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Abstract

In this paper, a novel method for estimating gross gains and losses between streams
and groundwater is developed and evaluated against two traditional approaches. These
three streambank flux estimation methods are distinct in their assumptions on the spa-
tial distribution of the inflowing and outflowing fluxes along the stream. The two tra-5

ditional methods assume that the fluxes are independent and in a specific sequence,
while the third and newly derived method assumes that both fluxes occur simultane-
ously and uniformly throughout the stream. The analytic expressions in connection to
the underlying assumptions are investigated to evaluate the individual and mutual dy-
namics of the streambank flux estimation methods and to understand the causes for the10

different performances. The results show that the three methods produce significantly
different results and that the mean absolute normalized error can have up to an order
of magnitude difference between the methods. These differences between the stream-
bank flux methods are entirely due to the assumptions of the streambank flux spatial
dynamics of the methods, and the performances for a particular approach strongly de-15

crease if its assumptions are not fulfilled. An assessment of the three methods through
numerical simulations, representing a variety of streambank flux dynamics, show that
the method introduced, considering simultaneous stream gains and losses, presents
overall the highest performance. These streambank flux methods can also be used in
conjunction with other end-member mixing models to acquire even more hydrologic20

information as both require the same type of input data.

1 Introduction

Groundwater and surface water interactions are an important process in hydrologic
systems (Winter, 1998). These interactions within and around streams and rivers im-
pact decisions on municipal water supply extractions, water pollution, riverine habitat,25

and many others. To make better decisions on these impacts, the stream and ground
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water interactions (streambank fluxes) need to be accurately quantified as stream
losses and gains can account for a substantial proportion of the total flow and chemical
load of a stream.

In general, when people consider how to estimate the losses or gains along a stream
reach they would take a discharge measurement upstream, a discharge measurement5

downstream, subtract the two values, and the result would be considered the gain or
loss within the stream reach. Although this may be a relatively simple procedure to ac-
complish, the assumption that all flow within a stream reach must be either flowing into
the stream or flowing out of the stream is in many cases an over simplification (Castro
and Hornberger, 1991; Harvey and Bencala, 1993). Depending on local topography,10

geology, and the groundwater table, gains and losses into and out of the stream can be
very dynamic even over short distances (Harvey and Bencala, 1993; Anderson et al.,
2005; Payn et al., 2009). Consequently, what might have originally been estimated as
a small gain to the stream from simply subtracting the upstream and downstream dis-
charges might end up becoming a small loss out of the stream and a large gain into15

the stream. Without a proper method to estimate streambank fluxes, any attempt at
estimating a water or nutrient mass balance would be difficult and laced with errors.

Harvey and Wagner (2000) and many other researchers use a more realistic concep-
tual model of flow pathways within a stream (Fig. 1). These major flow pathways include
initial (or upstream) discharge (Qinit), final (or downstream) discharge (Qfinal), stream20

gains from groundwater (Qin), stream losses to groundwater (Qout), and hyporheic flow
(Qhyp). In this conceptual model, Qin is considered to be pure groundwater entering
the stream, and Qout is stream water permanently leaving the stream. Hyporheic flow
occurs when stream water temporarily leaves the stream into the surrounding ground-
water (or more specifically the hyporheic zone), but returns again to the stream at some25

downstream location. During this temporary departure from the stream, additional bio-
chemical reactions may occur that would not necessarily have occurred while in the
stream itself. The mass is still retained in the stream and not lost (permanently) to
the groundwater. Although the hyporheic flow pathways do occur and can be very im-
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portant for stream ecosystems (i.e. the movement of oxygen into the hyporheic zone,
nitrogen cycling, etc.), hyporheic flow will not be directly addressed in this study as
the authors are most interested on fluxes that are permanently adding or removing
mass over a significant length of stream. As hyporheic flows only temporarily leave the
stream, the mass of the water is still retained over sufficient distances.5

There are a number of methods to estimate gross stream gains and losses (Kalbus
et al., 2006). The general categories are seepage meters, (heat or chemical) tracer
tests, and hydraulic gradients derived from groundwater piezometers. Each has ad-
vantages and disadvantages. Seepage meters and groundwater piezometers are point
measurements that can be accurate at a specific point, but in a heterogeneous system10

they may not represent the stream as a whole. On the other hand, chemical tracer
tests are an aggregation of all fluxes along a stream reach, but do not represent any
particular point along the stream. For this study, the focus is on the total aggregated
flows over the stream reaches, so chemical tracer tests were found to be the most ap-
propriate and inexpensive. Kalbus et al. (2006) and Scanlon et al. (2002) have a more15

thorough qualitative review of the different streambank flux methods.
Using chemical tracer tests for the source of data, the estimation of gross stream

gains and losses is most frequently performed through numerical models like those
similar to the OTIS model developed by the USGS (Runkel, 1998). While able to es-
timate fluxes in steady-state conditions, these types of models are primarily designed20

for non-steady-state conditions and provide many output parameters in addition to the
inflow and outflow fluxes, and as a consequence require more input data than in steady-
state conditions for estimating only streambank fluxes (i.e.stream cross-sectional area,
flow advection, flow dispersion, etc). Additionally, the OTIS type models would require
the estimation of parameters through a trial-and-error or an automated nonlinear least25

squares (NLS) procedure that are not directly measured. Under steady-state condi-
tions, the data and parameter requirements for estimating only streambank fluxes are
substantially lower requiring only discharge and tracer concentration measurements
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upstream and downstream. If steady-state is appropriate, then analytical methods are
sufficient.

There are two traditional analytical methods to estimate streambank fluxes under
steady-state conditions ignoring hyporheic flowpaths. These methods use simple mass
balance equations to estimate both gains and losses within a stream reach and assume5

that the fluxes are independent and in a specific sequence. In this paper, a new analyt-
ical method has been developed using different assumptions on the spatial distribution
of the inflowing and outflowing fluxes along the stream.

