
The application of data mining techniques for the regionalisation of hydrological variables

685

Hydrology and Earth System Sciences, 6(4), 685–694   (2002)    ©   EGS

The application of  data mining techniques for the regionalisation
of  hydrological variables¶

M.J. Hall1, A.W. Minns2 and A.K.M. Ashrafuzzaman3

1International Institute for Infrastructural, Hydraulic and Environmental Engineering, PO Box 3015, 2601 DA Delft, The Netherlands
2School of Geoscience,Minerals and Civil Engineering, University of South Australia, Mawson Lakes 5095, Australia
3River Research Institute, Faridpur - 7800, Bangladesh

Email for corresponding author: mjh@ihe.nl

Abstract
Flood quantile estimation for ungauged catchment areas continues to be a routine problem faced by the practising Engineering Hydrologist,
yet the hydrometric networks in many countries are reducing rather than expanding. The result is an increasing reliance on methods for
regionalising hydrological variables. Among the most widely applied techniques is the Method of Residuals, an iterative method of classifying
catchment areas by their geographical proximity based upon the application of Multiple Linear Regression Analysis (MLRA). Alternative
classification techniques, such as cluster analysis, have also been applied but not on a routine basis. However, hydrological regionalisation
can also be regarded as a problem in data mining — a search for useful knowledge and models embedded within large data sets. In particular,
Artificial Neural Networks (ANNs) can be applied both to classify catchments according to their geomorphological and climatic characteristics
and to relate flow quantiles to those characteristics. This approach has been applied to three data sets from the south-west of England and
Wales; to England, Wales and Scotland (EWS); and to the islands of Java and Sumatra in Indonesia. The results demonstrated that hydrologically
plausible clusters can be obtained under contrasting conditions of climate. The four classes of catchment found in the EWS data set were
found to be compatible with the three classes identified in the earlier study of a smaller data set from south-west England and Wales.
Relationships for the parameters of the at-site distribution of annual floods can be developed that are superior to those based upon MLRA in
terms of root mean square errors of validation data sets. Indeed, the results from Java and Sumatra demonstrate a clear advantage in reduced
root mean square error of the dependent flow variable through recognising the presence of three classes of catchment. Wider evaluation of
this methodology is recommended.
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Introduction
Much of the work undertaken by the Engineering
Hydrologist is dependent upon the interpretation and
manipulation of recorded data. In general, the longer the
period of record, the smaller the standard errors of estimate
of hydrological design variables, such as flow quantiles.
Hydrologists could therefore be said to have a vested interest
in maintaining, if not expanding, the size and scope of
hydrometric networks. Unfortunately, the attention to
hydrometric activities, stimulated by the International

Hydrological Decade from 1965-1974, has not been
maintained, and the densities of measuring networks in many
countries have decreased owing to a variety of causes,
ranging from cost-saving measures to civil unrest. The
general deterioration has been such that the World Bank
Policy Paper on Water Resources Management (World
Bank, 1993) observed that inadequate and unreliable data
now pose a serious constraint to efficient water management
in many countries. The problem is not simply confined to
the developing world. According to Lanfear and Hirsch
(1999), every year more than 100 US Geological Survey
stream gauging stations with more than 30 years of record
are being discontinued owing to shortfalls in funding.

¶ Expanded version of a paper presented to the 7th National Hydrology Symposium
of the British Hydrological Society held in Newcastle-upon-Tyne, 4-6 September,
2000.
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Hydrologists have responded to this situation of sparse
(or even reducing) gauging networks by developing
increasingly sophisticated methods for the regionalisation
of hydrological variables. In the modern informatic sense
of the term, regionalisation provides a ready example of
data mining, which may be broadly defined as the process
of extracting useful knowledge and models from raw data
stores. Data mining approaches encompass techniques of
regression, classification, clustering, and change and
deviation detection, each of which has already been applied
in some form in hydrological regionalisation. However, to
date, the potential of informatic tools, such as Artificial
Neural Networks (ANNs), has not been fully explored.
ANNs can be applied both to classify catchments according
to their characteristics and to relate the ‘pattern’ of those
characteristics to hydrological variables.

