Forcing Data (Weedon et al.,
2011) (WFD) are used (later referred to as “FULL forcing”), including: rainfall, snowfall,
air temperature, incoming long- and shortwave radiation, humidity, surface pressure
and wind speed. We opted to focus on the FULL forcing, as LSMs/GHMs typically take10

most of these variables into account. However, catchment-scale hydrological modelling
is usually based on precipitation (the sum of rainfall and snowfall) and temperature only,
which raises the question whether the RFM can be skillful if only these variables are
considered (later referred to as “PT forcing”).

B2 Results of additional validation experiments15

Figure B1 shows the results of the additional validation experiments and puts them into
context by comparing them to the performance of the LSMs/GHMs under considera-
tion.

B2.1 Performance metrics

The RFM-based estimates of runoff variability in Europe systematically outperform20

the LSM/GHM based estimates for the majority of the available performance metrics
(Fig. B1). The fact that BIAS and BIASlog computed for the RFM are hardly distinguish-
able from the LSMs/GHMs shows that biases are only a secondary issue in model
performance. For R2 the Multi Model Mean (MMM) of all LSMs/GHMs has a higher
median performance than one of the RFM based estimators. Note, however, that the25
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spread in R2 is much larger for MMM, indicating issues with the stability of the MMM
predictions.

The difference between the RFM and the LSMs/GHMs is largest for climatology
– R2 and climatology – R2

log. This is consistent with previously documented issues

(Gudmundsson et al., 2012b) and shows that major improvements of LSM/GHM per-5

formance can be made by correctly accounting for factors controlling the seasonality
of terrestrial water dynamics. The picture is less clear for the anomaly correlations
(anomaly – R2 and R2

log). In this case some LSMs/GHMs have a performance that is
comparable with that of the RFM.

B2.2 Validation strategy10

Overall there are only marginal differences in the performance metrics estimated on
the basis of spatial (cv-space) or temporal (cv-time) cross validation.

Only for the RFM, taking locally varying land parameters into account, major differ-
ences occur. The fact that the temporal cross-validation leads to systematically lower
performances points to issues with over-fitting if (non-informative) static predictors (i.e.15

land parameters) are included. Overall the results indicate that the RFM is not only
suitable for estimating runoff variability at locations without observations, but also for
estimating runoff variability at non observed time intervals (e.g. for filling missing values
in time series or for extrapolating the runoff records)

The OOB performance metrics are on average always larger than the ones based20

on cross-validation estimates. This indicates that the OOB estimates of model per-
formance are positively biased. However, the biases are small, suggesting that OOB
estimates of model performance can be used in future applications of Random Forests
for modelling hydrological variablity on continental scales.
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B2.3 Influence of forcing variables

In a direct comparison, estimates based on the FULL set of forcing variables do always
outperform the estimates only based on precipitation and temperature (PT forcing).
However, the differences are often small, suggesting that the additional variables in the
FULL forcing do only add little extra information. It is further noteworthy, that the RFM5

forced with precipitation and temperature only does also compare favourably to the
LSM/GHM predictions. This result shows that skillfull estimates of continental scale
runoff dynamics in Europe can be produced based on precipitation and temperature
data only.

Appendix C10

Additional model validation: continental scale river discharge

Table C1 compares the ability of the CLPH-RFM to estimate continental scale river
discharge with the performance of the considered alternative models. The performance
of the CLPH-RFM is not distinguishable from that of the alternative RFM taking land
parameters into account.15

Differences between the CLPH-RFM and the LSMs/GHMs are more pronounced.
The CLPH-RFM overestimates river discharge in most of the cases, whereas the
LSMs/GHMs underestimate this quantity. This difference does suggest that biases in
the forcing data may have an influence on model performance. Note, however, that
the large differences among the LSMs/GHMs do also point towards issues with their20

parametrisations. Correlation between observed and modelled monthly river-discharge
is not sensitive to biases in the forcing data and reflects the models’ ability to capture
important dynamical features. The fact that the correlations of the LSMs/GHMs are sys-
tematically lower if compared to the CLPH-RFM shows that differences in performance
are not only related to biases in the forcing data, but also related to model formulation.25
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Table 1. Temporal and spatial scales of daily runoff in Europe: estimate, standard error and
p value (t test) of the scaling models (Eqs. 3 and 4) fitted to observed temporal and spatial
correlation functions using nonlinear least squares regression. Note, that the lower limit of LL
was set to the resolution of the empirical spatial correlation function (10 km).

