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Abstract

TOPKAPI is a physically-based, fully distributed hydrological model with a simple and parsimonious parameterisation. The original TOPKAPI
is structured around five modules that represent evapotranspiration, snowmelt, soil water, surface water and channel water, respectively.
Percolation to deep soil layers was ignored in the old version of the TOPKAPI model since it was not important in the basins to which the
model was originally applied. Based on published literature, this study developed a new version of the TOPKAPI model, in which the new
modules of interception, infiltration, percolation, groundwater flow and lake/reservoir routing are included. This paper presents an application
study that makes a first attempt to derive information from public domains through the internet on the topography, soil and land use types for
a case study Chinese catchment — the Upper Xixian catchment in Huaihe River with an area of about 10 000 km?, and apply a new version of
TOPKAPI to the catchment for flood simulation. A model parameter value adjustment was performed using six months of the 1998 dataset.
Calibration did not use a curve fitting process, but was chiefly based upon moderate variations of parameter values from those estimated on
physical grounds, as is common in traditional calibration. The hydrometeorological dataset of 2002 was then used to validate the model, both
against the outlet discharge as well as at an internal gauging station. Finally, to complete the model performance analysis, parameter uncertainty
and its effects on predictive uncertainty were also assessed by estimating a posterior parameter probability density via Bayesian inference.
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Introduction

An increasing demand for mathematical models which can
predict the hydrological effects of man-made changes to
land use and the impact of climate change on water
resources, has stimulated interest in physically-based,
catchment hydrological models. With the recent advances
in remote sensing, geographic information systems and
computer technology, together with natural evolution in
hydrological modelling, physically-based distributed or
semi-distributed hydrological models with simple and
parsimonious parameterisations, such as DHSVM
(Wigmostra et al., 1994), SLURP (Kite, 1995), FEWS NET
Stream Flow Model (Artan et al., 2001), TOPKAPI model
(Todini and Ciarapica, 2001; Liu, 2002; Liu and Todini,
2002) have been developed in recent years, which are
attractive for flow simulation and prediction, both in applied
research and in the operational field.

TOPKAPI is a physically based, fully-distributed rainfall-
runoff model, which is based on the lumping of a kinematic
wave assumption in the soil, on the surface and in the
drainage network, and leads to transforming the rainfall—
runoff and runoff routing processes into three non-linear
reservoir differential equations. Initially, the TOPKAPI
model (Todini and Ciarapica, 2001; Liu and Todini, 2002)
was structured around five modules that represent the
evapotranspiration, snowmelt, soil water, surface water and
channel water respectively. Percolation to deep soil layers
was ignored since it was not important in the basins to which
the model was applied originally (Todini and Ciarapica,
2001).

This study developed a new version of the TOPKAPI
model, in which the new modules of interception,
infiltration, percolation and groundwater flow are included.
Percolation to deep soil layers is simulated through the
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introduction of a second soil layer with different
characteristics from the upper layer, and involving water
movement in a vertical direction feeding into the aquifer. In
addition, an approach for incorporating lakes and reservoirs
is also included.

This paper reports the application of the new version of
TOPKAPI (Liu and Todini, 2002) to the upper Xixian
catchment about 10 000 km? in area located in eastern China,
using public domain data sets of topography, soil and land
use types readily available over the internet. Model
calibration used six months of the 1998 dataset. No
calibration in the common sense of a curve fitting process
was done. Using the hydrometeorological dataset of 2002,
the model was validated against the discharge not only at
the outlet but also at an internal gauging station. A
description of the structure and methodology, parameters
and data requirements of the new TOPKAPI, with the
emphasis on illustrating the new components of the model,
is also presented.

The new version of TOPKAPI model

STRUCTURE AND METHODOLOGY

The TOPKAPI model is a grid-based simulation approach.
Spatial distribution of catchment parameters, precipitation
input and hydrological response is described in the
horizontal by a lattice (the grid cells of a Digital Elevation
(DEM)) and in the vertical by a column of horizontal layers
at each grid square.

In the Soil Vegetation Atmosphere Transfer (SVAT)
simulation, a grid cell is represented by a maximum of five

vegetaton layer

upper zoil layer
—— lower zoil layer

te—— transient layer

saturaton zone
{groundwater)

Fig.1. Sketch of five horizontal layers in a grid square in a SVAT
simulation
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layers (Fig. 1). The vegetation layer on the top is the major
link between atmosphere and soil. The soil below has three
horizons: Horizon 1 (upper soil layer, 0—30 cm depth)
accounts for infiltration and evaporation processes; Horizon
2 (lower soil layer, 30—150 cm depth in general, up to 10m
depth) mainly determines transpiration and percolation into
deep soil layers; Horizon 3 is the transient transport zone in
which percolation is transformed to groundwater recharge.
The lowest layer of the column is the upper groundwater
aquifer, if present (Framework project, 2000).