In this paper, the experience gained in two recent studies
in which ANNs were applied for the regionalisation of flood
quantiles is summarised and the results extended. Following
a brief discussion of the type of data typically available for
regionalisation studies, the configurations of ANNs that can
be applied for the purposes of classification of catchments
and the development of relationships between flood
quantiles and catchment characteristics are described. The
results obtained from three case studies relating to the south-
west of England and Wales; England, Wales and Scotland;
and the islands of Java and Sumatra in Indonesia are then
summarised and compared with those obtained from a
widely-used approach to hydrological regionalisation based
upon Multiple Linear Regression Analysis (MLRA). The
concluding section emphasises the advantages of applying
ANNs and indicates the possible scope for further
refinement.

Regionalisation
In attempting to regionalise a given set of hydrological
variables, the engineering hydrologist is faced with a
diversity of data. The required outputs of the regionalisation
procedure are the values of the dependent variables as
computed from the available records at the gauged sites
within the region of interest. The inputs are those catchment
and rainfall characteristics that are deemed to be influential
in determining the magnitude of the desired outputs. The
latter are usually confined to variables that can be derived
from topographic maps of a consistent scale and date, or
meteorological variables that are similarly mapped for
climatological or engineering design purposes. The former
may be further subdivided into those variables that describe
the geomorphology of the catchment and those that pertain
to its land use. The latter is most frequently described in

terms of indices of the form
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Dating of the mapping employed is obviously critical,
bearing in mind the rapidity of such processes as
urbanisation, deforestation or the intensification of
agriculture. The potential use of satellite imagery for this
purpose has yet to be explored fully, but depends upon the
further development of the appropriate tools and algorithms
for converting emitted and reflected radiances into
hydrologically relevant products. The scope of such indices
is very broad, and their relative hydrological importance
varies from climate to climate. Their choice is often heavily
dependent upon the personal intuition of the analyst.

In contrast, the geomorphological descriptors of a
catchment are widely known, but their inter-relationships
are perhaps less well appreciated. The high explained
variance of area, AREA, as a predictor of main stream
length, MSL, (Hack’s Law) calls into question the intrinsic
value of derived variables, such as catchment form factor
or SHAPE (the quotient of AREA and the square of MSL).
There are many different ways of defining certain variables,
such as main channel slope, but consistency in methods of
extraction is possibly more important than selection of one
particular form over another. The bifurcation, area and length
ratios of the channel network are considered only
infrequently, perhaps because of the time and effort required
to compute their values for a large number of catchments.
This constraint can, of course, be avoided if the analyses
can be carried out using automated procedures on a digital
elevation model.

In summary, the data forming the basis of a regionalisation
study can be messy in the sense of variety of origin and
method of computation. The hydrological variables
themselves will often have been derived from different
lengths of record, and maps to a common (relatively large)
scale are not always available. However, the studies reported
herein have been based upon published data from previous
work (NERC, 1975; Institute of Hydrology and Direktorat
Penyelidikan Masalah Air, 1983; Gustard et al., 1989; the
current FRIEND European Water Archive) in which a high
degree of quality control has been exercised. The questions
to be answered by the analysis of these data are essentially
two-fold:

(1) Are the catchments to be analysed hydrologically
homogeneous in the sense of belonging to one “region”?

