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Abstract

The various elements of the hydrological cycle are discussed in outline from the point of
view of making progress in analysis through appropriate simplification of these complex
processes. Parallels between stochastic and deterministic analysis and between linear
and non-linear conceptual models are emphasised. Reference is made to similarities5

and contrasts between analysis over the range of scales from the water molecule to
the global water balance.

1. Dealing with complexity

Science in general has moved from a reductionist approach which was characterised
as a process of “knowing more and more about less and less” to a holistic or synthetic10

approach which attempts to breach interdisciplinary and other conceptual boundaries.
Hydrology in the past has been highly reductionary particularly in the separation be-
tween the individual processes of the hydrological cycle and between deterministic and
stochastic hydrology.

It is important to realise that most hydrological systems of interest represent a zone15

between purely deterministic approach in which equations can be analysed and a
stochastic approach in which statistical distributions can be handled. The relation-
ship in this regard is well illustrated by the characterisation of the three categories of
mechanisms, systems and aggregates as shown in Fig. 1 due to Weinberg (1975).
Mechanisms are characterised as organised simplicity, aggregates are characterised20

as unorganised complexity, and the intermediate category of systems characterised as
organised complexity. In seeking to understand the behaviour of hydrologic systems
of interest it is necessary to draw on standard results from both the statistical study of
random systems and the deterministic analysis of classical hydraulics.

It can readily be shown that for a large series of Bernouilli trials with equal probability25

of success and failure (p=1/2 and q=1/2) results in the normal distribution which is
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symmetrical. There is remarkably little curiosity about how this result would be modified
if the probability of failure was not equal to one half.

Velikanov (1962) gave a heuristic development suggesting that the answer to this
problem is that in this case the normal distribution would be replaced by the gamma
distribution which is skewed rather than symmetrical. One of the earliest hydrological5

observations must have been the tendency of surface water to flow downhill and for
streams to join with one another in a network of channels leading to an outlet at a
lower level. This lack of symmetry must be an important element in any stochastic
approach to the problem of catchment runoff.

In approaching hydrological analysis from the direction of the simpler mechanisms10

of fluid mechanics and hydraulics, the most useful strategy to follow is that based on
the rigorous analysis of simplified equations of motion. This approach has been well
summarised by Pedlosky (1979): “One of the key features of geophysical fluid dynam-
ics is the need to combine approximate forms of the basic fluid-dynamical equations of
motion with careful and precise analysis. The approximations are necessary in order15

to make any progress possible, while precision in analysis is demanded to make the
progress meaningful”.

In what follows, an account is given of the progress that can be made in the study
of hydrological systems by the application of a strategy of simplification to the basic
equations.20

2. Range of scales

A key task in hydrology is to attempt to unravel the organisation of the complexity of
hydrologic processes at various scales. In studying the occurrence and movement of
water it is necessary to analyse the processes at key scales varying by over 18 orders
of magnitude from the water molecule (10−10 m) to the global planetary scale (106 m)25

as shown as a logarithmic plot in Fig. 2 (Dooge, 1992a).
One of the first facts to be explained about the occurrence of water is the abundance
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of liquid water at the surface of planet Earth with its mean temperature of about 15◦C.
The physical properties of water (H2O) distinctly different from those of sulphurated
hydrogen (H2S) even though hydrogen (H) and sulphur (S) are immediate neighbours
in the sixth column of the table of chemical elements (Dooge, 1983). At 15◦C water is an
odourless liquid whereas sulphuretter hydrogen is a pungent gas. This phenomenon5

of the dipole moment of the hydrogen bond is essentially a property of water being
non-isotropic at the molecular scale (10−10 m). The explanation lies in the existence of
the hydrogen bond in water at the molecular scale.

When we come to consider the movement of water at the continuum scale (10−5 m),
we postulate a relationship between the shear stress on a given plane and the strain10

on another plane. In order to handle the 4-dimensional tensor connecting these two
relationships (which will in general have 81 elements), it is possible to make progress
and reduce these 81 elements (reduced to 36 if we assume symmetry) to the two
properties of dynamic viscosity and bulk viscosity by the simple assumption that water
at a continuum scale is isotropic (Dooge, 1983).15

The contrast between the two assumptions is a warning to hydrologists of the need to
distinguish between the different simplifying assumptions necessary for initial progress
in analysis at different hydrological scales.

