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Abstract

Resampling techniques such as the Bootstrap and the Jack-knife are generic methods for the estimation of uncertainties in statistics. When
applied in frequency analysis, resampling techniques can provide estimates of the uncertainties in both distribution parameters and quantile
estimates in circumstances in which confidence limits cannot be obtained theoretically. Test experiments using two different parameter
estimation methods on two types of distributions with different initial sample sizes and numbers of resamples has confirmed the utility of
such methods. However, care is necessary in evaluating the skewness of the resampled quantiles, especially with small initial sample sizes.
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Introduction

The increasing pressures of population growth are resulting
in urban encroachment into what were previously
acknowledged to be disaster-prone areas. The deltas of large
river basins are becoming a particular focus for such
development. The economic benefits to be gained from flood
protection works for such areas are substantial but their
computation depends upon the estimation of extreme floods,
a statistical procedure that is subject to considerable
uncertainties that deserve more than a cursory evaluation.

In general, the design event for a flood alleviation scheme
is estimated as a predetermined quantile drawn from a
frequency distribution that is chosen to represent the
behaviour of observed floods at the site of interest. The
standard error of such a quantile estimate may then be
employed to develop confidence limits that provide a
measure of uncertainty for the design flood (Kite, 1975),
which can be taken into account in the decision making.
The computation of the standard error of a quantile estimate
depends upon both the form of the distribution and the
method of parameter estimation. If a quantile can be
expressed as a linear function of the distribution parameters,

then its standard error is expressed easily as a function of
the variances and covariances of the estimated parameters.
More specifically, if the method of moments (MOM) is
applied to a two-parameter distribution, the variances of the
sample mean and standard deviation are required, along with
their covariance. For three parameter distributions, the
sampling variance of the skewness and its covariances with
the mean and standard deviation are also required. However,
quantiles do not in general depend linearly on the third
central moment. Approximations that ignore the variability
of the skewness are available but such simplifications can
lead to marked underestimation or overestimation of
confidence intervals dependent upon return period, as
exemplified by Bobée (1973) for the Pearson Type 111 (PE3)
distribution. Another approximation technique that allows
for the presence of the third parameter involves expanding
the expression for the quantile as a function of the estimated
parameters as a Taylor series about the population values,
discarding all terms above the second order on squaring
and taking expectations of the remaining terms. Jenkinson
(1969) applied this approach to the General Extreme Value
(GEV) distribution, with parameter estimation by the
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Maximum Likelihood Method (MLH), but the resultant
expression is not applicable for extreme quantiles and large
positive values of the shape parameter, which exhibit a
marked upper bound.

Further problems may be encountered with the application
of different methods of parameter estimation. For example,
MLH does not always provide satisfactory estimates of
parameters for certain three-parameter distributions in which
the density is positive only to the right hand side of a shifted
origin, the latter being one of the unknown parameters. The
Lognormal, Weibull and PE3 distributions all take this form.
In determining their parameters, the shift parameter tends
towards the smallest observation, the likelihood becomes
unbounded and the estimates of the other parameters become
inconsistent. Parameter estimation techniques that address
these difficulties specifically, such as the Maximum Product
of Spacings (MPS) method of Cheng and Amin (1983), can
clearly be used to advantage for such distributions.

In general, therefore, the estimation of the standard error
of a quantile from a predetermined frequency distribution
is not altogether straightforward. A limited number of
analytical expressions is available for both MOM and MLH
parameter estimation methods applied to the Normal and
Extreme Value Type | (EV1 or Gumbel) distributions (see
NERC, 1975, Section 1.4). Analytical relationships for the
PE3 distribution have been provided by Kaczmarek (1957)
and Bobée (1973) and information on the standard errors of
quantiles derived from a peaks-over-a-threshold model are
summarised in NERC (1975; Section 2.7.5; see also
Zucchini and Adamson, 1989). The possibilities for
estimating the standard errors of quantiles using alternative
approaches are therefore worthy of particular attention. One
such possibility is the application of resampling methods.

In this paper, the construction of confidence limits to
quantile estimates obtained from both two- and three-
parameter frequency distributions is evaluated by means of
Bootstrap resampling techniques. The EV1 (Gumbel)
distribution was adopted as an example of a typical two-
parameter distribution for which standard errors of quantile
estimates can be derived analytically. Different sizes of
samples were generated by Monte Carlo methods from an
EVI population and the parameters of those samples were
estimated using the MLH method. The analytical solution
for the standard error of the quantile estimates is then
compared with those obtained by application of the
Bootstrap, with particular attention being paid to the number
of resamples required for different initial sample sizes. The
exercise was then repeated with a three-parameter Weibull
distribution, for which, as noted above, the standard error
of the quantile estimates is difficult to determine by
analytical methods. These evaluations employed the MPS
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method of parameter estimation instead of MLH because
of the problems encountered with the latter for J-shaped
distributions, as remarked earlier. The paper concludes with
a discussion of the implications of the results for practical
applications of resampling methods in hydrology and water
resources engineering.

Resampling methods

Resampling methods are data-based simulation methods for
statistical inference. The Jack-knife was introduced in the
1950s as a computer-based method for estimating biases
and standard errors and the Bootstrap was originally
proposed in the late 1970s as an approach for the estimation
of standard errors (see Efron and Tibshirani, 1993, for further
background). In effect, resampling creates an ensemble of
data sets, each of which is replicated from the original
sample. Jack-knife algorithms generate the new samples by
deleting one (or more) specific data points. In contrast,
Bootstrap algorithms create the new data sets by sampling
with replacement, i.e. one or more data points may be absent,
and one or more may be repeated more than once in any
resampled data set. Therefore, given an original sample of

size N, the total number of possible Bootstrap resamplings

is [2N7Y This quantity increases rapidly with N, and soon

becomes’ infeasible. However, in practice, the number of
resamples, B, is generally selected according to an accuracy
or convergence criterion and the B resamples are a randomly
chosen sub-set of the total number of possible resamples.