(2) Can some form of relationship be developed between
the hydrological variables of interest and the (mapped)
catchment and rainfall characteristics?
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Question (1) is a matter of classification, whereas (2)
requires the modelling of dependencies.  Perhaps the most
widely-applied procedure for hydrological regionalisation
applied to date has been the so-called Method of Residuals,
in which the classification and modelling are carried out
simultaneously, with the appropriate models being
developed by application of MLRA. Introduced by the US
Geological Survey (see Dalrymple, 1960; Benson, 1962),
this methodology has been widely adopted, most notably in
the development of estimation procedures for ungauged
catchments in the UK Flood Studies Report (FSR) (NERC,
1975). In brief:

i. the hydrological index variable (quantile) is regressed
upon catchment and rainfall characteristics for the whole
data set;

ii. the residuals, i.e. the differences between the observed
and computed values of the index variable, are plotted
geographically in order to identify groups of these
differences that are similar in both magnitude and sign
and can therefore be regarded as a sub-region; and

iii. the regression analysis is repeated for the sub-regions
identified and then generalised across the whole region.

The heavy dependence on geographical proximity in
defining the sub-regions has often been criticised, and many
authors have turned to the use of multivariate techniques,
such as cluster analysis to define homogeneous regions and
discriminant analysis to allocate an ungauged catchment to
an appropriate region. However, any group of variables is
capable of yielding clusters, and different groupings can be

obtained if different algorithms and distance measures are
adopted (see Nathan and McMahon, 1990, for a more
detailed discussion). Nevertheless, the possibility that sites
do not have to be geographically contiguous to form a sub-
region remains intuitively appealing. Furthermore, MLRA
is constrained by the linearity assumption, which the
transformation of variables can mitigate but not entirely
eliminate. A possible alternative approach can be found in
the pattern classification and feature detection capabilities
of modern informatic tools, such as ANNs.

Artificial neural networks
An ANN consists of layers of processing units (to invoke
the biological analogy, representing neurons) where each
processing unit, or node, in each layer is connected to all
nodes in the adjacent layers (representing biological
synapses and dendrites). The selection of an appropriate
architecture for the ANN depends upon the problem in hand
and the type of learning algorithm (i.e. calibration
procedure) to be applied. For example, a Kohonen network
is commonly used for the classification of patterns in data
sets. Since no outputs are provided for training purposes,
the process of determining the weights is referred to as
unsupervised learning. More generally, ANNs can be
trained (i.e. calibrated) to provide the correct output
response to a given input stimulus (supervised learning).
For this purpose, a multi-layer, feed-forward, perceptron-
type ANN (MLP) has been found particularly suitable.
Figure 1 illustrates the schematisation of a typical, three-
layer MLP network of this type.

Fig. 1. A typical three-layer multi-layer perceptron (MLP) type neural network.



M.J. Hall, A.W. Minns and A.K.M. Ashrafuzzaman

688

The functioning of an ANN is perhaps best described by
following the sequence of operations involved during
training and implementation of the MLP network shown in
Fig. 1. The vector of inputs is introduced at the nodes of the
input layer. Each of these input nodes is connected directly
to all nodes in the second, or hidden layer, and the signals
carried along these connections can either be amplified or
inhibited by application of weights. Each of the hidden nodes
in this second layer acts as a summation device for the
incoming (weighted) signals. The total signal is then
transformed into an output signal using an activation
function, typically a sigmoidal function, which restricts the
range of the output signal to a zero-to-one interval. The
output signals from the hidden nodes in the hidden layer
are in turn carried along weighted connections to the nodes
in the output layer. If the ANN is to be trained to learn the
relationship between a given set of inputs and outputs, then
the weights must be adjusted iteratively until the computed
and observed outputs agree within a predetermined level of
accuracy using a standard algorithm. Although back
propagation is one of the most widely-used algorithms, there
are several different methods for weight optimisation, some
of which have better generalisation abilities than others (see
Maier and Dandy, 2000, for a comprehensive discussion).

