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Abstract

Multiple-point geostatistic simulation (MPS) has recently become popular in stochas-
tic hydrogeology, primarily because of its capability to derive multivariate distributions
from the training image (TI). However, its application in three dimensional simulations
has been constrained by the difficulty of constructing 3-D TI. The object-based TiGen-5

erator may be a useful tool in this regard; yet the sensitivity of model predictions to the
training image has not been documented. Another issue in MPS is the integration of
multiple geophysical data. The best way to retrieve and incorporate information from
high resolution geophysical data is still under discussion. This work shows that TI from
TiGenerator delivers acceptable results when used for groundwater modeling, although10

the TI directly converted from high resolution geophysical data leads to better simula-
tion. The model results also indicate that soft conditioning in MPS is a convenient and
efficient way of integrating secondary data such as 3-D airborne electromagnetic data,
but over conditioning has to be avoided.

1 Introduction15

Aquifer heterogeneity is one of the severe challenges in groundwater flow simulation
and with limited observations it is always difficult to depict the complete subsurface
geology. Hence, statistical methods are often used to estimate geological heterogene-
ity. Various geostatistical methods have been developed, including variogram-based
techniques (Delhomme, 1979; Deutsch and Journel, 1992; Wingle and Poeter, 1993;20

Johnson, 1995; Klise et al., 2009), the transition probability-based method (Carle and
Fogg, 1996), object-based modeling (Deutsch and Wang, 1996) and the multiple-point
geostatistical approach (MPS) (Journel, 1993; Guardiano and Srivastava, 1993; Stre-
belle, 2002). Most of these methods require observations for interpolation, and some
even have the ability to integrate multiple sources of observations. With the develop-25

ment in geophysical technology, high resolution geophysical mapping techniques are
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now available, such as the airborne electromagnetic system, SkyTEM (Sørensen and
Auken, 2004), ground penetrating radar (GPR) (Clement and Ward, 2008), and satel-
lite remote sensing (Hoffmann, 2005). Bourges et al. (2012) illustrate different ways
of applying gravity data, refraction seismic data and borehole data with geostatistical
methods. However, the proper method to incorporate these data into geostatistical sim-5

ulation is still a subject of active research.
The theory of multiple-point geostatistics has been developed over the last two

decades. An important development was the pixel-based single normal equation simu-
lation algorithm (SNESIM) proposed by Strebelle (2002), which allowed for simulations
with reasonable computational power. The primary advantage of MPS is its capability10

to capture multiple-point based structure information instead of using 2-point based
statistics (variogram) (Journel, 2005). The database from which the structural informa-
tion is retrieved is referred to as a training image (TI). Comunian et al. (2011) pointed
out that a 3-D TI is necessary for 3-D MPS simulation, but it is not trivial to generate
a 3-D TI since geological observations generally only provide 2-D information. Hence,15

3-D applications are one of the most important challenges for MPS (Huysmans and
Dassargures, 2009). While a few attempts on producing 3-D TI have been presented
in different but complicated ways (Coz et al., 2011; Comunian et al., 2011), Maharaja
(2008) proposed a simple object based algorithm, TiGenerator, to generate paramet-
ric images. However, an image purely generated by stochastic methods lacks evidence20

from geological observations, and its application in MPS can be questioned. Huysmans
and Dassargures (2009) concluded that the sensitivity of the model predictions to the
training image is an interesting topic for further research.

Another advantage of MPS is the ability to incorporate multiple sources of data
(Liu et al., 2005; Strebelle, 2006; Hu and Chugunova, 2008). With the flourish of new25

measurement technics, geological observations with relatively high resolution and ac-
curacy are available, and integrating them into stochastic simulations is appealing.
Liu et al. (2004) demonstrated how integration of seismic data reduces the uncer-
tainty in geofacies simulation, other researches (Strebelle et al., 2002; Huysmans and

11831

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/11829/2013/hessd-10-11829-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/11829/2013/hessd-10-11829-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 11829–11860, 2013

The effect of TI and
data integration with
MPS in groundwater

modeling

X. He et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Dassargues, 2012) also applied soft data conditioning in MPS, but the specific effect of
soft data conditioning on the groundwater flow regime has rarely been studied.