The question then arises as to whether any fundamental principles can be applied
over the wide range of differing hydrologic scales from motion at a continuum point20

(10−5 m) to the global water balance (108 m). Hydrologists are lucky that in progress-
ing from the continuum scale to the global scale the equation of continuity can be inte-
grated in order to move from a lower scale to a higher scale. This useful result occurs
because the equation of continuity can be written in a linear form which contains no
empirical coefficients. None of the other basic equations of hydrology possess these25

two properties and hence we can identify the equation of continuity as the fundamental
equation of hydrology and its validity as the fundamental theorem of hydrology. The
basic requirement in hydrologic analysis is to satisfy this equation and then to tackle
the problem of the remaining equations which are non-linear.
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3. Role of surface fluxes

A big divide in hydrology is between the fields of surfacewater hydrology and of sub-
surface hydrology. This natural division arises because of the key role of the hydro-
logic fluxes at the surface of the ground on the switching of the control of these fluxes
between the atmosphere and the soil as shown in Fig. 3. If rainfall continues for a5

sufficient length of time, the surface of the soil becomes saturated and the surface of
the vegetation retains water (point A in Fig. 3).

If the rainfall ceases, the upward flux of evapotranspiration occurs at the potential
rate. As long as this lasts the surface flux would be subject to atmospheric control.
When the surface moisture falls below saturation (point B), the control switches to the10

upper soil layer which controls the rate of actual evapotranspiration which is less than
the potential rate.

A renewal of rainfall (point C) will occur in a period during which the surface of the
soil is unsaturated and the rate of infiltration will be equal to the rate of precipitation and
the downward flux will again be atmosphere controlled. The surface moisture content15

will increase until ponding occurs (point D), after which the infiltration rate will be less
than the precipitation rate and the rate of infiltration will become soil controlled.

Such a switching of control represents a concentrated non-linearity which compli-
cates the combination of the individual hydrological processes of subsurface flow and
surface flow. The variation of the soil water profile during these four phases will de-20

pend on the variation of the hydraulic diffusivity D and the hydraulic conductivity K as
functions of the local moisture content.

For a limited number of pairs of functions D(c) and K (c) the soil profile for constant
rainfall into an unsaturated semi-infinite soil profile, both the shape of the soil profile and
the time to surface ponding can be determined analytically (Wang and Dooge, 1994). If25

we compare this profile at ponding for such atmosphere-controlled conditions with the
same volume of soil moisture content under the assumption of instantaneous ponding,
we find that the profiles are remarkably similar though they vary greatly dependent on
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the assumptions in regard to D(c) and K (c). The comparison for four such cases is
shown on Fig. 4 as described in Dooge and Wang (1993). Thus as we proceed into a
following period of soil-controlled infiltration under ponded conditions these differences
will become less and less and ultimately can be assumed to be the same for all practical
purposes.5

The result described in the last paragraph indicates that the rate of infiltration during
both the atmosphere-controlled and soil-controlled phases can be modelled by the
solution for ponded infiltration with an appropriate adjustment for the time to ponding
(Kuhnel et al., 1990). This result justifies the concentration on the case of initial ponding
conditions by J. R. Philip in his classical studies on unsaturated flow involving a series10

solution for infiltration in the form of a power series in terms of the square root of the
elapsed time (Philip, 1957; Dooge, 2002).

4. Simplification of groundwater flow

There are also a number of results in regard to saturated sub-surface flow which facil-
itate greatly the simplification of the analysis of this hydrologic process. Thus Dupuit15

(1863) indicated the advantage of assuming ground water flow towards a well to be hor-
izontal, thus reducing the problem from a two dimensional one to a one dimensional
one. Twenty years later this approach was formulated by Forchheimer (1886) in such
a way as to take a full advantage of the analysis by potential theory of such hydrologic
phenomena.20

Over 60 years later, Charnyi (1951) proved theoretically that for steady saturated
flow between the vertical boundaries, the use of the Dupuit - Forchheimer assumption
of negligible vertical acceleration, while leading to serious error in the shape of the
groundwater profile, predicted exactly the flow at these boundaries. Since hydrology is
interested in flows rather than profiles this assumption is certainly worthwhile, at least25

as a preliminary step in the analysis of groundwater flow.
For the case of unsteady flow in groundwater, the equation becomes non-linear with
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serious difficulties in its solution. However, Kraijenhoff van de Leur (1958) showed that
there was no difference in the predicted outflow based on linearisation in terms of the
depth of the water table and the predicated outflow based on linearization in terms
of the water table (h) or in the square of this depth (h2). He showed that in either
case the impulse response of a simple groundwater profile would be given by a highly5

convergent series of exponential terms in terms of the ratio of the elapsed time to a
single reservoir coefficient incorporating all four parameters of the regular drainage
system.

