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Abstract. A spatio-temporal linear dynamic model has been
developed for patching short gaps in daily river runoff se-
ries. The model was cast in a state-space form in which
the state variable was estimated using the Kalman smoother
(RTS smoother). The EM algorithm was used to concur-
rently estimate both parameter and missing runoff values.
Application of the model to daily runoff series in the Volta
Basin of West Africa showed that the model was capable of
providing good estimates of missing runoff values at a gaug-
ing station from the remaining time series at the station and
at spatially correlated stations in the same sub-basin.

1 Introduction

A major requirement for the assessment, development and
sustainable use of the water resources of any river basin is the
availability of good quality runoff series of sufficiently long
duration. In the Volta Basin (Fig. 1) both daily and monthly
river discharge series exist for a good number of gauging sta-
tions. However, many of these records are of poor quality
and contain gaps, from several days to several years.

In an assessment of monthly flow series of river discharge
from the main river gauging stations in the basin, Taylor
(2003) observed that in general 20% of monthly discharge
data over a 20-year period are missing from the available se-
ries in the basin with some gauges having as many as 50%
gaps in their series. By regressing rainfall with the various
series, the above study determined that only half of the gaug-
ing stations examined had reliable flow series, though these
also had gaps of varying lengths. Filling gaps in existing river
flow series is necessary for the design of water management
plans that depend on complete water balances. In addition, a
full series greatly facilitates data-driven model development.
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Several methods are available for filling gaps in data se-
ries in general and for hydrological data series in particular.
Data imputation methods (Dempster et al., 1977; Schafer,
1997; Little and Rubin, 2003) are generally difficult to apply
to hydrological data such as monthly river runoff series be-
cause of autocorrelations at high lags and seasonal effects. A
few reviews are available (Kottegoda and Elgy, 1979; Gyau-
Boakye and Schultz, 1994) on methods that have been used
successfully for hydrological data infilling. Gyau-Boakye
and Schultz (1994) provided a framework for filling in gaps
of various lengths in daily runoff series in West Africa in-
cluding the Volta Basin. Among methods they recommended
for such data in-filling are autoregression with or without
rainfall, simple and multiple regressions with neighbouring
gauges, interpolation, recession methods and linear storage
model formulations – the method used depending, among
others, on the length of the data gaps to be filled and the sea-
son in which these gaps occur. Papadakis et al. (1993) have
also demonstrated the strength of satellite imagery with non-
linear modelling in stream flow generation. Taylor (2003)
used the Thornthwaite-Mather (TM) method to model river
runoff in the Volta Basin and concluded that the method
could be used to fill gaps in runoff series if properly formu-
lated.

Autoregressions without rainfall, simple and multiple lin-
ear regressions with neighbouring gauges, interpolation and
recession methods of data in-filling, where they work, have
the advantages of simplicity and not requiring any other in-
put data such as rainfall, evaportranspiration, soil moisture
status etc, that other models need. However, they still need
separate complete and extensive data sets for their calibra-
tion and verification, a requirement that may be a luxury in
data-poor areas such as the Volta Basin. Recession and au-
toregressive methods are unsuitable for periods of flow with
rainfall as they ignore the effect of the driving rainfall input.
More suitable are multiple regressions that account for rain-
fall input and catchment moisture status by using runoff from
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Figure 1. Map of the Volta Basin showing the Gauging Stations used in the Study. Fig. 1. Map of the Volta Basin showing the Gauging Stations used
in the Study.

neighbouring gauges. Multiple regressions are, therefore,
more suitable for data in-filling when there is rainfall. How-
ever, by being fitted to “global” data, consisting of runoff
series for several years together, they may not provide very
good estimates for short “local” gaps. Multiple regressions
also ignore available observed runoff at the station for the
period considered. Because not all available information is
used, the quality of the estimates will be sub-optimal.

The gap-filling method proposed here makes good use
of all available spatial and temporal information simulta-
neously. Spatio-temporal dynamic models have been ap-
plied successfully to environmental systems (Shumway and
Stoffer, 1982; Hasket, 1989; Rouhani and Myers, 1990;
Goodall and Mardia, 1994; Guttorp and Sampson, 1994;
Mardia et al., 1998). When cast in state-space form, they
can be used with the Kalman smoother and the Expectation-
Maximisation (EM) algorithm to estimate missing values in
environmental data including runoff data. A full Bayesian
approach would be the preferred approach but this requires
knowledge of prior distributions, and subsequent estima-
tion of all probability density functions involved. Here, we
choose to make some reasonable simplifications. Specif-
ically, we consider the dynamic system to be linear with
Gaussian errors and initial system state. The important ad-
vantage is that with these assumptions, the full Bayesian
approach reduces to the Kalman filter and smoother. The

Kalman filter/smoother simplifies the analysis to the estima-
tion of the mean and covariance of the system states instead
of the estimation of the conditional probabilities of the states
at each time step. We have chosen to use this simplification
due to the difficulty of specifying an appropriate prior dis-
tribution for the system states (or surrogate states, such as
catchment daily runoff) in our analysis. The combined use
of Kalman smoother and EM algorithm has the advantage of
not needing separate calibration data. The use of the EM al-
gorithm ensures that model parameters, missing observations
and state vectors can be adequately estimated with the same
data set and concurrently. Another advantage is that avail-
able measured streamflow data within the modelling period
are also used in the estimation process thereby ensuring that
important information contained in these data is fully used.