In contrast to the MLP network of Fig. 1, the Kohonen
network, also referred to as a self-organising feature map
(SOFM), requires no outputs for training purposes. This
ANN is a classifying device that has only one layer of input
nodes, one of output nodes and a set of weighted connections
(Fig. 2). The network has to ‘decide’ which of the output
nodes (i.e. the ‘winner’) is associated with a given input
pattern, based upon a measure of similarity, such as
Euclidean distance. In brief, the weight vectors are initialised
with randomly selected values, and the first input pattern is

presented to the network. The input pattern is compared to
all the weight vectors using Euclidean distance, and the most
similar vector and its output unit are selected. The ‘winner’
and its neighbours have their weight vectors updated so that
they are moved closer to the input pattern. This pattern is
repeatedly presented until the change in the weight vectors
is smaller than a predefined threshold. A new input pattern
is then presented, and the procedure is repeated. Similar
input patterns ‘fire’ output nodes that are close together. In
effect, each frequently-fired node defines a ‘class’ (although
a group of adjacent nodes is usually the preferred choice
for an individual class), and the input vectors that fire that
node are the members of that class.

The neural network software employed in this work for
both MLPs and SOFMs was the NeuroSolutions simulation
environment developed by NeuroDimensions Inc. of
Florida.

Regionalisation with ANNs
CLASSIFICATION OF CATCHMENTS

Hall and Minns (1999) applied a Kohonen network to
classify 101 catchments in the south-west of England and
Wales using five catchment characteristics listed in Volume
II of the FREND Study (Gustard et al., 1989), supplemented
by Volume IV of the FSR (NERC, 1975). The five
characteristics were AREA in km2, MSL in km, main stream
slope in m km–1 (S1085), mean annual rainfall in mm (AAR)
and a soil index (SOIL). Values for the urbanisation index,
URBAN, were also available, but were not included owing
to the small range of values involved. Initially, the values
were standardised to range between zero and one prior to
analysis. However, in later work, the values were
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Fig. 2. A one-dimensional (line) Kohonen network with four input nodes and eight output nodes.
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standardised to zero mean and unit standard deviation, as
recommended by Kohonen (1995). Euclidean distance was
used as the similarity measure. As noted above, the
procedure for training a Kohonen network also involves the
repeated presentation of the input data (catchment
characteristics) until the output response has stabilised and
the changes in the weights are negligible.

In this application, with 101 input patterns and two or
more classes to be expected, the number of output nodes
should be at least three times the number of classes
anticipated. Ten output nodes were therefore adopted in a
linear Kohonen network. The results are summarised in Fig.
3(a), which reveals a distinct clustering around three sets of
adjacent output nodes. These ‘classes’ contain 25, 35 and
41 members, respectively. Of particular interest are the
standardised cluster centres in Euclidean space for each
grouping, which define what might be termed Representative
Regional Catchments (RRCs). The de-standardised
catchment characteristics for each of the three RRCs are
summarised in Table 1(a), which shows that the variations
between classes are essentially monotonic. In effect, Class
I is composed of relatively small, steep catchments with
approaching 2000 mm of average annual rainfall and a high
SOIL index, and Class III represents larger, relatively flat
areas with about 1100 mm of average annual rainfall and a
notably smaller SOIL index. The Class II characteristics
are intermediate between those of Classes I and III. Such
groupings, and especially Classes I and III, are supportable
from the hydrological viewpoint, i.e. small, steep catchments
are expected to possess different response characteristics to
large, flat drainage areas, which is a gratifying result for an
unsupervised learning technique.

This division of the 101 catchments into three classes,
each of which contained representatives from both south-
west England and Wales may be compared with the
regionalisation of the same areas adopted in the FSR.
(NERC, 1975). In the Report, south-west England and Wales
are two distinct regions divided at the Bristol Channel, each
of which has both a different equation for the estimation of
the mean annual flood and a different growth curve
connecting the ratio of the T-year flood to the mean annual
flood to  the return period, T.