In this study, four scenarios of stochastic realizations were generated, with the pur-
pose of evaluating the sensitivity of training images in MPS, as well as exploring the
effect of integrating soft data in MPS simulations. The equifinality of stochastic realiza-5

tions were then analysed through the steady state groundwater model simulations of
hydraulic head, particle travel time and capture zone.

2 Study area and data

The study area covers a 14.5 km by 13.9 km region which is located near Ølgod in
western Denmark (Fig. 1). This area is dominated by arable land with inland marsh10

around seven streams. The land surface elevation in this area reach values of about
64 m above mean sea level (a.s.l.) in the north western part, and decreases to around
17 ma.s.l. in the south eastern part. The climate in this area is characterized by mean
temperatures ranging from 1.4 ◦C in January to 16.5 ◦C in August with annual aver-
age around 8.2 ◦C. Precipitation is concentrated in autumn and winter while spring is15

relatively dry, the average annual precipitation is approximately 1050 mmyr−1 (Stisen
et al., 2011). Water consumption primarily relies on groundwater abstraction. Accord-
ing to the National Water Resources Model (Henriksen et al., 2003), the annual aver-
age groundwater recharge is 611 mmyr−1. According to the Danish national geological
database JUPITER (http://www.geus.dk/jupiter/index-dk.htm), there are 165 pumping20

wells in this area with total mean abstraction of 3.2×106 m3 yr−1 in the period 2000 to
2010.

Intensive geological surveys show that this area is dominated by highly hetero-
geneous Quaternary sediments with variable thickness above −100 ma.s.l. (Høyer
et al., 2011). Below Miocene deposits are located with a thickness of up to about25

150 m and with Paleogene clay at the bottom (Rasmussen et al., 2010). The JUPITER
database holds geological descriptions from 525 boreholes in the study area, but only

11832

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/11829/2013/hessd-10-11829-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/11829/2013/hessd-10-11829-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.geus.dk/jupiter/index-dk.htm


HESSD
10, 11829–11860, 2013

The effect of TI and
data integration with
MPS in groundwater

modeling

X. He et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

22 boreholes reach deeper than −70 ma.s.l. Therefore, the geological analysis and
modeling were performed for Quaternary sediments from the surface to −70 ma.s.l.
The geological settings have been conceptualized into five units: Quaternary sand,
Quaternary clay, Miocene sand, Miocene clay and Paleogene clay. The borehole de-
scription was therefore also categorized accordingly.5

Another important source of information is the airborne transient electromagnetic
(SkyTEM) data (Høyer et al., 2011). The subsurface electrical resistivity data were
collected with line spacing from 125 m to 270 m, and the soundings penetrated down
to more than 200 m. The data have been discretized and interpolated into a 3-D grid
with cell size of 100m×100m×5m. With its high resolution, SkyTEM data are ideal as10

soft probability data or training image for MPS simulation.
Besides the geological data, a detailed geological model has also been developed

for the area (Jørgensen et al., 2012). The model was developed using non-linear in-
version to estimate the clay content from SkyTEM resistivity and borehole data (SSV
model) (Foged and Christiansen, 2013). The SSV model categorized Quaternary sed-15

iment into ten classes regarding clay content. In this study the model was simplified
into a binary sand-clay model by assigning classes with clay content up to 60 % as
Quaternary sand, and the rest as Quaternary clay.

3 Methodology

3.1 Multiple-point geostatistics20

Multiple-point geostatistics (MPS) was first presented as a direct algorithm in stochas-
tic simulation by Guardiano and Srivastava (1993), and Strebelle (2002) introduced
the single normal equation sequential simulation (SNESIM) algorithm which combines
the flexibility of the pixel-based algorithm and the ability to reproduce crisp shapes of
the object-based algorithm. The critical step of sequential simulation is the conditional25

probability distribution function (cpdf), and in the SNESIM algorithm it is solved by the
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following equation:

P
(
U;Sk | (n)

)
= Prob{S (U) = Sk |S (Ua) = Ska} ∼=

ck (dn)

c (dn)
(1)