Taking account of the fact that the soil characteristics
(depth, permeability) for the up to four soil layers are not
always available, a two-layer soil model is proposed in the
new TOPKAPI simulation, i.e. the soil column is divided
into the upper soil layer and the lower soil layer (Fig. 2).
The upper soil layer can be regarded as the ‘soil layer’ in
the old TOPKAPI model (and the total of the upper and
lower soil layers in a SVAT simulation as well); it is a soil
water layer of limited thickness and with generally high
hydraulic conductivity, which contributes to surface runoff
if its soil moisture content exceeds its saturation level and
loses water by drainage and percolation to the lower soil
layer if its moisture content exceeds its field capacity. The
lower soil layer can be thought of as the total of the transient
transport layer and the groundwater-saturated zone in a
SVAT simulation, it is a sub-soil layer below the upper soil
layer and above the imperious bedrock layer, with lower
hydraulic conductivity. The lower soil layer is introduced
in the new TOPKAPI to account for percolation to deep
soil layers and groundwater flow. Local saturated zones can
exist as perched groundwater above the boundary between
the upper soil layer and the lower soil layer.

The model is based on the idea of combining the kinematic
approach with the topography of the basin described by a
DEM. The flow paths and slopes are evaluated starting from
the DEM, according to a neighbourhood relationship based
on the principle of minimal energy cost (Band, 1986). Each
grid cell of the DEM is assigned a value for each of the
physical characteristics represented in the model.
Precipitation is assumed constant over the single cell, by
means of area-distribution techniques, such as Thiessen
polygons and Block Kriging (de Marsily, 1986). The
integration in space of the kinematic wave equations results
in three ‘structurally-similar’ non-linear reservoir equations
describing interflow, surface flow and channel flow (Liu, 2002).

The new TOPKAPI model is constructed around ten
components: interception, evapotranspiration, snowmelt,
infiltration, interflow and percolation, vertical recharge to
groundwater table, groundwater flow, surface flow, channel
flow as well as lake/reservoir routing. All the components
may be activated on an individual grid cell of the DEM.
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Fig. 2. Water balance simulation in the new TOPKAPI model

INTERCEPTION COMPONENT

Interception includes rainfall interception and snowfall
interception. For snowfall interception, the new TOPKAPI
uses equivalent water depth to represent the snowpack on
the vegetation instead of actual snow depth.

A simple empirical equation such as Eqn. (1) can be used
to determine the interception capacity of particular
vegetation from the information about the vegetation’s crop
density and leaf-area-index (LAI) for each species and for
each month of the year (Chen, 1996).

S0 =5, Cropd() 5, 0

where S (1) = vegetation interception capacity at time £, S | =
maximum vegetation interception capacity in a year; LAI(¢) =
ratio of total leaf area to area of ground covered by
vegetation — the leaf-area-index of the vegetation at time
t; LAI, = maximum LAI for the vegetation in a year;
Cropd(t) = proportion of ground in planview hidden by
vegetation — the crop density in the cell at time ¢.

Actual vegetation interception during a simulation is
determined by the amount of precipitation and the deficit in
the vegetation water storage, which is shown in Eqn. (2).

min[PE(t), SC,(t)] S () >SC, (1), S(t)> PE(t)

g (o) 0 S (0)>SC,(t). S (0= PE()
T |PEQ® S(t)<SC,(), S(t)>PE(®)
min[PE(t), SC,(t)] S (t) < SC,(t), S (t)=>PE(t)

)

with SC ()= [ SC,Cropd (t)LAI (t)/ LAl ;— SC(~T)] and
PE(t) = P(t) — Ep(t) where T = the computation time interval;
Sr, () = actual vegetation interception at time ; SC; =
vegetation storage capacity in a year; SC(+~T) = vegetation
water storage at time #-T; SC,(¢) = deficit of the vegetation
water storage at time #; PE(f) = net precipitation on the
vegetation; P(f) = precipitation; Ep(¢f) = potential
evaporation from the vegetation.

EVAPOTRANSPIRATION COMPONENT

Evapotranspiration can either be introduced directly as an
input to the model by computing it externally or estimated
internally by a simplified equation derived from the radiation
method (Doorenbos et al., 1984), based on the air
temperature and on topographic, geographic and climatic
information, which was developed for the ARNO model
(Todini, 1996). Different capacities of evapo-transpiration
from varying land uses are basically affected by transpiration
and evaporation from water intercepted by the given
vegetation. For different types of land use, monthly crop
coefficients (Doorembos, 1984; Maidment, 1993) are given,
reflecting the state of the plants in an annual growth cycle.
Thus, the potential evapotranspiration for actual land use is
calculated by Eqn. (3).

Et, = Et,KC,,, (3)

where Etis potential evapotranspiration for actual land use;
Et, is potential evapotranspiration for a reference land cover
-lawn; KCCrop is the ratio between the crop potential
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evapotranspiration rate and the corresponding reference
evapotranspiration rate.

Doorenbos and Pruitt (1992) give a comprehensive
database of FAO crop coefficients (Kc¢) for different climatic
conditions and phenological stages (initial, mid-season and
late-season stages). They stressed the need to collect local
data on growing season and rate of crop development.
Reduction of potential evaporation into actual evaporation
is a linear process depending on the soil moisture of the
upper soil layer.

SNOWMELT COMPONENT

For reasons of limited data availability, the snow
accumulation and melting (snowmelt) component is driven
by a radiation estimate based upon the air temperature
measurements, which is also borrowed from the ARNO
model (Todini, 1996). The following steps, similar to those
adopted in SHE (Abbott ef al., 1986a,b), are followed:

- estimation of radiation at the DEM grid (in the
distributed model) or at the snow line (in the lumped
model);

- decision whether the precipitation is solid or liquid;

- estimation of the water mass and energy budgets based
on the hypothesis of zero snowmelt;

- comparison of the total available energy with that
sustained as ice by the total available mass at 273 °K;

- computation of the snowmelt produced by the excess
energy; and updating the water mass and energy
budgets.

