Articles | Volume 5, issue 2
30 Jun 2001
30 Jun 2001

Influence of parameter estimation uncertainty in Kriging: Part 1 - Theoretical Development

E. Todini

Abstract. This paper deals with a theoretical approach to assessing the effects of parameter estimation uncertainty both on Kriging estimates and on their estimated error variance. Although a comprehensive treatment of parameter estimation uncertainty is covered by full Bayesian Kriging at the cost of extensive numerical integration, the proposed approach has a wide field of application, given its relative simplicity. The approach is based upon a truncated Taylor expansion approximation and, within the limits of the proposed approximation, the conventional Kriging estimates are shown to be biased for all variograms, the bias depending upon the second order derivatives with respect to the parameters times the variance-covariance matrix of the parameter estimates. A new Maximum Likelihood (ML) estimator for semi-variogram parameters in ordinary Kriging, based upon the assumption of a multi-normal distribution of the Kriging cross-validation errors, is introduced as a mean for the estimation of the parameter variance-covariance matrix.

Keywords: Kriging, maximum likelihood, parameter estimation, uncertainty