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Abstract

An examination is made of the true return periods associated with certain types of composite indices for the rareness of events. In particular,
return periods are evaluated separately for several different ways of describing how bad an event was, and the composite index, or apparent
return period, is defined as the largest of these component return periods. Such apparent return periods give an incorrect indication of how
often a larger value for the composite index will occur. Simulations are used to study the relationship between the true and apparent return
periods for some simple cases, and an assessment is made of the extent of the error made if the apparent return period is used directly. A
simple practical procedure is described for dealing with real datasets without model-fitting, and this is assessed using further simulations. An
example is given relating to a possible flood situation where a composite index is constructed as the largest of the return periods of high

rainfall-accumulations over a number of durations.
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Introduction

The first problem to be faced when trying to assess the
rareness of hydrological events, such as floods or droughts,
is that of defining the particular set of events of interest, or
more specifically, defining those qualities of floods or
droughts which cause most difficulties for those affected.
Any treatment of this problem needs to be linked closely to
the reason why the question is being asked. Different
approaches are likely to be necessary depending on whether
the background to the question is a formal one, such as when
designing new water-resources infrastructure, or an informal
one, such as when a notable ‘event’ has occurred and the
general public ask “how often can we expect something
like this?”. The major difficulty is that there is no unique
way of characterising the ‘size’ of a flood or drought. A
meaningful assessment of the rareness of an event can only
be obtained by tailoring a measure (or measures) of how
bad conditions are, defining the direction (or directions) in
which conditions are worse, and then evaluating the
probability of observing an event which is as bad, or worse
than, that actually observed. This can be an extremely
difficult task, since the practical effects of extreme deficits
and excesses of water in the environment will vary with:
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(i) the locations which are affected;

(ii) the geographical spread of the region affected, since
many sites being affected will be disproportionately
worse than just a few;

(iii) the duration of the extreme period;

(iv) temporal variations within a period of extremity;

(v) the time since the preceding period of extremity;
and so on. Similar lists of aspects of extreme events
that need to be considered have been provided by,
among others, Hoyt (1942), Ibbitt ef al.(1997) and Ward
and Robinson (2000, p50).

When the need to assess the rareness of flood and drought
events is purely informal, it can be convenient to avoid the
problem of trying to synthesise everything into a single
measure of rareness, but instead to quote the rareness of
several different aspects of event conditions. In principle,
this leaves users of the information to make their own
judgement as to which is most appropriate. However, there
will undoubtedly be at least a temptation on the part of users
to look at the most extreme of the values quoted and to treat
this as an overall indication of the rareness of the event.
This is technically incorrect. This paper illustrates how much
error can arise for one simple set of indices of event severity.



When return periods are evaluated for several indices each
measuring different aspects of an event, the largest of these
may conveniently be called the ‘apparent return period’.
This then becomes just another way of measuring how
extreme an event has been and, although the words ‘return
period’ are used in the name, it is important not to treat the
values quoted as if they were return periods for the event. If
apparent return periods are calculated in the same way for
events in a long period of time, a given value for the apparent
return period, say 7 years, will occur rather more frequently
than 1 in 7 years. The actual frequency of occurrence will
be called the true return period.

While taking the largest of several return periods can be
misleading, it may sometimes be used in practice with the
underlying knowledge that the apparent return period is
incorrect but conservative (unfortunately there are few
practical cases where this does err on the side of safety). In
more general circumstances, there can be attractions in using
an approach of taking several quantities measured on
disparate scales and converting them to a common
probability or return-period scale before combining them
into a single composite index of severity. The results in this
paper indicate that, in practically useful cases, reliable
estimates of the true return periods of such composite indices
can be obtained by simple data analyses.