INFILTRATION

The infiltration capacity depends on the land cover property
and the soil moisture condition. By comparing infiltration
capacity and the available surface water, whichever is
smaller, the actual infiltration amount is calculated. In the
new TOPKAPI, only the effect of land cover on the
infiltration is accounted for. The amount of precipitation
infiltrating into the soil (f) is estimated using Eqn. (4):

f.=P K, 4)

where P, =net precipitation, K, = coefficient depending on

the land cover type.

INTERFLOW (SUB-SURFACE FLOW) AND
PERCOLATION

The sub-surface flow at a point in the soil can be
approximated by means of a kinematic wave model. The
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point assumption is integrated up to a finite dimension in a
generic cell, thus converting the original differential equation
into a non-linear reservoir differential equation (Eqn. (5))
based upon physically meaningful parameters, which can
be solved numerically or analytically from the known initial
and boundary condition for the cell (Liu and Todini, 2002).
The averaged interflow from the cell during the computation
time interval can be calculated from the respective water
balance calculation in the cell. Subsequently, at each time
step the saturation excess volume (surface runoff) can be
obtained by calculating the soil water balance (Liu and
Todini, 2002).

il :Kf X+q, +0 )—f X]— C, v (5)
dt a o s b Xas 1
with C, :W and 4, =9, -9

e

where V, is the upper soil water volume stored in the cell
inm’, Xis the grid cell size in m, f is the infiltration into the
cell inm s™', £, is the percolation rate to the lower soil layer
in ms™,q, is the discharge entering the active cell as
overland flow from the upstream contributing area (m?* s™),
and g is the discharge entering the active cell as subsurface
flow from the upstream contributing area in m? s, L is the
upper soil depth in m, Kg, is the horizontal soil saturated
hydraulic conductivity in the upper soil layer in ms™, b is
the land surface slope, Jis the saturated soil moisture
content, 9, is the residual soil moisture content, 4, is the
effective soil moisture content and a_is the exponent of the
transmissivity law for the upper soil.

It is assumed that percolation starts if the soil moisture
content of the upper soil layer exceeds its field capacity
(9. The percolation rate from the upper soil layer is assumed
to increase as a function of the soil water content according
to an experimentally determined power law (Clapp and
Hornberger, 1978) but not to exceed the saturated soil
hydraulic conductivity in the underlying deeper layer:

“p

f, = min kwl[vl) ks, (6)

im

with v, = (95 — 4, )LX

where, V. is the saturated water volume in the upper soil
layer; kw1 is the vertical soil saturated hydraulic conductivity
in the upper soil layer; K, is the vertical soil saturated
hydraulic conductivity in the lower soil layer; the
exponent & , depends on the type of the soil and can vary
from «, =11for sand to «, = 25for clay.
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VERTICAL RECHARGE TO THE GROUNDWATER
TABLE

The unsaturated zone in the lower soil layer can be identified
as an intermediate region, where moisture level remains
constant at the field capacity of the soil and rock of the
region. It is thought of as the transient transport zone, which
transforms percolation to groundwater recharge if the soil
moisture content of the upper soil layer exceeds its field
capacity. In the new TOPKAPI, the vertical recharge to the
groundwater table in a generic cell during a time step, g, ,
is computed by Eqn. (7):

v, 4V, )
q, = fbx( 2V 3) 7
3m

with v, = (d — L) pX

where V, is the water volume per unit width stored in the
unsaturated zone of the lower soil layer in the cell; Vj is
the saturated groundwater volume per unit width stored in
the cell; Vg, is the maximum groundwater volume per unit
width stored in the lower soil layer, d is the impermeable
bedrock depth from the surface, r is the effective porosity
of the lower soil and ¢, is the soil parameter related with
the lower soil property.

GROUNDWATER FLOW

The groundwater flow is generated from the groundwater-
saturated zone, which is the major source of channel flow
during the non-flood season. Assuming that the slope of the
bedrock layer in the flow direction is s,, Darcy’s law states
that the groundwater flow, g, can be obtained as:

alh+z) oh v,
= _— = — N 8
q, = Kg, oh ™ k*2(8x+s°j(xj (8)

where x is the main direction of flow along a cell, /4 is the
groundwater-table depth, Z; is the bedrock elevation relative
to an absolute coordinate system, ksh2 is the horizontal soil
saturated hydraulic conductivity in the lower soil layer.
The variation through time of the groundwater volume in
each grid cell is modelled by a linear reservoir equation.
This combines Darcy’s law and the mass conservation of
one-dimensional laminar flow in an isotropic, homogeneous

aquifer, to give:
dv. 6(h +Z, ) Vs
OX X

2=(q, +0,) —Kg,

where Q,is the lateral groundwater flow into the cell.

h 0z
Since — is much smaller than —- = Sy, Eqn. (9) can be
thus approximated into Eqn. (10) as:

dv3 kshz S'D

E = (qr + qh) -

oh

In general, the term —_ has time variations that can be
appreciated on the order of days. Since the integration time
step in the model is kept in the order of hours, the variation
in time of 2 is very small and, with a negligible error, the
value estimated at the end of the previous time step can be
used.