In this study, the spatio-temporal state space dynamic
model with time invariant parameters was formulated using
the Kalman smoother and the EM algorithm and applied to
filling short gaps in riverflow data in the Volta Basin of West
Africa using series of up to one year. The gaps in these se-
ries span a few days to a month. A typical daily time series
with gaps is given in Fig. 2. The reason to use the spatio-
temporal modeling framework with the Kalman smoother
and EM algorithm is twofold. The first reason is to intro-
duce the framework as a powerful tool for data assimilation
in hydrology. The second reason is to ascertain the applica-
bility and effectiveness of such a model to runoff patching
in the Volta basin, where the authors currently conduct part
of their hydrological research. A similar combination of EM
and Kalman filter was originally developed for general eco-
logical and environmental models (Xu and Wikle, 2004). Be-
sides providing a novel and efficient procedure to fill gaps in
hydrological time series, we believe that the proposed mod-
elling framework will have many hydrological applications
whenever both spatial and temporal information is available
to estimate states and parameters. In this light, the present
study can be seen as an introduction of this technique to hy-
drological problems. Therefore, some extra room is given to
the mathematical development to facilitate further applica-
tions.

The presentation of the methodology is divided over
three parts. First, we present the “Discrete spatial-temporal
dynamic modelling framework”, which is based on the
Expectation-Maximisation (EM) algorithm, the core algo-
rithm used here. Second, the framework is adapted to ad-
dress the issue of missing values. Thirdly, the EM-algorithm
is generalized to allow for the inclusion of constraints and
prior knowledge of model structure and parameters (Xu and
Wikle, 2004). This complete framework is subsequently ap-
plied to fill gaps in runoff series. The success of this ap-
plication is shown and discussed. The article ends with the
conclusions drawn from the general framework and its appli-
cation.
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Figure 2a: Flow diagram spatio-temporal framework  Fig. 2a. Flow diagram spatio-temporal framework.

2 The discrete spatio-temporal dynamic modelling
framework

The first step in the development of the framework is to rep-
resent the system at hand as a set of discrete updating equa-
tions that represent the evolution of the system state and the
associated observations. Subsequently, the EM algorithm is

presented as an iteration scheme with each iteration consist-
ing of an Expectation and a Maximization step. As an end
result, EM produces the set of system parameters with the
highest likelihood, given the complete set of observations.
For implementation of EM, one needs to calculate for each
iteration the so-called “sufficient statistics”, which will be
defined below. Because the problem was formulated as a
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Figure 2b. Daily Hydrograph at Sabari on the Oti River (1985-1989). Typical pattern of Gaps 
considered in the Spatio-temporal Modelling. 

Fig. 2b. Daily Hydrograph at Sabari on the Oti River (1985–1989).
Typical pattern of Gaps considered in the Spatio-temporal Mod-
elling.

discrete state-space model, these “sufficient statistics” can
be calculated with a Kalman smoother. The presentation of
the Kalman smoother, consisting of the normal Kalman filter,
first run in forward mode and then in backward or smoothing
mode, concludes this section. The steps involved in the mod-
eling framework are detailed below and also summarised in
the chart in Fig. 2a.

2.1 State-space representation of the dynamics of the sys-
tem’s state

The discrete spatio-temporal dynamic model is formulated to
predict an×1 state vectorxt=(xα1(t), xα2(t), . . . ,xαn(t))

′ of
an unobserved spatio-temporal state process at a fixed net-
work of n locations. In addition, there is them×1 vector
yt=(yβ1(t), yβ2(t), . . . ,yβm(t))’ of observed or measured val-
ues at m locations at timet , where the two sets of spatial lo-
cationsα andβ need not be the same (Xu and Wikle, 2004).
Here, and throughout, the prime denotes the transpose vec-
tor or matrix. Bold small letters indicate vectors and bold
capitals are matrices. The state-space representation for the
prediction of the unobserved process without external input
and for the linear dynamic case with time invariant parame-

ters, consists of the following process/state and measurement
equations:

xt = Fxt−1+ωt , x0 ∼ N (µ0, 60) , ω ∼ N (0, Q) (1a)

yt = Hxt + υ t , υ ∼ N (0, R) (1b)

F is then×n transition or state propagation matrix that de-
scribes the dynamics of the system – a first-order Markov
process in which the current state (xt ) depends on only the
immediate past state (xt−1). H is them×n measurement ma-
trix that relates the estimated state vectors to the vector of
actual observations. The additiven×1 state-estimation er-
rors, ωt , and them×1 measurement errorsυt are uncorre-
lated Gaussian white noises with zero mean and covariance
Q (n×n) andR (m×m). The initial n×1 state vector,x0,
is considered normally distributed with meanµ0 and covari-
ance60. Equation (1) is the finite dimensional linear dynam-
ical system from which the vector time series of observations
Y=(y0, y1, y2, . . . ,yN ) is assumed to be generated. As noted
in Ribeiro (2004), whenx0 is a Gaussian vector,ωt andυt

Gaussian white noises and when the state and observation
dynamics are linear, the conditional probability density func-
tion p (xt |Y ), is normally distributed with meanxN

t and co-
varianceP N

t , i.e.,p (xt |Y ) ∼N
(
xN

t ,P N
t

)
. The conditional

mean of this Gaussian pdf is equivalent to the estimatexN
t of

the statext given theN observations at each of them sites.
The covariance (also called “dispersion”) matrixP N

t quan-
tifies the uncertainty of the state estimate given the sameN

observations. In our specific case there is no need to esti-
mate the uncertainty associated with the state-space model
parameters because they are not of hydrological interest. If,
however, one would need to know more about the uncertainty
of state-space model parameters one could consider them as
part of the state vector. Alternatively, one could use Markov
Chain Monte Carlo simulations (Wang, 2001). Note thatxt

without any superscript refers to actual, unobserved values
while superscripted variables such asxN

t refer to simulated
or estimated values;yt always refers to actual observations.