This solution is achieved by scanning a training image. A training image (TI) is a con-
ceptual 2-D or 3-D map which depicts the expected structure and pattern of facies
(Strebelle, 2002). TI is scanned by a template consisting of n+1 nodes and is centered5

at location U, the values c(dn) and ck (dn) are recorded while scanning TI. dn denotes
the data event of all n surrounding nodes. c(dn) denotes the number of replicates of the
conditioning data event dn = {S (Ua) = Ska,a = 1, · · ·,n}, and ck (dn) denotes that among
those c(dn) replicates, the number of replicates with the central node U has the value
S (U) = Sk . Therefore, Eq. (1) implies that the probability of state Sk to occur at location10

U with n neighbor data is equal to the training proportion ck (dn)/c (dn).
With the possession of cpdf, the sequential simulation paradigm by Goovaerts (1997,

p. 376) is used in stochastic simulation. The hard data is first assigned to the closest
grid nodes, and all the unknown grids are visited once and only once in a random path.
At each unknown location U, the recorded cpdf corresponding to actually presented15

hard conditioning data event are retrieved, and is used to draw the simulated value S
at this location.

3.2 Soft data conditioning

Soft data or secondary data indicate data that provide indirect information on the distri-
bution of geological facies. Typical soft data include geophysical data such as seismic20

data, space borne geodetic observations, and airborne electromagnetic data. To be
integrated in SNESIM, soft data first have to be converted into facies probability data
(Strebelle, 2006).

Let n be the facies indicator value at location U, then P (A) is the facies global propor-
tion or prior probability in Bayesian statistical term. B infers to data event from training25

image, and then the notation P
(
U;Sk | (n)

)
in Eq. (1) can be rewritten as P

(
A|B

)
. Let
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C represents the additional soft information, and then P
(
A|C

)
denotes the probability

derived from soft data. Journel (2002) derived a Bayesian based model of integrating
P
(
A|B

)
and P

(
A|C

)
:

P
(
A|B,C

)
=

aτ

aτ +b · cτ
∈ [0,1] (2)

where5

a =
1−P(A)

P(A)
(3)

b =
1−P

(
A|B

)
P
(
A|B

) (4)

c =
1−P

(
A|C

)
P
(
A|C

) (5)

The parameter τ is used to adjust the contribution of soft information C. τ = 1 indicates10

independence of contribution of data C from data B. For τ = 0 the soft information is
ignored, while for τ > 1 the influence of soft data C is increased, and it is decreased for
τ < 1.

3.3 SkyTEM data to soft probability

In this study we applied a supervised technique (Liu et al., 2005) to retrieve prob-15

abilistic information from SkyTEM data. The SkyTEM data was converted to facies
probability data by correlating the facies occurrence in boreholes with SkyTEM resis-
tivity. For every 0.2 m borehole log, the sediment was categorized as sand or clay and
the corresponding SkyTEM resistivity value was recorded. Subsequently for each re-
sistivity bin (size 1Ωm) the sand probability based on borehole data was computed20

and plotted against corresponding SkyTEM resistivity (Fig. 2). The data points were
11835
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fitted by a non-linear regression function (green line), which was used to convert the
3-D SkyTEM data into a 3-D sand probability map. Due to data noise, curve fitting was
performed for resistivity between 10 and 140Ωm (Eq. 6). The coefficient of determina-
tion is 0.80 and the Root Mean Square Error (RMSE) is 0.08. For resistivity lower than
10Ωm there are only two data points both with sand occurrence at 0, and thus sand5

occurrence was set to 0 below this value. For resistivity higher than 140Ωm, 80 % data
points show sand occurrence at 1, thus the corresponding sand occurrence was set to
1. The membership function is therefore expressed as

Ps =


1 if R > 140 Ω m

0.0863× (lnR)3 −0.958× (lnR)2

+3.759× (lnR)−4.596 if 10 Ω m � R � 140 Ω m

0 if R < 10 Ω m

(6)

where R is the SkyTEM resistivity. Figure 3 shows Quaternary sand probability distri-10

butions as derived from Eq. (6) for lateral and vertical cross-sections.