The solution of Eqn. (9) can be obtained analytically. The
average groundwater flow from the cell during the
computation time interval can be calculated on the respective
water balance calculation in the cell.

Note that the groundwater may ex-filtrate into the upper
soil layer as an input to the upper soil water reservoir, and it
may also further ex-filtrate upward to feed overland flow at
the ground surface; therefore, the water storages in the lower
and the upper soil layers should be adjusted at the end of
each computation of groundwater flow, which is done by
means of the total water balance calculation in the soil
column.

Vs (10)

SURFACE FLOW (OVERLAND FLOW) COMPONENT
Overland flow routing is described similarly to the soil
component, according to the kinematic approach (Wooding,
1965) in which the momentum equation is approximated
by means of Manning’s formula. By analogy, a similar
process was effected for the soil; assuming that the surface
water depth is constant over the cell and integrating the
kinematic equation over the longitudinal dimension gives
the non-linear reservoir model for the overland flow for a
generic cell as:

Vo =r,X?-
dt

o]

o Ve (1
where V, is the surface water volume in the cell in m?, r, is
the infiltration-excess and saturation-excess resulting from
the solution of the soil water balance in [m s™], n, is the
Manning friction coefficient for the surface roughness in
[m™*3g],C, = (tan §)¥*/n, is the coefficient relevant to the
Manning formula for overland flow, and «,=5/3 is the
exponent derived from using the Manning formula.

CHANNEL FLOW COMPONENT

Similar considerations also apply to the channel network,
which is assumed to be tree-shaped with reaches having
wide rectangular cross-sections. In this case the channel
surface width is not constant but is assumed to increase
towards the catchment outlet. On these assumptions, the
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following non-linear reservoir model for the channel flow
can be written for a generic reach:

av, CW | .

T;=(rcm+Qﬁ)—(m)ac Ve (12)

where V, is the volume of water stored in a generic channel
reach in n°, W is the width of the rectangular channel reach
in m, which is taken to increase as a function of the area
drained by the cell on the basis of geomorphological
considerations (Liu and Todini, 2002), Q; is the inflow
discharge from the upstream reaches in [m*s™'], r_ is the
lateral drainage input, including the overland runoffreaching
the channel reach and the soil drainage reaching the channel
reach inms™, C_= 501/2 / n, is the coefficient relevant to
the Manning formula for channel flow, S, is the river bed
slope, assumed to be equal to the ground surface slope, n,
is the Manning friction coefficient for the channel roughness
in [m™*3g] and «, = 5/3 is the exponent derived from using
the Manning formula.

LAKE/RESERVOIR ROUTING

In rainfall-runoff modelling, a lake or a reservoir can be
thought of as a ‘multiple-input and single-output’ system.
In the new TOPKAPI approach, a mechanism has been
developed for identifying the receiving cells and the draining
cells of the lake or the reservoir in a distributed model.

A reservoir in which the discharge is a function of water-
surface elevation offers the simplest of all routing situations.
Such a reservoir may have un-gated sluiceways and/or an
uncontrolled spillway. Given the data of the elevation-
storage curve and the elevation-discharge curve, the lake/
reservoir routing can be implemented by using Eqn. (13):

\/1+Q°1j:\/2+Q°z

(13)

Qi_Qol-i_(t 2 t 2

where Q is the average inflow discharge into the reservoir
during the time period 7, ~,; Q. , Q, are the reservoir release
discharges at time 7, £,, respectively; V,,V, are the reservoir
storages at time 7, #,, respectively.

Solution of Eqn. (13) requires a routing curve showing
V/t+Q,/2 versus Q,. All terms on the left-hand side of
the equation are known, and a value of V, /t + Q., / 2 can
be computed. The corresponding value of Q, can be
determined from the routing curve. The computation is then
repeated for succeeding routing periods.

DATA REQUIREMENTS AND PARAMETERS

The data required for the new TOPKAPI model include
terrain data (e.g. DTM or DEM data, land survey data), soil
survey data and vegetation or land-use data, LAI data,
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geographical co-ordinates, precipitation data, evapo-
transpiration or air temperature data.

Principal parameters required for each grid cell in the new
TOPKAPI model are shown in Table 1. Because of their
physical significance, in principle, the parameters can be
measured directly through fieldwork. However, to do this
in such a way as to provide coverage of the entire catchment
would involve a prohibitive amount of work. Therefore,
application of models such as TOPKAPI is likely to involve
the transfer of parameter values measured at representative
sites and the general use of parameter values available in
the literature. Although it is physically-based, the model
still needs calibration because of the uncertainty of the
information on the topography, soil characteristics and land
cover. Nonetheless, calibration of the TOPKAPI parameters
is more an adjustment rather than a conventional calibration
and is carried out by simple trial-and-error.

The Upper Xixian catchment case
study

CATCHMENT DESCRIPTION
The Upper Xixian catchment in China (Fig. 3), with an area
of 10 100 km?, lies in the upper part of the Huaihe River
which flows east to west to the Xixian station. It has three
major tributaries: River Qingshui on the left side and River
Shi and River Zhugan on the right side, on which there are
two medium-sized reservoirs (Fig. 3). The watercourse of
the Huaihe River within the catchment is 250 km long.
The local climate of the Eastern Asia monsoon results in
the highest flooding risk in the period from June through
August. The annual precipitation is around 1060 mm, and
the yearly-averaged air temperature is around 15 °C in the
catchment.