Despite their considerable attraction in both avoiding
theoretical calculations and providing estimates of standard
errors however mathematically complicated the form of the
estimator, resampling techniques have attracted only limited
attention in hydrology and water resources engineering.
However, the Bootstrap has been applied by Zucchini and
Adamson (1988) and Tasker and Dunne (1997) to assess
the risks associated with reservoir operation. In addition,
Tung and Mays (1981), Potter and Lettenmaier (1990) and
Burn (2003) have applied Bootstrapping to regional flood
frequency analysis and Moss and Tasker (1991) have
employed the same technique for the design of hydrometric
networks. The Jack-knife has been used by Benjamini and
Harpaz (1986) to determine the statistical significance of
changes in runoff from areas subjected to cloud seeding
experiments. Applications of resampling in the analysis of
hydrological time series have been reported by several
authors, including Pereira et al. (1984), Oliveira et al.
(1988), Vogel and Shallcross (1996), Lall and Sharma (1996)
and Sharma et al. (1997).

As an illustration, consider the procedure for forming a
Bootstrap estimate of the standard error of a parameter



The construction of confidence intervals for frequency analysis using resampling techniques

estimate, §. Given a sample vector X = [xl, Xy yereens Xy ]'r ,
B independent samples, X;,X,....., X5, each consisting
of N values, can be drawn from the original sample with
replacement. For each resample, an estimate of the required
parameter, 9b , b=1,2,..,B, is computed. The standard error
of the parameter, SE(é), is then estimated by the standard
deviation of the B replications:
A~ B A A, 2 A B A
SE(9)=J5112(9; A Y (1)
- b=1

b=1

Given the standard error of the parameter, the a-level
confidence limits may be constructed by assuming that each
quantile is normally distributed and computing
6 + z,SE (é), where z_is the standardised normal deviate
corresponding to the confidence level o (the Gaussian
method). Alternatively, if a Gaussian approximation is not
supportable and the value of B is large enough, the
appropriate limiting values may be read from the list of the
B estimates of the quantile ranked in ascending order of
magnitude (the percentile method). A typical application in
which the Bootstrap percentile method was applied to
construct the confidence limits for quantiles of rainfall depth
has been described by Dunn (2001).

The Bootstrap percentile method as described above
represents a basic form of resampling. More refined
procedures for defining confidence limits, such as the
Bootstrap-t and the bias-corrected and accelerated (BC))
methods, are available, as exemplified by the discussions
of Efron and Tibshirani (1993; chapters 12—14) and Davison
and Hinkley (1997; chapter 5). However, each of these more
refined approaches may have its disadvantages, such as the
estimation of the acceleration parameter in the BC, method,
which were considered to add an extra level of complexity
in this preliminary investigation. The majority of results are,
therefore, presented only for the Bootstrap percentile
method.

In addition, the Bootstrap may be applied in two different
forms, involving either the original observations (often
referred to as the Bootstrap standard method) or the residuals
that remain after a model is fitted to the data. In terms of
frequency analysis, the model is the distribution that must
be fitted to the sample and the residuals are the differences
between the observations and the points on the fitted
distribution corresponding to the same standardised variates.
However, in resampling residuals, particular attention must
be paid to both their distributional properties and their
independence. For example, in Bootstrapping regression
models, the residuals are often assumed to be mutually
independent and normally distributed with zero expectation
(see, e.g. Freedman, 1981). If the residuals are serially
correlated, then the variance of the resampled distribution

parameters will be suppressed and the derived confidence
intervals will be too narrow. More detailed discussions of
this problem have been provided by Zwiers (1990) and
Wilks (1997). Preliminary investigation of the residuals from
fitted distributions showed that the larger values tend to
occur in the tails and that the residuals themselves were
invariably quite strongly dependent. Therefore, only the
results from the Bootstrap standard approach are reported
herein.

During the preliminary phase of this study, some attention

was also given to the Jack-knife. In Jack-knife resampling,
a statistic is recomputed over a set of sub-samples of a data
set X = {Xl, X, ---,XN} . In the ‘standard’ Jack-knife
delete-1 scheme, these sub-samples of X are of the form
X =%, %, -, X4, Xas v Xy ). In this way, N
resamples of X of size N-1 are created by leaving out
one observation at a time. Alternatively each resample X
can be seen as a selection of N —1 samples from X without
replacement.

For a statistic @ =0 (Xl, X500, XN) of the sample X
(with the N samples X, mutually independent and
identically distributed), the Jack-knife estimate 0 and
its standard error SE(O,) are defined by

éJack :ﬁ.z:‘:]_@Nfl()(l’ %) ”"Xn—l'XnJrl'”"XN) (2)
SEZ(éJack) :%'Z:ﬂ
A 2
(9Jack - ®N—1(X1' Xor o K X Xy )) 3)

The literature on the Jack-knife (e.g. Efron and Tibshirani,
1993; Shao and Tu, 1995) shows that the consistency of
estimates for the variance or standard error requires a
sufficient amount of smoothness of the statistic 8 as function
of the N samples X . In frequency analysis, such smoothness
will usually hold when the statistic(s) @ is (are) uncertain
parameters in a probability density function (PDF) f (-] 8).
It ‘merely” has to hold that f(:|8), and/or the associated
cumulative distribution function (CDF) F(:| &), depend
smoothly on 6. At the same time, the fitting method (such
as MLH, MPS, MOM, etc.) must lead to an estimate
0 =0, (%,%, -+ Xy) that is smooth with respect to all
the X .