3.4 Training image

Construction of 3-D TI is challenging since most geostatistical descriptive maps are
only in 1-D or 2-D. In this study two kinds of 3-D training images were generated,
denoted TI1 and TI2 respectively.15

TI1 was directly converted from SkyTEM data. Based on the resistivity the subsur-
face was divided into Quaternary sand and Quaternary clay by using a critical resistivity
value. According to the 525 borehole logs, the proportion of Quaternary clay is 0.33.
This proportion is assumed to be representative of the study area, although it could be
slightly biased due to the uneven distribution of borehole. Figure 4 shows the cumu-20

lative probability distribution curve of resistivity data. The Quaternary clay proportion
0.33 corresponds to 41.6Ωm on the SkyTEM resistivity cpdf curve. Thus, for resistivity
below this value the sediment is categorized as Quaternary clay, while for resistivity
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above the sediment is categorized as Quaternary sand. Figure 5 (left) illustrates cross
sections of TI1.

TI2 was generated by the TiGenerator (Maharaja, 2008), which is part of SGeMS’s
(Stanford Geostatistical Modeling Software) package. The TiGenerator (Maharaja,
2008) provides a method for generating 3-D training images with parametric shapes5

using non-iterative, unconditional Boolean simulation. The user-defined geometry and
orientation of simulated objects can be deterministic or statistical described. With the
current version geobodies with shapes of sinusoid, ellipsoid, half-ellipsoid and cuboid
can be defined with given geometric parameters such as maximum radius, median ra-
dius, and minimum. The geobody is drawn by following a random path until the facies10

proportion is fulfilled in the simulated grid.
Parameters of proportion and geometry of Quaternary clay bodies were obtained by

interpretation of TI1. Quaternary sand was taken as background facies with a propor-
tion of 0.67, in which the Quaternary clay bodies were embedded. The size of Quater-
nary clay bodies in TI1 was scanned in X , Y , Z direction separately, and the distribution15

of size in each direction was computed (Table 1). These properties were adopted for
the geometry of ellipsoid clay bodies in the TiGenerator. Figure 5 (right) shows the
cross sections of TI2. Compared to TI1 on the left, the shapes of clay bodies in TI2 are
more homogeneous and in the form of ellipsoids of various sizes, while in TI1 the size
and shape of clay bodies are more heterogeneous.20

3.5 Groundwater model

The groundwater modeling code MODFLOW-2000 (Harbaugh et al., 2000) was used
to assess the effect of geological model on the groundwater flow regime, explicitly
on simulated hydraulic head. In addition the particle tracking post-processing code
MODPATH (Pollock, 1994) was used to simulate groundwater travel time and capture25

zone.
The groundwater model extends down to −300 ma.s.l. However, as stated previ-

ously, due to the sparse data at depth, stochastic geological modeling was only applied
11837
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from soil surface to −70 ma.s.l. Below, the comparably more homogeneous Miocene
sediment starts to dominate, and the structure from the SSV model was applied.
In order to resemble the finely discretized geological model (100m×100m×5m),
the Hydrogeologic-Unit Flow (HUF) package (Evan and Mary, 2000) was used. The
groundwater model was discretized to 63 layers with cells of 100m×100m horizon-5

tally, resulting in a total of 792 603 active cells. A constant layer thickness of 5 m is
used from layer 6 to 63, and to avoid dry cells the top layer is 13 m thick on average,
while the thickness of layer 2 to 5 is 4 m on average.

3.6 Ensemble analysis

To test the effect of training image and soft conditioning on geostatistical realizations,10

multiple-point geostatistical simulations were carried out by applying four different com-
binations of TI and soft conditioning, see Table 2. According to He et al. (2013) the
variation of simulated hydraulic head tends to be stable after accumulating 30 model
runs. Hence, in this study 50 realizations were generated for each scenario and sub-
sequently anchored to the steady state groundwater model. In total 200 MODFLOW15

models were developed. The simulated groundwater head, groundwater travel time
and capture zones were evaluated by comparison to a reference model – the SSV
model, whose geology was modelled independently. Similar to the four scenarios, the
SSV model is also a 3-D binary sand-clay model. SSV is developed as an indepen-
dent method which by inversion optimizes the relation between resistivity and borehole20

data in each grid cell in combination with the geologist’s expert knowledge (Foged and
Christiansen, 2013; Jørgensen et al., 2012). The SSV model is assumed to give the
most accurate description of the study area.