2.2 Parameter estimation

In general, some or all of the system parameters2={F, H,
Q, R, µ0, 60} are not known and would have to be estimated
from the observations. This is a system identification prob-
lem and, in the Gaussian framework under consideration, the
parameter estimation can be undertaken by the method of
maximum likelihood. The maximum likelihood estimate of
2 givenX=(x0, x1, x2, . . . ,xN ) andY=(y0, y1, y2, . . . ,yN )
is obtained by maximizing the joint log-likelihood ofX, Y,
and 2 with respect to2. This log-likelihood function is
given as (Shumway and Stoffer, 1982):
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logLY (2) = logL (X, Y, 2)

=−
1

2



log |60| + (x0−µ0)
′ 6−1

0 (x0−µ0)

+N log |Q| +

N∑
t=1

(xt−Fxt−1)
′ Q−1 (xt−Fxt−1)

+N log |R| +

N∑
t=1

(yt−Hxt )
′ R−1 (yt − Hxt )


(2)

When there are no constraints placed on the structure of the
system matricesF, H, Q, andR, the estimates of the compo-
nents of2 are (Digalakis et al., 1993; Xu and Wikle, 2004):

∧

F = A4A
−1
3 (3a)

∧

H = A6A
−1
1 (3b)

∧

Q = A2−A4A
−1
3 A

′

4 (3c)

R̂ = A5 − A6A
−1
1 A′

6 (3d)

µ0 = x0 (3e)

60=P 0 (3f)

Where:

A1 =
1

N + 1

N∑
t=0

xtx
′
t (4a)

A2 =
1

N

N∑
t=1

xtx
′
t (4b)

A3 =
1

N

N∑
t=1

xt−1x
′
t−1 (4c)

A4 =
1

N

N∑
t=1

xtx
′
t−1 (4d)

A5 =
1

N + 1

N∑
t=0

yty
′
t (4e)

A6 =
1

N + 1

N∑
t=0

ytx
′

t (4f)

are known as the sufficient statistics.

2.3 The E-M algorithm for parameter estimation

In the state-space formulation of interest, the set of state vec-
tors X (N×n) are not observed directly and not available
a priori for the computation of the sufficient statistics and
hence the parameter estimates. In addition some of the ob-
servations in the setY (N×m) may be missing. In these
circumstances, the Expectation-Maximisation or EM algo-
rithm (Dempster et al., 1977) has been found to be a powerful
tool for the maximum likelihood estimation of the system pa-
rameters (Shumway and Stoffer, 1982; Digalkis et al., 1993;
Ghahramani and Hinton, 1996; Bilmes, 1998; Xu and Wikle,
2004).

The EM algorithm is designed for parameter estimation
of incomplete or missing data problems by the method of
maximum likelihood (Dempster et al., 1997). By treating
the state vector as missing observations, the problem is now
the same as a problem with incomplete data, which justifies
the use of the EM algorithm. Thus, both the recursions for
the computations of the state vector, such as by the Kalman
filter used here, and the estimation of the state-space model
parameters can be undertaken concurrently – offline compu-
tations of the parameters is not necessary. These state-space
model parameters are not hydrologically meaningful; they
describe the evolution of the state vector. The EM procedure
involves computing the time-invariant state-space model pa-
rameter set2 and then the state vector, for all time steps
(batch mode), over and over again in a series of iterations
until a set of convergence conditions is met. The computa-
tions for each iteration are carried out in two main steps, the
E-step and the M-step.

Consider the (r+1)th iteration when2(r) , the parameter
set at ther th iteration, is known and it is required to find
2(r+1) , the parameter set at the (r+1)th iteration. In the E-
step of the EM algorithm, the expected value of the complete-
data log-likelihood log p(X,Y|2 ) with respect to the unob-
served and missing dataX, given the observationsY and the
current parameter estimates2(r), is evaluated. This expecta-
tion is defined as:

G
(
2(r+1)

)
= G

(
2(r+1), 2(r)

)
= E

[
logp(X, Y |2(r+1))|Y, 2(r)

]
= E[L(X, Y,2(r+1)

|Y , 2(r)
] (5)

The expectation is evaluated with the known parameter set
2(r) (the new parameter set2(r+1) is obtained by optimis-
ing G in the M step). The setY, excluding any missing ob-
servations, constitutes the incomplete data set, while the full
data set (X, Y) contains both observed and missing data.

In the M-step,2(r+1), the new estimate of2, is computed
by maximising the conditional expectation evaluated in the
E-step. That is,

2(r+1)
= argmax

2

G
(
2(r+1)

)
(6)
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The log-likelihood is guaranteed to increase with each itera-
tion and the algorithm is guaranteed to converge to at least a
local minimum (Dempster, 1977; Bilmes, 1998).

For the regular exponential distributions (e.g. the nor-
mal, binomial, poisson, gamma distributions), the E-step of
the EM algorithm consists of the computation of the con-
ditional expectations of the complete data sufficient statis-
tics, as given under Eq. (4) (Dempster, 1977). In the M-
step, these conditional expectations of the complete-data suf-
ficient statistics are then used instead of the (unknown) actual
complete-data sufficient statistics. Thus, the following quan-
tities are computed in the E-step and used to evaluate the
sufficient statistics in Eq. (4), (Digalakis, 1993):

E
{
xt |Y, 2(r)

}
= xN

t (7a)

E
{
xtx

′
t |Y, 2

(r)
}

= Pt
N

+ xt
N
(
xt

N
)′

(7b)

E
{
xtx

′
t−1|Y, 2(r)

}
= E

{(
xt−xt

N
) (

xt−1−xt−1
N
)′

|Y

}
+xt

N
(
xt−1

N
)′

= P N
t,t−1 + xt

N
(
xt−1

N
)′

(7c)

