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Abstract

An empirical period-of-record Flow-Duration Curve (FDC) describes the percentage of time
(duration) in which a given streamflow was equaled or exceeded over an historical period of
time. FDCs have always attracted a great deal of interest in engineering applications because
of their ability to provide a simple and yet comprehensive graphical view of the overall histor-5

ical variability of streamflows in a river basin, from floods to low-flows. Nevertheless, in many
practical applications one has to construct FDC in basins that are ungauged or where very few
observations are available. We present an application strategy of Topological kriging (or Top-
kriging), which makes the geostatistical procedure capable of predicting flow-duration curves
(FDCs) in ungauged catchments. Previous applications of Top-kriging mainly focused on the10

prediction of point streamflow indices (e.g. flood quantiles, low-flow indices, etc.). In this study
Top-kriging is used to predict FDCs in ungauged sites as a weighted average of standardised
empirical FDCs through the traditional linear-weighting scheme of kriging methods. Our study
focuses on the prediction of FDCs for 18 unregulated catchments located in Central Italy, for
which daily streamflow series with length from 5 to 40 years are available, together with infor-15

mation on climate for the same time-span of each daily streamflow sequence. Empirical FDCs
are standardised by a reference index-flow value (i.e. mean annual flow, or mean annual precip-
itation times the catchment drainage area) and the overall deviation of the curves from this ref-
erence value is then used for expressing the hydrological similarity between catchments and for
deriving the geostatistical weights. We performed an extensive leave-one-out cross-validation20

to quantify the accuracy of the proposed technique, and to compare it to traditional regional-
isation models that were recently developed for the same study region. The cross-validation
points out that Top-kriging is a reliable approach for predicting FDCs with Nash & Sutcliffe
Efficiency measures ranging from 0.85 to 0.96 (depending on the model settings) in cross-
validation, very low biases over the entire duration range, and an enhanced representation of the25

low-flow regime.
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1 Introduction

An empirical Flow Duration Curve (FDC) graphically represents the percentage of time (or
duration) in which the streamflow can be equalled or exceeded over a historical period of time
(see e.g. Vogel and Fennessey, 1994). Empirical FDCs are often used to represent the stream-
flow regime of a given catchment when an adequate number of streamflow observations are5

available. A deterministic hydrologist would probably refer to an FDC as a key signature of the
hydrological behaviour of a given basin, as it results from the interplay of climate, size, mor-
phology, and permeability of the basin; a statistical hydrologist would refer to an FDC as the
exceedance probability, or equivalently the complement to the probability distribution function
(cdf) of streamflows (see e.g. Castellarin et al., 2013).10

Because of their ability to provide a simple and yet comprehensive graphical view of the
overall historical variability of streamflows in a river basin, from floods to low-flows, and their
peculiarity of being readily understandable by those who do not have a strong hydrological
background, empirical FDCs are routinely used in several water-related studies and engineering
applications such as hydropower generation, design of water supply systems, irrigation planning15

and management, wasteload allocation, sedimentation studies, habitat suitability, etc. (see e.g.
Vogel and Fennessey, 1995).

The literature reports two different representations of empirical flow-duration curves, de-
pending on the reference period of time (see Vogel and Fennessey, 1994): (i) period-of-record
flow duration curves (POR-FDCs), constructed on the basis of the entire observation period and20

(ii) annual flow duration curves (AFDCs), constructed year-wise. The two representations are
complementary to each other and should be selected by practitioners depending on the water
problem at hand (Castellarin et al., 2004b). For instance, AFDCs are useful for quantifying the
streamflow regime in a typical hydrological year, or in a particularly wet or dry year (see Vogel
and Fennessey, 1994); POR-FDCs are a steady-state representation of the long-term streamflow25

regime and can be effectively used, for instance, for patching and extending streamflow data
(Hughes and Smakhtin, 1996) or for assessing the long-term hydropower potential of a given
site.
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In many practical applications one has to predict FDCs at ungauged catchments or catch-
ments for which the available hydrometric information is sparse (see e.g. Castellarin et al.,
2013). This task is often addressed by developing regional models of FDCs. The scientific lit-
erature proposes several of such models that adopt different approaches to the problem: some
model regard the curves as the exceedance probability function of streamflows and regionalise5

the parameters of theoretical frequency distributions (see Fennessey and Vogel, 1990; LeBoutil-
lier and Waylen, 1993; Castellarin et al., 2007; Mendicino and Senatore, 2013); similarly, some
other adopt a suitable mathematical expression for representing the curves and regionalise the
expression parameters (Franchini and Suppo, 1996; Mendicino and Senatore, 2013); finally,
some other do not make any attempt to mathematically represent the curves, they rather stan-10

dardise empirical curves constructed for gauged catchments that are hydrologically similar to
the target site (i.e. catchments that are characterised by a similar physiographic, pedologic and
climatic conditions, also referred to as donor sites, see e.g. Kjeldsen et al., 2000) by an index
streamflow (e.g. mean annual flow), and then average the dimensionless curves to predict the
standardised FDC for the study catchment. The averaging procedure may (see e.g. Ganora et al.,15

2009), or may not (see e.g. Smakhtin et al., 1997), adopt a weighting scheme, which gives more
importance to donor sites that are more hydrologically similar to the target site. The literature
commonly groups these regionalisation procedures into parametric (i.e. procedures that param-
eterise FDCs and then regionalise parameters, like the first two examples) and non-parametric
(i.e. procedure that dispense with a parameterisation of the curves, like the third example, see20

e.g. Castellarin et al., 2004a, 2013) procedures.
It is a common argument that an accurate representation of FDCs for daily streamflows re-

quires probabilistic models (or mathematical expressions) with four or more parameters (LeBoutil-
lier and Waylen, 1993; Castellarin et al., 2007), which control the position, scale and shape of
the distribution. This hampers the construction of reliable regional models, due to the large25

uncertainty that is commonly associated with regional relationships that express the shape pa-
rameters in terms of physiographic and climatic catchment descriptors (see Castellarin et al.,
2007). As a result, Ganora et al. (2009) recently revisited the classical approach to FDCs re-
gionalisation based on averaging standardised curves constructed for neighbouring gauged sites

4



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

(Smakhtin et al., 1997), they proposed a mathematical model that enables the user to quantify
the dissimilarity between empirical FDCs and associate this dissimilarity with a distance in the
multidimensional space of catchment descriptors. An innovative feature of this approach is the
possibility to weight each empirical FDC according to the distance between each gauged basin
and the target site in the space of catchment descriptors, therefore accounting for the hydrologi-5

cal similarity of the donor sites with the site of interest. Like many of the traditional approaches
proposed in the literature, though, the approach proposed in Ganora et al. (2009) (1) requires
a preliminary subdivision of the study area into homogeneous pooling-groups of sites (i.e. clus-
tering), (2) predicts a standardised (i.e. dimensionless) FDC for the target site, which needs then
to be multiplied by a dimensional scale index (e.g. an indirect estimate of mean annual stream-10

flow) in order to be of practical use. Both steps are critical phases of a regionalisation process. In
particular concerning step (1), geostatistical regionalisation approaches have been shown to be
particularly effective in dispensing with the preliminary identification of homogeneous pooling-
group of sites while using regional hydrological information for predicting streamflow indices
in ungauged catchments (e.g. flood quantiles, low-flow-indices, etc.: see e.g. Chokmani and15