Evaluating the rareness of several measures of event
severity is something that may be undertaken in the initial
stages of more formal analyses. To summarise briefly,
possibilities for these more formal analyses include:

(a) modelling of a water resource system in terms of one
or more reservoirs, and evaluating the ability to meet
demand for water supply for domestic or irrigation
usage;

(b) construction of a single response variable representing
the consequences of conditions at a number of sites,
with the rareness of the response variable being derived
by some type of joint probability analysis;

(c) detailed analysis of a water supply system or flood
detention reservoir to identify a so-called critical
duration of events for the system, leading to selection
of a particular measure of event size from the many
possible;

(d) formal combination of several measures of event
severity, by standardising individual measures and
averaging, evaluation of the new measure for the
historical record, followed by a formal analysis of the
derived series to determine event rareness.

The next section of this paper gives results for some simple
types of application where multiple indices of event severity
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are often quoted and where certain assumptions allow exact
results to be obtained by a combination of analysis and
random simulations. A later section uses a real dataset to
illustrate methods of analysis to evaluate the actual rareness
of events identified from the worst of several indices of event
severity.

Analysis of a simple case

BACKGROUND

Suppose that there is a need to assess the severity of an
ongoing drought and that this is to be done using a record
of monthly rainfalls. Suppose that a calendar month, say
September, has just finished and data for this month and
previous months are available. Then the value, x, of the
latest September rainfall-total can be referred to the
distribution of the random variable X, where this represents
how September rainfalls vary from year to year. Specifically,
the record of past September rainfalls enables an estimate
to be obtained for

P = PI‘(Xl < Xl): Fl(Xl)' (1)

For the analysis of this section, errors in estimating this
and similar quantities will be ignored and it is assumed that
the corresponding distribution functions are fully known.
Thus, across a typical set of years, there is a probability p,
that the September rainfall would be equal to or more
extreme (lower) than current conditions. Alternatively, the
return period, 7, = p, ™', can be used as the measure of event
severity to indicate that only 1 in r, years would contain
similar or worse (drier) conditions for the September rainfall.
A set of similar analyses can be made which examine
rainfall-totals over successively longer durations. In
particular, if (x,x, , ... Xx,x)are the values of
monthly rainfall for the » months ending with x, being value
for the latest September, then the #-month total is

S, =X +X, +...+X,, 2)
for which there is a corresponding random variable, S ,

defined in terms of the random variables X, representing
rainfalls in individual calendar months by

S, =X, + X, +... X, . 3)

Then the probability and return period associated with the
n-month total are

P, = Pr(sn < sn): Fn(sn)’ = pr;l 4
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Note that the notation here (in particular the backward-
indexing of the monthly values) has been chosen so that
Eqn. 3 accords with the expressions used in the theory of
random walks (Feller, 1971).

Taken individually, any particular return period,  , is an
index of the severity of conditions up to the current time. It
has a valid interpretation that for only 1 in 7 years will this
index, if recalculated at the end of each September, equal
or exceed its current value (r ). In applications where there
is no one duration, », that is obviously most appropriate,
then the results for several durations might well be quoted.
Suppose that the return periods for rainfall totals of durations
n=1,2, ..., Nare available. Then, given that these measure
event-severity on the same scale for all durations, it is natural
to think of combining them in some way. The most
immediately appealing way is to determine

& = max(ry,r,,...,fy ) (5)

where rg™ denotes the apparent return period of conditions
up to duration N. Of course, the quantity rg™ does not have
a correct interpretation as the return period of this new index
of event-severity. The main purpose of this section is to
examine the true return period ry{*of the event

Ri* > r,ﬁpp} in order to provide a guide to how large the
discrepancy between r and ry* can be. This is
undertaken in a situation which is not obscured by other
problems such as the effects of estimating the distribution
functions F for n=1,..., N. Here Ry denotes the random
variable corresponding to evaluating Iy in exactly the same
way in other (past or future) years with September as the
final calendar month.