The goal of our study is to quantitatively evaluate the accuracy and sensitivity of the
new method against the existing steady-state streambank flux tracer methods. This10

evaluation is performed through a combination of analytical comparisons and numerical
stream simulations as described in the following sections.

2 Methods

2.1 Theoretical basis of the streambank flux tracer methods

All tracer based methods designed to estimate streambank fluxes start with the con-15

servation of mass equations under steady-state conditions for both the tracer and the
water flux and assume complete mixing of the individual flows:

QinitCinit +QinCin = QfinalCfinal +QoutCout (1)

Qinit +Qin = Qfinal +Qout (2)
20

where Qfinal is the final discharge (in volume per unit time), Cfinal is the final concentra-
tion (in mass per unit volume), Qinit is the initial discharge, Cinit is the initial concentra-
tion, Qin is the discharge from the groundwater to the stream, Cin is the concentration
of Qin, Qout is the discharge from the stream to the groundwater, and Cout is the con-
centration of Qout.25
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The two traditional streambank flux estimation methods mentioned in the introduc-
tion make specific assumptions on the distribution of gains and losses throughout the
reach (see Fig. 2). The first method, we call “Loss–Gain”, assumes Cout = Cinit, while
the second method, we call “Gain–Loss”, assumes Cout = Cfinal. In both variants, the
methods assume that the mixing of QinCin and QoutCout are mixed separately and are5

mixed in a sequence defined by the above assumptions. The Loss–Gain variant as-
sumes that the mixing sequence begins with Qout followed by Qin, while Gain–Loss is
vice-versa.

Combining Eqs. (1) and (2), the solution for Qout for Loss–Gain is:

Qout,L-G = Qinit −Qfinal

(
Cfinal −Cin

Cinit −Cin

)
(3)10

Similarly, the equation for Qout for Gain–Loss is:

Qout,G-L = Qinit

(
Cinit −Cin

Cfinal −Cin

)
−Qfinal (4)

To get Qin for both methods, we need to include Eq. (2) into Eqs. (3) and (4):

Qin,L-G = Qfinal

(
Cfinal −Cinit

Cin −Cinit

)
(5)

Qin,G-L = Qinit

(
Cfinal −Cinit

Cin −Cfinal

)
(6)15

If we use an artificial tracer (i.e. Bromide salt), we can safely assume Cin ≈ 0 and the
resulting equations are as follows:

Qout,L-G = Qinit −Qfinal
Cfinal

Cinit
(7)

Qout,G-L = Qinit
Cinit

Cfinal
−Qfinal (8)20
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and Qin becomes:

Qin,L-G = Qfinal

(
1−

Cfinal

Cinit

)
(9)

Qin,G-L = Qinit

(
Cinit

Cfinal
−1
)

(10)

These methods can be applied conceptually along a stream length as illustrated in the5

left and central scheme of Fig. 2. Qinit is the upstream discharge and Qfinal represents
the downstream discharge. Depending on the equation variant, Qin is added or Qout
is removed from Qinit at the beginning of the stream and Qout is removed or Qin is
added at the end of the stream resulting in a downstream discharge of Qfinal. As these
methods make no assumptions about the exact location along the stream for Qin and10

Qout, they can occur over any length of the stream as long as they occur in sequence
and independently.

From studies that tested multiple stream reaches for streambank fluxes, almost every
stream reach had both gains and losses regardless of the method and of the reach
length (Anderson et al., 2005; Ruehl et al., 2006; Payn et al., 2009; Covino et al.,15

2011; Szeftel et al., 2011). Additionally, studies that have tried to identify the spatial
distribution of groundwater inflows and outflows to and from the stream have found
a wide variety of diffuse flow locations throughout the stream and were not limited to
one or two flow locations every several hundred meters (Malard et al., 2002; Wondzell,
2005; Schmidt et al., 2006; Lowry et al., 2007; Slater et al., 2010). This indicates that20

even short stream reaches typically have many instances of gains and losses to and
from the stream and that limiting the flux instances to one flux each regardless of the
stream length may not be the most accurate assumption.

Following this rationale, this paper presents a novel method based on a different
assumption for the spatial distribution of streambank fluxes as compared to the Gain–25

Loss and Loss–Gain methods, namely that both Qin and Qout occur simultaneously
and are constant throughout the entire stream section. This new method is denoted as
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“Simultaneous”. Equations requiring the same input data as the Gain–Loss and Loss–
Gain methods are derived in Sect. 2.2 and length is integrated into the mass balance
equation (Fig. 3).

2.2 Derivation of the method for simultaneous gains and losses

In this section, the fundamental equations of mass balance for the tracer and water5

flows will be applied on a control volume represented in Fig. 3 under the assumption of
simultaneous and uniform gains and losses throughout the stream reach and station-
arity in time in order to obtain the expressions predicting Qin and Qout as functions of
Qinit, Cinit, Qfinal, Cfinal and Cin. First, applying mass balance for discharge:

Q(x)+qindx = Q(x)+
∂Q(x)

∂x
dx +qoutdx (11)10

where x is stream length, Q(x) is the discharge at length x , qin is the added discharge
per unit length of stream, and qout is the lost discharge per unit of length. Both qin
and qout are assumed constant for a given stream reach. In the one-dimensional and
stationary case we can write ∂Q(x)

∂x dx = dQ. After rearranging and integrating from the
beginning of the reach over an arbitrary length:15

Q(x)∫
Qinit

dQ =

x∫
0

(qin −qout)dx (12)

which becomes:

Q(x) = Qinit + (qin −qout)x (13)

Then, applying mass balance for the tracer:

C(x)Q(x)+Cinqindx =
(

C(x)+
∂C(x)

∂x
dx
)(

Q(x)+
∂Q(x)

∂x
dx
)
+C(x)qoutdx (14)20
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where C(x) is the concentration at length x and Cin is the concentration of qin. The
inflowing concentration Cin is assumed constant for a given stream reach. Again in the
one-dimensional and stationary case, we can write ∂Q(x)

∂x dx = dQ and ∂C(x)
∂x dx = dC.