Ouarda, 2004; Skøien et al., 2006; Castiglioni et al., 2009, 2011; Archfield et al., 2013; Laaha
et al., 2013); yet no geostatistical procedure has been developed that specifically addresses the
problem of FDC regionalisation, aside from an interpolation of the curves in the physiographic-
space through a three-dimensional kriging, which is not a geostatistical procedure in the strict
sense (see Castellarin, 2014).20

Our paper focuses on the derivation of a geostatistical technique that addresses both limi-
tations mentioned above for the prediction of FDCs in ungauged sites. We adopt Topological
kriging or Top-kriging, which is a block-kriging with variable support area that interpolates
streamflow-indices along stream networks (see e.g. Skøien et al., 2006). Top-kriging has been
proved to be particularly successful in predicting point streamflow values (e.g. low-flow and25

flood quantiles, mean annual flood, stream temperatures, etc.) in various geographical and cli-
matic contexts (see e.g. Merz et al., 2008; Castiglioni et al., 2011; Vormoor et al., 2011; Arch-
field et al., 2013; Laaha et al., 2013).
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We adopt Top-kriging as the core tool for predicting standardised (i.e. divided by mean annual
flow) and dimensional long-term daily FDCs on the basis of empirical period-of-record curves
(POR-FDCs, hereafter referred to as FDCs for the sake of brevity) constructed for neighbouring
streamgauges.

The idea behind our study is (i) to identify a meaningful empirical point value (or index) that5

fully characterises the whole empirical FDC, (ii) to model the spatial correlation structure, or the
spatial variability, of this index over the study region through Top-kriging and (iii) to assess the
capability of this very spatial correlation model to predict FDCs in ungauged sites by weighting
neighbouring empirical FDCs. We present two possible applications of the proposed procedure,
the first one predicts standardised FDCs, that is FDCs divided by Mean Annual Flow (MAF), the10

second one predicts FDCs divided by the product between Mean Annual Precipitation (MAP)
and drainage area. MAP is generally easier to predict than MAF in ungauged sites, due to the
higher density of raingauging networks relative to streamgauging ones. The second application
can therefore be used to predict dimensional FDCs in ungauged sites.

The approach is developed and tested through a comprehensive leave-one-out cross-validation15

procedure for a rather wide geographical region located in Eastern-Central Italy including 18
unregulated river basins. Castellarin et al. (2007) propose regional models of long-term daily
FDCs for this area, which we use in this study as benchmark models for comparing the accuracy
and reliability of the proposed approach.

2 Geostatistical hydrological prediction in ungauged sites20

2.1 Top-kriging

Top-kriging is a powerful geostatistical procedure proposed by Skøien et al. (2006) which
performs hydrological predictions at ungauged sites along stream-networks on the basis of the
empirical information collected at neighbouring gauging stations. As kriging techniques, the
spatial interpolation is obtained in Top-kriging by a linear combination of the empirical val-25

ues; therefore, the unknown value of the streamflow index of interest at prediction location x0,
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Ẑ(x0), can be estimated as a weighted average of the variable measured in the neighborhood:

Ẑ(x0) =

n∑
i=1

λiZ(xi) (1)

where λi is the kriging weight for the empirical value Z(xi) at location xi, and n is the number
of neighbouring stations used for interpolation. Kriging weights λi can be found by solving the
typical ordinary kriging linear system (2), with the constrain of unbiased estimation (2b):5

n∑
j=1

γi,jλj + θ = γ0,i i= 1, . . . ,n (2a)

n∑
j=1

λj = 1 (2b)

where θ is the Lagrange parameter and γi,j is the semi-variance between catchment i and j.
The semi-variance is also referred to as variogram in geostatistics and represents the space10

variability of the regionalised variable Z. A peculiar feature of Top-kriging is to consider the
variable defined over a non-zero support S (i.e. the catchment drainage area)(Cressie, 1993;
Skøien et al., 2006); this implies that the kriging system (2) remains the same, but the gamma
values between the measurements need to be obtained by regularization, that is the smoothing
effect of support area S on the point variogram, which is computed by applying an integral15

average of the variable Z over S. After this, the point variogram can be back-calculated by
fitting aggregated variogram values to the sample variogram (details can be found in Skøien
et al., 2006).

2.2 Total negative deviation (TND)

Top-kriging could in principle be directly applied to interpolate single streamflow values as-20

sociated with a given duration (i.e. streamflow quantiles). Therefore, similarly to what proposed
7
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in Shu and Ouarda (2012), a regional prediction of FDCs could be obtained by repeatedly ap-
plying Top-krging r times, where r is the number of durations considered to provide an accurate
representation of the curve (e.g. 15–20, see Shu and Ouarda, 2012), and then by interpolating the
r predicted streamflow quantiles to obtain an FDC. Nevertheless, each FDC is a continuum re-
sulting from the complex interplay between climate conditions and geomorphologic catchment5

characteristics (see e.g. Yaeger et al., 2012; Yokoo and Sivapalan, 2011; Beckers and Alila,
2004). This continuum would be lost, entirely or in part, by using the approach outlined above;
moreover, this prediction strategy might not preserve a fundamental property of FDCs, that is
the monotone (i.e. non-increasing in this paper) relationship between streamflow and duration.

Our main goal is to develop a Top-kriging procedure that regionalises the whole curve seen10

as a single object. In geostatistical applications one should define a “regionalised variable” to
produce a characterisation of the spatial variability of the investigated phenomenon. As men-
tioned above, Top-kriging has been shown to be particularly reliable in predicting point (i.e.
single values) streamflow indices in ungauged locations. Therefore a viable strategy could be
to identify a point index that effectively summarises the entire curve, and to compute the Top-15

kriging λi values of Eq. (2) relative to this index. These values could then be used for averaging
neighbouring empirical FDCs and predicting the FDC at the (ungauged) site of interest. This
prediction strategy would regard each curve as a single object, and the linear interpolation of
the curves (see also Sec. 3) would preserve the monotone relationship between streamflow and
duration.20

Some studies in the literature suggest to use the FDC slope as an overall index for the curve
(see e.g. Sawicz et al., 2011). We believe though that the definition of such an index is asso-
ciated with some degrees of subjectivity (e.g. which lower and upper durations to consider for
the computation of the slope), and may be hard to define in some cases (e.g. ephemeral and
intermittent streams).25

Focusing on FDCs, Ganora et al. (2009) quantify the hydrological dissimilarity between
a pair of catchments as the area between the corresponding empirical standardised (i.e. divided
by mean annual flow) FDCs: two hydrologically similar catchments will show similar standard-
ised curves, hence a small area between the curves, whereby two basins that are completely

8
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different in terms of hydrological behaviour will be characterised by highly different FDCs, and
therefore the area between the curves will be large. Following this background idea, we propose
to summarise the FDC through a point index which we term Total Negative Deviation (TND)
between a dimensionless (i.e. standardised by a reference streamflow value) FDC and 1,