E
{
ytxt

′
|Y , 2(r)

}
= ytE

{
xt

′
|Y ,2(r)

}
= yt

(
xt

N
)′

(7d)

E
{
ytyt

′
|Y , 2(r)

}
= |ytyt

′, (no missing values inY ) (7e)

2.4 Kalman smoother for the computation of the con-
ditional expectations of the complete-data sufficient
statistics

As it turns out, all expectations in Eqs. (7a–d) above at
iteration r+1 can be computed for allt=1, 2, . . . , N

from the fixed interval Kalman smoother, also known as
Rauch-Tung-Striebel or RTS smoother (Haykin, 2001),
using the parameter estimates obtained at iterationr. The
smoother consists of a forward and a backward pass, given
as (Haykin, 2001; Xu and Wikle, 2004):

Filter equation – Forward pass (t=1, 2, . . . , N)

a. Prediction: xt−1
t =Fxt−1

t−1 (8a)
P t−1

t =FP t−1
t−1F

′
+Q (8b)

with x0
0=µ0 andP 0

0=60 (8c)

b. Update (Filter): et=yt−Hxt−1
t (9a)

6et=HP t−1
t H ′

+R (9b)
K t=P t−1

t H ′6−1
et (9c)

xt
t=xt−1

t +K tet (9d)
P t

t=P t−1
t − K tHP t−1

t (9e)

Smoothing – Backward pass (t=N, N-1, . . . ,1)

xN
N =xt

t , P N
N=P t

t , t=N only (10a)

J t−1=P t−1
t−1F

′

(
P t−1

t

)−1
(10b)

xt−1
N

=xt−1
t−1+J t−1

(
xt

N
−xt

t−1
)

(10c)

P N
t−1=P t−1

t−1+J t−1

(
P N

t −P t−1
t

)
J

′

t−1 (10d)

Smoothed lag-one covariance (t=N, N-1, . . . , 2):

P N
N,N−1= (I−KNH ) FP N−1

N−1, t=N only (10e)

P N
t−1,t−1=P t−1

t−1J t−2+J t−1

(
P N

t,t−1−FP t−1
t−1

)
J

′

t−2 (10f)

In the above equations,xt−1
t , xt

t , x
N
t and P t−1

t , P t
t , P

N
t

are the predicted, filtered (updated) and smoothed values
respectively, of the state vectorxt and its covariancePt .
The values of interest are the smoothed values,xN

t andP N
t ,

which are inserted in the right-hand side of Eqs. (7a–e) to
calculate the expected values needed for the M-step. The
log-likelihood function can also be conveniently computed
as a by-product of the Kalman filter as follows:

logLY (2) = −
1
2

{
N∑

t=1

log |6et | +

N∑
t=1

e′
t6

−1
et et

}
(11)

whereet and6et , the innovation vector and innovation co-
variance matrix, respectively, are computed fort=1, 2, . . . ,
N as in Eqs. (9a) and (9b).

The EM algorithm for the maximum likelihood estimation
of the linear time invariant dynamic system represented in
Eq. (1) can now be summarised as follows:

2.4.1 E-step at iteration r+1

(i) Use the parameter set2(r)={F(r), H(r), Q(r), R(r),
µ0

(r), 60
(r)

} obtained from the previous iteration,r, and
the Kalman smoother presented in Eqs. (8–10) to compute
the statistics in Eq. (7). Also compute the log-likelihood,
LY (2(r+1)) using Eq. (11).
(ii) Use the statistics computed in (i) to compute the condi-
tional expectations of the sufficient statistics in Eq. (4).

2.4.2 M-step at iteration r+1

Re-estimate (update) the parameter set as2(r+1)={F(r+1),
H(r+1), Q(r+1), R(r+1), µ0

(r+1), 60
(r+1)

} using the relation-
ships in Eq. (3), with the conditional expectations of the suf-
ficient statistics calculated under E-ii in Eqs. (3a–d),x0 in
(3e), andP0 in (3e).

2.4.3 Convergence

Test for the convergence of either the parameters or the log-
likelihood, i.e., perform one of the following tests:∥∥∥2(r+1)

− 2(r)
∥∥∥ < εθ (12a)

Hydrology and Earth System Sciences, 9, 209–224, 2005 www.copernicus.org/EGU/hess/hess/9/209/
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Figure 3a. 1964 Daily Hydrographs for Lawra, Bui and Bamboi on the Black Volta River. Fig. 3a. 1964 Daily Hydrographs for Lawra, Bui and Bamboi on
the Black Volta River.

∥∥∥logLY

(
2(r+1)

)
− logLY

(
2(r)

)∥∥∥ < εL (12b)

where we use the Euclidean norm andεθ andεL are suffi-
ciently small positive numbers.

If the test succeeds, the iterations are stopped and2(r+1)

is retained as the final set of estimates of the system parame-
ters, otherwise the iterations continue. Xu and Wikle (2004)
prefer the use of the parameter values as the test criterion
(Eq. 12a) to the use of the log-likelihood (Eq. 12b) as the
log-likelihood can be unstable for spatio-temporal problems
due to the high spatial correlations in the innovations as a
result of processes at adjacent spatial locations being often
very similar.

The “discrete spatio-temporal dynamic modelling frame-
work” in its general form now stands. In the following, it is
shown how the estimation of missing observations can read-
ily be included in this framework. Before the EM algorithm
is applied, it will be generalized to allow for inclusion of
parameter constraints and knowledge of the structure of the
physical processes (Xu and Wikle, 2004).
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Figure 3b. Measured and Simulated Daily Discharge for Bui on the Black Volta River (Black 
Volta Basin) - State Space Model on only Bui Discharge (1964). 