The above may be put in a practical context by noting
that, excluding the step of using the largest return periods
across several durations, the approach is much used in the
UK in the context of monthly and longer duration total
rainfalls. Specifically, the Met Office routinely makes use
of the marginal distributions of n-month totals beginning
(or equivalently, ending) in a specific month following work
by Tabony (1977). The method has been applied to periods
of high rainfall as well as to droughts, given the obvious
changes to examine the upper rather than the lower tails of
the distributions: see Dale and Jones (2001) for example.
In contrast, studies of river flooding have usually used a
much shorter base time-step than one-month and, because
of this, probabilities and return periods are evaluated on a
different basis. For example, if a single day of high river
flow has occurred on October 15, the question asked is “how
often will this flow be exceeded at any time of year?”, not
“on how many October 15s will the flow be exceeded?”.
Here the n-day totals would be referred to the distribution
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of the yearly maximum of n-day totals within the year,
instead of to the distribution of n-day totals ending at a given
time point. The effect on the formulae above is to replace
the distribution functions /7 with different ones. As an
example, Jakob ef al. (2001) use this annual-maximum basis
to evaluate the rareness of high rainfalls leading up to a
certain widespread flooding event over durations of 1, 7,
15, 30 and 60 days. Once again, the potential to be misled
by the use of several indices of event severity exists: the
effect for analyses based on distributions for annual extremes
is likely to be similar but different in detail from those based
on distributions targeted at a fixed time of year. The results
in the present section have been evaluated for the fixed-
time-of-year case because they are determined by fewer
parameters and assumptions than the alternative case. While
it would be possible to extend the analyses here to include
cases where the durations included in the set of indices are
not equally spaced, this has not been undertaken as the
results are intended only as a guide to the possible effects
of using the worst of several indices.

SIMULATION RESULTS

The results presented in Figs. 1 and 2 and Table 1 apply to
the following situation. It is assumed that the individual
values X, X ,..., X, in a sequence of calendar months are
independent and have the same distribution apart possibly
from a change in location. The effect of any change in
location is, of course, removed by the calculation of the
probabilities p, according to the marginal distributions of
the totals S : this would not apply in the annual maximum
case. Similarly, the results are not affected by the scale of
distributions of the individual values (but the scale parameter
must be the same for each). Results have been calculated
for a small number of different distributions for the monthly
values: these distributions have been selected because
explicit results are known for the distributions of the totals
S . For some distributions, the straightforward simulation
of the distribution of R¥* can be further speeded-up by
rearranging the calculations to make use of particular
features of these distributions. All of the results here are
based on random simulations which have been grouped into
blocks in such a way that the error in the final result can be
estimated based on the between-group variation of the
within-group result. The overall number of simulations used
has been increased until the estimated size of error is small
enough to be invisible on the plots and to not affect the
tabulated results to the number of significant digits quoted.

The distributions used are, firstly, two symmetric
distributions: the Normal (or Gaussian) and the Cauchy
distributions. The Exponential distribution is also used, but
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Fig. 1. Relation of true rareness to apparent rareness when N = 8, for the cases: Cauchy (C), upper tail of the Exponential (UE),
Normal (N) and lower tail of the Exponential (LE). Outer axes use the Gumbel scale, while the inner axes show return periods in years.
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Fig. 2. Relation of true rareness to apparent rareness as N varies from 2 to 128, for the case of the Normal distributions.
Outer axes use the Gumbel scale, while the inner axes show return periods in years.
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Table 1. The true return period when the apparent return period is
100, showing how this varies with the distribution of individual
values and with N , the number of indices of severity

DISTRIBUTION OF THE INDIVIDUAL VALUES

N Lower Tail of  Normal  Upper Tail of  Cauchy

Exponential Exponential
2 54 58 62 67
4 32 37 42 48
8 22 25 29 37
16 16 19 22 30
32 13 15 17 25
64 10.5 12 14 21.5
128 9 10 11 19