All groundwater models share the same values of the hydraulic parameters for the
respective geological units. As field information on hydraulic conductivity is sparse, the25

inversion code PEST (Doherty, 2005) was used to estimate the hydraulic conductivity of
Quaternary sand, Quaternary clay and Miocene sand. The geological model SSV was
applied for estimation, which resulted in the following parameter estimates: 4.8 md−1
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for Quaternary sand, 0.7×10−3 md−1 for Quaternary clay and 3.9 md−1 for Miocene
sand. Hydraulic conductivities of 0.5×10−3 md−1 and 8.6×10−4 md−1 were assigned
to Miocene clay and Paleogene clay.

4 Result and discussion

Based on the flow solutions backward particle tracking and capture zone were carried5

out for each model by using MODPATH. All model simulations were compared to the
reference model, namely the model with SSV geological structure.

4.1 Groundwater head

There are 137 observation wells which are screened above level −70 ma.s.l. in the
model area (Fig. 1). RMSE for the 137 wells was calculated based on simulation re-10

sults of each realization of geology and the simulation of the SSV model. Based on the
50 realizations the mean, µRMSE, and standard deviation, σRMSE, of RMSE of each sce-
nario are listed in Table 3. Comparison of simulations with and without soft data shows
that results from simulations without soft data (S1 and S3) have the largest RMSE val-
ues, while the mean of RMSE for S2 and S4 have similar and smaller values than those15

from S1 and S3. This indicates that the accuracy of the simulations is improved when
applying soft conditioning for both training images. However, application of soft data
also affects the variability between the flow solutions as expressed by the standard
deviation of the RMSE values. A standard deviation of 0.7 m is found for both S2 and
S4 while the standard deviation for the realizations not using soft data is considerable20

higher (1.0 m and 1.2 m).
The impact of training image is seen by comparing S1 and S2 using TI1 to S3 and

S4 using the TiGenerator based TI2. The results show that realizations with TI1 have
higher accuracy in groundwater head simulation than those generated with TI2. How-
ever, the difference in mean RMSE between realizations generated with TI1 and TI2 is25
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less than the difference found using realization with and without soft data. Therefore,
even though TI2 is a relatively poor representation of the geological structure, the sim-
ulation yields acceptable results. With respect to variability between the realizations,
represented by σRMSE, the choice of training image has a relatively small effect.

Figure 6 illustrates the standard deviation of simulated hydraulic head from each5

scenario. The overall hydraulic head distribution is affected by the pattern of training
image. Models using TI1 (S1 and S2) show more discrete patterns than the ones using
TI2 (S3 and S4). This is probably because TI2 is composed of the more homogeneous
ellipsoid clay bodies, while TI1 is composed of clay bodies with a highly discrete and
heterogeneous pattern (Fig. 5). Furthermore, by comparing the simulations with soft10

conditioning (S2 and S4) with the ones without soft conditioning (S1 and S3), it is
obvious that the overall standard deviation is decreased when conditioning with soft
data. Another interesting phenomenon is that the reduction in uncertainty from S1 to
S2 is higher than that from S3 to S4.

This phenomenon is also illustrated in Fig. 7, in which the E-type map (cell-wise15

arithmetic average) of 50 realizations from each scenario is compared against soft
data with Q-Q plot. The x axis shows the clay probability from soft data, while the
y axis shows the corresponding probability from the E-type map. Therefore, the Q-Q
plot can be evaluated against the probability distribution of clay probability from soft
data, represented by the black line in the figure. The closer the Q-Q plot is to the black20

line, the more information is derived from the soft data. While the plot for S1 is far
from the black line, the plot for S2 (blue plot) is much closer. The red plot (S4) is also
closer to the black line than the purple plot (S3). However, the difference between S1
(yellow plot) and S2 (blue plot) is larger than that of S3 (purple plot) and S4 (red plot),
and this is coherent with the differences in hydraulic head uncertainties presented in25