Neglecting second order differentials and rearranging:

Q(x)dC = Cinqindx −C(x) (dQ +qoutdx) (15)5

Substituting Eqs. (12) and (13) for Q(x) and dQ respectively in Eq. (15), and
rearranging:

dC =
Cinqindx −C(x)

[
(qin −qout)dx +qoutdx

]
Qinit + (qin −qout)x

(16)

Simplifying and integrating from the beginning of the reach over an arbitrary length x :

C(x)∫
Cinit

dC
C(x)−Cin

= −qin

x∫
0

dx
Qinit + (qin −qout)x

(17)10

which becomes:

ln
C(x)−Cin

Cinit −Cin
= −

qin

qin −qout
ln

Qinit + (qin −qout)x

Qinit
(18)

Evaluating Eq. (13) for x = L, where L represents the total length of the stream reach:

qin −qout =
Qfinal −Qinit

L
(19)

Substituting Eq. (19) in Eq. (18) and evaluating for x = L:15

ln
Cfinal −Cin

Cinit −Cin
= −

qin

Qfinal−Qinit
L

ln
Qfinal

Qinit
(20)
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Calling Qin = qin ·L and rearranging:

Qin,Sim = (Qinit −Qfinal)
ln
[

Cfinal−Cin
Cinit−Cin

]
ln
[

Qfinal
Qinit

] (21)

and the solution for Qout is:

Qout,Sim = (Qinit −Qfinal)
ln
[

QfinalCfinal−QinCin
QinitCinit−QinCin

]
ln
[

Qfinal
Qinit

] (22)

where Qin,Sim and Qout,Sim are the Simultaneous equations for the streambank fluxes5

into and out of the stream, respectively.
As with the previous methods, if we use an artificial tracer (i.e. Bromide salt) we can

safely assume Cin ≈ 0 and the resulting equations are as follows:

Qin,Sim = (Qinit −Qfinal)
ln
[

Cfinal
Cinit

]
ln
[

Qfinal
Qinit

] (23)

and10

Qout,Sim = (Qinit −Qfinal)
ln
[

QfinalCfinal
QinitCinit

]
ln
[

Qfinal
Qinit

] (24)

Naturally occurring tracers (i.e. Chloride salt) can also be applied to the Simultaneous
equations with additional information about Cin. As long as a quasi-steady-state con-
dition applies and that Qin > 0, the only additional information to be collected would be
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the Cinit and Cfinal prior to the injection of the tracer. The equation to solve Cin can be
formulated from any of the streambank flux equations by setting itself equal to itself
except replacing one side with the Cinit and Cfinal prior to the injection of the tracer.

Cin =
Cinit,priorCfinal −Cfinal,priorCinit

Cinit,prior −Cinit −Cfinal,prior +Cfinal
(25)

where Cinit,prior is the upstream concentration prior to the tracer injection, Cinit is the5

upstream concentration from the tracer injection, Cfinal,prior is the downstream concen-
tration prior to the tracer injection, and Cfinal is the downstream concentration from the
tracer injection. The only main disclaimer to the application of this equation in the field
is that the difference between Cinit,prior and Cfinal,prior must be large enough to be sta-
tistically significant when estimated using available laboratory or field measurement10

techniques. The accuracy of the measurement techniques is a general problem for any
chemical tracer test performed to estimate streambank fluxes. If the difference between
the Qinit and Qfinal is very small, much tracer may be needed to accurately measure
a concentration difference between Cinit and Cfinal. This issue will become more impor-
tant with larger rivers as the proportion of the Qin and Qout to the Qinit is substantially15

reduced.
It would also be possible to estimate Cin from groundwater piezometers adjacent to

the bank of the stream. As the intent of our study was to determine integrated values
over a stream reach rather than point values, we preferred to use Eq. (25) as it is an
integrated value of Cin.20

There might also be a need to estimate the groundwater concentration of other
chemical compounds entering the stream in addition to the conservative tracer used to
estimate the streambank fluxes. If other in-stream gains and losses in the new chem-
ical compound can be neglected (i.e. without biochemical transformations), the only
additional information needed would be the concentration of the new compound at the25

locations of Qinit and Qfinal. The Cin of the new chemical compound can be estimated
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using the following rearrangement of Eq. (21):

Cin, new =

(
Qfinal
Qinit

)( Qin,Sim
Qinit−Qfinal

)
Cinit, new −Cfinal, new(

Qfinal
Qinit

)( Qin,Sim
Qinit−Qfinal

)
−1

(26)

where Cin, new is the concentration of the new compound, Cinit, new is the upstream
concentration of the new compound, and Cfinal, new is the downstream concentration
of the new compound. Any of the three streambank flux methods can be rearranged to5

calculate Cin, new and they will all produce the same result.
The application of tracer methods to measure streambank fluxes in the field are typi-

cally performed by two different techniques: constant injection and slug injection. These
two techniques have been well researched in the scientific community and will not be
evaluated in this study (Wagner and Harvey, 1997; Payn et al., 2008). Both techniques10

can be used with the above streambank flux methods and provide very similar results.
For simplicity, we will assume constant injection with steady-state conditions as the
slug injection would require Cfinal to be integrated over time.

2.3 Evaluation methods

2.3.1 Analytics15

All three streambank flux methods were broken down analytically to better understand
the dynamics of the equations of the methods. We wanted to know what caused the
differences in the results of the three streambank flux methods and how these differ-
ences were related. The relative differences between the methods was accomplished
by the ratio of one method’s equation to another both analytically and illustratively.20
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2.3.2 Numerical simulations

Perfect measurements or estimates of streambank fluxes are impossible using any
existing method. Arbitrarily comparing results of different methods using field collected
data will only indicate that the different methods produce different results, and it will not
indicate if one method is more accurate than another. Consequently, we thought that5

it would be appropriate to simulate an artificial stream with known streambank fluxes
for comparisons. With streambank fluxes perfectly known, we could effectively evaluate
the accuracy of the different methods.