TND =
m∑
i=1

|qi− 1|∆i (3)5

where qi represents the i-th empirical dimensionless streamflow value, ∆i is half of the fre-
quency interval between the (i+ 1)-th and (i− 1)-th streamflow values, and the summation
includes only i= 1, . . . ,m dimensionless streamflow values that are lower than 1 (i.e. negative
deviation). m stands for the length of the dimensionless streamflow sample once values larger
than 1 are excluded.10

Empirical TND values are proportional to the filled areas in Fig. 1, where black thick curves
represent the empirical FDCs. More specifically, Fig. 1 represents the dimensionless empirical
FDCs that were constructed for three streamgauges (see Sec. 4 for a brief description of the
study area) by using two standardisation methods: in one case the curve is standardised by
the mean annual flow (standardisation by MAF, TND1, top panels of Fig. 1); in the other case15

the curve is standardised by MAP∗, that is a reference streamflow equal to the catchment area
A times the mean annual precipitation MAP (standardisation by MAP∗, TND2, bottom panels
in Fig. 1) (see details on standardisation procedure in Sec. 3.2).

Even though TND defined by Eq. (3) and illustrated in Fig. 1 does not describe the portion of
the curve associated with low durations (high flows), it is very informative on the shape of the20

FDC, which, in turn, is controlled by climatic, physiographic and geo-pedological characteris-
tics of the catchment. Catchments that are dominated by rapidly responding near-surface runoff
processes have steeper FDC slopes, and therefore larger TND, while FDCs are less steep where
slower responding runoff generation processes prevail, and under these circumstances TND will
be smaller. This is related to functional similarity: catchments that store and retain more water25

should have smaller TNDs. The magnitude of TND is related not only to the climate but also to
how efficiently the catchment partitions water into runoff.

9
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3 Top-kriging of flow-duration curves

3.1 Construction of empirical FDCs

The construction of empirical FDCs for gauged sites is straightforward: (i) pooling all ob-
served streamflows in one sample, (ii) ranking the observed streamflows in ascending order and
(iii) plotting each ordered observation vs. its corresponding duration. We adopt as duration of5

the i-th observation in the ordered sample in our study the estimate of the exceedance probabil-
ity of the observation, 1−Fi. If Fi is estimated using a Weibull plotting position, the duration
di is,

di = Prob{Q> qi}= 1− i

N + 1
(4)

whereN is the length of daily streamflows observed in a gauged site and i= 1, . . . ,N is the i-th10

position in the rearranged sample.
A common representation of FDCs reports log-flows on the y-axis and the duration on the x-

axis (see Fig. 1). Another common representation adopts a log-normal space instead, in which
log-transformation of streamflows are still reported on the y-axis, while the x-axis reports du-
ration expressed as a normal standard variate z,15

zi = Φ−1(1− di) (5)

where Φ is the cdf of the standard normal distribution. The combination of the two transfor-
mations improves significantly the readability of the FDC (see Fig. 2), the log-transformation
enhances the representation of observed streamflows, which usually spans over two or more
orders of magnitude, while expressing the duration as a standard normal variate improves the20

visualization of small and large durations, that is flood- and low-flows, respectively.

3.2 Computation of empirical TND values

According to what we anticipated in Sec. 2.2, two different standardisation procedures are
considered for computing TND values:

10
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TND1

TND values are computed after standardisation by Mean Annual Flow (MAF), that is the
traditional way to standardise FDCs.

TND2

TND values are computed for FDCs that are standardised by a rescaled Mean Annual Pre-5

cipitation (MAP∗). The standardisation is performed by dividing each streamflow value by the
empirical catchment-scale MAP value, rescaled to basin size as,

MAP∗ = MAP ·A ·CF (6)

where A is the catchment area and CF is a unit-conversion factor (e.g. if streamflows are in
m3 s−1, MAP in mm per year and A in km2, then CF = 3.171× 10−5 [−]). Once the dimen-10

sionless FDC is predicted for an ungauged site, then a dimensional FDC can be obtained by
multiplying the curve by a local catchment-scale estimate of MAP∗.

The idea behind the choice of two different standardisations of FDCs derives from two differ-
ent purposes: (TND1) MAF standardisation is the traditional choice when an index-flow region-
alisation approach, with MAF being the index-flow, is used to regionalise FDCs (see Castellarin15

et al., 2004b; Ganora et al., 2009). Such an approach, as already mentioned, needs then an appro-
priate regional model for predicting the index-flow in ungauged basins (e.g. a multiregression
model) in fact, once a standardised FDC is predicted for an ungauged site, then a dimensional
FDC can be obtained by multiplying the dimensionless curve by an estimate of MAF for the
site of interest. Setting up a regional model for predicting MAF is a critical and delicate step20

in the regionalisation procedure (see e.g. Brath et al., 2001; Castellarin et al., 2004a); (TND2)
MAP∗ standardisation enables one to derive dimensionless FDCs to be used for regionalisa-
tion, and to predict a dimensional curve, which is ultimately what practitioners really need for
addressing the water problem at hand, simply by multiplying the dimensionless FDC by MAP
and catchment area. The discriminant between the two ways resides in the fact that the uncer-25

tainty associated with predictions of MAP is generally significantly smaller than the uncertainty
11
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associated with predictions of MAF for ungauged sites, in virtue of the large availability of rain-
gauges and the accuracy of geostatistical procedure for interpolating point observations (see e.g.
Brath et al., 2003; Castellarin et al., 2004a).

Concerning the practical computation of empirical TND values, that is TND1 or TND2, the
record length generally varies among the available streamgauges. Therefore, before applying5

(3) one needs to set a maximum duration dmax that can be used in order to compute the TND
values consistently for all sites in the region. dmax should be set according to the minimum
record length in the region (e.g. if the minimum record length in the region is 5 yr, one could
set dmax = (5× 365)/(5× 365 + 1)).

Once a suitable reference streamflow is selected for performing the standardisation of the10

curves (i.e. MAF or MAP∗), one can easily identify the number of durations m for which the
empirical dimensionless streamflow values are lower than 1 (i.e. streamflow values lower than
MAF or MAP∗) and compute TND according to (3). For instance, once computed the standard-
normal duration zi associated with each standardised and log-transformed streamflow quantile
qi, ∆i in (3) can be computed as,15

∆i = 0.5(zi+1− zi−1) for i < m (7a)

∆i = 0.5(zi− zi−1) for i= 1,m. (7b)

3.3 Geostatistical interpolation of TND and FDCs

Empirical TND (i.e. TND1 and TND2) values are site specific and can be interpolated with20

geostatistical techniques. Top-kriging can be applied as illustrated in the stepwise description
by Skøien (2013) through the suite of R-functions included in the R-package rtop, which
can be accessed from the Comprehensive R Archive Network (CRAN, http://cran.r-project.
org/). The application of Top-kriging formally requires exactly the same steps in both cases (i.e.
for empirical TND1 and TND2 values). For the sake of brevity, we will recall these steps by25

referring to the set of empirical TND1 values only.
The point sample variogram for each standardisation (see Sec. 3.2) can be computed using

the binned variogram technique, for which sample points are aggregated in distance classes
12
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or bins, under the hypothesis of isotropy, i.e. the variogram does not vary with direction. The
sample variogram can then be modelled through a suitable theoretical model (e.g. exponential,
Gaussian, spherical, fractal, etc.). Skøien et al. (2006) recommend the use of the exponential
variogram.