Fig. 6. The reason for this is the data dependency. Both TI1 and soft data are derived
from the SkyTEM data, and although they were processed in different ways, they are
not totally independent. In Eq. (2), the parameter τ is used to adjust the dependence
between two data sets. To make S2 and S4 comparable, we set parameter τ to 1.0 in
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both cases. Liu (2006) also pointed out that using a value of 1.0 generates the most
robust results. In Fig. 7 the plot for S2 (blue) is lower than the black line in the low
probability part, while it is located above the black line in the high probability part,
indicating that the S2 realizations are over conditioned. In contrast, as TI2 is remotely
related with the soft data, the soft conditioning on S4 improves the simulations but do5

not result in over condition. Therefore, the integration of TI2 with soft data is sounder
than the combination of TI1 and soft data. Journel (2002) mentioned that when τ <
1 the influence from additional data is decreased. Therefore, another scenario (S5)
was added where TI1 and soft data were used, but the parameter τ is set to 0.5. S5
corresponds to the green plot in Fig. 7, and it is located right between S1 and S2, which10

illustrates the effect of decreasing τ.

4.2 Particle tracking and capture zone

Backward particle tracking was also simulated for the 137 points. The particle travel
times simulated by SSV model were taken as the reference values and for each sce-
nario RMSE was computed by relating to the reference (Table 4). Similar to the results15

for hydraulic head, the mean RMSE from S1 and S3 is comparable, which indicates
that even though TI2 only contains randomly distributed ellipsoid clay bodies, the simu-
lation for groundwater age is not particularly worse than when simulated with TI1. Also
similar to hydraulic head simulations, the mean of RMSE from S2 is smaller than that
of S1, and same applies to S4 and S3. This indicates that soft conditioning helped to20

constrain the heterogeneity.
Probabilistic capture zones were analysed for three abstraction wells screened in

both shallow and deep layers. Figure 8 to 10 show the probabilistic capture zone for
these three wells. In each figure the top row illustrates the capture zones for S1 and
S2, while the second row represents the corresponding simulations from S3 and S4.25

Generally, there are no distinct differences between first and second row, which again
implies that realizations from TI2 appear acceptable. For all three wells, the simulation
for S2 has smaller area and more concentrated high probability area than the one
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from S1, again suggesting that for simulations with TI1, the soft data constrain the
geological heterogeneity. However, such tendency is not seen for simulations with TI2.
The sizes of the capture zones are similar for simulation S3 and S4 for Well 1 and Well
2 respectively, and for Well 3 in layer 15 (Fig. 11), the one with soft conditioning (S4) is
even larger than the one without (S3). The explanation for this is again data redundancy5

as for hydraulic head. Realizations from S2 have been over conditioned and therefore
the uncertainty on probabilistic capture zone has been constrained extremely.

5 Conclusions

This study is one of the first to evaluate the behaviour of geophysical data in multiple-
point geostatistics simulation. It demonstrates how the 3-D high resolution airborne10

electromagnetic data can be used as training image (TI) as well as secondary data for
soft conditioning. The sensitivity of model predictions to TI and soft conditioning has
also been analysed. The SkyTEM derived training image which resembles the actual
geological structure at the site was evaluated against the parametric training image
generated by the object-based TiGenerator. TI from TiGenerator is an abstract depic-15

tion of geological structure with parameterized geometry. Although it holds less accu-
racy in heterogeneity in comparison to the TI derived from field data, it was found to be
a reasonable input to MPS. Comparison for groundwater heads indicated that a training
image with higher accuracy helped improving the model simulation. Nevertheless, TI
from TiGenerator proved to be an acceptable option in MPS, as a TI with less precise20

representation of the field structure did not significantly degrade the simulation.
By further conditioning on secondary data, the groundwater head simulation was im-

proved both with respect to higher accuracy and lower uncertainty, which underlines
the advantages of the MPS method. However, when applying soft conditioning, the
dependence of different data sets has to be taken into account. If the training image25

