Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 5, issue 3
Hydrol. Earth Syst. Sci., 5, 519–528, 2001
https://doi.org/10.5194/hess-5-519-2001
© Author(s) 2001. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Special issue: Assessment of recovery of European surface waters from...

Hydrol. Earth Syst. Sci., 5, 519–528, 2001
https://doi.org/10.5194/hess-5-519-2001
© Author(s) 2001. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  30 Sep 2001

30 Sep 2001

Modelling nitrogen dynamics at Lochnagar, N.E. Scotland.

A. Jenkins1, R. C. Ferrier2, and R. C. Helliwell2 A. Jenkins et al.
  • 1Centre for Ecology and Hydrology, Wallingford, Oxon OX10 8BB, UK
  • 2Macaulay Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
  • Email for corresponding author: jinx@ceh.ac.uk

Abstract. Controls on nitrate leaching from upland moorland catchments are not yet fully understood and yet, despite agreements on emission reductions, increased surface water nitrate concentrations may affect significantly the acidity status of these waters in the future. At Lochnagar, an upland moorland catchment in N.E. Scotland, 12 years of surface water chemistry observations have identified a steady increase in nitrate concentration despite no measured change in inorganic nitrogen deposition. The MAGIC model has been applied to simulate a "best case" situation assuming nitrate in surface water represents "hydrological" contributions (direct run-off) and a ‘worst case’ assuming a nitrogen saturation mechanism in the catchment soil. Only the ‘saturation’ model is capable of matching the 12 years of observation for nitrate but both model structures match the pH and acid neutralising capacity record. Future predictions to 2040, in response to the agreed emission reductions under the Gothenburg Protocol, are markedly different. The worst case predicts continued surface water acidification whilst the best case predicts a steady recovery.

Keywords: nitrogen saturation, modelling, Lochnagar, Gothenburg Protocol

Publications Copernicus
Download
Citation