Once the empirical variogram is modelled, the number n of neighbouring stations on which to5

base the spatial interpolation is set iteratively by the user on the basis of a first set of preliminary
analyses, which aim at identifying the n value that produces the most accurate predictions in
cross-validation (i.e. for predicting TND values in ungauged locations). This means that the
local prediction of TND values, i.e. the computation of ordinary linear system in (2), depends
on n-dimensional kriging weights.10

We assume in our study that the n kriging weights that are computed for predicting TND
in ungauged locations can also be adopted for predicting the flow-duration curve in the same
locations as a weighted average of n standardised empirical curves as,

ψ̂(x0,d) =

n∑
i=1

λiψ(xi,d) d ∈ (0,1) (8)

where λi are the Top-kriging weights resulting from TND interpolation, ψ(xi,d) indicates the15

standardised empirical FDC for site xi, that is a flow-duration curve in which streamflow quan-
tiles are divided either by MAF or by MAP∗, ψ̂(x0,d) stands for the standardised FDC predicted
for site x0 over the entire duration domain d, n is the number of neighbouring sites in the vicin-
ity of the site of interest. It is worth noting that while FDC predictions are performed by using
empirical standardised FDCs as a whole (i.e. the prediction is performed over the entire du-20

ration interval), the computation of empirical TND values does not consider lower durations
(see details in Sec. 2.2). Therefore, it will be particularly interesting to analyse the performance
of the proposed procedure for predicting high flows. We will assess our assumption relative to
a study area which was extensively analysed in previous studies in the context of regionalisation
of FDCs (see e.g. Castellarin et al., 2004a, 2007).25

13
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4 Study area and data

The study region includes 18 unregulated catchments, which previous studies describe as
a rather heterogeneous group of sites in terms of physiographic and climatic characteristics (see
e.g. Castellarin et al., 2007, 2004a). Daily streamflow series were obtained for all basins from
the streamgauges belonging to the former National Hydrographic Service of Italy (SIMN) over5

the time period 1920–2000. The length of the observed series ranges from 5 to 40 yr (average
record length: 18 yr). Also, the empirical MAP value relative to each of the 18 catchments
was estimated using data collected from a rather dense raingauge network (i.e. 1 raingauge per
≈ 50 km2) during the same time-interval of daily streamflow observations.

Empirical FDCs were constructed from the daily streamflow series for the 18 catchments10

as described in Sec. 3.1. Empirical TND1 and TND2 values were computed for each catchment
according to standardisations described in Sec. 3.2, and are illustrated in Fig. 3. As shown in the
left panel of Fig. 3, empirical TND1 values increase moving from south-east to north-west. This
outcome reflects the lower perviousness of the northern catchments, which are then less capable
of storing water volumes and consequently are characterised by steeper empirical FDCs. Mov-15

ing from south-east to north-west, one can note for TND2 (right panel of Fig. 3) similar patterns
to those observed for TND1 values, i.e. TND values tend to increase along the SE–NW direc-
tion. On the one hand this general behaviour suggests that in our case study Mean Annual Flow
(MAF) is largely controlled by precipitation, on the other hand, karst phenomena associated
with the presence of fractured limestones result in an increase of TND2 for the Southern catch-20

ments, i.e. sites 3006, 3003 and 3002, for which subsurface flows play a significant role.
Table 1 illustrates the variability over the study region of catchment area A (km2), mean

annual flow MAF (m3 s−1), mean annual precipitation MAP (mm), MAP∗ (m3 s−1), empiri-
cal TND1 (–) and TND2 (–) values, by reporting the minimum, mean and maximum values,
together with the 1th, 2nd and 3rd quartiles of each index.25

14
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5 Analysis and results

5.1 Prediction of FDCs in cross-validation

We will refer to the proposed approach as TNDTK (i.e. Total Negative Deviation Top Krig-
ing) in the remainder of the paper. This section illustrates in detail the application of TNDTK
in cross-validation, describing the accuracy of the procedure when applied in ungauged basins.5

5.1.1 Standardisation by MAF

The application of TNDTK to the prediction of FDCs standardised by MAF requires the pre-
liminary application of Top-kriging to TND1 values, which we performed by calculating binned
sample variogram first, and then by modelling binned empirical data with a 5-parameter “mod-
ified” exponential theoretical variogram (a combination of exponential and a fractal model, see10

details in Skøien et al., 2006). As an example, Figure 4 shows the differences between fitted
variograms by either using no bins (i.e. point variogram) or by binning groups of pairs of catch-
ments with different combinations of drainage areas. The five parameters were fitted through
the Weighted Least Squares (WLS) regression method from Cressie (1985). Top-kriging was
then iteratively applied to the study catchments in cross-validation to identify the most suitable15

number of neighbours n. Preliminary iterations indicated n= 6 as a good candidate for the
study area (see Sec. 5.5.2).

We then used the kriging weights obtained for predicting TND1 in cross-validation at each
and every site to estimate dimensionless FDCs. In order to assess the prediction accuracy and
to compare the performances of different models we choose to resample each curve using p=20

20 points equally spaced in the log-normal representation (see Sec. 2.2 and Fig. 2), adopting
d1 = 0.00135 as lower bound and d20 = 0.9986 as the upper one (d1 and d20 values selected
by referring to the minimum record length in the regional sample, i.e. 5 yr). Predictions were
performed through a weighted average, as expressed in Eq. (8), using the optimal Top-kriging
cross-validation weighting scheme, i.e. λi with i= 1, . . . ,n, where n= 6.25
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As mentioned in Sec. 1, a leave-one-out cross-validation procedure (LOOCV) was performed
in order to simulate ungauged conditions at each and every gauged site in the study area and
to quantitatively test the reliability and robustness of TNDTK for predicting FDCs in ungauged
basins (see examples in Kroll and Song, 2013; Salinas et al., 2013; Wan Jaafar et al., 2011;
Srinivas et al., 2008).5

The LOOCV that can be summarised by the following steps:

1. empirical and theoretical variograms are computed using the entire dataset of TND1 val-
ues;

2. one of the gauging station, say si, is removed from the set of available stations;

3. a Top-kriging regional model for predicting TND1 values is developed using the remain-10

ing Nsite− 1 sites;

4. TND1 is predicted for site si as a weighted average of the empirical values computed for
n= 6 neighbouring stations (see e.g. Fig. 5);

5. the weighting scheme computed in step 4 is then used to predict a standardised FDC for
site si through Eq. (8);15

6. steps from 2 to 5 are repeated Nsite− 1 times.

The accuracy of the cross-validated standardised FDCs was scrupulously assessed by means
of several performance indices and diagrams, which are illustrated in detail in Sec. 5.3. The
algorithm described above is tailored for the proposed procedure, TNDTK, but one can imple-
ment and apply similar resampling procedures to any regional model for simulating ungauged20

conditions.

