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Abstract

This paper considers distributed hydrological models in hydrology as an expression of a pragmatic realism. Some of thefdsitdmted
modelling are discussed including the problem of nonlinearity, the problem of scale, the problem of equifinality, the groblgoeness and
the problem of uncertainty. A structure for the application of distributed modelling is suggested based on an uncertpiamd$oape space
to model space mapping. This is suggested as the basis for an Alternative Blueprint for distributed modelling in the fapplizigion
methodology. This Alternative Blueprint is scientific in that it allows for the formulation of testable hypotheses. It &itars@sn on the prior
evaluation of models in terms of physical realism and on the value of data in model rejection. Finally, some unresolvesl thaesiistributed
modelling must address in the future are outlined, together with a vision for distributed modelling as a means of leatplgedou

Realism in the face of adversity could be used; even then, on the computers available, it

It is almost 30 years since | wrote my first distributed proved difficult to perform simulations that took less
hydrological model for my PhD thesis, following the Freezecomputer time than real time simulated.
and Harlan (1969) blueprint but using finite element The modelling results were never published. They were
methods. My thesis (Beven, 1975) contained an applicatiosimply not good enough. The model did not reproduce the
of the model to the small East Twin catchment in the UK stream discharges, it did not reproduce the measured water
the catchment that had been studied in the field by Weymatable levels, it did not reproduce the observed heterogeneity
(1970). The model represented a catchment as a number of inputs into the stream from the hillslopes (Fig. 2). It was
variable width, slope following, hillslope segments, eachfar easier at the time to publish the results of hypothetical
represented by a 2D (vertical and downslope directionsgimulations (Beven, 1977). The ideas in what follows are
solution of the Richards equation (Fig. 1). Computeressentially a distillation of those early experiences and of
limitations meant that only a coarse finite element mestthinking hard about how to do distributed modelling in some

sense “properly” since then.

The limitations of that PhD study were in part because of

*2001 EGS Dalton medallist K.J. Beven is Professor of Hydrology at Lancaster the crudeness of the representation given the computer
University. He has made fundamental and innovative contributions over many yearsf€sources available at the time (the model itself actually
to model development and modelling technology and has received many prestigiousexjsted as two boxes of computer cards). Just as in numerical
o, Wealhr forecasting, the accuracy of numerical algoritms

for solving the partial differential equations and the feasible
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[y conditions (e.g. Beven and O’Connell, 1982; Beven, 1985).
i T That argument continues to be used in discussions of the
- problems of parameter estimation (e.g. Smeitlal, 1994;
. De Marsily, 1994; Beveet al, 2001).
' s What then does “realism” mean in the context of
P distributed hydrological modelling? At the risk of making
\f I;',-;I,-' a gross generalisation, | suggest that most practising
’ environmental scientists have, as a working philosophy, a
-.II 1 .'1 \ . pragmatic or heuristic realism; that the quantities that we
| L ,.*" A I." deal with exist independently of our perceptions and
J Loh S ,ff / empirical studies of them, that this extends even to quantities
ITI“" ma that are not (yet) observable, and that further work will move
v fa . / the science towards a more realistic description of the world.
R / Again, at the risk of generalising, | would suggest that most
'. | a / practising environmental scientists do not worry too much
about the theory-laden nature of their studies, (subsuming
2 \_ﬂ.f_____.x’j any such worries within the general framework of the critical
rationalist stance that things will get better as studies
progress). As has been pointed out many times, this theory
laden-ness applies very much to experimental work, but it
Fig. 1. The East Twin catchment, UK (21 ha), showing the hillslopes applies even more pointedly to modelling work where theory
segments for the finite element model of the Lower must condition model results very strongly.
Catchment. Triangles show stream gauges. . . . . « " . .
This pragmatic realism is a “natural” philosophy in part
because, as environmental scientists, we are often dealing
discretisation of the flow domains has improved with phenomena that are close to our day-to-day perceptions
dramatically since 1975. However, just as in numericalof the world. At a fundamental level | do a lot of computer
weather forecasting, there remain limits to the detail thamodelling but | think of it as representing real water. If | try
can be represented and there remains a problem db predict pollutant transport, | think of it as trying to
representing or parameterising sub-grid scale processes. Aspresent a real pollutant. Environmental chemists measure
computer power improves further into the future, the feasibleéhe characteristics of real solutions and so on. What | am
discretisation will become finer but the problem of sub-grid calling pragmatic realism naturally combines elements of
parameterisation does not go away. The form of thabbjectivism, actualism, empiricism, idealism,
parameterisation might become simpler at finer scale buinstrumentalism, Bayesianism, relativism and hermeneutics;
there is then the problem of knowing what might be theof multiple working hypotheses, falsification, and critical
actual values of parameters for all the different spatialrationalism (but allowing adjustment of auxiliary
elements (Beven, 1989, 1996b, 2000a). conditions); of confirmation and limits of validity; of
There is then an interesting question as to how far suchmethodologies of research programmes while maintaining
models, with their necessary approximations of processean open mind to paradigm shifts; and of the use of “scientific
and parameters at the element scale, can represent realityethod” within the context of the politics of grant awarding
An analysis of this question reveals a number of issues. Theggogrammes and the sociology of the laboratory. Refined
will be summarised here as the problems of nonlinearity; oind represented in terms of ideals rather than practice, it
scale; of uniqueness; of equifinality; and of uncertainty.probably comes closest to th@nscendental realisnof
The aim is, as ever, a “realistic” representation of theBhaskar (1989; see also Collier, 1994). However, in
hydrology of a catchment that will be useful in making hydrology at least, theracticeoften appears to have more
predictions in situations that have not yet occurred or wheren common with the entertaining relativism of Feyerabend
measurements have yet to be made. Indeed, one argumdi®B91), not least because theories are applied to systems
for the use of distributed modelling in hydrology has alwaysthat areopenwhich, as Cartwright (1999) has recently
been that they might be more “realistic” than simpler modelgointed out even makes the application of the equation
that are calibrated to historical data in a curve-fittingforce=mass*acceleratiorifficult to verify or apply in
exercise, with no guarantee, therefore, that they might dpractice in many situations. Hydrologists also know only
well in simulating responses in other periods or othertoo well the difficulties of verifying or applying the mass
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Fig. 2. Results of finite element simulations of the Lower East Twin catchment. All observed data collected by Darrell