In preliminary simulations (not reported here), the Jack-
knife delete-1 approach was indeed found to produce
satisfactory estimates for the mean and standard errors of
the parameters 6 of a PDF f (-] 8) . This result was verified
by comparing these Jack-knife estimates with either
analytical expressions (for those special cases where such
expressions are available), or the corresponding results using
a Bootstrap form of resampling. In fact, in many cases the
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Jack-knife estimates turned out to be quite accurate, even
for relatively small sample sizes as low as N = 30.

In frequency analysis, estimates and uncertainties of the
distribution’s parameters are not necessarily the main issue.
More important are the estimates and uncertainties of
quantiles, i.e. the levels X, associated to one or more
prescribed probabilities of non-exceedence P e (AO,l). For
a given CDF, F(:|0), and an estimate @ of the
distribution’s parameters 6, an estimate for a quantile X
can be computed as X, = F"™(P| 0) = FinV(P| Oy (%, %,

Xy )) In this way, the X, are estimated in a para-
meterised form using an analytical distribution fitted to the
sample X = {Xl, X5y oty XN}, rather than being derived
directly from the empirical distribution of the sample. For
the latter case, the quantile estimate is nof a smooth statistic
of the sample and, as a result, the standard Jack-knife may
produce highly inconsistent estimates for the standard error
and/or other measures describing the uncertainty of the
quantile estimate (Efron and Tibshirani, 1993; Shao and Tu,
1995). Since the estimate X, = F'™(P| §) for a quantile will
be more smooth than that based on the empirical distribution
of sample X, its Jack-knife estimate for the standard error
may perform better. This possibility was confirmed by
simulations that showed a good agreement between Jack-
knife and Bootstrap estimates of the quantiles X, and their
standard errors. This agreement was obtained for large
samples sizes, N >100 say and, even for large probabilities
of non-exceedence (i.e. P close to 1), only minor differences
were found. For small sample sizes, N <50 say, the
situation was different, however, with Jack-knife and
Bootstrap estimates of the quantiles X, and their standard
error agreeing well only if P was not larger than some value

N

between % and 77 For larger P, and especially when

P >% (where 37 can be seen as the empirical
probability of non-exceedence associated with the largest
data point of the sample X), large differences may occur.
These differences are typical with forms of the Bootstrap
and Jack-knife histograms of the ensemble of resampled
X, that are skewed. In this situation, the confidence interval
of a quantile X, will be also be skewed. Such skewed
confidence intervals cannot be derived from merely the
standard error of the quantile and should therefore be based
on a percentile method. For the Bootstrap, this approach is
feasible but not for the Jack-knife delete-1 because of the
inconsistency of its histogram (see e.g. Shao and Tu, 1995).

The inconsistency of Jack-knife estimates of non-smooth
statistics and/or histograms can be overcome using a more
generalised form of sub-sampling by leaving out d (d >1)
different observations at a time instead of 1, as considered
so far. The details of Jack-knife delete-d resampling can be
found in Efron and Tibshirani (1993) and Shao and Tu
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(1995). Those authors show that in this case consistent
standard errors and sampling histograms are obtained if and
only ifdand r = N —d diverge to infinity. This condition,
therefore, applies to large sample sizes. For limited sample
sizes, the suitability of the Jack-knife delete-d is, therefore,
doubtful for the construction of accurate skew confidence
intervals of quantiles.

The above considerations lead to the following
conclusions about the practical significance of the Jack-knife
method for the assessment of uncertainties in frequency
analysis. For large sample sizes (N > 100, say), a Jack-knife
form of resampling can be used and may serve as an
alternative to the Bootstrap. The estimates and confidence
intervals of the parameters & and/or quantiles
X, =F'"™(P| 8) of a distribution f(:|8) produced by
these methods appear to compare well. For N =100
confidence intervals are virtually symmetrical so that these
intervals can be based on the standard error and there is no
real necessity to rely on a Jack-knife histogram and apply
the percentile method. For small sample sizes (N <950, say),
a Jack-knife may still produce accurate estimates of the
parameters & and their standard errors. For the quantiles
Xo, this also holds as long as the probability of non-
exceedence is not too large. However, with small sample
sizes, confidence intervals for the estimates of the parameters
and quantiles are often quite skewed and cannot, therefore,
be derived solely from the standard error. A percentile
method based on the Jack-knife histogram should then be
applied. Moreover, because of the small sample size N ,
no large d and I =N —d can be used to guarantee the
accuracy of that histogram. In practical applications of
frequency analysis, large sample sizes are exceptional and
often the number of samples is less than 50. In practice,
therefore, a Jack-knife method tends to be less suited for
the assessment of uncertainties and in the remainder of this
paper this method will not be considered in further detail.