5.1.2 Standardisation by MAP∗

Top-kriging was applied also to predict empirical TND2 values as well as FDCs standardised
by MAP∗. The number of neighbouring stations n, theoretical variogram, and fitting procedure
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were the same as for standardisation based on MAF. We used a LOOCV analogous to the one
described above (i.e. standardisation by MAF) in order to identify the weighting scheme to be
used for simulating ungauged conditions for all of the study basins.

Furthermore, in order to obtain dimensional prediction, each estimated curve ψ̂(x0,d) was
then transformed into a dimensional FDC, as5

Ψ̂(x0,d) = ψ̂(x0,d)MAP∗(x0) with d ∈ [d1,d20] (9)

where MAP∗(x0) indicates the local MAP∗ value.

5.2 Reference regional models of FDCs

The same gauged stations and data considered herein were analysed in previous studies that
developed regional models of FDCs (see Castellarin et al., 2004a, 2007). This enabled us to10

identify for both TNDTK applications two different reference regional models for comparing
the performance of the approaches. We report here-below a brief description of such regional
models.

5.2.1 Standardisation by MAF

TNDTK predictions of dimensionless FDCs were compared against the dimensionless curves15

predicted by two reference regional models, which we also applied in cross-validation through
a LOOCV procedure:

KMOD

K model (or KMOD) is a statistical regionalisation model developed by Castellarin et al.
(2007) that uses the 4-parameter unit-mean kappa distribution as parent distribution for repre-20

senting standardised FDCs (see e.g. Hosking and Wallis, 1997). Three parameters, namely the
parameter of location and the two shape parameters, were estimated by applying an ordinary
least squares (OLS) regression algorithm. The scale parameter is derived as a function of the

17



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

previous three under the hypothesis that the mean of the distribution is equal to one. Castellarin
et al. (2007) regressed the parameters estimates against a suitable set of catchment descriptors
through a stepwise-regression procedure in order to enable the estimation of the kappa distri-
bution in ungauged sites. KMOD is therefore a traditional parametric regional model which
we adopted as the benchmark regional model for predicting standardised FDCs (see for details5

Castellarin et al., 2007).

MEAN

MEAN is a simple approach to regionalisation, which neglects the physiographic and climatic
heterogeneities of the study area, and predicts the standardised FDC for any ungauged site in
the region as the average of all available standardised FDCs. We adopted MEAN as a baseline10

model due to its crude assumption and the resulting low-level accuracy.

5.2.2 Standardisation by MAP∗

TNDTK predictions of dimensional FDC were compared with the predictions resulting from
two benchmark models, both applied in cross-validation:

LLK15

This model, based on an index-flow approach (see Castellarin et al., 2004b), adopts a two-
parameter log-logistic (LL) distribution as a suitable distribution for describing the empirical
frequency of the annual flow series (i.e. index-flow) and a four-parameter kappa (K) as the
parent distribution for dimensionless daily streamflow frequency. Parameters of both distribu-
tion were estimated using the routine based on L-moments developed by Hosking and Wallis20

(see Hosking and Wallis, 1997), re-estimated through a constrained sequential quadratic pro-
gramming optimisation procedure aimed at minimising the squared differences between theo-
retical and empirical nonexceedence probabilities, and then regressed against a suitable set of
catchment descriptors through a stepwise-regression procedure. More details can be found in
Castellarin et al. (2007).25
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KMOD

Same as KMOD for dimensionless FDCs prediction, but using a multiregression regional
model to predict MAF as a function of a suitable set of catchment descriptors in ungauged
basins (see e.g. Castellarin et al., 2007 for details).

5.3 Performance indices5

TNDTK performance in cross-validation is analysed for both standardisation methods (MAF
and MAP∗) and compared with the results of reference regional models through several per-
formance indices and diagrams. A deep analysis of model performances in terms of relative
prediction residuals, i.e. relative errors between modelled and emprical values (with sign), is
presented through error-duration curves. The curves show relative residuals against duration ar-10

ranged in gray nested bands containing 50, 80 and 90 % of relative residuals, respectively, while
a solid line illustrates the progression with duration of the median residual. Also, we use as
performance descriptors the scatterdiagrams between cross-validated and empirical streamflow
quantiles associated with the same duration. On the basis of the same information, NSE (Nash &
Sutcliffe Efficiency) indices for each model are computed, both for natural and log-transformed15

streamflows. Such diagrams and indices provide a complete and exhaustive representation of
the performance of each model in cross-validation for the entire streamflow regime, from low
durations (high-flows and floods) to high ones (droughts).

Concerning the performances of the model at each site, and in particular the assessment of
the number of sites for which TNDTK is more reliable than the selected reference regional20

models, we adopt a comprehensive error index derived from the distance between predicted and
empirical FDCs proposed in Ganora et al. (2009):

δmod =

p∑
k=1

|qk,emp− q̂k,mod| (10)
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where p= 20 resampled points, while qk,emp and q̂k,mod stand for the empirical and predicted
streamflow quantiles (dimensionless or dimensional, depending on the application) ranked at
the kth duration.

5.4 Results

5.4.1 Standardisation by MAF: dimensionless FDCs5

Figure 5 (left) reports empirical TND1 values against their Top-kriging predictions in cross-
validation. The overall NSE is 0.81. In the same figure one can observe a poor prediction (i.e.
significant underprediction) for site 3701, which can be interpreted as a result of the very high
empirical TND value obtained for that site (site 3701, TND1 = 9.8[−], A= 605[km2]), the
largest in the study region.10

Concerning the predictions of standardised FDCs, the error-duration curves of Fig. 6 clearly
shows that TNDTK significantly outperforms KMOD and MEAN: the distribution of relative
residuals plotted against duration is characterised by narrower bands (50, 80 and 90 % of the
relative errors) for the entire duration interval, even though this behaviour is more marked for
lower durations. The progression with duration of the median residual (black thick line) in15

the same figure highlights unbiasedness being close to zero for the entire duration interval.
Scatterdiagrams between predicted and observed standardised flows indicate high accuracy of
TNDTK, with NSE = 0.958 and LNSE' 0.96, the latter computed for log-flows. MEAN and
KMOD are associated with lower NSE and LNSE values.

Finally, Fig. 7 presents the overall absolute error for each site. In particular in Fig. 7 scat-20

terdiagrams of δmod are illustrated in two panels, where the x-axes reports errors computed for
the proposed model (TNDTK) while the y-axes reports in turn errors from reference models.
In this representation an equivalence between model performances is represented by the solid
bisecting line; hence if one point falls in the top-left above the 1:1-line TNDTK provides better
predictions than the reference model, otherwise if it falls below the 1:1-line. Figure 7 clearly25

shows that KMOD is less accurate than TNDTK for 14 out of 18 sites, while MEAN performs
the poorest, with 16 out of 18 sites characterised by higher δ values relative to TNDTK.
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5.4.2 Standardisation by MAP∗: dimensional FDCs

Right panel of Fig. 5 highlights satisfactory performance of Top-kriging for predicting TND2

values in ungauged basins, NSE value is approximately 0.6, and site 3701 still presents an
outlying behaviour for the same reason explained before.