We simulated the lateral inflows and outflows per unit length throughout a stream us-
ing an autoregressive integrated moving average (ARIMA) model performed using the10

arima.sim package in the R statistical computing environment (R Development Core
Team, 2011). The routine generates a variety of artificial time series with both a ran-
domness and memory component. In an attempt to create realistic simulations of the
streams, we tuned the ARIMA model to have spatial flux dynamics based on stud-
ies using distributed temperature sensing (DTS) of groundwater inflows within streams15

(Lowry et al., 2007; Westhoff et al., 2007; Briggs et al., 2012; Mwakanyamale et al.,
2012). The quantitative surrogate we used for the spatial flux dynamics was the av-
erage length that the fluxes would switch from inflow to outflow or vice-versa within
a stream reach. For example, if we simulate a stream with 1000 m total length and
the fluxes in this stream oscillates between inflows and outflows 10 times then the av-20

erage length per switch would be 100 m. For our simulations, we used two different
switch lengths of 100 m and 200 m and total stream lengths of 1000 m and 2000 m.
The switch lengths had a strong linear relationship with the correlation lengths and
resulted in correlation lengths of 40 m and 70 m for the switch lengths of 100 m and
200 m, respectively. Correlation length is commonly defined as the length at 1/e on the25

autocorrelation distribution (Blöschl and Sivapalan, 1995).
The ARIMA model allowed us to create 5000 simulations of stream fluxes within

a hypothetical stream. We ran four series of 5000 simulations. Series A had a 1000 m
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stream length and a 100 m average switch length, Series B had a 1000 m and a 200 m
average switch length, Series C had a 2000 m and a 100 m average switch length, and
Series D had a 2000 m and a 200 m average switch length. The spatial discretization of
the model was 1 m for all series and simulations. These four series of simulations were
to test the effects of both length and intermittency on the stream flux methods. Without5

loss of generality, we defined Cin = 0 for the simulations, which would be equivalent to
the use of an artificial tracer (i.e. bromide salt) for the tracer test.

We tested two distinct assumptions when deciding on the appropriate streambank
flux ARIMA model. One assumption was that both Qin and Qout can occur simultane-
ously at one point. For example, if the groundwater table is sloped perpendicular to the10

stream then water would be flowing into one side of the bank, while water would be
flowing out of the other side of the bank. In this assumption, we created two separate
and independent vectors of Qin and Qout along the stream. The second assumption
was that both Qin and Qout cannot occur simultaneously at one point. In this assump-
tion, only one vector of streambank flux was created that could oscillate between Qin15

and Qout. We decided to omit the option for simultaneity of Qin and Qout throughout the
stream as this assumption coincides with the assumption in the Simultaneous method
and consequently the Simultaneous method was vastly superior to the other stream-
bank flux methods. To ensure a more rigorous evaluation against the Simultaneous
method, we decided to omit the ARIMA model assumption of simultaneity and only use20

the non-simultaneity assumption for the simulations.
We attempted to simulate the stream with realistic dynamics of streambank fluxes,

but we also tried to keep the model complexity as simple as possible. Although we did
attempt to cover a wide range of streambank conditions when creating the many simu-
lations, undoubtedly we did not cover all possible streambank flux conditions that could25

exist in nature. Realistically, the scientific community does not even know the full range
of possibilities for natural streambank fluxes. We have also likely created simulations of
streambank fluxes that do not exist in nature. Both issues are unavoidable when creat-
ing hydrologic simulations, particularly with the stochastic generation approach used in
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this paper. The hope is that the flux distributions of the simulations do closely represent
reality for the purpose of our evaluation.

The statistical evaluation consisted of several methods and procedures. First, we
took all of the simulated scenarios (5000 in our case) within an individual series and
averaged the inflows and outflows for each simulation. This gave us an average in-5

flow to the stream and outflow from the stream over the entire length of the stream
for each scenario and served as our “true” values of the fluxes that the other stream-
bank flux methods would be compared to. Next, we calculated the streambank fluxes
of each scenario using the three streambank flux methods from the starting and end
values of the scenarios. We did not include additional randomness in the input values10

for the streambank flux methods, which would equate to measurement error. This is
due to the large variety of measurement devices and techniques that could be used in
a tracer test, and each device and technique would have different measurement errors
associated with them. Additionally, we calculated the net flux (we will call “Net”) simply
by subtracting Qinit from Qfinal. We considered the Net as the upper error benchmark15

for the evaluation as the estimation of Net requires less information and should there-
fore perform worse than the other three streambank flux methods that require more
information.

Once the streambank fluxes were calculated for all of the methods to be evaluated,
we used as a performance measure the absolute normalized error for method m and20

for each simulation i , defined as:

εm
i =

∣∣∣∣∣Qm
est,i −Qtrue,i

Qtrue,i

∣∣∣∣∣ ; i = 1, . . .,5000 (27)

where Qm
est,i is the estimated gross gain or loss value from the streambank flux method

m and simulation i and Qtrue,i is the average flux from the ARIMA model at simulation
i . The results of εm

i are two vectors (one for gross gains and one for gross losses) for25

each of the four methods. Each vector contains 5000 elements, one for each scenario.
To make an overall evaluation for each method, we simply took an average of all of the
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scenarios in each series for both vectors of gains and losses:

ε
m
=

1
n

n∑
i=1

εm
i (28)

where ε
m

is the mean absolute normalized error for each method m (either flux leaving
the stream or entering the stream) and n is the total number of scenarios in each series
(5000). This is a compound measure of relative bias and accuracy.5

In addition to calculating the ε
m

for all of the streambank flux methods, we compared
the εm

i within each of the streambank flux methods to determine how frequently one
method outperformed another:

rm1,m2 =
1
n

n∑
i=1

{
1 if εm1

i < εm2
i

0 if εm1
i ≥ εm2

i

(29)

where rm1,m2 is the frequency of m1 streambank flux method outperforming m2 stream-10

bank flux method.
Once εm

i and ε
m

were estimated, we wanted to determine the causes of the errors
in the individual methods. This was accomplished through a correlation of the εm

i to
various combinations of the input parameters.