In the case of considerable variations in permeability, it is possible to set limits to
the solution for groundwater flow. Matheron (1965) showed that for the case of Dupuit-10

Forchheimer flow, the average permeability always ranges between the harmonic mean
and the arithmetic mean of the local varying permeabilities whatever the spatial corre-
lation of the probability and whatever the number of space dimensions. Matheron also
showed that if the probability distribution of the local permeabilities could be assumed
to be log-normal, then for the case of two-dimensional flow the average permeability is15

exactly equal to the geometric mean of the local permeability.

5. Overland flow

The first element in surface runoff is that of overland flow. Overland flow is particularly
important in such areas as urban flood hydrology, the drainage design of roads and
airport runways, and the generation of surface runoff in natural catchments with soils20

of low permeability.
The initial approach to this problem was made by assuming that the outflow at the

downstream end was proportional to some power of the storage on the surface. This
was applied to natural catchments by Horton (1938) and to paved surfaces by Izzard
(1944). The Horton-Izzard approach is essentially a simplification obtained by adopting25

the kinematic wave approximation which neglects the small acceleration terms in the
full dynamic equation and retains only the non-differential bottom slope and friction
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slope. It gives a reasonable first approximation and is much simpler than the solution
involving the complete dynamic equation.

For the two-dimensional case of overland flow resulting from uniform inflow along the
slope the dynamic equation is simplified to a power relationship at all times between
the outflow and the storage(s):5

q=asc, (1a)

where the parameter c=3/2 for a wide outflow channel with Chezy friction and c=5/3
for a wide outflow channel with Manning friction. The combination of this simplified
dynamic equation with the continuity equation

dS
dt

=qe−q (1b)10

can be expressed as the dimensionless integral equation

d (t/tc)=
∫

d (s/se)

1−(s/se)c
, (1c)

where the characteristic time is given by

tc=
se
qe

=
(

1

asc−1

)
=
(

1

aqc−1

)
. (1b)

Equation (1c) has a closed form solution for all rational values of the parameter c.15

For the two limiting cases of c=1 and c=2 the closed form solution of Eq. (1b) of
elapsed time (t) as a function of downstream runoff (q) can be inverted to obtain the
runoff (q) as a function of the time.

In the case of the recession following the cessation of inflow it is possible to predict
the variation of storage and hence of outflow as an explicit function of the time elapsed20

since the onset of the recession. In this case we have

s
so

=

(
1

1+t/to

) 1
c−1

(2a)
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and

q
qo

=

(
1

1+t/to

) c
c−1

, (2b)

where the characteristic time (to) is based on the parameter a and c and the value of
either the storage (Sc) or the outflow (qc) at the beginning of the recession.

Figure 5a shows typical results from a carefully designed laboratory experiment by5

Amorocho and Orlob (1961), showing the cumulative runoff against time for three dif-
ferent values of uniform artificial rainfall. The comparison of the overland flow for any
given elapsed time (t) for the three different values of inflow clearly shows that these
values are not proportional to the rate of inflow, i.e. that the system is non-linear.

However, the relationship can be made dimensionless by multiplying the discharge10

by a characteristic time (tc) and dividing the elapsed time by the same characteristic
time and dividing by the corresponding characteristic volume (Vc). When the data in
Fig. 4a are treated in this fashion the three non-linear responses of Fig. 4a plot along
a single line as shown in Fig. 5b. The characteristic time in this case was taken as the
time at which the outflow reaches a particular percentage of the constant inflow rate.15

If we assume that the laboratory system represents a wide rectangular channel with
Manning friction then the characteristic time should be inversely proportional to the
characteristic discharge to the power of two-fifths (i.e. 0.4). An analysis of the data by
Amorocho and Orlob (1961) indicates that the characteristic time is inversely propor-
tional to the rate of constant inflow to the power of 0.3997.20