AVAILABLE GEOMORPHOLOGICAL AND LAND USE
DATA

Topography

The first step in applying the new TOPKAPI model is to
derive information on the topography of the catchment. For
the Upper Xixian catchment, the United States Geological
Survey (Gesch et al., 1999) GTOPO30 public domain DEM
from the Internet (http://edcdaac.usgs.gov/gtopo30/
gtopo30.html, 2002) was used as the basic data source to
define the catchment and its slopes and to derive the river
network in the model by a GRASS-GIS (Todini et al., 1999).
Figure 4 shows the DEM on a grid scale of 1000 m with the
derived river network by setting a drained-area threshold
of 5 km? for the Upper Xixian catchment.
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Table 1. Principal parameters required for each grid cell in the new TOPKAPI model

Model Component

Parameter

Interception

Evapotranspiration

Snowmelt
Infiltration

Interflow and percolation

Groundwater recharge

Groundwater flow

Surface flow

Channel flow

Lake/reservoir routing

Vegetation interception capacity (S, )
Vegetation storage capacity ( SC,)
Maximum leaf-area-index ( LAI,)

Daily maximum sunshine hours (n)
Monthly average air temperature (7))
Crop factors ( K,)

Critical air temperature for determining the precipitation as snow or rain, 7,
Infiltration coefficient depending on the land cover type (K))

Thickness of the upper soil layer (L)

Horizontal and vertical saturated hydraulic conductivity of the upper soil ( kshl and ks,1 )
Effective soil moisture content of the upper soil (8 =8 -3))

Field capacity (3,) of the upper soil

Exponent of the transmissivity law for the upper soil (a )

Exponent of the percolation law for the upper soil (a[})

Vertical saturated hydraulic conductivity of the lower soil ( sz )

Exponent of the vertical groundwater recharge equation for the lower soil, a,

Horizontal saturated hydraulic conductivity of the lower soil ( ksh2 )
Impermeable bedrock depth from the surface (d) and slope ( S,)
Field capacity (3,) of the lower soil

Surface roughness (n, )
Surface slope, tang (b)

Roughness for the channel according to the Strahler channel order (n)
Maximum and Minimum Channel widths (W__, W )

River bed slope (S,)

max’

Routing curve

Xixian

Nanwar

e

TR River
Y]

gt

¢

L

Huarg

Shishankotfl}‘i‘\li Zhuoganpu

£~
River

Fig. 3. The Upper Xixian catchment in Huaihe River basin
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Fig. 4. DEM map and derived river network of the Upper Xixian catchment

Soils

Soil texture data were derived from the global soils dataset
of Reynolds et al. (1999), which is available on line at http:/
/www..ngdc.noaa.gov/seg/eco/cdroms/reynolds/reynolds/
reynolds.htm, 2002. The dataset includes percentages of
sand, silt and clay, and porosity, and it is based on the FAO
Soil Map of the World linked to a global dataset of over
1300 soil pedons (FAO, 1996). The spatial resolution of the
Reynolds map is 5 minutes (around 10 km) and there are
two layers: 0-30 cm and 30—100 cm. For the Upper Xixian
catchment, the soil map was classified into the four soil
texture classes shown in Fig. 5.

Land use

The TOPKAPI model needs information on the distribution
of'the various land covers in the basin. For the Upper Xixian
catchment, the UMD 1KM digital land cover map of the
world (Hansen et. al., 2000) was used from the Internet
(http://www.geog.umd.edu/landcover/l1km-map.html,
2002). This was classified to the ten land classes shown in
Fig. 6.

Fig. 5. Soil type map of the Upper Xixian catchment
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Fig. 6. Land cover map of the Upper Xixian catchment

Calibration and validation of the new
TOPKAPI

HYDROMETEROLOGICAL DATA AVAILABILITY

Floods have been experienced in the Upper Xixian
catchment in recent years, 1991, 1998 and 2002. Six-hourly
measurements from 24 raingages and 1 evaporation station
are available while discharges are computed by means of a
rating curve at Xixian. The hydrometerological dataset for
1998 was selected for model calibration, since a major flood
event with a peak discharge of 4780 m*s™' occurred in early
August of that year. For model validation, the dataset of
2002 was chosen.

TRADITIONAL CALIBRATION AND VALIDATION

The model calibration was performed at a 6-hour time-step
using the hydrometerological dataset of May 1 to Oct. 31,
1998. Due to the shortage of LAI data for the catchment, it
was decided not to consider the interception component in
the flood simulation. According to Li (2001), the effects of
the two middle-size reservoirs on floods are sufficiently
small to be neglected in flood simulation.

The initial soil saturation percentage was set as the same
value of 0.9 for all cells at the beginning of the calibration
period and it was assumed that there is no snow or surface
water over the slopes and the water depth in a generic
channel cell increases linearly with the channel width. The
minimum and maximum width for the river network was
set at 1| m and 400 m respectively. Since the elevations of
impervious bedrock are unknown, it was assumed to be 30 m

from the surface for all the cells in the catchment. The
distribution of the initial groundwater depth was estimated
from the topographic index (Beven and Kirkby, 1979;
Franchini et al., 1996), given the catchment average
groundwater depth of 5 m.