Divergence between the SOFM and FSR classifications,
the latter based upon the Method of Residuals, prompted a
further study in which a new data set was compiled for the
whole of England, Wales and Scotland. These new data were
obtained from the catalogue of the FRIEND European Water
Archive, from which seven catchment characteristics could
be extracted for 219 catchments. These characteristics
included AREA (km2), MSL (km), AAR (mm), SLOPE (m
km–1), station height (HTSTN, m), a soil index (SOIL) and

the 10-year, 2-day rainfall depth (M102D, mm). For the
classification of this data set, 20 output nodes and seven
input nodes were employed for the linear Kohonen network.
Again, Euclidean distance was used as the similarity
measure. The results are summarised in the count map of
Fig. 3(b), and indicate the existence of four classes. The
RRCs corresponding to each of these classes are summarised
in Table 1(b), which shows that small, steep catchments are
now divided into two classes: one with low soil index and
high AAR in the uplands, and the second with high soil
index and low AAR in the lowlands. In addition, the larger
catchments are divided between two classes, representing
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Fig. 3. Count maps for linear Kohonen networks for (a) five
catchment characteristics from south-west England and Wales; (b)
seven catchment characteristics for England, Wales and Scotland;
and (c) six catchment characteristics for Java and Sumatra.
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Table 1. Classification of catchments by Kohonen network, with numbers allocated and the
characteristics of the Representative Regional catchments for each class

(a) SOUTH-WEST ENGLAND AND WALES

 Class Representative Regional Catchments Number
AREA MSL S1085 AAR SOIL of sites

I 58.6 13.5 21.4 1893 0.46 25
II 127 22.6 9.68 1322 0.37 35
III 272 35.6 5.72 1175 0.32 41

(b) ENGLAND, WALES AND SCOTLAND

CLASS REPRESENTATIVE REGIONAL Catchments Number
AREA HTSTN AAR MSL SLOPE M102D SOIL of sites

1 104.7 161.0 1725 18.5 20.86 103.9 0.410 34
2 315.2 159.6 1384 39.0 7.81 88.6 0.448 52
3 306.4 36.7 904 39.3 3.65 66.8 0.550 49
4 110.6 34.4 787 19.3 4.71 61.4 0.544 84

(c) JAVA AND SUMATRA

Class Representative Regional Catchments Number
AREA MSL S1085 AAR PLTN LAKE of sites

A 389 41.9 35.93 3291 1.010 1.001 29
B 862 66.9 14.63 2637 1.075 1.005 43
C 3689 144.1 5.97 2509 1.128 1.080 20

similar sizes and slopes of lowland catchments but distinct
AAR and M102D values and SOIL indices. A geographical
plot of the classes, presented in Fig. 4, shows that the
Midlands and the south-east of England contain only two
classes of catchment, compared with four geographical FSR
regions. Of further interest is the occurrence of three classes
in south-west England and Wales, thereby confirming the
results of the previous study.

Additional support for the spatial distribution of the
classes shown in Fig. 4 can be found in the attempts to define
coherent precipitation regions for the British Isles. For
example, Gregory (1975) applied a variety of methods based
on linkage analysis and factor analysis techniques, but found
that the results obtained depended upon the technique
applied. The direct solution of a principal component
analysis gave regions with a distinct north-south orientation,
whereas an obliquely-rotated solution provided boundaries
running predominantly south-west to north-east and to a
lesser extent from west to east. Regions of coherent
precipitation variability have also been defined by Jones et
al. (1997). Their nine regions are depicted in Fig. 5, which
shows that indeed south-west England and Wales form one

region designated SWE. Those authors also presented the
correlations, one region at a time, for all nine areas. Their
results indicated that western regions correlate most closely
with western regions, and similarly for eastern regions,
emphasising once again a north-south orientation of
boundaries that relates to the frontal nature of the majority
of precipitation in the British Isles. The Scottish regions are
only weakly correlated with the regions in England and
Wales, with northern Scotland (NS) showing the least
correlation with all other regions. In contrast, north-west
England (NW) provided the highest correlations with the
other eight regions.