3 Results15

3.1 Analytics

When there is 0 flux of either Qin or Qout all three equations produce the same results.
For example, if Qout = 0 then Eq. (2) becomes:

Qfinal = Qinit +Qin (30)

10434



As Qfinal and Qinit are previously known, there is only one solution for Qin regardless
of the other equations. Similarly, as the ratio of Qin to Qout grows to infinity or to 0, the
results for the three equations will converge.

Although somewhat obvious, if all of the assumptions are met for any of the stream-
bank flux methods then the method will perfectly reproduce reality. For example, if there5

is only inflow to the stream from 1–100 m followed by only flow out of the stream from
101–1000 m then the Gain–Loss equation will estimate both fluxes perfectly.

If Qin > 0 then Cfinal < Cinit assuming that Cin = 0 from an artificial tracer injection.
Subsequently, both Cfinal and Cinit represent the end points of the concentration pro-
file within the stream. As formulated in Eqs. (7)–(10), the Loss–Gain and Gain–Loss10

equations are divided by the end point concentrations of the stream and will there-
fore represent the minimum and maximum values of fluxes within a stream reach. The
Loss–Gain equations will always produce the minimum flux values, while the Gain–
Loss equations will always produce the maximum flux values. Consequently, as Loss–
Gain and Gain–Loss will have the minimum and maximum flux values, the flux values15

for the Simultaneous equations must be somewhere in between the two.
The Gain–Loss and Loss–Gain methods are very similar, and subsequently can be

compared quite easily. Dividing the inflow and outflow equations for the two methods
can show the rate of increase of one method over the other:

Qout,G-L

Qout,L-G
=

Cinit

Cfinal
(31)20

and

Qin,G-L

Qin,L-G
=

QinitCinit

QfinalCfinal
(32)

For both Qout and Qin, Gain–Loss grows from Loss–Gain at a rate proportional to the
concentration ratio, and additionally Qin grows with load ratio. As Qout and Qin increase
in a stream reach, Qfinal will change and Cfinal will decrease. In the case of a lower Cfinal25
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caused by higher streambank fluxes, the ratio between the results of Gain–Loss and
Loss–Gain grows larger (Fig. 4).

Unfortunately, the Simultaneous method does not simplify nearly as well as the oth-
ers due to the non-linearity of the Simultaneous equations. For a better visual compari-
son, the three methods were plotted together with axes of concentration and discharge5

ratios (Fig. 4). As shown analytically in Eqs. (31) and (32), the ratio of Gain–Loss
to Loss–Gain is insensitive to discharge for Qout and sensitive to both discharge and
concentration for Qin. The ratios of Simultaneous to the other methods illustrate the
non-linearity of the method. The methods’ ratios for Qin show a surprising similarity in
the distribution of the contours even though the magnitudes are different.10

3.2 Numerical simulations

Figure 5 presents the major input and output parameter density distributions created by
the ARIMA simulations for the inflow and outflow profiles. The parameter distributions
for Qout, Qin, and Qnet closely follow a normal distribution. As defined in the model, Qinit

and Cinit are equally distributed between 1 to 5 Ls−1 and 20 to 150 mgL−1, respectively.15

The results of the numerical simulations are presented in Tables 1 and 2. Plots of the
estimated gains and losses to the actual gains and losses for each of the methods for
Series A are illustrated in Fig. 6. The plots for the other scenarios have similar patterns
only with a greater or lesser degree of spread. The numerical simulations indicate that
the Simultaneous streambank flux equation is on average the best performer when20

compared to the other two streambank flux methods with a 1 : 1 slope to the true value,
the lowest ε

m
in every series, and the highest rm1,m2 in nearly every series. However,

the Loss–Gain method has a slightly higher rm1,m2 to Net as compared to Simultaneous.
Interestingly, simply using the net discharge between upstream and downstream (Net)
results in lower error values for ε

m
as compared to Gain–Loss in both 2000 m series.25

This is attributed to the fact that Net by definition cannot have an error of 1 or greater.
Similarly, Loss–Gain also cannot have errors 1 or greater and must have errors less
than those of Net. If 0 is used for all the values of Qin and Qout in the error assessment
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of ε
m

then ε
m

would be exactly 1. Gain–Loss and Simultaneous can have errors greater
than 1 as they can have values larger than the true value, which is clearly exemplified
by the Gain–Loss equation’s high ε

m
in some series.

Figures 7 and 8 show the six simulations with the smallest εm
i for both Loss–Gain

and Gain–Loss. Not surprisingly, they performed best when the assumptions of the5

individual methods were met. Figure 9 shows the six simulations with the smallest εm
i

for Simultaneous. No obvious conclusion can be drawn from the simulations other than
an evenly random spread between Qin and Qout with no clear spatial bias unlike the
other methods.

The ratios of Cinit to Cfinal and QinitCinit to QfinalCfinal show a strong correlation to10

the εm
i of the streambank flux methods (Fig. 10). They are the same ratios that were

found during the analytical evaluation described by Eqs. (31) and (32). Both Loss–Gain
and Gain–Loss have stronger correlations than Simultaneous. Simultaneous appears
to have an error bias towards lower values rather than the full range of the correlation.