Weyman. (a) Observed and predicted water table levels above a 1m wide throughflow trough. (b) Observed and

predicted discharges from the throughflow trough using only measured soil parameter. (c) Observed and predicted

discharges from the catchment. Dashed line: observed discharge from Upper catchment (not simulated). Dotted line:

observed discharge from upper catchment with simulated discharge from lower catchment added. Full line: observed
discharge measured at outlet from lower catchment.

and energy balance equations in open systems (Bevenreas of environmental science such as weather forecasting
2001b, d). This does not, of course, mean that such principleand numerical models of the ocean. It is not nearly so clear
or laws should not be applied in practice, only that we shouldh distributed hydrological modelling even though many
be careful about the limitations of their domain of validity people feel that, by analogy, it should be. This analogy is
(as indeed are engineers in the application of the forceritically misguided, for some of the reasons that will be
equation). explored in the sections that follow. It has led to a continuing
It is in the critical rationalist idea that the description of but totally unjustified determinism in many applications of
reality will continue to improve that many of the problems distributed modelling and a lack of recognition of the limits
of environmental modelling have been buried for a longof distributed hydrological modelling in the face of these
time. This apparent progress is clearly the case in mangdverse problems.
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The prob|em of n0n|inearity mathematics, even if Richards’ equation is acceptable as a

The problem of nonlinearity is at the heart of many of thedescnptlon of the local flow processes (which could also be

. . o . ,e.0.B , 1982).
problems faced in the application of distributed modelllngOlebated e.g. Beven and Germann, 1982)

. . These implications are well known, so why have they been
concepts in hydrology, despite the fact that for many yearls nored for so long in distributed modelling in hydrology?
“linear” models, such as the unit hydrograph and more recer] )

. . s it simply because there is no “physically based” theory to
linear transfer functions, have been shown to work well (see Py phy y y

i . gut in the place of Richards equation, since alternative sub-
for example, Beven 2001a), particularly in larger catchments . . B
(but see Goodrickt al, 1995, for a counter-example in a grid parameterisations seem too “conceptual” in nature? The
} ' P recent work by Reggiaret al. (1998, 1999, 2000) is an

semi-arid environment where channel transmission losses .
. . : o . attempt to formulate equations at the subcatchment or flow
result in greater apparent nonlinearity with increasing

. : . L element scale directly in terms of mass, energy and
catchment size). In fact, this apparent linearity is often a .

. : momentum equations but has not solved the problem of
de factoartefact of the analysis. It applies only to the

. . . . . arameterising the space and time integrated exchanges
relationship between some “effective” rainfall inputs andp g b 9 9

. . . between elements in heterogeneous flow domains.
river discharge (and sometimes only to the “storm runoff” 9

. . . There are other implications of nonlinearity that are
component of discharge). It does not applyto the reIatIonShII&nown to be important. Nonlinear systems are sensitive to

between rainfall inputs and river discharge that is known tc{heir initial and boundary conditions. Unconstrained they

be a nonlinear function of antecedent conditions, rainfall . - . . .
; . will often exhibit chaotic behaviour. Initial and boundary
volume, and the (interacting) surface and subsurface

. . conditions are poorly known in hydrology (see notably
processes of runoff generation. Hydrological systems ar
: LT . . . tephenson and Freeze, 1974), as often are the observed
nonlinear and the implications of this nonlinearity should

. . . L values with which the model predictions are compared, but
be taken into account in the formulation and application of . .