Although the cross-validated predictions of TND2 are less accurate than TND1, TNDTK5

performance for predicting dimensional FDCs is good. Comparing TNDTK with LLK mod-
els, Fig. 8 shows for LLK narrower bands for d < 0.8, particularly the band illustrating 90 %
of residuals, while in the low-flow range (i.e. 0.8< d < 1) TNDTK shows slightly better per-
formances, resulting in narrower error bands. The bottom panels in the same figure report the
scatterdiagrams of predicted vs. observed dimensional flows, expressing the goodness and re-10

liability of TNDTK when used for predicting dimensional FDC on the basis of MAP. Even
though TNDTK shows an NSE = 0.914, which is lower than the NSE value associated with
LLK and equal to KMOD one, TNDTK is associated with the highest LNSE value (i.e. 0.922),
which highlights the very good performance of TNDTK for low-flows. Figure 9 confirms good
performance of TNDTK against LLK and KMOD, showing in both cases better accuracy for 1015

out of 18 catchments. Also, among the 8 catchments for which LLK and KMOD perform better
than TNDTK, it is worth nothing that performances are practically coincident with TNDTK in
2 cases for LLK (i.e. sites 3006 and 2201) and 3 cases for KMOD (i.e. sites 1004, 2101 and
3006).

5.5 Sensitivity analysis20

5.5.1 Consistency of the kriging weighting scheme

The core assumption of the proposed method is that Top-kriging weights λs identified for
predicting TND values can be used to weight empirical FDCs. In order to test and validate this
assumption we analysed the relationship between such weights and the degree of dissimilarity
between empirical FDCs. In particular, we computed for each pair of catchments a dissimilarity25

metric βi,j , proposed by Ganora et al. (2009), which can be expressed as follows for catchement
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i and j:

βi,j =
365∑
k=1

|qi,k− qj,k| (11)

where 365 is a reasonable resampling scheme and qi,k and qj,k are the streamflow values as-
sociated with duration dk = k

365+1 for site i and j respectively. If our assumption is correct,
large β values (i.e. dissimilar curves) should be associated with small λ values, and vice-versa.5

Top-kriging takes into account the nested structure of catchments, therefore where the upstream-
downstream correlation occurs (i.e. similar curve with small β) relative high λ value is expected.

Figure 11 (right panel) plots βi,j values computed with Eq. (11) for each pair of basins in
the study area, with i, j = 1, . . . ,18 and i 6= j (i.e. 306 points), against the corresponding λi,j
weights obtained by running a TNDTK session with TND = TND1 and, necessarily, a number10

of neighbours n= 17 (i.e. all stations need to be considered if we have to compare βi,j with
λi,j for i 6= j). The figure also highlights the differences between nested (large black dots) and
un-nested (gray circles) catchments pairs. The figure clearly proves that the hypotheses are
satisfied: (1) weights λi,j show a descending pattern as βi,j increase and (2) any nested pair of
catchments is associated with a high or very high β value.15

5.5.2 Sensitivity to the number of neighbours n

As mentioned in Sec. 5.1.1 and 5.1.2, we set the number of neighbours n= 6 in Eq. (8)
for performing the prediction of FDCs. We identified this value through a sensitivity analy-
sis, which was carried out by running multiple Top-kriging sessions, each one referring to a
different n value. The main outcome of our sensitivity analysis is that the performance of the20

approach is not dramatically dependent on n, quite the opposite. Figure 10 shows the results
of the sensitivity analysis for both standardisations (i.e. MAF and MAP∗) obtained in each ses-
sion in terms of NSE and LNSE for n, ranging from 3 to 17 (i.e. being 18 the total number of
catchments for the study area). The left panel refers to dimensionless FDCs (i.e standardisation
by MAF) and shows for n= 6 the best trade-off between NSE and LNSE. Nevertheless, NSE25
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and LNSE are rather high for all n values. Likewise, the right panel refers to the prediction of
dimensional FDCs (i.e. standardisation by MAP∗) and it shows that performances in termes of
NSE are insensitive to n, while in terms of LNSE, we obtain slightly better performences are
associated with n≤ 6. As a result of the analysis we selected n= 6 for all applications for the
sake of consistency, even though selecting a different value for n does not impact the results5

significantly.

5.5.3 Sensitivity to the degree of nesting of the study catchments

From an operational view point it is important to understand if the degree of nesting of the
study catchments impacts the performance of the approach. Better performances are to be ex-
pected in all those cases in which empirical FDCs can be constructed upstream or downstream10

the (ungauged) site of interest. In order to quantify this impact we validated TNDTK by remov-
ing all catchments that are nested with the catchment of interest. Figure 11 (left panel) shows
all nested pairs through a graphical matrix where nested pairs are highlighted with large black
dots (catchment IDs are also indicated). First we identified all nested pairs of catchments (i.e.
basin-subbasin relationships). Second, we used a cross-validation procedure similar to the pro-15

cedure described in Sec. 5.1.1, in which, at point 2, we neglected all information collected for
the site of interest, but also upstream or downstream that site. We termed this procedure Leave
Nested Out Cross-Validation (LNOCV). It is worth noting that LNOCV estimates empirical
and theoretical variograms at each and every step of the validation procedure, differently from
LOOCV, where they are estimated beforehand once and for all.20

We report here only the results referring to the prediction of dimensionless FDCs (i.e. stan-
dardisation by MAF). Results obtained relative to dimensional FDCs (i.e. standardisation by
MAP∗) are analogous. The results, shown in Fig. 12, highlight a slight reduction of perfor-
mances, with NSE and LNSE indices equal to 0.95 and 0.92 respectively (central panel); also
looking at the error-duration bands (left panel in the same figure) the distribution of relative25

residuals presents slightly wider bands and a lager bias for the median line, especially relative
to the high durations (low flows). Moreover, comparing the overall error index for each site
produced by the two cross-validations (i.e. LOOCV and LNOCV) (right panel), most of the
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points (14 out of 18) falls above the solid bisecting line, confirming an impoverished prediction
capability of the latest approach. Nevertheless, the detriment of performances associated with
LNOCV appears to be limited.