in this case two sets of results have been derived, one for
the lower tail of the distribution (looking for sequences of
low values) and one for the upper tail, in which case the
calculations are revised to be appropriate to looking at
sequences of high values. This set of distributions was
selected to give a range of behaviour for the length of the
tail of the distribution from short (the lower tail of
Exponential), through Normal and the upper tail of the
Exponential, to long (Cauchy). The Cauchy distribution may
be considered unrealistic for practical applications because
it is so long-tailed that the mean and higher moments do not
exist: however, it is included because it is both (i) one of
the few distributions for which the required explicit results
are available and (ii) an instance of a distribution with power-
like tails to the density function. The availability of explicit
results for the distributions of the cumulative totals S, means
that the simulations are straightforward and closely match
the situation for which some theoretical results are available,
as discussed in the next subsection. It would of course be
possible to implement simulation procedures in which the
distributions of S are estimated as part of the overall
procedure, but at the expense of extra computations and
less clarity.

Figure 1 shows how the distribution of the individual
values X affects the relationship of the true rareness (return
period), ", to the apparent rareness, >, for one choice
of N, the largest duration included in the set of severity
measures. Similar results are found as N varies. For
visualisation of the results, the return periods are shown on
the usual Gumbel scale simply because this is a convenient
choice. One particular point to note from Fig. 1 is that the
curves seem to pass through the same point when the
apparent rareness is a return period of two years. This is a
special case of the more general problem here, but one for
which some limited theoretical results are available: these

646

are outlined in the following subsection. The special case
relates to the question of how often at least one of Sl"",SN
will all lie on the ‘extreme’ side of their respective medians:
this will clearly happen rather more often than one out of
two cases. Although it appears that the lines in Fig. 1 cross,
this is misleading: the curve for the Cauchy distribution is
highest on both sides of r{™ = 2,while the ordering of the
other three is reversed on passing through the intersection.
In addition, the curves do not in fact intersect at the same
point: see the subsection on theoretical results.

Figure 2 illustrates the effect of changing N, the number
of indices of severity being considered: once again the results
are similar for other distributions, so only a single example
is given. As expected, the true return period corresponding
to a fixed apparent rareness decreases rapidly as NV increases.

Table 1 gives a summary of how the true rareness can
vary when the apparent rareness is a return period of 100
years, depending on the distribution of the individual values
and on the number of indices of severity being considered.
It is important to remember that these results apply to the
case where the indices relate to totals or averages over
sequentially increasing durations and where the individual
values are statistically independent.

RELATED THEORETICAL RESULTS

It was noted above that the curves in Fig. 1 seem to have
the same true rareness for outcomes having an apparent
rareness of two years. This is a special case for which some
theoretical results can be derived, from the theory of random
walks, which partly back this result. Having ri < 2 means
that 1, <2 for all of the individual durations, and hence
that p, > % (i =1...,N).Now p, > % corresponds tos,
being larger than the median, m, of the distribution of S.
Hence

Pr( R™ > 2)=1- Pr( R¥ < 2),
~1-Pr(S>m&i=1...,N). (6)

The underlying theoretical results that are available relate
to distributions of the individual values, X, which are
symmetric and continuous, as is the case for the Normal
and Cauchy distributions. For these distributions, a shift in
location can be made without affecting the results in such a
way that the median of X’ is zero, which then means that the
median of S, is also zero. Then results stated by Feller (1971:
Section XII.7, Theorem 4 and Section XII.8, after Lemma
1) and by Feller (1970: Eqn. 11.12.5) show that, for all
symmetric and continuous distributions,

Pr( R¥ > 2)= 1—(2|\'|\'j2-2N. (7



Hence, in these cases, the true return period of observing

an apparent return period of 2 or more is
1

2N .
e = 1—( N JZ‘ZN : (8)

For example, N = 1,2,3 gives 1™ = 2,8 ,1%/, respectively.
An approximate formula for ry* can be derived from an
asymptotic expansion for large N using Stirling’s Formula