The initial model parameter values were estimated from
the literature. Certain soil parameters (e.g. residual soil
moisture content, saturated soil moisture content, field
capacity, saturated soil hydraulic conductivity) were
obtained from the USDA soil texture class index by referring
to the USDA parameters table for the infiltration model of
Green-Ampt (Maidment, 1993), and a soil parameter table
used in the VIC (Variable Infiltration Capacity) model
(Liang, et al., 1996 a,b), which is available online at (http:/
/www.hydro.washington.edu/lettenmaier/models/vic/
operation/info/soiltext.htm, 2002). The Manning’s overland
flow roughness for different land cover types was estimated
from Bedient and Huber (1992) and HEC-1 (1998), and the
roughness of channel flow was estimated by referring to
Chow (1959), Barnes (1967) and Maidment (1993)
according to the Strahler channel order (Strahler, 1957). The
final parameter values shown in Tables 2 and 3 were obtained
by ‘trial and error’ on the basis of curve fitting. Figure 7
shows the comparison of the observed discharges and those
calculated by the new TOPKAPI model at Xixian.

The new TOPKAPI is described as a physically-based,
spatially distributed model. The model should be validated
against internal data as well as the catchment outlet response,
e.g. discharge at internal gauging stations or well levels
(Ambroise ef al., 1995; Feyen et al., 2000; Vazquez et al.,
2002).
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Table 2. Principal calibrated soil parameters in the new TOPKAPI model for the Upper Xixan catchment

Soil type -3, J-1 a a, Kgy (ms™) K, (ms™) L (m)
Sandy loam 0.412 0.172 2.5 - 1.46E-04 7.28E-07 0.80
Loam 0.433 0.264 2.5 - 5.47E-05 2.74E-07 0.50
Clay loam 0.432 0.312 2.5 3.0 4.92E-05 2.46E-07 0.30
Clay 0.385 0.275 2.5 - 8.83E-05 4.42E-07 0.20

Table 3. Principal calibrated soil parameters in the new TOPKAPI model for the Upper Xixan catchment

Land cover n(m'?s) Strahler n (m'? s)
channel order

Evergreen needleleaf forest 0.40 I 0.050
Decidulous needleleaf forest 0.30 11 0.040
Decidulous broadleleaf forest 0.30 11 0.035
Mixed forest 0.25 v 0.030
Woodland 0.20 \% 0.030
Wooded grassland 0.15 VI 0.025
Closed shrubland 0.15 0 0
Grassland 0.095 0 0
Cropland 0.085 0 0
Urban land builtup 0.070
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Fig. 7. Comparison of observed and calculated discharge for Xixian (From 1 May to 31 Oct., 1998)

Using the calibrated model parameter values, the new internal gauging station Zhuoganpu (see Fig.3) is shown in
TOPKAPI was validated using the dataset of May 1 to Oct. Figs. 8 and 9, respectively. The model calibration and
31, 2002. Comparison of observed and simulated validation performance statistics are shown in Table 4.

hydrographs for the catchment outlet (Xixian) and for an
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Fig. 9. Comparison of observed and calculated discharge for Zhuoganpu (from May to Sept., 2002).

Table 4. New TOPKAPI model calibration and validation performance statistics for Xixian

Period Coefficient of Observed peak Calculated peak Relative error of
Determination 1’ discharge(m’s”) discharge(m’s™') peak discharge(%)

Calibration : May-Oct, 1998 0.894 4780 4280 -10.5

Verification: May—Oct, 2002 0.844 5010 5230 4.4
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DISCUSSION OF RESULTS OF TRADITIONAL
CALIBRATION

As can be seen from the split sample testing, the new
TOPKAPI shows relatively constant efficiencies both in
the calibration and validation periods (Table 4), since the
coefficients of determination ranges from 0.894 for the
calibration period to 0.844 in the validation period. The
relative errors (the ratio of the absolute error to the observed)
of estimated maximum peak discharges are —10.5% for the
calibration period, and 4.4% for the validation period,
respectively.

Figures 7 and 8 demonstrate that the new TOPKAPI model
(based on a DEM with a grid size of 1000 m) also performed
well in simulating the floods and the low flows for the Xixian
station.

The model did not simulate well the initial flood events
in both the calibration and the validation periods. This is
clearly due to the assumption made for the initial conditions
of soil saturation, surface water depth, and channel water
depth and so on, while the large difference between the
calculated and the observed discharge in the event of 11
May, 1998 is caused largely by the underestimation of
precipitation total in the catchment.

CALIBRATION BASED ON PARAMETER
UNCERTAINTY AND PREDICTIVE UNCERTAINTY

It is now generally accepted that the uncertainty associated
with model parameters and its implications for model output,
namely the predictive uncertainty, should be explicitly
recognised in the modelling procedure (Beven and Binley,
1992; Ewen and Parkin, 1996; Quinton, 1997; Christiaens
and Feyen, 2002). Beven and Binley (1992) developed a
generalised likelihood uncertainty estimation (GLUE)
framework for representing model parameter and prediction
uncertainty within the context of a Monte Carlo analysis.
Unfortunately, as demonstrated by Mantovan and Todini
(in press), the technique is incompatible with the Bayesian
inference approach, which results in an incorrect estimation
of both parameter and predictive uncertainties.
Consequently, it was decided to use a more formal Bayesian
inference approach.