6 Discussion and future work

6.1 Is Top-kriging suitable for predicting long-term FDCs?5

The results of the cross-validation show that Top-kriging can be effectively applied for pre-
dicting standardised FDCs (i.e. flow-duration curves divided by the mean annual flow, MAF)
in the study region. In particular, the interpolation strategy applied in this study (termed Total
Negative Deviation Top-kriging, TNDTK), that is (1) the computation of the streamflow index
Total Negative Deviation (TND) for empirical standardised FDCs, (2) the modelling of spatial10

correlation of empirical TND values along the stream network, (3) the identification of a linear
weighting scheme for averaging empirical dimensionless FDCs on the basis of the correlation
model identified at step (2), results in reliable predictions of standardised FDCs in ungauged
sites. The curves predicted in cross-validation are unbiased for the entire duration range (i.e.
from high- to low-flows) and the prediction residuals are as small as, or smaller than, the resid-15

uals resulting from the application of traditional regionalisation schemes. Analysing the results
in detail, Fig. 7 indicates that TNDTK performed significantly worse than the baseline and
benchmark regional models in three cases only. The benchmark model (i.e. KMOD) better pre-
dicts the FDC for site 3701 (left panel of Fig. 7). As illustrated in right panel in Fig. 2, site 3701
is associated with the steepest empirical flow duration curve of the study region and therefore20

the highest empirical TND value (see Table 1 and Figs. 1 and 5).
The core assumption of Top-kriging hypothesises is that hydrological similarity is mainly

controlled by spatial proximity, and this may represent an important limitation in some regions
where geology and/or morphology have a large impact on streamflows, such that the hydro-
logical regime of nearby catchments may be quite different. This could in principle explain25

the poor prediction obtained in the study for site 3701, which is characterised by a very lim-
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ited permeability (i.e. can be regarded as impervious) relative to the surrounding catchments,
and, consequently, a much steeper empirical FDC than the neighbouring sites. Conversely, in-
formation on permeability is explicitly incorporated in the multiregression models included in
KMOD (see e.g. Castellarin et al., 2007). Furthermore, the baseline model MEAN significantly
outperforms TNDTK for sites 2502 and 801, and this result can be explained by noting that both5

sites are associated with empirical standardised curves that are well represented by the average
standardised FDC for the study region (see right panel in Fig. 2 and Castellarin, 2014), that is
the curve associated with the baseline regional model (MEAN) in cross-validation.

Aside from peculiar cases highlighted above, TNDTK shows a high performance in cross-
validation that is likely to result from several advantages of the proposed procedure. TNDTK10

dispenses with the critical phase of delineating hydrologically homogeneous pooling group of
sites (see Castellarin et al., 2004a) by exploiting the spatial correlation structure of the stream-
flow regime (see Archfield and Vogel, 2010). Nevertheless, the approach does not require to
set up multiregression models for estimating the parameters of a mathematical expression (e.g.
a theoretical frequency distribution) controlling the shape of the curve, which are often asso-15

ciated with a large uncertainty and limited robustness (see Castellarin et al., 2007); TNDTK
predicts the shape of the curve for an ungauged basin through a non-parametric procedure as
a weighted average of empirical standardised FDCs (e. g. Smakhtin et al., 1997; Ganora et al.,
2009). The weighting scheme also ensures for the predicted curve a non–increasing (i.e. mono-
tone) relationship between streamflow and duration, which is one of the main properties of20

flow-duration curves.
The study also points out that TNDTK can be used for predicting dimensional FDCs in

ungauged sites on the basis of a minimal set of hydrological information, that is (a) empirical
FDCs for a group of gauged basins and (b) an estimate of Mean Annual Precipitation (MAP) for
all gauged basins in the region, as well as for the target ungauged basin. Even though TNDTK25

does not show a clear supremacy relative to more traditional approaches (see Figs. 8 and 9),
it has to be highlighted that its application is rather straightforward and does not require any
subjective choice, which, together with the fact that the procedure can be implemented with
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a limited amount of input data, makes TNDTK a very interesting alternative for predicting
dimensional FDCs.

6.2 Future analyses

Our study is evidently a preliminary analysis, which tackles the exploration of geostatistical
approaches for predicting FDCs. Therefore, the results of our study open up several possible5

research avenues. In particular, we focus on the prediction of long-term steady-state FDCs, on
the basis of Period-of-Record (POR) empirical FDCs. Applicability of TDNTK to the predic-
tion of annual FDCs for typical hydrologic years, as well as for particularly wet or dry years
(see e.g. Vogel and Fennessey, 1994; Castellarin et al., 2004b), is an open problem that needs
to be specifically and quantitatively addressed. Evidently, the proposed approach needs to be10

further investigated in other geographical contexts. In particular, the application of TNDTK for
predicting dimensional FDCs on the basis of catchment-scale MAP values deserves some fur-
ther tests that aim at verifying its suitability for significantly different climatic conditions (e.g.
arid regions, alpine catchments, etc.), in which the streamflow regime is not heavily controlled
by the rainfall regime, as for the considered case study.15

Finally, we propose to summarise empirical flow-duration curves through the index TND,
which expresses the total negative deviation of the curve from a reference streamflow value.
We are aware that the proposed procedure needs to be further tested in different geographical
and climatic contexts before its general validity can be acknowledged. Also, we believe that the
TND index identified in this study incorporates a worth of hydrological information and has the20

potential to be extremely useful in a number of hydrological problems other than the prediction
of FDCs, such as catchment classification (see Wagener et al., 2007; Di Prinzio et al., 2011)
or regionalisation studies (Laaha and Blöschl, 2006; Gaál et al., 2012). Future analyses will
specifically address these points. Moreover, future analyses should focus on the identification
of a global indicator of the similarity between FDCs to be used to analyse and model geograph-25

ical correlation between the empirical curves themselves, this would enable one to base the
definition of the linear weighting scheme on a more comprehensive and descriptive indicator of
the streamflow regime.
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7 Conclusions

This study explores the possibility to extend the application of Top-kriging, which is gener-
ally used for spatial interpolation of point streamflow indices (e.g., estimated flood quantiles,
low-flow indices, temperature, etc.), to the prediction of period-of-record flow-duration curves
(FDCs) in ungauged basins. Top-kriging is used in this study to geostatistically interpolate stan-5

dardised FDCs along the stream network of a broad geographical area in Central-Eastern Italy.
We identify the linear weighting typical of any kriging procedure by modeling the spatial cor-
relation structure of an empirical streamflow index, which was shown in the study to be par-
ticularly useful in describing the daily streamflow regime of a given catchment. In particular,
we define the index, which we term Total Negative Deviation (TND), as the overall negative10

deviation of an empirical FDC relative to a reference streamflow-value used for the standard-
isation of the curve itself. We consider two different reference streamflow values, that is the
Mean Annual Flow (MAF) and catchment-scale Mean Annual Precipitation times the drainage
area of the catchment (MAP∗), and we use these streamflow values for standardisation of the
empirical FDCs prior to regionalisation. The standardisation based on MAF enables us to de-15

velop a Top-kriging-based regional model of dimensionless FDCs, while the standardisation
based on MAP∗ enables us to predict dimensional flow-duration curves in ungauged basins via
Top-kriging. The two regional estimators were cross-validated and compared in terms of predic-
tion performances with other regional models of dimensionless and dimensional flow-duration
curves that were previously developed for the study area. The comparison highlights good per-20

formances of the proposed procedure, which we termed Total Negative Deviation Top-kriging
(TNDTK) relative to traditional regional models. TNDTK is unbiased throughout the entire du-
ration interval and characterised by particularly small residuals for high durations (i.e. improved
predictions of low-flows). Moreover, the prediction accuracy of TNDTK is similar to, or higher
than, more complex regionalisation approaches that use multiregression models incorporating25

information on the permeability, morphology, climate, etc. of the catchment. This result seems
to confirm the value of spatial proximity relative to catchment attributes (see e.g. Merz and
Blöschl, 2005) when hydrological predictions in ungauged basins are concerned.
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Table 1. Study catchments: variability of drainage area (A), Mean Annual Flow (MAF), Mean Annual
Precipitation (MAP), rescaled mean annual precipitation (MAP∗), empirical TND1 and TND2 and length
of the observed streamflow series (Y); minimum, maximum, mean, 1st, 2nd (median) and 3rd quartiles
of the sample distributions.