(Feller, 1970: Eqns. 11.9.1, II1.2.4), which gives

true 1 B

This theoretical result confirms that the curves in Fig. 1 do
pass through the same point when the apparent rareness is a
return period of 2 whenever the distribution of individual
values is symmetric and continuous. The simulation results
for the non-symmetric exponential case confirm that the
above result does not hold exactly for other distributions.
For example, for N = 2, r{*=16 for symmetric
distributions, while the simulation results give
ry' =1.5888 for both the lower and upper tails of the
Exponential distribution. As noted earlier, the number of
samples in the simulations was extended to ensure that the
values quoted here are correct to the number of decimal
places given. When N = 3,, r(* =1.4545 for symmetric
distributions, while the simulation results give
ry'® = 1.4439, 1.4429 for the lower and upper tails of the
Exponential distribution respectively. While these results
for the Exponential distribution are rather close to those for
symmetric distributions, it is not clear if this is generally
true.

Given that they seem to be approximately valid across a
range of distributions, Eqns. 8 or 9 can be used to provide
answers to two slightly different questions. The first is based
on the idea of ‘equivalent number of independent samples’
denoted by N,. The combined index of severity is based on
the most extreme of N dependent indices, but one might
wonder what the value of N, would be such that the most
extreme of N, independent indices would have the same
true rareness as the dependent case, at least when the
apparent rareness is 2 years. For N = M independent indices,
the true rareness of an apparent return period of 2 years is
given by

e =fl-2f", (10)
and with Eqn. 9 this gives, for large N,
N, ~log(zN)/(210g2). (11)

The second question asks whether a sequence of durations
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{ N, } can be found such that the curves in a new version of
Fig. 2 would be equally spaced. This can be achieved with
a sequence { N, } which behaves like

N, ~ 7 exp{(2log2) e}, (12)

for large i. Here a is a positive parameter controlling the
spacing of the lines.

Practical analyses for real data

In a limited number of practical applications the results
provided in the first section of this paper may be enough to
give an approximate idea of the true return period where an
apparent return period is derived as the maximum of several
return periods calculated for durations which are multiples
of a common time-step, provided that the totals at the
common time-step can be treated as independent. While the
number of component indices used has a strong effect, the
effect of the distribution of the underlying variables is rather
less important. For example, the results in Fig. 2 and Table 1
should provide adequate guidance for application to monthly
rainfalls in the UK. In other cases, it would be possible to
devise simulation experiments that more closely match the
specifics of a particular application in terms of the details
of the component indices and the statistical dependence of
the underlying variables. However, given that only an
informal assessment of rarity is being undertaken, there may
be too much work involved in constructing the simulations
and in statistical modelling of the underlying variables.
The analysis reported here suggests that a very simple
approach can be successful in determining the true return
period of apparent return periods derived by combining
several indices of extremity. While this approach has only
been tried for simple cases of indices relating to multiple
durations, it is clear that it can be applied to more
complicated situations, including ones where multiple sites
are being considered. There is certainly room for a number
of modifications to the analysis. Firstly, the approach
described uses a simple way of estimating the return periods
for the component indices and there is the potential for
replacing this by more sophisticated procedures. Further,
there is scope for using resampling procedures in an attempt
to derive a more accurate relationship between the apparent
and true return periods without the complication of
constructing a full stochastic model. However, with care
and judgement the simple procedure should be adequate
for informal assessments. The main problems with the simple
procedure are common to all other candidate procedures:
access is required to the underlying data and to the
procedures used for estimating return periods which are
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typically not available when considering results published
by others.

An outline of the simple procedure when applied to return
periods for multiple durations, assessed for a fixed time of
year, is as follows.

(i) For each year in the dataset, calculate the totals for
each duration finishing at the required point in the
calendar year. Count the total for a given duration as
missing if this would require data from before the start
of record.

(ii) Treating each duration separately, estimate the return
periods for the totals for each year. This is done by
ranking the set of duration totals and assigning a notional
probability of i/(n + 1) to an equal or worse total: here
n is the number of years for which totals of the given
duration are available and 7 is the rank of the total for
the given year in the set of totals. The procedure can
work with these probabilities, or with corresponding
values for return periods.