To initiate the Bayesian inference process one has to
specify f0(3), the probability density function of model
parameters, which expresses an a priori subjective belief in
the model parameter values. Successively, a likelihood
function of the parameter values conditional to the
observations needs to be found.

Ify = (Y, Ypreeo Y, )| € R" denotes the vector of the N
observations of interest and ¥, (3, X, )= (¥,(4,x,), 9,(3.:
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Xz)’----, A (3, xn))T the vector of a given model M (9, Xn)
output, this will be a function of the p-dimensional vector
of parameters ¢ e ® and of the observations input matrix
X, = (X, X,,.0,X, )T - On the assumption that the probability
density function of the observations conditional upon the
model parameters and the observation input matrix (Eqn.
14) is known:

f(yn|8,Xn): f(yl, Yoreens yn|8,xl,x2,...,xn) (14)

once the observations have been acquired in statistical
inference, the likelihood function L (8;y,,X,) of the
parameters is defined as follows:

Xn)oc f( N

Knowing the parameters prior probability density function
f0(19) and the likelihood function L, (8;y,,X,), it is then
possible to derive the posterior probability density of
parameters conditional to the observations, using the Bayes
theorem:

f,(9lyn, X,)

L.(%Y,., ) (15)

(51, X))
NCENAOT (6)

The probability density function of Eqn. 16 is the
probability density function that can be used for estimating
the value of the parameters and for assessing the parameter
uncertainty.

In hydrological applications, the prior probability density
of the parameters is generally taken as a non-informative
multi-uniform distribution, which has the advantage of
cancelling out in Eqn. (16). The use of a non-informative
prior in this case is justified since, when dealing with samples
of the order of hundreds of observations, the effect of a
prior density tends to vanish with respect to that of the
likelihood. Therefore, the main problem is the specification
of an appropriate likelihood.

To do so, in general, an additive error model is formulated:

Yo =M($X,)+¢, (17)

with g, = (81,82,...,8n )T the error vector.

Consequently, the probability density of the observations
conditional on M (.9, X n) , namely on (a) the model, (b) the
parameters and (c) the input observations, can be derived
as a function of the stochastic properties of the error vector.
Different hypotheses of distribution laws for the error vector
have been proposed, for instance the multivariate
t-distribution law (Johnson and Kotz, 1972; Mardia et al.,
1979; Ripley, 1997). If the model with additive errors is
stochastically independent and if errors are equally
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distributed, it can be assumed that:

NBYN N

f(fnﬂ,N)=2rg/N)eXp(—ﬂ8n ) (18)
with N>1 (Box and Tiao, 1983; Bishop, 1996);
alternatively, a multivariate distribution that accounts for
the structural dependency among the errors must be defined.

Several batch or recursive algorithms for parameter
estimation and uncertainty assessment have recently been
developed following this assumption, such as the Parameter
Identification Method based on the Location of Information
(PIMLI) (Vrught, 2004) or the Bayesian Recursive
Estimation (BaRE) (Thiemann ez al., 2001).

A relatively robust approach is used in this paper by
transforming the original data into a Gaussian space via the
Normal Quantile Transform (Van der Waerten, 1952, 1953;
Kelly and Krzysztofowicz, 1997) by probability matching.
Namely, after ranking the original variables in increasing
order, they are converted into the standard normal variable
corresponding to probability i/(l‘lt +l), where | is the
ranking order and N, the sample size. In this way Eqn. 17
is transformed into:

M =1,(7,(M, 8, X))+ &, (19)

with 7,(y,) and 7,(7,(M,8,X,)) (where §,(M,8,X,)
represents the model output) normally distributed with mean
zero and variance 1; consequently, $n results normally
distributed with mean zero and variance 1- p°, with p the
correlation coefficient between 7, and 7,(7,(M,$,X.,)).
This property allows the probability density function of
observations conditional to the parameters to be defined as:

f(ﬂn 31ﬁ11ﬁ21-"’ﬁn) (20)

3,ﬁn)= f(771!772""177n

which is proportional to the likelihood of parameters
according to Eqn. 15. Following the Bayes theorem, the
posterior density of the parameters given the observations
is then defined as:

_ L(8m, A,)1(9) @
[ L8, 1, )1(9)d9

fn(Snn,fIn)

Note that although the time correlation of &, was not
accounted for here, it can easily be incorporated by using a
multivariate Normal distribution.

The posterior density of the parameters describes the
parameter uncertainty directly and allows one to estimate
the predictive uncertainty.