The integral in Eq. (1) above is encountered elsewhere in hydrology, notably in rela-
tion to non-uniform steady flow in open channels and to the long-term water balance. It
was used by French hydraulicians of the 19th century to solve special cases of steady
non-uniform flow in prismatic channels and was generalised and the results calculated
and tabulated by Bakhmeteff (1912, 1932).25

The same integral has been suggested by Bagrov (1953), in the analysis of the sen-
sitivity of the evaporation ratio (AE/P E ) to the humidity index (P/P E ) of a catchment
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or a region. The solution of this integral allows us to calculate the sensitivity of the long
term evaporation ratio to a change in either long term precipitation (P ) or long term po-
tential evaporation (P E ) for the Bagrov family of curves of actual evaporation (Dooge,
1992b).

6. Flood routing in channels5

The movement of a flood wave down a channel reach involves both translation and
subsidence. The travel time or lag is represented by the difference between the first
moments about the origin of the upstream inflow and the downstream outflow. The
modification of the shape of the flood wave can be characterised by comparing the
higher moments of the two hydrographs about their respective centres.10

A starting point for the analysis of these factors is the linearization of the basic St.
Venant equation for unsteady flow as applied to unsteady downstream flow in a pris-
matic channel. This approach studies first the linear channel response (LCR) due to
an impulse at the upstream end of a semi-infinite prismatic channel and then derives
analytically the values of the moments and the related cumulants of this linear channel15

response (Dooge and Harley, 1967; Napiorkowski, 1992).
The translation of the wave due to an upstream impulse is given by the first moment

of the linear channel response which is

U1
1=

x
muo

(3)

where x is the distance downstream of the point of input; m is the index of non-linearity20

which has the value m=5/3 for a wide rectangular channel with Manning friction; and
uo is the velocity for the reference condition used as the basis of linearization. This
expression holds for all values of the Froude number (Fo) of the reference condition
and corresponds to the lag predicted by the kinematic wave solution for the linearised
case.25
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Any regular shape can be characterised by the values of the moments about the
centre which are the coefficients in the polynomial defined by the Laplace transform of
the linear channel response LCR. This solution can be used as the basis of comparison
of the conceptual models of channel flow used in the simulation of catchment runoff.

The translation, dispersion and skewness of the linear channel response can be5

represented by the first moment about the origin and the second and third moments
about the centre. These three parameters can be reduced to the two dimensionless
parameter obtained by reducing the second and third moments to dimensionless shape
factors (s2 and s3) form by expressing them as a ratio to the appropriate power of the
first moment as follows:10

s2=
U2

(U
/

1)2
(4a)

and

s3=
U3

(U
/

1)3
. (4b)

The relationship between these two dimensionless shape factors for the linearised so-
lution is shown on Fig. 6.15

It can be shown that for the linear channel response to an impulse at the upstream
end of a prismatic channel, the relationship between s3 and s2 is given by

s3=Φ3(m, Fo)(s2)2, (5a)

where m is the parameter in the relationship between the discharge (Q) and the area
of flow (A) in the power relationship20

Q=kAm (5b)

and Fo is the Froude number at reference conditions.
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For the Froude Number Fo=O, the relationship for all values of the non-linearity index
m is given by

s3=3(s2)2, (6a)

while for the upper limit of Fo=1, the relationship for a wide rectangular channel with
Manning friction (i.e. m=5/3), the relationship is given by5

s3=15(s2)2. (6b)

The wide range between these two limiting solutions is the s3–s2 plane indicates that
only a conceptual model with 3 or more parameters could represent the complete so-
lution with acceptable accuracy.

7. Comparison of conceptual models10

It is interesting to compare the performances of the classical 2-parameter conceptual
models in fitting the complete solution. This is done on Fig. 6 for the classical flood
routing methods. For the Muskingum method due to McCarthy (1939)1, the relationship
between the dimensionless shape factors s3 and s2 is given by:

s3=
3s2

2 + 1

2
, (7a)15

which overlaps the solution region for values between x=0.22 and x=0.40 which cor-
responds to the range of values used empirically in classical hydrology. For the lag and
route method due to Meyer (1941), the relationship is given by:

s3=2(s2)3/2, (7b)

1McCarthy, G. T.: The unit hydrograph and flood routing, (unpublished paper) presented at
the Conference of the North Atlantic Division of U.S. Corps of Engineers, Providence, Rhode
Island, June 1938, revised March 1939.
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which lies within the region of the complete solution for values of the ratio of the lag
parameter (T ) to the reservoir parameter (K ) greater than 0.5.