(iii) Treating each year separately, calculate the
combined index for that year by taking the ‘worst’
probability or return period across the values calculated
for the different durations. This creates the set of
‘apparent return periods’, either directly or indirectly
via the probabilities. Where no value for a particular
duration is available because the total could not be
formed at step (i), this is ignored and the combined index
for the year is calculated for the reduced set of durations.
(iv) Estimate the true return periods for the apparent
return period previously calculated for each year. The
estimated true return period for a given year is found
by assigning a notional probability of i/(n + 1) to an
equal or worse value of the apparent return period: here
n is the number of years for which apparent return
periods are available and 7 is the number of years having
an apparent return period equal to or higher than that
assigned to a given year. The estimated return period
would be the reciprocal of this probability.

(v) Create a plot of the estimated true return periods
against the apparent return periods, using the Gumbel
reduced variate scale for both axes. Use judgement,
based on the figures in this paper or based on other
simulations, to draw a line representing the required
relationship of the true to the apparent return periods.
The line should be generally guided by the points
corresponding to the lower to medium apparent return
periods, with the points for the two or three highest
apparent return periods being heavily discounted.

Some simulation results that support the above approach
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are given below. A summary of the approach is that it uses
the available dataset in two essentially distinct steps. Firstly,
yearly values for several indices of severity are established
by performing a simple frequency analysis for each index
separately. Then, having constructed yearly values of the
composite index, a further simple frequency analysis is
performed. This double-use of the dataset may be worrying,
but it appears from the simulation results that the overall
procedure is basically sound. The treatment of incomplete
duration-totals at the beginning of the record (in steps (i)
and (iii) above) was specified with a particular application
in mind, in order to include use of as much data as possible:
other specifications may be more appropriate if the
composite indices calculated for the initial year or years are
thought to be too poorly determined. The simulations
reported here adopt the treatment of the initial years as set
out above, rather than including extra values before the
notional start of record in order that all durations-totals
should be complete.

Simulations for the simple practical analysis have been
based on a simple model designed to emulate daily rainfall
data in a simple way, but without having been fitted
specifically to real data. Daily values are generated so that
values are independent of values on adjacent days, are
exactly zero with a certain probability and otherwise drawn
from a standard exponential distribution. The probability
of a zero value varies seasonally from 0.4 to 0.6. Datasets
equivalent to 121 complete years of record were generated
to represent a reasonably long rainfall record and the
composite index of event severity was chosen to represent
an assessment of drought conditions using accumulations
ofrainfall over periods ending 30 September, using durations
0f 30, 60, 90, ... , 420 days (i.e. approximately 14 months).
The simple analysis procedure generated a large number of
blocks of 121 years of simulated data: each block was
analysed separately to derive 121 values for the apparent
return periods, and these were pooled across the blocks to
form a combined data-set from which to estimate the true
return periods of the apparent return periods. As in the first
section of this paper, a sufficiently large number of blocks
of simulated data was used to allow the true return periods
to be estimated with enough accuracy that no difference in
the reported results would be discernable. These results are
shown in Fig. 3, where the full line shows the true return
period estimated from the full set of simulations. Also shown
are three sets of results corresponding to applying the simple
estimation procedure to single blocks of 121 years of data:
these results are shown as dashed lines and correspond to
typical results of applying the simple analysis to real datasets.
It can be seen that the estimates of the true return period
derived from the simple analysis are a good indication of
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Fig. 3. Relation of true rareness to apparent rareness for the simple analysis procedure. Composite index for droughts of simulated rainfall
over 1 to 14 months. Full line shows the true rareness derived from extensive simulations, dashed lines show typical estimates of the true
rareness using single blocks of 121 years of data. Outer axes use the Gumbel scale, while the inner axes show return periods in years.
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Fig. 4. Relation of true rareness to apparent rareness for the simple analysis procedure. Composite indices for high rainfalls over two different
sets of durations. The full and dashed lines show results for 5 and 16 durations respectively (sets (a) and (b) in the text) for a 149 year record
at Armagh. Outer axes use the Gumbel scale, while the inner axes show return periods in years.
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the required values provided that allowance is made for the
poor estimation at the highest return periods.