Fig. 3b. Measured and Simulated Daily Discharge for Bui on the
Black Volta River (Black Volta Basin) – State Space Model on only
Bui Discharge (1964).

3 Missing observations

If there are missing observations, thenyt andH in the update
equations of the forward pass of the Kalman filter would have
to be modified as follows:
(i) Replace all missing values inyt in Eq. (9a) with zeroes.
(ii) Replace entries in the corresponding rows inH in Eq. (9a)
with zeroes.

In addition the conditional expectations given in Eq. (7)
would have to be modified as follows (Digalakis et al.,
1993):

E
{
yt |Y , 2(r)

}
=

{
yt , if observed
H (m)E

{
xt |Y , 2(r)

}
, if missing

}
(13a)

E
{
yty

′
t |Y , 2(r)

}
=

{
yty

′
t , if observed

R(m)
+H (m)E

{
xtx

′
t |Y , 2(r)

} (
H (m)

)
′, if missing

}
(13b)

E
{
ytx

′
t |Y , 2(r)

}
=

{
ytE

{
xt |Y ,2(r)

}
, if observed

H (m)E
{
xtx

′
t |Y , 2(r)

}
, if missing

}
(13c)

whereH(m) andR(m) are theH andR matrices, respectively,
corresponding to the missing values.
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Figure 3c. Measured and Simulated Daily Discharge for Bui on the Black Volta River (Black 
Volta Basin) - State Space Model on 1964 Bui, Lawra and Bamboi Discharges. 

Fig. 3c. Measured and Simulated Daily Discharge for Bui on the
Black Volta River (Black Volta Basin) – State Space Model on 1964
Bui, Lawra and Bamboi Discharges.

4 System matrices parameterisation

Equation (3) is used in the M-step to update the parameter
values when these parameters are not constrained or param-
eterised in any way. The parameters thus obtained are the
maximum likelihood estimates. To avoid identifiability prob-
lems, some or all of the system matrices may be constrained
or parameterised directly. In such cases, the parameters are
no longer maximum likelihood estimates. However, the pa-
rameterisation can be undertaken in such a way as to still
result in an increase in the log likelihood at each iteration
and lead to a convergence of the parameters. The algorithm
is then called the General EM (GEM) (Xu and Wikle, 2004).
Most often,Q is constrained to a diagonal matrix whileR is
modelled asR=σ 2Im, whereIm is anm×m identity matrix.
The process matrixF can also be parameterised if its form
and structure are known whileH may be specified a priori
as a design matrix and would no longer be updated in the
M-step.

In GEM, the (r+1)th update formula for the general un-
constrainedQ, whetherF is parameterised or not, is given as  28
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Figure 3d. Measured and Simulated Daily Discharge for Bui on the Black Volta River (Black 
Volta Basin) - State Space Model on 1964 Bui and  Bamboi Discharges. 

Fig. 3d. Measured and Simulated Daily Discharge for Bui on the
Black Volta River (Black Volta Basin) – State Space Model on 1964
Bui and Bamboi Discharges.

(Xu and Wikle, 2004):

Q(r+1)
=

1

N
A, where

A =

(
A2 − A4F

′

− FA4 + FA3F
′
)

(14a)

For the case whenF is not parameterised and is estimated as
in relation (3a), Eq. (14a) reduces to Eq. (3c). For a diagonal
Q matrix, its M-step update is:

diag
(
Q(r+1)

)
=

1

N
diag(A) (14b)

where diag(A) is the diagonal vector ofA.
WhenR is parameterised asR=σ 2Im, σ 2 is updated in the

M-step as follows:

σ 2(r+1)
=

1

Nm

N∑
t=1

tr

{(
yt − HxN

t

) (
yt − HxN

t

)′

+ HP N
t H ′

}
(14c)

The relations in Eq. (14) ensure the log likelihood increases
monotonically even though the final parameter estimates
would not be maximum likelihood estimates.
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Figure 3e. Measured and Simulated Daily Hydrographs for Bui on the Black Volta River 
(Black Volta Basin) - Linear Regression on 1964 Bamboi and Non-missing Bui Daily 
Discharges 

Fig. 3e.Measured and Simulated Daily Hydrographs for Bui on the
Black Volta River (Black Volta Basin) – Linear Regression on 1964
Bamboi and Non-missing Bui Daily Discharges.
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Figure 3f. Measured and Simulated Daily Hydrographs for Lawra on the Black Volta 
River (Black Volta Basin) - State Space Model on only Lawra Daily Discharge - (Missing 
Data Pattern 1). 

Fig. 3f. Measured and Simulated Daily Hydrographs for Lawra on
the Black Volta River (Black Volta Basin) – State Space Model on
only Lawra Daily Discharge – (Missing Data Pattern 1).
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Figure 3g. Measured and Simulated Daily Hydrographs for Lawra on the Black Volta 
River (Black Volta Basin) - State Space Model on Lawra and Bamboi Daily Discharges 
(Missing Data Pattern 1). 

Fig. 3g. Measured and Simulated Daily Hydrographs for Lawra on
the Black Volta River (Black Volta Basin) – State Space Model on
Lawra and Bamboi Daily Discharges (Missing Data Pattern 1).
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Figure 3h. Measured and Simulated Daily Hydrographs for Lawra on the Black Volta 
River (Black Volta Basin) - Linear Regression on 1964 Bamboi and Non-missing Lawra 
Daily Discharges - (Missing Data Pattern 1). 

