Data-driven approaches, optimization and model integration: hydrological applications
Data-driven approaches, optimization and model integration: hydrological applications
Editor(s): R. Abrahart, L. See, D. Solomatine, and E. Toth

Download citations of all papers

25 Mar 2008
Web services for distributed and interoperable hydro-information systems
J. Horak, A. Orlik, and J. Stromsky
Hydrol. Earth Syst. Sci., 12, 635–644, https://doi.org/10.5194/hess-12-635-2008,https://doi.org/10.5194/hess-12-635-2008, 2008
20 Mar 2008
Comparison of data-driven methods for downscaling ensemble weather forecasts
Xiaoli Liu, P. Coulibaly, and N. Evora
Hydrol. Earth Syst. Sci., 12, 615–624, https://doi.org/10.5194/hess-12-615-2008,https://doi.org/10.5194/hess-12-615-2008, 2008
21 Feb 2008
Prediction of littoral drift with artificial neural networks
A. K. Singh, M. C. Deo, and V. Sanil Kumar
Hydrol. Earth Syst. Sci., 12, 267–275, https://doi.org/10.5194/hess-12-267-2008,https://doi.org/10.5194/hess-12-267-2008, 2008
04 Dec 2007
Hydrological model coupling with ANNs
R. G. Kamp and H. H. G. Savenije
Hydrol. Earth Syst. Sci., 11, 1869–1881, https://doi.org/10.5194/hess-11-1869-2007,https://doi.org/10.5194/hess-11-1869-2007, 2007
22 Nov 2007
Soft combination of local models in a multi-objective framework
F. Fenicia, D. P. Solomatine, H. H. G. Savenije, and P. Matgen
Hydrol. Earth Syst. Sci., 11, 1797–1809, https://doi.org/10.5194/hess-11-1797-2007,https://doi.org/10.5194/hess-11-1797-2007, 2007
20 Sep 2007
Neural network modelling of non-linear hydrological relationships
R. J. Abrahart and L. M. See
Hydrol. Earth Syst. Sci., 11, 1563–1579, https://doi.org/10.5194/hess-11-1563-2007,https://doi.org/10.5194/hess-11-1563-2007, 2007
CC BY 4.0