and the soft conditioning data are based on the same source of information, the result-
ing geological realizations may be over-conditioned resulting in under prediction of the
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uncertainties of flow and transport simulations. This was demonstrated for the exam-
ined case where high-resolution SkyTEM data was used as both training image and
soft conditioning which resulted in a higher reduction in capture zone uncertainty than
if SkyTEM was only used for soft conditioning. Therefore, it is recommended to use
independent data sources for generating the training image and the soft data, e.g., by5

utilizing geophysical data for soft conditioning while using the TiGenerator for defining
the training image. The information required by the TiGenerator may be derived from
expert knowledge on the geological structure at the site or derived from analysis of the
mapped geology at a site with comparable geology. Alternatively, a Q-Q plot analysis
could be carried out and the contribution from soft data on the realization should be10

decreased. It is however Eq. (1) problematic to estimate the optimal level of informa-
tion which should be contained from the soft data and Eq. (2) time consuming to carry
out the analysis.
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Table 1. The size distribution of Quaternary clay bodies. Unit: m.

Minimum Median Maximum

X 50 250 2950
Y 50 250 3200
Z 2.5 20 60
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Table 2. Four scenarios of geological realizations used for multiple-point geostatistic simulation.

Scenario Training Image Soft Condition

S1 TI1 No
S2 TI1 Yes
S3 TI2 No
S4 TI2 Yes
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Table 3. RMSE of simulated hydraulic head against SSV simulation. The table lists mean,
µRMSE, and standard deviation, σRMSE, over 50 realizations (where each RMSE value is based
on 137 observation wells).

µRMSE (m) σRMSE (m)

S1 1.4 1.0
S2 0.8 0.7
S3 1.7 1.2
S4 1.0 0.7
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Table 4. RMSE of simulated particle travel time against SSV simulation. The table lists mean,
µRMSE, and standard deviation, σRMSE, over 50 realizations (where each RMSE values are
based on backward particle tracking for 137 cells).

µRMSE (yr) σRMSE (yr)

S1 45 149
S2 40 126
S3 39 139
S4 36 128
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Fig. 1. Location and land use of study area. Black points denote 137 boreholes for groundwater
head observation.

11851

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/11829/2013/hessd-10-11829-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/11829/2013/hessd-10-11829-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 11829–11860, 2013

The effect of TI and
data integration with
MPS in groundwater

modeling

X. He et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 2. Non-linear regression of sand occurrence against SkyTEM resistivity. Blue points are
sand occurrence from borehole data pared to SkyTEM resistivity. Green line is the regression
line (Eq. 6), coefficient of determination is 0.80 and RMSE is 0.08.
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Fig. 3. Cross sections of 3-D map showing probability of Quaternary sand. Lateral cross section
is taken at 10 ma.s.l., vertical exaggeration is 15.
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Fig. 4. Cumulative probability distribution curve of SkyTEM resistivity. Resistivity of 41.6Ωm
corresponds to a proportion of 0.33, which is the proportion of Quaternary clay according to
borehole data.
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Fig. 5. Cross sections of TI1 (left) and TI2 (right). TI1 is converted from SkyTEM resistivity
data while TI2 is generated by TiGenerator. Lateral cross section is taken at 10 ma.s.l., vertical
exaggeration is 15. Red color indicates Quaternary sand and blue color Quaternary clay.
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Fig. 6. Standard deviation of simulated hydraulic head from each scenario for layer 1 and layer
10.
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Fig. 7. Black line indicates cumulative probability distribution (CDF) of clay probability from soft
data. Point plots are Q-Q plot of the average of realizations from each scenario against soft
data.
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Fig. 8. The probabilistic capture zone of Well 1 from each scenario. Well location is illustrated
in relation to the geological structure of the SSV model.
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Fig. 9. The probabilistic capture zone of Well 2 from each scenario. Well location is illustrated
in relation to the geological structure of the SSV model.
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Fig. 10. The probabilistic capture zone of Well 3 from each scenario. Well location is illustrated
in relation to the geological structure of the SSV model.
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