Temporal Spatial
ζ [–] TL [days] TA [days] η [–] LL [km] LA [km]

Estimate 0.50 7.4 68.3 0.51 ≤ 10 180.5
Standard Error 3.8×10−3 0.1 0.6 0.04 2.9 19.6
p value < 0.001 < 0.001 < 0.001 < 0.001 0.002 < 0.001

13220

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/13191/2013/hessd-10-13191-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/13191/2013/hessd-10-13191-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 13191–13229, 2013

Do land parameters
matter?

L. Gudmundsson and
S. I. Seneviratne

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table B1. Additional performance metrics.

Notation Description

MSE-skill: Skill score (Eq. 11) using the Mean Square Error (MSE) as mea-
sure of accuracy and the mean annual cycle as reference model.

MSElog-skill: Same as MSE-skill, but computed on the logarithm of the data.
This score is also used in the main body of the article.

MAE-skill: Skill score (Eq. 11) using the Mean Absolute Error (MAE) as mea-
sure of accuracy and the mean annual cycle as reference model.

MAElog-skill: Same as MAE-skill, but computed on the logarithm of the data.
MEf: Skill score (Eq. 11) using the MSE as measure of accuracy and

the longterm mean as a reference model. MEf is also known as
the model efficiency (Nash and Sutcliffe, 1970) which is a popular
choice in hydrological modelling.

MEflog: Same as MEf, but computed on the logarithm of the data.
BIAS: Difference between modelled and observed mean runoff. Neg-

ative (positive) values indicate that the models underestimate
(overestimate) runoff.

BIASlog: Same as BIAS, but computed on the logarithm of the data.
R2: The square of the product-moment correlation coefficient.
R2

log: Same as R2, but computed on the logarithm of the data.

climatology – R2: The square of the product-moment correlation coefficient be-
tween the observed and the modelled mean annual cycle.

climatology – R2
log: Same as climatology – R2, but computed on the logarithm of the

data.
anomaly – R2: The square of the product-moment correlation coefficient be-

tween the observed and the modelled monthly anomalies.
anomaly – R2

log: Same as anomaly – R2, but computed on the logarithm of the
data.
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Table C1. Ability of the models under consideration to estimate monthly river discharge from
several continental scale basins in Europe: displayed are the longterm Bias, the correlation
of observed and modelled monthly river discharge (R2) and the correlation of observed and
modelled monthly anomalies (R2

ano).

Ebro Elbe Garonne Loire Po Rhine Rhone Seine Weser

Bias

CLPH 0.32 0.25 0.42 0.26 −0.34 0.11 0.21 0.16 0.14
VLPH 0.32 0.27 0.45 0.25 −0.32 0.11 0.21 0.18 0.13
GWAVA −0.15 −0.22 −0.57 −0.38 −1.23 −0.77 −0.77 −0.31 −0.44
H08 −0.04 −0.17 −0.10 −0.08 −1.07 −0.35 −0.36 −0.10 −0.19
Htessel −0.22 −0.40 −0.70 −0.58 −1.37 −1.03 −1.03 −0.62 −0.68
Jules −0.35 −0.45 −1.01 −0.69 −1.80 −1.24 −1.46 −0.65 −0.73
LPJmL 0.11 0.01 −0.23 −0.03 −1.16 −0.48 −0.59 −0.01 −0.11
MATSIRO −0.29 −0.32 −0.82 −0.56 −1.31 −1.06 −1.16 −0.53 −0.57
MPI-HM 0.12 0.05 0.03 −0.03 −0.50 −0.13 −0.08 −0.16 −0.10
Orchidee 0.19 0.01 −0.00 −0.03 −0.79 −0.38 −0.29 0.09 −0.23
WaterGAP 0.06 −0.20 −0.41 −0.30 −0.27 −0.43 −0.37 −0.37 −0.38