The distributions

The cumulative distribution function (CDF) of the EV1 (or
Gumbel) distribution may be written in the form

F(x]|®)= P=exp{—exp(—)(;#ﬂ; O=[ucl; o>0
4)

where Q are the scale and location parameters, s and m, of

the distribution of x. The quantiles, Q, of | are then a linear
function of the standardised variate

H=—In[-In(P)]; Pe<(01) (5)
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given by

Q=pu+Ho (6)

Given the linear form of Eqn. (6), the variance of the
estimated quantile, Q, can be written in terms of the
approximate variances and covariance of the estimated
location and scale parameters, /i and &, determined from
the sample of N observations, according to

VAR(Q)=VAR(@)+2H COV (2,6)+H?VAR(S)  (7)
Using MLH, the variances and covariance terms on the right-
hand side of Eqn. (7) may be obtained from the variance-
covariance matrix (NERC, 1975; Section 1.3), which is the
inverse of the Hessian of the minus log likelihood function
computed at x=pando =¢c according to

(VAR(/J) cov (u, O')J o2 © @y 7%(1—?)
COV(u,0) VAR(0) 72(1_” 32

o?(111 0.26 8
N 10.26 0.61 ®)

In this expression, y is Euler’s constant, 0.5772 .... Hence

se(é):W=\%J1.11+ 0.52H +061H? 4

The three-parameter distribution chosen for the numerical
experiments was the Weibull distribution. This distribution
may be regarded as a ‘reversed’ Extreme Value type III
(EV3) distribution. Its location parameter, o, is equal to
the sum of the EV3 location parameter and the ratio between
the EV3 scale and shape parameters; the scale parameter,
o, is the ratio between the EV3 scale and shape parameters;
and the shape parameter, a, is the inverse of the EV3 shape
parameter. The CDF of the Weibull distribution may be
written as

F(x|©)= le—exp{—(x_xoy}; X2 X, ;

o,a>0; O=[x,0,a] (10)

where Q are the location, scale and shape parameters, x,,
and o of the distribution of x. The quantiles, Q, of x are
then a non-linear function of the Weibull probability plotting
variate

=In[-In@-P)|; Pe(0,) (1n

given by
H
Q=X,+0.exp . (12)

so that the standard error of the estimated quantile cannot
be expressed explicitly as a function of the variances and
covariances of the three estimated parameters.

The fitting methods

For the purposes of this study, attention was concentrated
on the MLH and the MPS methods. MLH is based upon the
maximisation of the log likelihood function. Given a set of
N independent and identically distributed observations x,
described by a probability density function f{x |g), the
distribution parameters q are determined from the set of
equations

Iog{Zf(x |9)} (13)

The MPS method, as proposed by Cheng and Amin (1983)
and introduced independently by Ranneby (1984), is less
well known than MLH but has better general robustness
and identifiability features. The MPS method is related to
MLH but, in MPS, a form of log likelihood function is
optimised that is based on the spacings of the data points
after these have been sorted in ascending order. In brief,
given the ordered data points {X(l), X2y ~~',X(N)} of a
sample X= {Xl' % =Xy | the following function must be
maximised in MPS to find an estimate for the parameters
® of some distribution with probability density function
f (-|®), or the equivalent cumulative distribution function

F(|®):
H(®) = Iog(H::lan(@)) = 3"""log(D,(©)) (14)

In this expression, the one-step spacings D, (®) are defined
by:

D, (©) = ij f(£1©)dE= F(X, |©) -

n-1)

F(X(n—l) |®)
(15)

The ‘additional data points’ X and X, are prescribed
by Xy =~ and Xy = © so that F(x(0 |®) =0 and
F(Xn.p [©) =1.1f, for some n, the data points X,_;, and
X coincide, the spacing D, (®) is replaced by the
appropriate limit f (X, [®).

For an increasing size N of the sample
X :{Xl, X5, ~-~,XN}, all, or virtually all, increments
Xy — Xy Will converge gradually to zero so that
log(D,(®)) will be of  the form
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Iog( f (X | @)) + |Og(X(n) - X(H)) + higher order terms
in X = Xny) . Apart from these higher order terms and the
independence of |Og(X(n) - X(H)) on O, this shows that
|Og(Dn (@)) has the same asymptotic behaviour with
respect to ©® as Iog( f (X ®)) In this way, Cheng and
Amin (1983) demonstrated that MPS and MLH estimation
are asymptotically equal and have the same asymptotic
sufficiency, consistency, and efficiency properties.

The MPS method can be applied to the estimation of
parameters in any continuous univariate distribution.
Compared to other estimation techniques, however, MPS is
especially suited to cases in which one of the parameters is
an unknown location parameter or shifted origin, X,, in three
parameter distributions such as the GEV, Generalised Pareto,
Weibull, Lognormal, and Gamma or Pearson Type III
distributions. For such distributions with the shifted origin
as one of the unknown parameters, it is known that MLH
estimation often fails because the likelihood is unbounded,
and/or does not have a local maximum. In particular, this
will be the case when the distribution is J-shaped
(unbounded density near the shifted origin); this occurs for
the Weibull and Gamma distributions when the shape
parameter is less than unity. In this and other non-regular
cases, MPS will provide consistent estimators where MLH
or other techniques are bound to fail.

Apart from MPS, there are more general forms of
estimation methods based on spacings. Ghosh and Rao
Jammalamadaka (2001) consider a Generalised Spacings
Estimator (GSE) in which the estimate of the parameters is
defined as the argument @ that minimises the function

N+1

T(©):=) h(N-D (0)) (16)

The h(-) must be a strict convex function and some standard
choices that have been used in the context of goodness of
fit testing are h(X) = —log(X) (leading to the MPS method
as described above), h(x)=-x-log(x), h(x)=x?, or
h(x) :|X—]l. Ghosh and Rao Jammalamadaka (2001)
discuss consistency and asymptotic normality of these more
general spacings-based estimators and show that, within this
class, MPS has the smallest asymptotic variance and is
asymptotically equivalent to MLH when the latter exists.
On the other hand, in small to moderate sample sizes, the
simulation studies by those authors suggest that MPS may
not always be the best among the spacings estimators.