In contrast for the cascade of characteristic reach reservoirs due to Kalinin and Mi-
lyukov (1957) the relationship

s3=2s2
2 (7c)5

clearly lies completely below the lower limit of the complete solution given by Eq. (4a)
above.

The lag and route model can be combined with either the Muskingum model or the
Kalinin-Milyukov model to produce the 3-parameter models of the lagged Muskingum
model and the lagged Kalinin-Milyukov model respectively. These 3-parameter models10

can be calibrated by equating the second and third order moments to the relevant data
to produce the shape of the response function and then adjusting the corresponding
lag to conform to the measured lag.

The efficiency of the above 3-parameter conceptual models can be evaluated by
using cumulants rather moments and equating the second and third cumulants (which15

are equal to the second and third moments) of the conceptual model to the data. The
relationship between the dimensionless fourth cumulant and the dimensionless third
cumulant for the complete linear solution the dimensionless third cumulant is given by

f4=
k4

(k2)2
=

U4

(U2)2
−3. (8)

For Fo=0 (i.e. the diffusion analogy), the upper limit of the solution region is20

f4=
5
3

(f3)2 (9a)

and the lower limit corresponding to Fo=1 is given by

f4=
4
3

(f3)2. (9b)
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These two limiting curves shown on Fig. 7 (which are independent of the value of the
non-linearity index m) define a relatively narrow region and the aim becomes that of
finding a model that lies within this region.

The lagged Muskingum lies within the region only for values of x less than 0.22 and
only covers the upper righthand section of the region.5

In contrast the lagged Kalinin-Milyukov method (represented by the 3-parameter
gamma distribution) is given by

f4=
3
2

(f2)2 (10)

and this lies cosily between the two limiting lines of the complete solution for all of that
region. Because of the closeness of the latter limiting lines the error in using a lagged10

cascade of equal linear reservoirs is 11% or less for all values of Fo between 0 and 1.
This is bringing us into the neighbourhood of acceptable error in practical hydrology.

8. Total catchment runoff

The rational method for determining the peak discharge based on the concept of
the time of concentration was applied to natural catchments by Mulvany (1851) and15

Chamier (1897) and to urban catchments by Kuichling (1889) and Lloyd-Davies (1906).
This approach was extended to the prediction of the total hydrograph through the in-
troduction of the concept of the time-area-concentration curve by Hawken and Ross
(1921). In the 1930s, Zoch proposed modifying this approach by routing the time-area-
concentration curve through a single linear reservoir (Zoch, 1934, 1936, 1937). This20

method was developed by Turner and Bourdoin (1941) and by Collins (1939). O’Kelly
(1955) showed that there was only a small difference in the shape of the derived unit
hydrograph if the Clark method was compared with a routed isosceles triangle.

Around the same time that Kalinin and Milyukov (1957) applied the cascade model
to flood routing, Nash (1958) independently proposed the same model for the case of25
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total surface response. Figure 8 shows the relationship between the shape factors s2
and s3 for three different conceptual models: a routed rectangle (A), a routed isosceles
triangle (B), and a cascade of equal linear reservoirs (C). The variation in the position
of the line representing these quite different models is remarkably small thus making
the choice between them a matter of convenience (Dooge, 1973, 2003).5

One would expect that in moving from the case of a single uniform channel reach to
that of the complex network of a total catchment, that this more complex system would
require a conceptual model with a higher number of parameters. In fact, we find that
if we take the concept of the geomorphological unit hydrograph (Rodriquez-Iturbe and
Valdez, 1979), based on Horton’s laws of catchment morphology, into account then in10

fact an accurate representation can be obtained with the original two parameter model.
Chuta and Dooge (1990) carried out a series of 1100 Monte Carlo tests on a linear

geomorphological unit hydrograph based on the original concept of the geomorpho-
logical laws of drainage basin networks due to Horton (1945) and the proposal by
Rodriguez-Iturbe and Valdez (1979) to simulate the unit hydrograph of such Horton15

catchments by imposing an exponential delay time (i.e. a linear reservoir).
These experiments covered a range of branching ratios (RB) between 2.5 and 5.0, a

range of length ratios (RL) between 1.5 and 4.1 and a range of area ratios (RA) between
3.0 and 6.0. As shown in Fig. 9 the plotted points cling closely to the line for a Nash
cascade of equal linear reservoirs without the additional lag adjustment required in the20

case of flood routing in the simple case of a uniform prismatic channel. The range
of the cascade model that matches the third order GUH is that which corresponds to
values of n between 2 and 3 in the Nash model.