The major difference between the results in Fig. 3 and the
earlier plots is the presence of steps in the graphs. These
arise from the use of the simple frequency analysis step to
determine the return periods attributed to the totals of
different durations: in most cases the three highest return
periods that are calculated are 122, 61 and 40.7 years,
although for some longer durations these are slightly
modified to 121, 60.5 and 40.3 years. Thus the highest
apparent return periods that are calculated within the
procedure are restricted to these values. The analysis of a
given dataset will usually contain cases where the same
apparent return period is attributed to different years and,
in particular, the worst 1-month, 2-month, 3-month, etc.
totals will often occur in different years and each of these
years will be given an apparent return period (for the
combined index) of 122 years. In the present context, it is
the lower edge of the stepped line that is most relevant in
determining the true return period.

The simple analysis procedure can be adapted to a range
of circumstances and Fig. 4 shows some results derived for
a real set of daily rainfalls in a case where the composite
index relates to high rainfalls assessed using annual
maximum rainfall-totals over different durations. A record
of 149 years of daily rainfall was available for Armagh in
Northern Ireland. This was used to assess the true return
period where a composite index (apparent return period)
for a given year is constructed by finding, for each duration
length, the return period of the largest total over that duration
terminating within that (calendar) year, and then taking the
largest of these. Fig. 4 shows results for two different sets
of durations:

set (a): 1,7, 15, 30, 60 days;

set(b): 1,2,3,5,7,10, 15, 20, 30, 60, 90, 120, 150, 180,

210 and 240 days.
The first set corresponds to the durations explicitly
considered by Jakob ef al. (2001), while the second is
included to show the effect of using a more extensive set of
component indices. It is not to be expected that the results
for these sets of 5 and 16 durations would be similar to
those given in Fig. 2 for N =5 or 16, because the durations
here are not equally spaced.

Relation to other work

The present study examines the effect of taking the
maximum of a number of related quantities as the variable
of most interest. Here the quantities are the totals or averages
over varying durations of a set of underlying measurements.
Certain other studies have looked at slightly different but
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related problems. For example, Dales and Reed (1989)
looked at the effect of taking the largest rainfall recorded at
any of a collection of raingauges in a spatial region as a
measure of event-size, comparing this to the result that
would be obtained using raingauges individually. In the
context of annual maxima of averages over a fixed duration,
Dwyer and Reed (1994, 1995) looked at the effect of either
considering only time-periods which abut each other on a
regular basis, or allowing the time-periods to overlap. They
looked at quantifying the effect of taking the maximum over
a more extensive set of quantities, using overlapping
intervals, compared with abutting intervals.

Conclusion

It is clear that it is, in principle, incorrect to assess the overall
rarity of a flood or drought event by computing return
periods for several different measures of event severity and
quoting the largest of these. This paper has indicated the
extent that such ‘apparent return periods’ can be wrong.
Nevertheless, the approach has some appeal in constructing
an overall index of severity, in that it treats each of the
component indices on a common scale by converting them
into probabilities or return periods. A practical procedure
for a two-pass data analysis has been outlined and this has
been shown to perform reasonably in providing a good
assessment of the true return period of a composite index.

The practical approach outlined in this paper is applicable
to a wide range of circumstances. While the example
described here was based on rainfall at a single site, it is
clear that data-series of regional-average rainfall could
equally well be used. In general, an overall index of event
severity might be constructed by taking the largest of the
return periods estimated separately for many sites within a
region, or for sub-areas within an overall region, for different
sets of accumulation-periods and for different underlying
quantities. It is clear that the practical approach involving
double-use of the data, as outlined here, can be readily
adapted to provide estimates of the true return-periods of
such composite indices.
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