The numerical experiments

For both Gumbel and Weibull distributions, with parameters
fitted by both MLH and MPS methods, the Bootstrap
resampling algorithm was applied to four different sizes of
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sample (30, 100, 200 and 400 data points). All calculations
were carried out using a modified version of the EVA
computer program developed by WL | Delft Hydraulics for
the analysis of extreme values (van den Boogaard et al.,
1999). For both distributions, the data were generated by
Monte Carlo methods, care being taken to vary the seeds
for the sequences of random numbers to ensure
independence of successive samples. Scale and location
parameters of ¢ = 41.42 and p = 70.35, corresponding to
the values for a site in the English Midlands, selected at
random from the data in Volume IV of the UK Flood Studies
Report (NERC, 1975), were employed for the Gumbel
distribution. For the Weibull distributions, the location
parameter was set to zero and the scale parameter s to unity
but separate analyses were carried out for shape parameters
a of 0.75 and two (a Rayleigh distribution). In each case,
the confidence intervals obtained from the resampling were
constructed for 101 probabilities of non-exceedance, P,
ranging from 0.0001 and 0.9999 on a uniform grid of the
standardised variate, H of Equation (5) for the Gumbel, and
of'the plotting position variate, H of Eqn. (11) for the Weibull
distributions, using the percentile method to determine the
limits of the 95 per cent confidence intervals.

The Gumbel distribution

For any resampling algorithm, the number of resamples that
is drawn from the original set of observations is a particularly
important variable. With the Bootstrap, the number of
resamples should be sufficiently large for the values of the
estimated parameters to stabilise but not so large as to require
excessive computational resources. In these numerical
experiments, preliminary runs were undertaken in which,
for a given initial sample size, the number of Bootstrap
resamples, B, was increased in increments of 100 from 100
to 4000. The results obtained from applying both MLH and
MPS to estimate the location and scale parameters of the
Gumbel distribution showed that, with an initial sample size
of 30, the parameter estimates had stabilised after about 600
to 1000 resamples for both MLH and MPS. As the initial
sample size increases, the parameter estimates stabilise more
rapidly and MLH and MPS scale parameters were in closer
agreement. However, based upon the recommendations of
Davison and Hinkley (1997; chapter 2), unless otherwise
stated, the results for all further Bootstrapping work were
carried out using B=1000 resamples.

PARAMETER ESTIMATES

Table 1 presents estimates of the scale and location
parameters of the Gumbel distribution and their standard
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Table 1. Estimates of the scale and location parameters for the Gumbel distribution (Eqn. (4); population values £=70.35 and c=41.42
respectively) and their standard errors (in brackets) for 1000 Bootstrap resamples using the MLH method of parameter estimation with
four different sample sizes N. The standard errors for the estimates based on the ‘original sample’ are derived via (the inverse of) the
Hessian matrix of the minus log-likelihood function at the position where this function is minimal.

Location parameter Sample size N

30 100 200 400
Original sample 61.47 (9.19) 66.34 (4.50) 68.13 (3.13) 67.15 (2.15)
Bootstrap 62.04 (8.96) 66.50 (4.43) 68.20 (3.06) 67.19 (2.12)

Scale parameter o Sample size N

30 100 200 400
Original sample 47.83 (7.11) 42.78 (3.43) 42.01 (2.34) 40.80 (1.60)
Bootstrap 47.11 (6.35) 42.56 (3.20) 41 88 (2.15) 40.73 (1.53)

Table 2. Estimates of the scale and location parameters for the Gumbel distribution (Eqn. (4); population values =70.35 and o=41.42
respectively) and their standard errors (in brackets) for 1000 Bootstrap resamples using the MPS method of parameter estimation with
four different sample sizes N. The standard errors for the estimates based on the ‘original sample’ are derived via (the inverse of) the
Hessian matrix of the minus MPS-function at the position where this function is minimal.

Location parameter Sample size N

30 100 200 400
Original sample 60.84 (9.99) 66.17 (4.66) 68.01 (3.20) 67.09 (2.17)
Bootstrap 61.45 (8.80) 66.32 (4.41) 68.09 (3.05) 67.13 (2.12)

Scale parameter o Sample size N

30 100 200 400
Original sample 52.59 (8.03) 44.48 (3.60) 43.04 (2.40) 41.35 (1.62)
Bootstrap 51.42 (6.70) 44.12 (3.27) 42 83 (2.17) 40.80 (1.54)

errors using MLH for all resamples, 1000 Bootstrap
resamples and for four different initial sample sizes. The

given by Eqn. (7) and the 95 percent confidence intervals
may be set at +1.96 standard errors around the values

same information is shown in Table 2 but now for parameter
estimation by MPS. In these tables, the entries for the
standard errors of the parameters from the original sample
were computed from the inverse of the Hessian of the minus
log likelihood function for MLH or the function H(.) of Eqn.
(14) for MPS. These tables demonstrate that there is good
agreement between the parameter estimates obtained by
Bootstrapping and those of the original sample, even for
samples of size 30. The standard errors of the location
parameters are always larger than those of the scale
parameters and, as is to be expected, the values decrease
with increasing sample size. Apart from the absolute values
of the scale parameter estimates tending to be higher with
MPS than with MLH, there were only minor differences
associated with the method of parameter estimation.