This work was later extended by Shamseldin and Nash (1998) to cover catchments of
the order of 2, 4 and 5 as well as the original case of a third order catchment examined25

by Chuta and Dooge (1990). The same close correspondence between the shape
factors for the GUH and the 2-parameter mode of a cascade of equal linear reservoirs
is obtained. In this case from a GUH of order 2 and of order 5, the range of value of n
in the corresponding cascade model is between 1 and 5.
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9. Extension to uniform non-linearity

While the results described above indicate the general usefulness of a cascade of
equal linear reservoirs as a conceptual model in hydrology, the results for channel flow
and for catchment response are limited by the restrictive basic assumption of linear-
ity. In the case of overland flow the basic assumption is that the differential terms in5

the basic dynamic equation which are of an order of magnitude smaller than the non-
differential terms representing channel slope and friction shape (i.e. the non-linear kine-
matic wave approach). In this case the runoff from different events is not proportional
to the input as indicated by Fig. 4a. However, for any fixed value of the non-linearity
parameter c, the response to similar events of different intensities can be combined by10

the use of dimensionless plotting.
The latter property indicates that a similar approach might prove productive in the

case of the complicated cases of channel flow and total catchment response. Over
30 years ago, the present author proposed that this problem be tackled by considering
the non-linear conceptual model of a cascade of equal non-linear reservoirs (Dooge,15

1967).
In such a model the combination for any individual non-linear reservoir of the conti-

nuity equation and the non-linear storage – discharge relationship gives the equation

∂Si

∂t
=a (Si )

c −a
(
Si−1

)c . (11a)

Using a reference volume So and the related reference term appropriate to this non-20

linear relationship given by

to=
So

Qo
=

1

aSc−1
o

=

(
1

aQc−1
o

)1/c

, (11b)
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this basic equation can be written as

∂(Si/So)

∂(t/to)
=
(
Si/So

)c − (Si−1/So
)c . (11c)

If the inflow at the upstream end I(t) is multiplied by a characteristic time (to) and the
product divided by a characteristic volume (So) to obtain a dimensionless input

I(t) · to
So

=I1(t/to), (12a)
5

then the solution of Eq. (11c) will have the form(
S1

S0

)
=f1
(
t/to
)

(12b)

for the upstream reservoir in the cascade and successive solutions of Eq. (9c) will all
be of the form(

Si

So

)
= fi
(
t/to
)
. (12c)

10

For a cascade of n such equal non-linear reservoirs the outflow from the system will be
given in the dimensionless form

Q(t) · to
So

=
(
Sn

So

)n
(13a)

=
[
fn
(
t/to
)]c . (13b)

and will be the same for every similar input that belongs to the class of functions which15

differ in average intensity and time scale but are identical when plotted in the dimen-
sionless form of Eq. (11). This restriction is less constraining than might appear at
first sight since large flood producing storms tend to have a duration which is inversely
proportional to the intensity of the rainfall.
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A classical case in hydrologic literature of non-linearity in catchment response is due
to Minshall (1960) who compared unit hydrographs derived for a 27 acre catchment for
five different storms where the rainfall varied from 0.95 inches per hour to 2.65 inches
per hour. The derived unit hydrographs are shown in Fig. 10a from which it could be
seen that a normal unit hydrograph approach of transferring derived unit hydrograph5

from one storm to predict the runoff from a storm of distant intensity does not hold in
this particular case.

It is not possible to make as precise an analysis of this case as for the laboratory
data of Amorocho and Orlob (1961) discussed in Sect. 5 above. However, using a
characteristic time to produce a dimensionless unit hydrograph the results in Fig. 10b10

which shows that the use of this dimensionless hydrograph in combination with the rela-
tionship between the characteristic time and some intensity characteristic inflow would
allow a transfer between storms of sufficient accuracy for most hydrological purposes.