Fig. 3h. Measured and Simulated Daily Hydrographs for Lawra on
the Black Volta River (Black Volta Basin) – Linear Regression on
1964 Bamboi and Non-missing Lawra Daily Discharges – (Missing
Data Pattern 1).
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Figure 3i. Measured and Simulated Daily Hydrographs for Lawra on the Black Volta 
River (Black Volta Basin) - State Space Model on only Lawra Daily Discharge - (Missing 
Data Pattern 2). 

Fig. 3i. Measured and Simulated Daily Hydrographs for Lawra on
the Black Volta River (Black Volta Basin) - State Space Model on
only Lawra Daily Discharge – (Missing Data Pattern 2).
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Figure 3j. Measured and Simulated Daily Hydrographs for Lawra on the Black Volta 
River (Black Volta Basin) - State Space Model on Lawra and Bamboi Daily Discharges 
(Missing Data Pattern 2). 

 

Fig. 3j. Measured and Simulated Daily Hydrographs for Lawra on
the Black Volta River (Black Volta Basin) – State Space Model on
Lawra and Bamboi Daily Discharges (Missing Data Pattern 2).

5 Application of the modeling framework

The methodology developed here was designed to enable the
estimation of short gaps of a few days to one month in the

 35

 

Figure 3k. Measured and Simulated Daily Hydrographs for Lawra on the Black Volta 
River (Black Volta Basin) - Linear Regression on 1964 Bamboi and Non-missing Lawra 
Daily Discharges - (Missing Data Pattern 2). 

Fig. 3k. Measured and Simulated Daily Hydrographs for Lawra on
the Black Volta River (Black Volta Basin) – Linear Regression on
1964 Bamboi and Non-missing Lawra Daily Discharges – (Missing
Data Pattern 2).

annual daily runoff series (temporal) at a given gauging sta-
tion using the available observed runoff series of the same
period measured at the station and at one or more other sta-
tions (spatial) in the same main sub-basin. Thus the missing
runoff data at a station in the Black Volta basin would be es-
timated using its available runoff data and those from other
stations in the same main sub-basin for the year. The lengths
of missing data considered in the study would be comparable
to the typical real gaps shown in the hydrograph in Fig. 2.

Thus Eq. (1) was used to model the runoff process both
spatially, with discrete locations at the gauging stations, and
temporally, with annual daily time series of runoff at the
stations. Catchment wetness is an appropriate state of the
hydrological system but cannot be handled directly in this
study. However, catchment runoff has been found to be
a very good surrogate for catchment wetness (Young and
Beven, 1994; Young, 2001) and so in this study, the state
vector,xt , represents the unobserved actual catchment runoff
(acting as surrogate for catchment wetness) andyt is the vec-
tor with measured runoff at them gauging stations at sam-
pling time t . Bothxt andyt are taken asm×1 vectors of ac-
tual catchment and measured runoff series of length N≤366,
i.e.,xt andyt occur at the same locations. The dimensional-
ity of the system state used here is low so that parameterisa-
tion of the system matrices should be unnecessary. Nonethe-
less, parameterisation of selected matrices may enhance the
stability of the simulations and speed up model convergence.
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Figure 4a. 1994 Daily Hydrographs for Bui and Bamboi on the Black Volta River. 
Fig. 4a. 1994 Daily Hydrographs for Bui and Bamboi on the Black
Volta River.

In this study, the design matrixH =Im, the process matrix
F and error covariance matrixQ are unconstrained. How-
ever,R had to be constrained toR=σ 2Im, because the uncon-
strainedR caused stability problems and convergence was
not achieved in the simulations with unconstrainedR. It was
noted that whenQ was constrained as well,Q=diag(A), the
iterations oscillated much before settling convergence than
when Q was unconstrained. At least one of the stations
would have missing riverflow observations, the estimation of
which is the main task at hand. Only gaps of a few days to
a maximum of one month were considered. As covergence
criterion,

∥∥2(r+1)
−2(r)

∥∥<0.001 was adopted. It should be
mentioned that the results are relatively sensitive to the initial
values used.

The model was applied to daily time series of river-
flows of about one year measured at the stations Lawra
(Black Volta, 2◦55′ W; 10◦38′ N), Bui (Black Volta, 2◦14′ W;
8◦17′ N), Bamboi (Black Volta, 1◦54′ W; 8◦15′ N), Saboba
(Oti, 0◦24′ E; 9◦45′ N), and Sabari (Oti, 0◦12′ E; 9◦17′ N),
indicated in Fig. 1. By blacking out some of the observed
data at a target gauging station, a maximum of 30 consecutive
days of missing data in selected periods of the year were ar- 37
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Figure 4b. Measured and Simulated Daily Discharge for Bui on the Black Volta River (Black 
Volta Basin) - State Space Model on only Bui Discharge (1994). 

Fig. 4b. Measured and Simulated Daily Discharge for Bui on the
Black Volta River (Black Volta Basin) – State Space Model on only
Bui Discharge (1994).

tificially created in the flow series of the target station. Three
predictions of the missing data were made and compared by
running the model with (i) the remaining samples of the tar-
get station as observed series (ii) the target station’s series
and the series from the rest of the stations in the same main
sub-basin and (iii) the target station’s series and that from
only one other station in the same main sub-basin. Reliable
daily flows for at least two stations for a full year could be
obtained only for the main sub-basins of the Black Volta and
Oti. The EM algorithm as described earlier not only provides
estimates of the parameters but also those of the missing ob-
servations and state variables. It was used here to obtain es-
timates of the artificially created missing riverflow observa-
tions of the target stations.

In addition, linear regressions for the non-missing flows
at each target station on the other stations were established.
The results of the regression were subsequently used as sim-
ple models to predict the missing flows. We used these
regression-based models in order to evaluate the efficacy of
the more elaborate spatio-temporal framework.
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Figure 4c. Measured and Simulated Daily Discharge for Bui on the Black Volta River (Black 
Volta Basin) - State Space Model on 1994 Bui and Bamboi Discharges. 