Loss–Gain and Gain–Loss also have a strong correlation to the midpoint concentra-15

tions and loads. Gain–Loss had a strong correlation to the ratios of Cmid (the midpoint
of the concentration profile of the stream) to Cfinal and QinitCinit to QmidCmid (the mid-
point of the load profile of the stream). Loss–Gain had a very strong correlation to the
ratios of Cmid to Cinit and QfinalCfinal to QmidCmid.

4 Discussion20

4.1 Bank flux methods evaluation

The streambank flux methods followed different patterns through the 4 series of the ε
m

.
Net was only slightly affected by both the switch length and the length of the stream
reach. Alternatively, Simultaneous was not significantly affected by the switch length,
but was affected by the stream length. Loss–Gain and Gain–Loss were affected by both25

the switch length and the stream length.
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While Simultaneous was the best performer in all categories, Gain–Loss performed
substantially worse on the ε

m
overall and was only better than Net on the ε

m
for Series

A and B and for the rm1,m2. As described in the previous sections, the Gain–Loss equa-
tions can create results that can be many times larger than the other methods and
consequently can be many times larger than the true value from the ARIMA model.5

Although these circumstance may account for a small proportion of the total simula-
tions, they can cause the average error to be very high. Net was clearly superior in
Series C and D for the ε

m
, but Gain–Loss had a solid majority over Net in the rm1,m2. In

the Series A, Gain–Loss and Net had a similar ε
m

, but according to rm1,m2 Gain–Loss
performed better almost 80 % of the time. Indeed, if the top 10 % of the simulations10

with the highest errors were removed from Series C then Gain–Loss and Net would
have approximately the same ε

m
. Nevertheless, even with the help of removing 10 %

or 20 % of the simulations with the highest errors, both Loss–Gain and Simultaneous
performed substantially better than Gain–Loss.

Most of the εm
i errors in Loss–Gain and Gain–Loss could be correlated by the ratio15

of the upstream and downstream concentrations for Qout and the ratio of the upstream
and downstream loads for Qin. Qout,G-L had an especially strong correlation. Loss–Gain
on the other hand had an especially strong correlation to the concentration and load
midpoints along the stream (not shown in figures). As with much of the previous results,
the midpoint correlations follows precisely the assumptions of the methods. Loss–Gain20

assumes that the Qout occurs at the beginning and if the ratio of Cmid to Cinit does
not follow a relationship that the method assumes then it will produce a larger error.
At least in Loss–Gain, it appears that if the concentration ratio does not follow the
predicted pattern by the time it reaches the midpoint then the method is more likely to
create erroneous results. A similar pattern can be seen in Gain–Loss, but not nearly25

as strong as the upstream and downstream ratios. Unfortunately, Simultaneous did not
have such clear correlations. There only appears to have an error trend towards smaller
upstream and downstream ratios.
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There is much scientific literature on the estimation of streambank fluxes from chem-
ical tracers. Many have preferred to use the well established OTIS numerical model,
which effectively solves the differential equations with a finite difference model with
similar spatial flux assumptions to our Simultaneous method. We found only one study
that took the OTIS model and tested the three different assumptions that we also tested5

(Szeftel et al., 2011). However, the reasoning behind their test appeared to be precisely
the opposite of ours. As they stated in the methods, they assumed that the simultane-
ous inflow and outflow at a single cell was unrealistic and implemented the Loss–Gain
and Gain–Loss type scenarios to provide better alternatives. Although they did not test
the accuracy of the three methods, they concluded that the spatial variability of the10

streambank fluxes had a significant impact on the output and that breakthrough curve
(BTC) analysis is not sufficient to determine the spatial variability.

Like us, others have instead preferred to use the more simple analytical equations
to estimate streambank fluxes (Harvey and Wagner, 2000; Payn et al., 2009; Covino
et al., 2011). One of the earliest to hint at using tracers with analytical equations to15

determine streambank fluxes was Zellweger et al. (1989). The use of tracers with di-
lution gauging to estimate streambank fluxes was only mentioned in passing as an
explanation for the differences in the estimation of discharge from a current meter and
from dilution gauging. Later, Harvey and Wagner (2000) picked up on the idea of using
dilution gauging with a current meter to estimate streambank fluxes. Their description20

for the procedure to estimate streambank fluxes was purely qualitative and did not fully
explain the underlying assumptions in the method that they proposed (e.g. the spatial
distribution of the fluxes). The dilution gauging method to estimate discharge was refer-
enced back to Kilpatrick and Cobb (1985). Based on the dilution gauging method and
the description provided by Harvey and Wagner (2000), they effectively proposed the25

use of the Gain–Loss method. Interestingly, Covino et al. (2011) also referenced back
to Kilpatrick and Cobb, 1985, but they instead used the Loss–Gain method. Payn et al.
(2009) and Ward et al. (2013) estimated streambank fluxes using both the Loss–Gain
and the Gain–Loss methods. They also found significant differences in the estimations
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between the two different methods and correctly identified that the Loss–Gain and the
Gain–Loss methods produce the maximum and minimum values for streambank fluxes,
respectively.

4.2 Connections with end-member mixing models

End-member mixing models or end-member mixing analysis (EMMA) as they tend5

to be known is a method to estimate the relative contributions of defined upstream
source waters from a downstream discharge measurement point. For example, EMMA
can estimate the amount of groundwater contribution within a single hydrograph.
EMMA is used extensively for this precise purpose. Similarly to the bank flux meth-
ods, EMMA uses the mass balance equations with chemical tracers to formulate the10

model. The EMMA equations are well known and the equation for two end-members is
the following:

Qgauge,s2 = Qgauge

(
Cgauge −Cs1

Cs2 −Cs1

)
(33)

where Qgauge is the discharge at the stream measurement gauge, Qgauge,s1 is the part
of the discharge of Qgauge from the first source, Cgauge is the concentration of the tracer15

at the stream measurement gauge, Cs1 is the concentration of the tracer in the first
source, and Cs2 is the concentration of the tracer in the second source.