CONFIDENCE INTERVALS

For the Gumbel distribution, the theoretical estimates of the
standard errors of the quantile estimates using MLH are

obtained from Eqn. (6). Using the Bootstrap resamples,
means and standard deviations of each of the 101 selected
quantile estimates were computed and confidence levels
calculated using the percentile method, as explained above.
The results for 1000 Bootstrap resamples of size 30 with
MLH parameter estimation are compared with the theoretical
quantiles in Fig. 1. In this case, the confidence intervals
obtained by the percentile method closely matched those
obtained using the Gaussian approximation. The frequency
distributions of the location and scale parameters for the
1000 resamples could, therefore, be expected to be close to
normal, as is confirmed visually by Fig. 2. Figure 1 shows
that, comparted to the Gaussian apprimation, the width of
the Bootstrap confidence band is slightly underestimated
for higher quantiles corresponding to probabilities of
exceedance greater than 0.998 and the lower confidence
limit is marginally too high for probabilities of exceedance
less than 0.1. The reduction in width of the confidence band
may be associated with the smaller Bootstrap estimate of
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(a)
140

120 +

Frequency
—
B (2] (0] o
o o o o
Il Il Il Il
T T T T

N
(=)
I
T

T T T T T T }D}D}E}
30 35 40 45 50 55 60 65 70 75 80 85 90 95

Location parameter

Frequency
=
o
o
Il
T

;E =DH A1 HIII ‘

25 30 35 40 45 50 55 60 65 70

Scale parameter

Fig. 2. Frequency distributions of the (a) location and (b) scale
parameters for 1000 resamples of size 30 from a Gumbel
distribution using the MLH method of parameter estimation.

242

the scale parameter of the EVI distribution evident in Table
1. This discrepancy reduces as the initial sample size
increases, so that, for an initial sample size of 100, the
computed and theoretical values were in close agreement.

The Weibull distribution

For the Weibull distribution, attention was confined to the
cases with shape parameters of 0.75 and two. The MPS
method of parameter estimation was employed and the
Bootstrap applied for three different initial sampling sizes
of 30, 100 and 400 using 1000 resamples. As noted above
in the section on Fitting Methods, the MPS method has been
shown by Cheng and Amin (1983) to provide consistent
parameter estimates for three-parameter distributions with
a shifted origin, such as the Weibull, in circumstances where
the MLH method is prone to failure. However, initial results
obtained from Bootstrapping samples from the Weibull
distribution revealed that, under certain conditions, MPS
may still fail to produce consistent estimates.

In their paper, Cheng and Amin (1983; example 2.2,
p. 397) demonstrate that the MLH method may lead to
inconsistent estimators when the true shape parameter a <
1. In this case, the MLH estimate for the location parameter
X,converges to the smallest data point X; and an
inconsistent estimate & = O is found for the shape parameter.
For the MPS method, those authors argue that, for any o >
0, consistent estimates will be obtained for the parameters.
However, further investigation has revealed that this
condition holds only when the multiplicity of the smallest
data point X, is unity. When the multiplicity of X; is m>1,
i.e. X =X,=--=X, while X, >X, the true shape
parameter o must be greater than l—% to obtain regular
estimates. The arguments leading to this result are
summarised separately in the Appendix.

For continuous distributions such as the Weibull
distribution of Eqn. (10), the probability will be virtually
zero that the multiplicity of the minimum X of a random
sample X = {Xl, X5y vt XN} is greater than 1. For an MPS
estimate of @, the regularity condition derived in the
Appendix then tends to be of more theoretical than practical
relevance. This is not the case, however, when resampling
techniques are applied to assess uncertainties for the
estimates for the parameters ® and the quantiles of the
distribution F (-|®) . In the case of a Bootstrap resampling
(arandom selection of N samples from X with replacement),
some fraction of the resamples X ®; 1<b<B ofX will
have a smallest data point X ® with a multiplicity larger
than 1. For a part of this fraction, inconsistent MPS-estimates
may then be found for ® . The theoretical treatment of such
resamples currently remains unclear. However, in the
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experiments with Bootstrap resamplings applied to the
Weibull distribution reported here, the strategy adopted was
to ignore (or re-do) resamples that led to inconsistent
estimates and the uncertainty measures (standard errors,
confidence intervals) were based on the subset of resamples
with regular estimates for the ® -parameters.

The experiments with the Weibull distribution showed that
the proportion of inconsistent estimates in a Bootstrap
ensemble increases with (i) a decreasing population value
of the shape parameter « (as can be expected from the
regularity condition o >1— % ; and (ii) a decreasing sample
size N. In fact, for a population value o = 0.75, this
proportion was found to be of the order of 23 per cent for N
=30 and about 11 per cent for N = 100. For the population
value o =2, however, the proportions were only 0.5 and 0
per cent respectively.

Figures 3 and 4 present the results obtained for the shape
parameters of 0.75 and 2 respectively. Each figure shows
both the sample distribution function (SDF), which is based
on MPS-estimates of the parameters for the original sample,
and the Bootstrap ensemble distribution function (EnDF)
that is obtained by averaging over all Bootstrap resamples,
obtained using 1000 resamples, along with the 95 per cent
confidence limits. For the purposes of discussion, the latter
were computed using both the percentile and the Gaussian
methods.