Fig. 4c. Measured and Simulated Daily Discharge for Bui on the
Black Volta River (Black Volta Basin) – State Space Model on 1994
Bui and Bamboi Discharges.

The performance of the models was evaluated in each case
by the following Nash-Sutcliffe Efficiency (Nash and Sut-
cliffe, 1970) criterion:

NSE= 100

(
1 −

σ 2
e

σ 2
y

)
(15)

whereσ 2
e is the variance of the residuals andσ 2

y the variance
of the measured runoff at the target station.

6 Results and discussion

Figures 3a, 4a, and 5a are the observed runoff series used in
the modelling exercise. They show varying degrees of spatial
correlation between the individual series in a plot. Figure 3a
shows, for example, that there is a high correlation between
the Bui and Bamboi flows but not much correlation between
the Lawra series and the others. The spatial correlation be-
tween the two series in Fig. 5a is not very good but not too
poor either. As in Fig. 3a, Fig. 4b shows very good spatial
correlation between the two series plotted. The high corre-
lation or lack of it in any set of runoff series could result in

 39

 
Figure 4d. Measured and Simulated Daily Hydrographs for Bui on the Black Volta River 
(Black Volta Basin) - Linear Regression on 1994 Bamboi and Non-missing Bui Daily 
Discharges 

Fig. 4d. Measured and Simulated Daily Hydrographs for Bui on the
Black Volta River (Black Volta Basin) – Linear Regression on 1994
Bamboi and Non-missing Bui Daily Discharges.

good or poor predictions of missing values in one series with
the others as predictors. However, since in the framework
used here the temporal correlation of the discharge data at
the target station is also made use of (as opposed to the case
of simple spatial regressions when this temporal information
is discarded after fitting the regression), this framework could
still produce good predictions where spatial correlations are
poor.

Predicted missing values for target station Bui in the Black
Volta Basin are presented in Figs. 3b, c and d for the three
cases (i), (ii) and (iii) above, for the year 1964. The standard
errors of the estimates for each case are also shown in the
respective plots (the bottom plots). These errors are small
where observations are available and larger where they are
missing, as expected. The “hills” and “valleys” in the error
plots indicate clearly the ranges of the missing and observed
flows. Figures 3b and c and the relevant NSE values in Ta-
ble 1 show that the use of the series from both Lawra and
Bamboi, together with the remaining observations from Bui,
provides better predictions of the missing values of Bui and
with less uncertainty than using the observed series of Bui
alone. The spatial interpolation obtained from the model is
therefore adequate in this case. Figure 3d and Table 1 show
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Table 1. NSEs for the various tests andR2 values for the linear regressions.

Test Series NSE (%)

1964 Flows in the Black Volta
State-space on only target station, Bui 95.0
State-space on Bui, Lawra and Bamboi 99.0
State-space on Bui and Bamboi only 98.6
Linear Regression on Bamboi and non-missing Bui discharges (R2=0.996) 98.1

Missing Data Pattern 1 for Lawra
State-space on only, Lawra 93.9
State-space on Lawra and Bamboi 97.5
Linear Regression on Bamboi and non-missing Lawra discharges (R2=0.96) 86.3

Missing Data Pattern 2 for Lawra
State-space on only Lawra 97.0
State-space on Lawra and Bamboi 98.3
Linear Regression on Bamboi and non-missing Lawra discharges (R2=0.94) 89.0

1994 Flows in the Black Volta
Only target station, Bui 93.5
Bui and Bamboi 97.6
Linear Regression on Bamboi and non-missing Bui discharges (R2=0.97) 96.0

1976 Flows in the Oti
Only target station, Sabari 61.6
Sabari and Saboba 91.4
Linear Regression on Saboba and non-missing Sabari discharges (R2=0.96) 89.0

that the use of Bamboi’s series without that of Lawra has not
reduced the quality of the predictions significantly, caused
by the fact that the spatial correlation between the flows at
Bui and at Lawra is low, as can be seen from the hydro-
graphs in Fig. 3a. Figure 3e is a plot of the observed and
predicted hydrographs at Bui from a linear regression of the
non-missing discharges at Bui on the corresponding values
at Bamboi. The figure and theR2 from the regression shown
in Table 1 show the very good spatial correlation between
the Bui and Bamboi discharges. The NSE values in the Ta-
ble also show that the quality of predictions from the linear
regression and the state-space formulations are similar and
suggest, it would appear, that the use of the spatio-temporal
framework is unnecessary.

However, Figs. 3f–k, portray a different picture and illus-
trate the main point of the analysis undertaken in this study.
The figures show observed and predicted hydrographs at
Lawra using predictions from non-missing discharges from
Lawra only (Figs. 3f and i), spatio-temporal predictions with
both Bamboi and non-missing Lawra discharges (Figs. 3g
and j). Figures 3h and k show the prediction results for miss-
ing Lawra discharges for two different missing data patterns
based on corresponding Bamboi discharges using the linear
regression between Lawra and Bamboi. As shown by the

relevant NSE values in Table 1, in both cases of missing data
patterns, predictions from the Lawra only non-missing dis-
charges and those from the spatio-temporal model are much
better than predictions from the spatial regressions of Lawra
on Bamboi discharges. In these cases, the spatio-temporal
model has made use of the remaining discharges for Lawra,
values that still have high enough information content as
to produce very good predictions with the Lawra-only non-
missing discharges. The Lawra-only predictions in the two
missing-data patterns show also that the information content
of the remaining flow series for Lawra in pattern 2 is better
than for pattern 1 (compare Figs. 3f and i and the NSE values
in Table 1) and this also shows in the spatio-temporal model
predictions.