A third study (Hall et al., 2000) has recently been carried
out on data from the contrasting climate of Java and Sumatra,
obtained from the Flood Design Manual for Java and
Sumatra (Institute of Hydrology and Direktorat
Penyelidikan Masalah Air, 1983). The Data Appendix to
the Manual provides information on the floods recorded at
50 sites in Java and 83 in Sumatra, along with 11 catchment
characteristics for each site. These data represent the
situation typical of a developing country, with the majority
of records being over a short time span. For this exercise,
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attention was concentrated on the 48 sites in Java and the
44 in Sumatra suitable for annual flood analysis. Only six
catchment characteristics (AREA, MSL, S1085, AAR along
with lake and plantation indices) were retained for
classification purposes.  Euclidean distance was used as the
distance measure and the data were mapped on to 15 output
neurons in a linear Kohonen network. The most consistent
and stable groupings obtained are summarised as a count
map in Fig. 3(c), and the characteristics of the RRCs are
shown in Table 1(c). The ‘small’ and ‘large’ groupings of
catchments are again evident, but the annual rainfall totals
are notably larger than in the previous case. Each class
contains representatives from both Java and Sumatra. When
the Method of Residuals was applied to the same data set, a
four-variable equation for the mean annual flood (MAF,
m3 s–1) was obtained:

(2)

where PLTN and LAKE are plantation and lake indices
respectively, defined as in Eqn. (1). When the residuals from
Eqn. (2) were mapped, no discernable pattern emerged, in
agreement with Institute of Hydrology and Direktorat
Penyelidikan Masalah Air, (1983).

RELATION OF FLOOD QUANTILES TO CATCHMENT
CHARACTERISTICS

In the Method of Residuals, the magnitude of an index flood
is often related to selected catchment characteristics using
MLRA. An MLP can also be used to relate the same sets of
variables. For example, Muttiah et al., (1997) developed
neural network models to relate the magnitude of the two-
year flood to catchment area, average annual precipitation
and mean basin elevation, all variables being transformed
logarithmically. A similar approach was applied by Hall and
Minns (1998) to relate the location and scale parameters of
the Extreme Value Type I (EVI or Gumbel) distribution to
six catchment characteristics (AREA, MSL, S1085, AAR,
SOIL, URBAN) for the data from the south-west of England
and Wales. The three-layer MLPs were trained by back

Fig. 4. Classification of 219 catchments in England Wales and
Scotland by Kohonen network. The squares represent Class I, the
triangles Class II; the circles Class III; and the upright crosses
Class IV (see Table 1(b) for the corresponding Representative

Regional Catchments).

241.178.0 00013.0= AARAREAMAF
282.2769.1 )1()1( −− ++ LAKEPLTN

Fig. 5. Regions of coherent precipitation variability for the British
Isles (adapted from Jones et al., 1997; Fig. 10.4).
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propagation on 81 sites, with another 20 sites reserved for
testing purposes. Since the data set was relatively small, no
records were reserved specifically for cross-validation, but
care was taken in determining the appropriate number of
nodes in the hidden layer to avoid over-training. For 15 of
the 20 verification sites, mean annual and 50-year floods
could also be estimated using the FSR ‘mean annual flood
plus growth curve approach’ (NERC, 1975). The results
showed that the root mean square error (RMSE) of the ANN
estimates were 39 per cent lower for the mean annual flood
and 30 per cent lower for the 50-year flood than the FSR
estimates. The results are reproduced in Figs. 6(a) and 6(b)
for the mean annual flood and the 50-year flood respectively.