A particular feature of both plots is the marked spreading
out of the confidence limits as the plotting position variate
H increases from 1.5 (corresponding to a probability of non-
exceedence P=0.99, see Eqn. 11) to 2.22 (P=0.9999). The
limits computed using the Gaussian approximation show
little agreement with those obtained using the percentile
method. Indeed, for both shape factors, the Gaussian lower
confidence limits are seen to decrease as the plotting position
variate increases over 1.5. The reasons for this behaviour
may be found in the distributional properties of both the
quantiles for a given plotting position variate and the
resampled parameters of the parent distribution. For the
lower value of the shape parameter, Table 3 shows that,
although the distributions of the Bootstrap location
parameters are negatively skewed and those of the scale
parameters are moderately positive, the distributions of the
shape parameters are substantially positively skewed.
Consequently, the distributions of the Bootstrap quantiles
for probabilities of non-exceedance of 0.9, 0.99 and 0.999
are all positively skewed, with the skewness increasing as
the probability increases. When the shape parameter ¢ was
increased to 2, Table 4 shows that, for an initial sample size
of 30, the distribution of the Bootstrap location parameter
exhibits moderate negative skewness but the scale and shape
parameters have a moderate positive skewness. With the
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Fig. 3. Ordinates of the Bootstrap ensemble distribution function
(EnDF) and the 95 percent confidence limits for a Weibull
distribution having a shape parameter of 0.75, based on 1000
Bootstrap resamples from a sample of size 30 using both Gaussian
approximation and percentile methods, along with the sample
distribution function (SDF). LCL denotes the lower, and UCL the
upper confidence limit.
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Fig. 4. Ordinates of the Bootstrap ensemble distribution function
(EnDF) and the 95 percent confidence limits for a Weibull
distribution having a shape parameter of 2, based on 1000
Bootstrap resamples from a sample of size 30 using both Gaussian
approximation and percentile methods, along with the sample
distribution function (SDF). LCL denotes the lower, and UCL the
upper confidence limit.

exception of those for P = 0.9, the associated quantiles have
a positive skewness that again increases rapidly with the
probability of non-exceedance.

The dependence of results on the initial sample size is
well illustrated by comparing Figs. 3 and 4 with Figs. 5 and
6, which apply to samples of size 100. For initial sample
sizes of 100 and both values of the shape parameter, there
is now good agreement between the Bootstrap Gaussian
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Table 3. The skewness of the ensemble of resampled parameters, ® = ((7,0(, XO), and the skewness of the ensemble of quantiles,
Xp =F 71(P |®) for three different probabilities of non-exceedance for Weibull distributions with a shape parameter of ¢ =0.75
using the Bootstrap resampling method on three different sample sizes and the MPS method of parameter estimation.

Sample size  Skewness of distribution of parameters

Skewness of distribution of quantiles

Scale Shape Location P=0.9 P=0.99 P=0.999
30 0.487 4.638 -16.76 0.373 1.013 1.361
100 0.311 0.378 5.462 0.284 0.409 0.513
400 0.376 0.209 3.033 0.316 0.357 0.414

Table 4. The skewness of the ensemble of resampled parameters, ® = (0',0{, XO), and the skewness of the ensemble of quantiles,
Xp=F ’1(P | @) for three different probabilities of non-exceedance for Weibull distributions with a shape parameter of ¢ =2 using
the Bootstrap resampling method on three different sample sizes and the MPS method of parameter estimation.

Sample size  Skewness of distribution of parameters

Skewness of distribution of quantiles

Scale Shape Location P=0.9 P=0.99 P=0.999
30 0.448 0.518 -0.399 -0.106 0.485 0.980
100 0.051 0.906 0.230 0.062 0.055 0.110
400 0.029 0.322 0.260 0.166 0.127 0.139
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Fig. 5. Ordinates of the Bootstrap ensemble distribution function
(EnDF) and the 95 percent confidence limits for a Weibull
distribution having a shape parameter of 0.75, based on 1000
Bootstrap resamples from a sample of size 100 using both Gaussian
approximation and percentile methods, along with the sample
distribution function (SDF). LCL denotes the lower, and UCL the
upper confidence limit.

approximation and Bootstrap percentile confidence limits
as well as between the SDF and the EnDF. Further scrutiny
of Tables 3 and 4 reveals that, for both shape parameters,
the distributions of the Bootstrap location, scale and shape
parameters are close to symmetry for the value of 0.75 but
have a more obvious positive skewness for the shape
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Fig. 6. Ordinates of the Bootstrap ensemble distribution function
(EnDF) and the 95 percent confidence limits for a Weibull
distribution having a shape parameter of 2, based on 1000
Bootstrap resamples from a sample of size 100 using both Gaussian
approximation and percentile methods, along with the sample
distribution function (SDF). LCL denotes the lower, and UCL the
upper confidence limit

parameter at oo = 2. In the former case, the quantile
distributions are close to symmetry but become more
positively skewed as the probability increases. In the latter
case, the distributions are even closer to symmetry.

A further increase in the initial sample size to 400 was
found to improve the symmetry of the scale and shape
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parameter distributions for Bootstrap resamples, although
the location parameter had obvious positive skewness for a
=0.75 (see Tables 3 and 4). The resultant quantile
distributions are, therefore, reasonably symmetrical,
especially for a = 2.