Thus, the spatio-temporal model behaves just as its name
implies – as both a spatial and temporal interpolator – shift-
ing more to spatial interpolation when the correlation in this
dimension is very good and to temporal interpolation when
correlation shifts substantially to this dimension. The critical
point to note is that in real situations, the full series for the
target stations would not be available so whether good spa-
tial correlations between the flows at the target and other sta-
tions exist or not would be difficult to ascertain visually. Val-
ues ofR2 from linear regression analysis of the non-missing

www.copernicus.org/EGU/hess/hess/9/209/ Hydrology and Earth System Sciences, 9, 209–224, 2005



222 B. A. Amisigo and N. C. van de Giesen: State-space EM algorithm to patch gaps in flow series

 40

 

0 50 100 150 200 250 300 350 400
0

500

1000

1500

M
ea

n 
D

is
ch

ar
ge

 (
m

3 /s
)

Days from March 1, 1976

Saboba
Sabari

 

Figure 5a. 1976 Daily Hydrographs for Saboba and Sabari on the Oti River. 
Fig. 5a. 1976 Daily Hydrographs for Saboba and Sabari on the Oti
River.

discharges at the target stations and the corresponding dis-
charges at the other stations, for example, would most likely
be relied upon in judging the existence of good spatial corre-
lations. In that case, theR2 values in Table 1 for the case of
Lawra could be very misleading. These values, of more than
0.9, suggest strong spatial correlation between the Lawra and
Bamboi discharges and so would discourage the use of the
spatio-temporal model – a model that provides much better
predictions than the regressions!

Figures 4b and d show plots of predicted and observed
flows at Bui for the year 1994 for cases (i) and (iii), with
Fig. 4d showing plots from the linear regression of 1994
Bamboi and non-missing Bui discharges. These plots and
relevant NSE andR2 values in Table 1 show the good spatial
correlation between the Bui and Bamboi flows, the good in-
formation content of the non-missing Bui discharges and the
ability of the spatio-temporal model to exploit both informa-
tion types.

Predicted and observed 1976 flows for Sabari on the Oti
River are shown in the plots in Figs. 5b and c for cases (i)
and (iii) with the respective standard errors of the predictions
at the bottom of the plots. Figure 5d is the plot of observed
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Figure 5b. Measured and Simulated Daily Discharge for Sabari on the Oti River (Oti Basin) - 
State Space Model on only Sabari Discharge (1976). 

Fig. 5b. Measured and Simulated Daily Discharge for Sabari on the
Oti River (Oti Basin) – State Space Model on only Sabari Discharge
(1976).

and predicted Sabari hydrographs from the linear regression
of the non-missing Sabari discharges on the corresponding
Saboba discharges. Here too, theR2 of 0.96 of the linear re-
gression gives the impression of extremely good spatial cor-
relation between these discharge data – an impression shown
clearly to be misleading from the plots and the relevant NSE
values in Table 1. Therefore, an important strength of the
spatio-temporal model is its good use of the information con-
tained in both the spatial correlation between discharges at
different gauging stations and the temporal distribution of the
non-missing discharges of the target station.

The second potentially equal important advantage of the
used method over the use of simpler methods is the calcula-
tion of standard errors over the periods with missing data. As
shown above, goodness of fit of simple models is in our case
not a good measure for the error associated with the predic-
tion of missing values. Also in other applications of the pre-
sented methodology in hydrological data assimilation, this
provided insight in errors and error structure would be very
valuable.
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Figure 5c. Measured and Simulated Daily Hydrograph for Sabari on the Oti River (Oti Basin) 
- State Space Model on 1976 Sabari and Saboba Discharges. 

Fig. 5c. Measured and Simulated Daily Hydrograph for Sabari on
the Oti River (Oti Basin) – State Space Model on 1976 Sabari and
Saboba Discharges.

7 Conclusions

A spatio-temporal state space linear dynamic model was de-
veloped to fill short gaps in daily runoff series using other,
spatially correlated, daily series. Parameter estimation was
done using the EM algorithm. Application of the model in
the Volta Basin of West Africa shows that it is capable of pro-
viding good estimates of short gaps in river flows. The model
has two main strengths – its ability to make good use of both
spatial and temporal information in its predictions and also to
provide estimates of both the parameter and the missing val-
ues concurrently and without the need for separate calibra-
tion or training series. It is, therefore, very suitable for short
gaps in-filling in river basins such as the Volta where missing
flows in runoff series at many gauging stations abound.

The critical assumption in the spatio-temporal model is
that the catchment runoffs for all stations considered in a
model run are generated by the same process. The model
thus works well when one or both of the following condi-
tions are satisfied:

– There is good spatial correlation between the runoff se-
ries involved.
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Figure 5d. Measured and Simulated Daily Hydrographs for Sabari on the Oti River (Oti 
Basin) - Linear Regression on 1976 Saboba and Non-missing Sabari Daily Discharges. 

 

Fig. 5d. Measured and Simulated Daily Hydrographs for Sabari on
the Oti River (Oti Basin) – Linear Regression on 1976 Saboba and
Non-missing Sabari Daily Discharges.

– There is good temporal information in the remaining,
non-missing, values at the target station.

The results obtained in this study show this very clearly. The
presented method to fill data gaps should be seen as a rela-
tively simple application of the powerful combination of EM
and Kalman smoother. This combination allows us to esti-
mate states and parameters concurrently, using spatial and
temporal data. Further research will need to address some
of the simplifying assumptions made, specifically those con-
cerning linear updates and Gaussian error structures of the
underlying processes.
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