Another interesting example is contained in the computer simulation of catchment
outflow based on the full non-linear dynamic equation. Figure 11a shows two of their15

non-linear simulations which satisfy the relationship of Eq. (11) since they inflow similar
inputs with the intensity of input inversely proportional to the duration. When these
two outflow hydrographs are scaled similarly to Eq. (13b), the resulting dimensionless
outflow hydrographs shown on Fig. 11b are close approximations of each other with a
small time shift. This time shift has a parallel in the time shift required in the linearised20

case where a 3-parameter gamma distribution is required to bring the error of using the
conceptual model within reasonable approximation of the complete linearised solution.

10. Deterministic and stochastic similarities

The review of the deterministic approach to hydrologic analysis outlined above has
its counterpart in the stochastic approach to the subject. Reference was made at25

the beginning of the paper, not only to the separation for purposes of analysis be-
tween the deterministic and stochastic components of hydrologic response but also
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to the argument by Velikanov (1962) about the importance of the gamma distribution
for multi-component stochastic systems. The emphasis on the gamma distribution in
both stochastic and deterministic hydrologic systems is of importance. It suggests that
progress in both areas would benefit if they were considered as complementary rather
than separate fields of investigation. This is exemplified in the close approximation5

of the linear geomorphic unit hydrograph the gamma distribution of deterministic or
stochastic behaviour of natural catchment.

If we move to non-linear analysis, is there a link between the deterministic analysis
of uniform non-linearity (Dooge, 1967) and the formulation of the non-linear gamma
distribution by Kritski and Menkel (1948). These and similar questions pose interesting10

problems deserving of attention by the present generation of young hydrologists.
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Figure 1.  Mechanisms, Systems, Aggregates 

Fig. 1. Mechanisms, systems, aggregates.
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Figure 2.  Scales in Hydrology 

 

Fig. 2. Scales in hydrology.

64

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/1/41/hessd-1-41_p.pdf
http://www.copernicus.org/EGU/hess/hessd/1/41/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
1, 41–73, 2004

Bringing it all
together

J. C. I. Dooge

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

 

 

12

 

 

Figure 3.  Control of surface Fluxes 

 

Fig. 3. Control of surface fluxes.
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Figure 4.  Profiles at Ponding 

           The result described in the last paragraph indicates that the rate of infiltration 

during both the atmosphere-controlled and soil-controlled phases can be modelled by the 

Fig. 4. Profiles at ponding.
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Figure 5.  Laboratory Study of Overland Flow 

   

Fig. 5. Laboratory study of overland flow.
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Figure 6.  Shape Factors for 2-parameter Models 

     It can be shown that for the linear channel response to an impulse at the upstream end 

Fig. 6. Shape factors for 2-parameter models.
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Figure 7.  Shape Factors for 3-parameter Models 

The lagged Muskingum lies within the region only for values of x less than 0.22 and only 

covers the upper righthand section of the region.   

Fig. 7. Shape factors for 3-parameter models.
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Figure 8.  Comparison of Conceptual Models 

     One would expect that in moving from the case of a single uniform channel reach to 

that of the complex network of a total catchment, that this more complex system would 

require a conceptual model with a higher number of parameters.  In fact, we find that if 

we take the concept of the geomorphological unit hydrograph (Rodriquez-Iturbe and 

Fig. 8. Comparison of conceptual models.
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Figure 9.  Shape Factors for GUH 

 

Fig. 9. Shape factors for GUH.

71

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/1/41/hessd-1-41_p.pdf
http://www.copernicus.org/EGU/hess/hessd/1/41/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
1, 41–73, 2004

Bringing it all
together

J. C. I. Dooge

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

 

 

37

 

Figure 10.  Dimensionless Plotting of Non-linear Unit Hydrographs 

Fig. 10. Dimensionless plotting of non-linear unit hydrographs.
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Figure 11.  Dimensionless Plotting of Non-linear Simulation 

 

      The review of the deterministic approach to hydrologic analysis outlined above has 

its counterpart in the stochastic approach to the subject.  Reference was made at the 

beginning of the paper, not only to the separation for purposes of analysis between the 

deterministic and stochastic components of hydrologic response but also to the argument 

Fig. 11. Dimensionless plotting of non-linear simulation.
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