A MAF MAP MAP∗ TND1 TND2 Y
[km2] [m3 s−1] [mm] [m3 s−1] [–] [–] [yr]

min 61 1.49 918 2.17 1.59 1.25 5
1st Qu. 104 2.63 1079 3.60 2.76 4.38 8.5
median 164 3.83 1123 5.99 3.82 5.78 11.5
mean 330 6.51 1118 11.69 4.52 6.11 18.1

3rd Qu. 562 7.54 1162 17.53 5.74 7.55 26
max 1044 21.29 1298 37.07 9.83 13.21 40

32



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

s
ta

n
d
a
rd

is
a
ti
o
n
 b

y
 M

A
F

 

Site  3701 Site  3006

TND1

Site  2602

0
.0

0
1

0
.1

0 0.2 0.4 0.6 0.8 1

s
ta

n
d
a
rd

is
a
ti
o
n
 b

y
 M

A
P

*

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

TND2

Duration d  [−]

S
ta

n
d
a
rd

is
e
d
 D

is
c
h
a
rg

e
 [
−

]

1
1

0
0

0
.1

0
.0

0
1

0
.1

1
1

0
0

0
.1

Fig. 1. Total Negative Deviation (TND, filled area) for three catchments with different hydrological
behaviours (see Sec. 4). Top panels: TND1 (red area) for an empirical FDC (black thick line) standardised
by Mean Annual Flow (MAF); bottom panels: TND2 (blue area) for an empirical FDC (black tick line)
standardised by MAP∗ = MAP ·A ·CF, where MAP is the Mean Annual Precipitation, A is the drainage
area and CF is a unit-conversion factor.
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Fig. 2. FDC representations: log-natural scale (left), log-normal scale (center); the panels also show
a resampling of the empirical curve (circles) which employs 20 equally-spaced points in the standard-
normal space; standardised empirical FDCs for the study region (right), FDC for sites 3701, 801, 2502
and regional mean FDC are highlighted.
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duration (top); empirical vs. predicted standardised streamflows (bottom).

38



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

2
0

δ TNDTK  [−]

δ
K

M
O

D
 [
−

]

801

901

902

1002

1004

1701
2101

2201

2502

2601

2602

2801

2901

3002

3003

3006

3101

3701

TNDTK vs KMOD

δ TNDTK  [−]
δ

M
E

A
N

 [
−

]

801

901
902

1002

1004

1701

2101

2201

2502

2601

2602

2801

2901

3002

3003

3006

3101

3701

TNDTK vs MEAN

Predictions of dimensionless FDCs (standardisation by MAF)
1

2
5

1
0

2
0

1
2

5
1

0

201 2 5 10 201 2 5 10

Fig. 7. Comparison between TNDTK, MEAN and KMOD models in terms of distances between empir-
ical and predicted FDCs, δmod (where mod stands for TNDTK, MEAN or KMOD); values of δTNDTK are
reported against values of δKMOD (left) or δMEAN (right) for each study basin; the solid line represents the
ratio 1:1 between the errors, while in the area outside the dashed lines delimit the errors for the TNDTK
model are twice as large as the MEAN or KMOD ones, or vice versa. Points above the solid line repre-
sent curves better estimated by TNDTK; points above the top dashed line represent curves that are much
better estimated by TNDTK (see also Ganora et al.,2009, Fig. 8); sites 3701 and 801 are highlighted.

39



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.0

0
.0

1
.0

2
.0

Duration d  [−]

R
e

la
ti
v
e

 r
e

s
id

u
a
ls

 [
−

]

TNDTK

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.0

0
.0

1
.0

2
.0

Duration d  [−]

LLK

0.0 0.2 0.4 0.6 0.8 1.0

−
1
.0

0
.0

1
.0

2
.0

Duration d  [−]

KMOD

Observations

P
re

d
ic

ti
o

n
s
  

 

0
.0

1
0
.1

1
1
0

1
0
0

0.01 0.1 1 10 100

NSE = 0.914

LNSE = 0.922

0
.0

1
0
.1

1
1
0

1
0
0

0.01 0.1 1 10 100

NSE = 0.927

LNSE = 0.836

0
.0

1
0
.1

1
1
0

1
0
0

0.01 0.1 1 10 100

NSE = 0.915

LNSE = 0.364

Predictions of dimensional FDCs (standardisation by MAP*)

3
s

- 1
]

[m

3s-1 ][m Observations 3s-1 ][m Observations 3s-1 ][m

P
re

d
ic

ti
o

n
s
  

 
3
s

- 1
]

[m

P
re

d
ic

ti
o

n
s
  

 
3
s

- 1
]

[m

R
e
la

ti
v
e
 r

e
s
id

u
a

ls
 [

−
]

R
e

la
ti
v
e

 r
e

s
id

u
a
ls

 [
−

]

Fig. 8. Cross-validation of regional models: KMOD (right), LLK (center), TNDTK (proposed approach,
left); error-duration bands reporting the profile of the median relative error (thick black line) and the
bands containing 50 %, 80 % and 90 % of the relative errors (grey nested bands) as a function of duration
(top); empirical vs. predicted dimensional streamflows (bottom).
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Fig. 9. Comparison between TNDTK, KMOD and LLK models in terms of distances between empirical
and predicted dimensional FDCs, δmod (where mod stands for TNDTK, KMOD or LLK); values of
δTNDTK are reported against values of δLLK (left) or δKMOD (right) for each study basin; the solid line
represents the ratio 1 : 1 between the errors, while in the areas outside the dashed lines delimit the areas
where errors for the TNDTK model are twice as large as the LLK or KMOD ones, or vice versa. Points
above the solid line represent curves that are better estimated by TNDTK; points above the top dashed
line represent curves much better estimated by TNDTK (see also Ganora et al.,2009, Fig. 8).
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panel shows the predictions results for dimensionless FDCs (i.e. MAF standardisation), while the right
panel reports the results for dimensional FDCs (i.e. MAP∗).
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Fig. 11. Nested structure of the study area: (left) black dots identify nested pairs (i.e. basin-subbasin re-
lationships); (right) Top-kriging weights λi,j obtained for predicting TND1 vs. the corresponding degree
of dissimilarity between empirical FDCs for sites i and j, βi,j , nested pairs are highlighted.
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Fig. 12. Results of Leave Nested Out Cross-Validation (LNOCV): error-duration bands reporting the
profile of the median relative error (thick black line) and the bands containing 50 %, 80 % and 90 % of
the relative errors (grey nested bands) as a function of duration (left); empirical vs. predicted standardised
streamflows (center); comparison of overall errors between empirical and predicted dimensionless FDCs,
values of δTNDTK (Sec. 5.1.1) are reported against values of δTNDTK-no nesting (right).
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