R2

CLPH 0.69 0.79 0.82 0.89 0.40 0.85 0.83 0.84 0.90
VLPH 0.68 0.78 0.82 0.89 0.35 0.84 0.79 0.83 0.90
GWAVA 0.30 0.17 0.38 0.34 0.25 0.40 0.37 0.31 0.35
H08 0.38 0.26 0.51 0.51 0.44 0.44 0.55 0.43 0.46
Htessel 0.31 0.13 0.42 0.28 0.40 0.29 0.49 0.23 0.22
Jules 0.00 0.01 0.02 0.05 0.21 0.04 0.08 0.03 0.00
LPJmL 0.24 0.09 0.40 0.28 0.36 0.35 0.43 0.26 0.27
MATSIRO 0.64 0.58 0.73 0.67 0.54 0.67 0.72 0.69 0.74
MPI-HM 0.57 0.47 0.78 0.73 0.38 0.62 0.72 0.69 0.67
Orchidee 0.09 0.00 0.20 0.06 0.27 0.11 0.19 0.09 0.06
WaterGAP 0.48 0.37 0.61 0.54 0.40 0.45 0.59 0.40 0.45

R2
ano

CLPH 0.66 0.72 0.80 0.82 0.57 0.84 0.86 0.77 0.87
VLPH 0.65 0.71 0.80 0.81 0.57 0.83 0.85 0.76 0.87
GWAVA 0.28 0.19 0.42 0.34 0.37 0.46 0.49 0.29 0.36
H08 0.35 0.26 0.54 0.51 0.42 0.50 0.64 0.38 0.43
Htessel 0.28 0.17 0.43 0.35 0.36 0.37 0.55 0.26 0.27
Jules 0.06 0.05 0.07 0.05 0.26 0.22 0.30 0.04 0.09
LPJmL 0.22 0.14 0.39 0.29 0.31 0.39 0.49 0.27 0.32
MATSIRO 0.59 0.58 0.68 0.62 0.52 0.66 0.70 0.67 0.74
MPI-HM 0.48 0.33 0.68 0.62 0.42 0.58 0.69 0.55 0.54
Orchidee 0.14 0.08 0.33 0.21 0.28 0.27 0.40 0.19 0.21
WaterGAP 0.38 0.35 0.52 0.47 0.38 0.48 0.63 0.32 0.40
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Present and Past
Atmospheric Forcing