A similar approach was applied to the data for Java and

Sumatra (Hall et al., 2000), training ANNs on 66 sites with
another 25 used for verification purposes, with between 4
and 12 input catchment characteristics and the same two
EVI parameters as outputs. The results are summarised in
Fig. 7, which shows the variation of RMSE with number of
independent variables. Each MLP was trained ten times with
different randomised starting values for the weights, and
some indication of the scatter is given by the band denoting
plus and minus one standard deviation about the average
RMSE. The best result in terms of the RMSE of the mean
annual floods for the verification data set was obtained with
eight catchment characteristics, but the improvement in
RMSE over the regression equation (Eqn. (2) above) derived
for 92 catchments was only marginal. However, when the
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Fig. 6. Plots of computed versus observed floods for selected sites in FSR Regions 8 and 9:
(a) mean annual floods; and (b) 50-year floods.
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data set was divided into the three classes as indicated by
the Kohonen network analysis summarised above, retaining
the same catchments for training and verification, the RMSE
for the mean annual flood was reduced to 65 per cent of
that obtained by applying the regression equation. There
are therefore considerable benefits to be gained from
pursuing the sub-division of the original data set according
to the results of the SOFM classification, in contrast to the
absence of discernable sub-regions in the results from
applying the Method of Residuals. Further confirmation of
the benefits of classification could be obtained by repeating
the analysis with random selections of catchments forming
the regions, but at the time of writing this exercise has not
been undertaken.

Concluding remarks
The FSR (NERC, 1975; Vol I, Section 4.3.10), provided a
simple method for evaluating the ‘worth’ in terms of the
equivalent number of years of record, N, of a regression
estimate of a flow quantile. Using this approach, in which
the standard error of the (log) estimate is equated to the
quotient of the (regional) coefficient of variation of annual
floods and the square root of N, the equivalent record length
is usually of the order of only one year. There is therefore
considerable scope for improvement in the precision of
regionalised flood quantile estimates. Such improvements
can be sought in the two distinct steps of demarcating regions
of similar flood behaviour and then relating catchment and
rainfall characteristics to index flood magnitudes. In the
widely used Method of Residuals, the two steps are applied
iteratively, with the purpose of identifying geographical
clusters of sites with similar magnitudes and signs of the

differences between observed and estimated index floods.
For the data sets from Indonesia, this approach failed to
provide any evidence of such sub-regions, even when the
islands of Java and Sumatra were considered separately.

In contrast, when the data sets were analysed using a data
mining technique involving unsupervised learning, three
classes of catchment were identified for both Indonesia and
south-west England and Wales, and four for England
Scotland and Wales. The technique applied was the Kohonen
network, which in practice is more of a data sorting
algorithm than a data classification tool (see Kohonen,
1995). The results obtained therefore often display distinct
monotonic changes in the magnitude of the input variables
between classes (see Table 1). In hydrological terms, the
groupings separated the small, steep, high rainfall
catchments from the large, flat, lower rainfall drainage
basins. Similar sub-divisions (but with obviously different
RRCs) were observed in the two contrasting climates of the
British Isles and Indonesia. With a sample of the order of
50–100 catchments, a third intermediate class of drainage
area consistently emerges with characteristics that are
intermediate between the first two. When a data set of over
200 catchments for England, Wales and Scotland was
analysed, the intermediate classes were better differentiated.
Seemingly, the pooling of larger regional data sets leads to
more supportable classifications of catchments.

In the analyses reported above, the input catchment
descriptors were limited to those for which data were either
already available or could be analysed with a reasonable
expenditure of time and effort. The possibility remains that
other descriptors might be introduced that would assist in
defining the intermediate class more clearly. The application
of a fuzzy classification technique to south-west England
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and Wales (Hall and Minns, 1999) demonstrated similar
groupings of sites to the Kohonen network, but provided
additional evidence of shared membership when three
classes were postulated.

The properties of MLP-type ANNs as universal function
approximators are well known (see, for example, Hornik et
al., 1989), and therefore the extra ‘worth’ in the
improvement in RSMEs of flood quantiles from verification
data sets obtained with ANNs when compared with multiple
linear regression equations is not unexpected. However, a
particular advantage of the ANN approach is that the
parameters of a specified form of frequency distribution can
be chosen as network outputs in preference to the magnitude
of a single flood quantile, thereby avoiding the additional
complication of developing a regional growth curve.
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