Equation (33) is strikingly similar to Eq. (5). Additionally, if we consider a bromide
tracer test with the first source as upstream discharge and the second source as
groundwater with Cs2 ≈ 0, then the equation simplifies in the same way as Eq. (9).20

Although they may look the same, they have different underlining assumptions and
derivations.

The derivation of Eq. (33) is usually conceptualized by the conservative mixing of
two sources in a large reservoir with only one outflow defined above as Qgauge. What
if the equation for EMMA were derived in the context of a stream reach, with both Qin25
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and Qout included in the derivation? Would Eq. (33) be different? Since these questions
have not been directly addressed in the literature, we will provide the derivation setting
up a scenario with the two sources similar to the streambank flux scenarios. It will
have a first source equal to the upstream discharge with the upstream concentration
(Qs1 = Qinit, Cs1 = Cinit), a second source equal to the the diffuse groundwater entering5

the stream (Qs2 = Qin, Cs2 = Cin), and the the gauging site equal to the downstream
conditions (Qgauge = Qfinal, Cgauge = Cfinal). First, we write the mass balance equation
for the downstream discharge:

Qgauge = Qgauge,s1 +Qgauge,s2 (34)

where Qgauge,s1 and Qgauge,s2 are the respective parts of the discharge Qgauge from the10

first and second sources, i.e. upstream discharge and groundwater inflow. Separating
Qout in their respective components and due to mass balance for the discharges gives
us:

Qgauge,s1 = Qs1 −Qout,s1 (35)

and15

Qgauge,s2 = Qs2 −Qout,s2 (36)

where Qs1 is the total discharge of the first source and Qs2 is the total discharge of the
second source. We then write the mass balance for the tracer flows going out of the
stream:

QoutCout = Qout,s1Cs1 +Qout,s2Cs2 (37)20

where Qout,s1 is loss of water specifically from Qs1 and Qout,s2 is loss of water specif-
ically from Qs2. Then we apply the mass balance equation for the tracer between the
upstream and downstream (similar to Eq. 1):

QgaugeCgauge = Qs1Cs1 +Qs2Cs2 −QoutCout (38)
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Combining Eqs. (37) and (38) we get the following equation with some rearrangement.

QgaugeCgauge = (Qs1 −Qout,s1)Cs1 + (Qs2 −Qout,s2)Cs2 (39)

Finally, introducing Eqs. (34)–(36) we get the completed derivation solved for Qgauge,s2.

Qgauge,s2 = Qgauge

(
Cgauge −Cs1

Cs2 −Cs1

)
(40)

The outflow components have completely fallen out and Eq. (40) has become Eq. (33).5

The end-member mixing equations are insensitive to any outflows from the stream
system, and subsequently will provide the same result regardless of the streambank
flux spatial dynamics occurring within the system upstream of the measurement gauge.
Also, if we substitute the parameters in Eq. (40) with the relevant parameters used
during the streambank flux derivations (e.g. Qinit, Qfinal, and Qin) then the right hand of10

the equation becomes identical to the right hand of Eq. (5). The fundamental difference
between these two equations is the left hand of the equations: Qgauge,s2 and Qin are
conceptually different, i.e. the amount of discharge downstream from the groundwater
source does not need to be necessarily equal to the gross diffuse inflow throughout
the reach. Nevertheless, it is important to realize that the estimation of Qin with the15

Loss–Gain assumptions leads to the same results as the EMMA estimate for Qgauge,s2.
The similarity between Eq. (40) and the Loss–Gain Eq. (5) appears to have led some

researchers to inadvertently apply the EMMA Eq. (40) to estimate the gross stream
gains and losses (Covino and McGlynn, 2007). Although these streambank flux esti-
mates are correct in terms of the Loss–Gain assumptions, it appears to be more of20

coincidence than deliberate, as little reasoning and background is given for the im-
plicit Loss–Gain hypothesis on the spatial inflow and outflow dynamics of the EMMA
equation when used for estimating streambank fluxes. Similarly, Briggs et al. (2012)
referenced the above EMMA model (Kobayashi, 1985) to estimate streambank fluxes,
but they instead used the Gain–Loss method without explanation.25
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Both EMMAs and streambank flux analyses can be performed on a stream reach
with the same input data to acquire several important hydrological aspects of surface
water and groundwater interactions. They could be applied simultaneously to a given
stream reach to estimate both the amount of discharge downstream from the ground-
water source and the gross diffuse inflow throughout the reach, which will have different5

values if assumptions different to those of Loss–Gain are made. The streambank flux
equations were derived for steady-state conditions and should be applied as such,
while the EMMA derivation has no such critical steady-state requirement and sub-
sequently can also be used in transient conditions (i.e. throughout a flooding event).
While the streambank flux equations cannot be used dynamically throughout a flood-10

ing event, it would be possible to apply the streambank flux equations lumped over an
entire flooding event. For example, the streambank flux equations could be applied by
summing the total non-baseflow water in a flood hydrograph and the average concen-
tration of a tracer at an upstream and downstream gauge. This use of the streambank
flux equations would not be as accurate as in true steady-state conditions due to the15

additional assumption of a constant baseflow during the flooding event, which is cer-
tainly not going to be true. Nevertheless, as long as the changes in the baseflow water
accounts for a small percentage of the total flow during an event, the equations should
provide relatively accurate values.