The Bayesian approach was applied to the case of the
Upper Xixian basin using 650 observations relevant to the

calibration period; a number of scarcely significant
observations towards the end of the last month were
disregarded in order to reduce the computational effort.
The four most significant TOPKAPI model parameters
were chosen for this analysis, namely the logarithm of the
hydraulic conductivity at saturation, the soil thickness, the
Manning coefficient for the land surface and the Manning
coefficient for the river. Moreover, to reduce the number of
parameters, instead of independently calibrating all the
individual parameters for the different soil types, land uses
and river reaches, it was decided to apply the Bayesian
approach to a set of four multiplicative factors. These factors
are then applied identically to all the different classes of
soils, different land uses and river reaches. A number of
50,000 sets of four parameters was generated
8 =(9.9,-.9,),  Vp=1..4]=1.50000 using a
multi-uniform distribution function each of which was run
with the TOPKAPI model. This operation produced 50 000
sets of 650 time steps model outputs
Vi  Vi=1...650;j=1...,50,000 that, together with the
observed discharges Y, , were converted, via the Normal
Quantile Transform, into their images in the normal space
ni,ﬁij Vi=1...650; ] =1,...,50,000 from which it was
possible to compute &y = (gl!QZZ!"'!gn)j vj=1...,50,00
and derive the likelihood of each generated parameter set

1& .,
ex _:zggéij

L (97,10, ) £ (2, |3j)=w

Vv j=1...,50,000

which coincides with Ln(3]— ;yn,Xn) as well as with the
posterior parameter density, given the peculiar choice of
the non-informative multi-uniform prior.

Figure 10 displays the different transformations from the
original data required to produce the normally distributed
deviates used in the Bayesian approach.

A sensitivity analysis of the parameters was then
performed, the results of which are given in Fig. 11 in terms
of two parameters at a time (one parameter versus another).
As opposed to what happens when GLUE is applied (Fig.
12), peak concentrations of parameter likelihood (see for
instance the factors relevant to the land surface versus the
river Manning friction coefficient) appear evident.

Once the posterior parameter density function has been
constructed it is possible to derive predictive uncertainty of
the model. To do so, it is necessary to define the probability
density of the predictand conditional on the model output,
which is a function of model parameters:

(22)

f(yM(9.x,)) (23)

359



Zhiyu Liu, Mario L.V. Martina and Ezio Todini

1000 T

200 |-

= ey L

0 100

200 300

400 500 600 700

0 o0

200 300

400 500 600 700

;'\.—-i'h-.; -’ﬁ—iu

LA . a

200 300

400 500 600 700
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Fig. 12. GLUE dotty plots for the four parameter factors. The predictive uncertainty here discussed relates to the uncertainty of a predictand
(in this case discharge or water stage or more in general a measurable quantity of interest) induced by the parameter uncertainty, conditional

upon a model and its inputs, which are taken as given.

Once this density is known, the predictive uncertainty can
be defined as follows:

[ F M8 x))F (3l X, )9 (24)

As was done to derive the posterior parameter density, a
predictive density relevant to each single parameter set 191-
can be obtained via the NQT approach initially by forming
the joint probability distribution f?ﬂn,ﬁn‘M »9,,X, ) in the
Normal space and by deriving the conditional density

f(r]k‘ﬁk(M 9, ,Xk)) as shown in Fig. 13. The latter density
can then be transformed back in the original space through
the inverse of the NQT, to give f(yk‘yk%M 9, 1Xk))

Finally, the predictive density can be found by
marginalising all these densities with respect to the
parameters, which can be approximated by summing up the
products of all the realisations times of their relevant
probability density of occurrence, to give:

F(VM X0y X, )= Z f (yk‘)?k(M 9, ’Xk))f (‘91' \yn,Xn)
- (25)
where m= 50,000 in this case.
In the upper part of Fig. 13, the observed discharge (solid
line) is compared with the expected value conditional on
the model, input and initial conditions (dotted line) plus and

; S 17, (M.8,.5,)

- .

Fig. 13. The joint (dots cloud) and the conditional (section)
probability densities in the Normal space

minus two sigma limits, while a number of estimated
predictive probability distribution functions for selected
cases are shown in the lower part. Figure 13 shows that the
estimated predictive probability distribution (and
consequently the uncertainty band) are non-Gaussian, highly
variable in time, sometimes positively and sometimes
negatively skewed, as would be expected.
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Conclusion

A new version of a physically-based, fully distributed
TOPKAPI model was developed. The structure and
methodology, parameters and data requirements of the new
TOPKAPI, with the emphasis of illustrating the new
components of the mode is described. The application to
the upper Xixian catchment (¢. 10 000 km?) using public
domain data sets readily available over the internet and
applying the new TOPKAPI is described. For the two-
year period, the discharge was simulated well against the
response at the catchment outlet as well as at an internal
gauging station.

The application of the new TOPKAPI model to the Upper
Xixian catchment demonstrated that the model performed
well in simulating floods and low flows. Since the model-
required basin’s surface data (topography, soils and land
use/land cover, etc.) can be derived from the public domains
through the Internet, it is expected that the TOPK API model
will be applied in more catchments for flood forecasting.
Once a parameter database for the TOPKAPI is prepared,
the application of the model can be broadened to other
applications. including extreme flood analysis in ungauged
catchments.

The new TOPKAPI is described as a physically-based,
spatially distributed model. Nonetheless, a formal Bayesian
inference technique was applied to demonstrate how it is
possible on the one hand to perform parameter sensitivity
analysis and, on the other hand, to provide an estimate of
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the predictive uncertainty.

The full Bayesian approach described in this paper can be
used to assess the model performances using historical data,
but can seldom be applied in real time due to the large
amount of computational effort required. Ongoing research
aims at demonstrating a possible alternative by using in real
time applications the predictive probability density
conditional to the Maximum Likelihood or the Maximum
Posterior Density parameter estimates instead of the
marginalised density of Eqn. (25). Preliminary results show
that the two distributions are quite similar because the
Posterior Para-meter Density results are highly dense around
its maximum.
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