Terrestrial Water Dynamics

 Locally Varying Land Parameters Constant Land Parameters

a b
Present and Past

Atmospheric Forcing

Terrestrial Water Dynamics

Fig. 1. The structure of LSMs/GHMs compared to that of models based on the Constant Land
Parameter Hypothesis (CLPH): (a) LSMs/GHMs; (b) CLPH-based models. For both model
types atmospheric forcing variables are processed by a terrestrial system, resulting in terrestrial
water dynamics. LSMs/GHMs attempt to exploit information on locally varying land parameters
to accurately simulate hydrological dynamics. Models built on the CLPH assume that terres-
trial water dynamics depend only on present and past atmospheric forcing and not on locally
varying land parameters.
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Fig. 2. Time and space scales of runoff in Europe: (a) empirical results show that runoff in
Europe has two space and time scales. A small scale (TL: time scale; LL: space scale), at
which runoff dynamics is strongly influenced by locally varying land properties, and a large
scale (TA: time scale; LA: space scale) at which runoff dynamics is dominated by atmospheric
forcing. Both the spatial and temporal resolution of this study are located well above the scales
at which land properties are expected to have a strong influence on runoff dynamics. (b, c)
Small and large scales are estimated from observed autocorrelations of daily runoff anomalies
in Europe. See text for details.
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Fig. 3. Validation of the CLPH-based Random Forest Model (CLPH-RFM): the left panel shows
validation against grid-cell scale runoff observations: (a) distribution of the CLPH-RFM skill in
estimating monthly runoff rates at locations that were not used for model training. Model skill
is quantified as the relative improvement over the climatology (best value: one, values smaller
than zero indicate that replications of the observed mean annual cycle are a better estima-
tor, see text). Blue line: cumulative distribution. Shading: indication of density, estimated using
a kernel density estimator with Gaussian kernel. (b) Spatial distribution of model skill. The uni-
form distribution indicates the absence of regional biases. (c) Example series, comparing runoff
observations and CLPH-RFM predictions (locations indicated on panel (b); square: arid region;
triangle: temperate region; circle: cold region). The right panel displays the models’ ability to
estimate discharge from continental scale river basins (d, e: Bias: mean bias [mmday−1], R2:
correlation between observed and modeled monthly discharge (f), R2

ano: correlation between
observed and modeled monthly discharge anomalies (g), values smaller than the 0.1 % per-
centile and larger than the 99.9 % percentile are excluded for visualization purposes only).
Monthly discharge is estimated as the mean runoff of all grid-cells within the drainage area of
a large river basin.
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Fig. 4. Comparison of mean evapotranspiration (1989–1995) derived from the CLPH-RFM and
the LandFlux-EVAL synthesis product: (a) Mean evapotranspiration computed as the mean dif-
ference between precipitation and runoff derived from the CLPH-RFM. (b) Mean evapotranspi-
ration from the LandFlux-Eval synthesis product (Mueller et al., 2013). (c) Comparison of the
CLPH-RFM and the LandFux-EVAL estimates of mean evapotranspiration. The vertical bars
denote the interquartile range (IQR) and the range of all 40 data sets entering the LandFux-
EVAL product. The points and crosses indicate the median and mean evapotranspiration of the
LandFlux-EVAL product.
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Fig. 5. Observed and reconstructed (CLPH-RFM) runoff in Europe. In July 1976 large areas
of Europe where stricken by a severe drought, resulting in extremely low runoff rates. In Octo-
ber 2000 damaging floods occurred in several European regions, including Great Britain. Both
events are captured by the observed and the modelled runoff rates.
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Fig. 6. Testing the constant land parameter hypothesis (CLPH): (a) Skill distribution of the CLPH
Random Forest Model (CLPH-RFM, Eq. 9), compared to the skill of an alternative Random
Forest Model, considering spatially varying land parameters (VLP-RFM, Eq. 10) and to an
ensemble of LSMs/GHMs. Skill is computed for grid cells with observations. MMM: multi-model
mean of all LSM/GHM simulations. The models are ranked according to the median skill of
each model. Box-plots: the whiskers cover the region between the 10th and the 90th percentile;
the box covers the inter-quartile range; the bar is the median. (b) Median of the difference in
skill of the CLPH-RFM (SCLPH

x ) and the skill of the alternative models (SALT
x ) at each location

(x) with observations. Values larger than zero indicate that the CLPH-RFM outperforms the
alternative models. (c) Proportion of SCLPH

x > SALT
x . Values> 0.5 indicate that the CLPH-RFM

outperforms the alternative models. The vertical bars are 95 % bootstrap confidence intervals.
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Fig. B1. Additional model validation: the individual panels correspond to the performance met-
rics introduced in Table B1. FULL: RFM forced with all variables available form the WFD. PT:
RFM forced with precipitation and temperature only (see Sect. B1.3). The subscripts of the
model names indicate different validation strategies (seel Sect. B1.2). cv-space: cross valida-
tion in space; cv-time: cross validation in time; oob: out-of-bag estimates of the performance
metrics. Box-plots: the whiskers cover the region between the 10th and the 90th percentile; the
box covers the inter-quartile range; the bar is the median.
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