A further point of interest in Figs. 3 and 4 is the lack of
agreement at higher standardised variates between the SDF
and the EnDF. This discrepancy arises from the nature of
the Bootstrap quantile estimates, which represent the
averages of an ensemble of probability plots. Apart from
the estimate of the mean, the ensemble can also be used to
derive its uncertainty, either in the form of a spread or some
(symmetrical or non-symmetrical) confidence interval.
However, this EnDF can be quite different from the SDF,
even if the Bootstrap parameter estimates agree closely with
those of the original sample. Such differences can be found,
in particular, where the quantiles are not a linear function
of'the distribution parameters, bearing in mind that the mean
of a non-linear function is not merely the function value at
the mean of the arguments. Equations (6) and (12) show
that the Gumbel quantiles depend linearly on the parameters
but the Weibull quantiles do not, most notably because of
the shape parameter, o. Therefore, differences between the
EnDF and the SDF may be expected for the Weibull
distribution, especially if the sample size is small. However,
when the sample size increases, these differences gradually
disappear, since the distributions of the parameters will
shrink to point distributions with increasing N.

Concluding remarks

When determining the confidence limits to a frequency
distribution by Bootstrapping, the Gaussian approach is
clearly vulnerable to the presence of skewness in the
resampled quantiles, which may lead to pronounced under-
or over-estimation depending upon the sign of the skewness.
Clearly, for a Gaussian approximation to deliver good
results, the skewness of the quantiles also needs to be close
to zero. In turn, the skewness of the quantiles was found to
depend upon the distributions of the resampled parameters
of the parent frequency distribution. Compared to the
Gumbel distribution, interactions for the Weibull distribution
are more complex owing to the non-linear dependency of
the quantiles on the parameters, thereby enhancing the
skewness of the former.

With regard to the initial sample size, the results obtained
for both the Gumbel and the Weibull distribution
demonstrate that Bootstrapping samples of size 100 presents
fewer problems in terms of resampled quantile distributions
than samples of size 30. Unfortunately, the latter are
generally more representative of the data sets generally

available for hydrological frequency analysis. Because of
the poor behaviour of the Gaussian appriximation for the
three-parameter distribution, the present analysis has been
unable to validate the Bootstrap confidence intervals for
sample sizes of 30: in other cases, the comparisons indicate
that the Bootstrap confidence intervals will be relaible. In
the exceptional case, the behaviour of the Bootstrap
confidence limits arises from the distributional properties
of the resampled quantiles and these have been shown to
relate to the distributional properties of the resampled
parameter values. These considerations suggest that the
Bootstrap can provide reasonable results in practice, subject
to critical evaluation. In such cases, the percentile method
is to be preferred to the Gaussian approach.

Cheng and Amin (1983) have shown that the MPS method
for estimating the parameters of a frequency distribution
has particular advantages over the MLH method in cases
involving an unknown location parameter. However,
application of MPS to Bootstrap resamples has been found
to be subject to a further condition relating to the multiplicity
of the ordered resamples. This condition on the true shape
parameter a is particularly important for small initial sample
sizes, again of the order of those encountered in hydrological
frequency analyses, and small values of the shape parameter;
if ignored, it may lead to inconsistent parameter estimates
and uncertainty measures.
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Appendix
The occurrence of inconsistent MPS estimates for the
parameters of a Weibull distribution

For an MPS estimate of the parameters (® in the CDF
F(-|®) or corresponding PDF f (-|®), the following function
must be maximised:

H(©) = log(F(x 9))
N

> 2 109(F(%,10) - F(x,,10)) +

log( 1-F(x, ©) )
If X, =X for some n, the term
|0g(F(Xn |®) - F(X,, |®)) must be replaced by the
appropriate limit Iog( f(x,19) ) which corresponds to the
formulation used in the MLH criterion. In this way, the MPS

function of Eqn.A.1 will have the following form when the
multiplicity of the first data point X is m>1:

H(®):=log(F(x |©)) + (m-1)-log(f(x |©)) +H™*(®)

(A.2)

The part H (™ (:) of the MPS function H (-) consists of

a superposition of terms log(F(x,|0) — F(x,,|®)) and/or

|Og( f(x,1©) ) for the sample points X with N> m. For

the Weibull distribution of Eqn.(10), the MPS-function of
Eqn.A.2 will then be of the form:

H(®):= Iog(l—exp(—ff )) +
(m-1)-{ log + (—1)-log(&r) - & | +
H ™ (@) 4

(A.1)
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The £, in this equation is defined by & = Xl%
To obtain a regular estimate for the parameters @ , the
maximum of H(®) should be found for a location
parameter X, that is strictly less than X, or equivalently
£&>0. For X, Txl and equivalently &40, the
combination H®(©):= Iog(l exp(—&7)) +
(m=-2)- (-1 -log(&”) will dominate all the other parts
of H(®) because ng‘H )(®)T © while all other terms
of H(®) (and in particular H™?(®)) remain bounded.
For £,10, Iog(l exp(-&f )) equals ¢ -1og(&;) plus aterm
that converges to zero. As aresult (m-o —m+1)-log(&")
is the dominant part of the MPS function when & 1 0. For
m-o —m+1 > 0, it will hold that 'glﬂg H(®) = - ith the
consequence that a maximum for th: H (®) is found for a
& >0 or, equivalently, an estimate for the location
parameter X, that is strictly less than the smallest sample
point X, . From the condition m.¢o —m+1 > 0, it follows
that & >1— % .

This result shows that only for m=1, i.e. a single multiplicity
of the smallest sample point X, will the MPS criterion
always give consistent estimates for the parameters ®. If
this multiplicity is greater than 1, then the condition must
be satisfied that the true shape parameter « is greater than
1--1 . Note that this regularity condition for MPS is less
strict than that for MLH, since in the latter case the shape
parameter must always be greater than 1, irrespective the
multiplicity of X, .