5 Conclusions20

A new streambank flux estimation method is presented and derived analytically with
the assumptions of constant, uniform, and simultaneous groundwater inflow and out-
flow throughout a given stream reach. This novel method is confronted against the two
traditional methods and presents the smallest error measures when applied to four dif-
ferent sets of generated scenarios. The main control of the model performance for all25

three cases is the spatial dynamics of the actual streambank fluxes in relationship with
the assumptions for each method. Also for the same inputs, the different assumptions
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of each method can lead to values of gross stream gains and losses differing up to
one order of magnitude between approaches. Estimating streambank fluxes using the
proposed simple analytical method over numerical models solving full hydrodynamic
sets of partial differential equations has the clear advantages of much less complexity
and less parametrization. Although separate from the streambank flux methods, end-5

member mixing analysis can be used in conjunction with the streambank flux methods
to acquire even more hydrologic information as both require the same type of input
data. Nevertheless, these two approaches should not be conceptually mixed as they
estimate different stream variables and are based on distinct derivations and assump-
tions.10
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Table 1. ε
m

: the average value of εm
i for each series and for both Qout and Qin. Sim is abbrevi-

ated for Simultaneous.

Streambank Flux Method

Series Stream
Length (m)

AVG Switch
Length (m)

Corr.
Length (m)

Flux Type Net Loss–Gain Gain–Loss Sim

A 1000 100 40 Qout 0.821 0.243 0.675 0.115
Qin 0.821 0.264 0.849 0.135

B 1000 200 70 Qout 0.775 0.183 0.421 0.111
Qin 0.763 0.204 0.591 0.143

C 2000 100 40 Qout 0.852 0.393 2.390 0.170
Qin 0.855 0.422 2.949 0.194

D 2000 200 70 Qout 0.815 0.306 1.268 0.168
Qin 0.821 0.339 1.652 0.202
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Table 2. rm1,m2: the ratios of the frequency that the methods in the rows (m1) have a smaller εm
i

than the methods in the columns (m2). In simpler terms, the table shows how often the methods
in the rows outperform the methods in the columns. Sim is abbreviated for Simultaneous.

Denominator (m2)

Series Method Net Loss–Gain Gain–Loss Sim

N
um

er
at

or
(m

1)
A Net 0.000 0.000 0.204 0.014

Loss–Gain 1.000 0.000 0.711 0.149
Gain–Loss 0.796 0.289 0.000 0.068
Sim 0.985 0.851 0.931 0.000

B Net 0.000 0.000 0.143 0.022
Loss–Gain 1.000 0.000 0.627 0.223
Gain–Loss 0.857 0.373 0.000 0.163
Sim 0.978 0.777 0.837 0.000

C Net 0.000 0.000 0.501 0.029
Loss–Gain 1.000 0.000 0.869 0.109
Gain–Loss 0.499 0.131 0.000 0.013
Sim 0.971 0.891 0.987 0.000

D Net 0.000 0.000 0.352 0.037
Loss–Gain 1.000 0.000 0.753 0.177
Gain–Loss 0.648 0.247 0.000 0.067
Sim 0.963 0.823 0.933 0.000
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Fig. 1. A conceptual overview of the major inflows and outflows within a stream reach. Qinit
is the upstream discharge in volume per time, Qfinal is the downstream discharge, Qin is the
groundwater entering the stream, Qout is the stream water leaving the stream to the groundwa-
ter, and Qhyp is the hyporheic flow water water that is temporarily leaving the stream into the
hyporheic zone (reproduced after Harvey and Wagner, 2000).
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Qin

Qout

Qinit

Qfinal

Loss-Gain Gain-Loss

Qin

Qout

Qinit

Qfinal

Simultaneous

Qin Qout

Qinit

Qfinal

Fig. 2. The conceptualizations of the three streambank flux methods. The Loss–Gain method
assumes Qin occurs in the first section followed by Qout in the last section. The Gain–Loss
method assumes Qout occurs in the first section followed by Qin in the last section. Both the
Loss–Gain and Gain–Loss methods assume that Qin and Qout occur in sequence and indepen-
dently, although the lengths of the first and last sections are arbitrary and can be of any length
that when summed together equal the total length. The Simultaneous method assumes that
Qin and Qout are constant and occur simultaneously throughout the entire length of the stream
reach.
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Simultaneous

Qfinal

Qinit
0 Cinit

Cfinal

Fig. 3. A conceptual representation of the analytical formulation of the Simultaneous method.
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Fig. 4. Relative comparisons between the different methods due to changes in the input ratios.
The rows are the ratios of two of the streambank flux methods for both Qout and Qin. For exam-
ple, if the ratio of the input parameters Cinit and Cfinal is 5 and the ratio of the input parameters
Qinit and Qfinal is 1 then the Simultaneous method will result in a Qin approximately 2 times
larger than the Loss–Gain method.
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Fig. 5. The major input and output parameter density distributions of the ARIMA numerical
model for Series A (1000 m with 100 m AVG switch length).
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Fig. 6. A plot of true inflow and outflow flux values by the estimated values from the three
streambank flux methods for Series A (1000 m with 100 m AVG switch length).
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Fig. 7. The simulated streambank flux profiles (Series B, 1000 m with 200 m AVG switch length)
of the six scenarios with the smallest normalized error (εm

i ) for Loss–Gain. A clear pattern can
be seen according to the spatial assumption of the method. Predominant stream losses are at
the beginning, while stream gains are towards the end of the reach. Red indicates losses, while
blue indicates gains.
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Fig. 8. The simulated streambank flux profiles (Series B, 1000 m with 200 m AVG switch length)
of the six scenarios with the smallest normalized error (εm

i ) for Gain–Loss. A clear pattern can
be seen according to the spatial assumption of the method. Predominant stream gains are at
the beginning, while stream losses are towards the end of the reach. Red indicates losses,
while blue indicates gains.
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Fig. 9. The simulated streambank flux profiles (Series B, 1000 m with 200 m AVG switch length)
of the six scenarios with the smallest normalized error (εm

i ) for Simultaneous. No consistent or
obvious pattern can be seen within the scenarios. Red indicates losses, while blue indicates
gains.

10458



Fig. 10. A correlation of various input parameters to the normalized error (εm
i ) of the stream-

bank flux methods for Series A. Both the Loss–Gain and Gain–Loss methods have strong
correlations, while Simultaneous only tends to have an error bias at lower ratios.
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