_ fortunately the responses are necessarily constrained by mass
distributed models.

: . and energy balances. It is these constraints that have allowed
This we do attempt to do, of course. All distributed models gy . .
._hydrological modellers to avoid worrying too much about

have nonlinear functional relationships included in their . . N
P té1e potential for chaos. Essentially, by maintaining

local element scale process descriptions of surface an .
i agprommately correct mass and energy balances, models
subsurface runoff generation, whether they are based on th

: ) cannot go too far wrong, especially after a bit of calibration
Richards equation or the SCS curve number. We have n g g. esp y

. %tf parameter values. That does not mean, however, that it is
been so good at taking account of some of the other

S . X . . easy to get very good predictions (even allowing for
implications of dealing with nonlinear dynamical systems, . ;
. . . observation error), especially for extreme events.
however. These include, critically, the fact that nonlinear S . . .
. . This is reinforced by recent work in nonlinear dynamics
equations do not average simply and that the extremes ?c];

anv distribution of responses in a nonlinear svstem may b oking at stochastically forced systems of simple equations.
. y . . P y y ‘T‘his work suggests that where there is even a slight error in
important in controlling the observed responses. Crudel

: ) X . . ‘the behaviour or attractor of an approximate model of a
interpreted in hydrological terms, this means local subgrid- .

. - . : r(|known) system, the model will not be able to reproduce
scale nonlinear descriptions, such as Richards equation, S
correctly the extremes of the distribution of the output
should not be used at the model element scale (let alone at . . . .

. . variables either for short time scatedor integrated outputs

the GCM grid scale) where the heterogeneity of local

o . . over long (e.g. annual) time scales. If this is true for simple
parameter variations is expected to be important (Beven .
. . systems, does it imply that the same should be true for flood
1989, 1995). The local heterogeneities will mean that the rediction and water yield predictions using (always slightl
element scale averaged equatiomsst be different from P yie:ap g ys Shightly

- . wrong) distributed models in hydrology? How can predictive

the local scale descriptions; that using mean local scale - . . .
i : . Capability be protected against these effects of nonlinearity?

parameter values will not give the correct results, especially

where there are coupled surface and subsurface flows (Binley

et al, 1989); and that the extremes of the local responsey he problem of scale

(infiltration rates, preferential flows, areas of first saturation) o ]

will be important. This suggests, for example, that the usé "€ Problem of scale is inherently linked to that of

of pedotransfer functions to estimate a set of average Soﬂonhnearlty. Scale issues in linear systems are only related

parameters at the element scale of a distributed hydrologic4? the Problem of assessing adequately the inputs at different

model should not be expected to give accurate results. Not§c@les With available measurement techniques. - As is well

this follows purely from considerations of nonlinear known by all hydrological modellers, this is a problem even

in the simple assessment of rainfalls over different sizes of
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catchment area, even before trying to make some assessmeither indirect or large scale measurements. In both cases,
of the nature and heterogeneity of the surface and subsurfaeetheory of inference would be required. This would be the
processes with the measurement techniques available. It &caling theory but it is clear from this argument that any
clear, for example, that we have kept the Richards equatiosuch theory would need to be supported by strong
approach as a subgrid scale parameterisation for so loressumptions about the nature of the characteristics of the
because it is consistent with the measurement scales of sdibw domain even if we felt secure about the nonlinearities
physical measurements. Because we have no measuremefitthe flow process descriptions. The assumptions would
techniques that give information directly at the element gridnot, however, be verifiable: it is more likely that they would
scales (say 10 m to 1 km in the case of distributedoe made for mathematical tractability rather than physical
hydrological models to 5 to 100 km in the case of land surfaceealism and applied without being validated for a particular
parameterisations for NWP and GCM models) we have noflow domain because, again, of the limitations of current
developed the equivalent, scale consistent, processeasurement techniques.
descriptions that would then take account implicitly of the Thus, the problem of scale in distributed hydrological
effects of subgrid scale heterogeneity and nonlinearity. modelling does not arise because we do not know the

A recent comment by Bldschl (2001) has discussed th@rinciples involved. We do, if we think about it, understand
scale problem in hydrology. His analysis has much the sama lot about the issues raised by nonlinearities of the processes,
starting point as that of Beven (1995). He also recogniseketerogeneities of the flow domains, limitations of
the need to identify the “dominant process controls” atmeasurement techniques, and the problem of knowing
different scales but comes to a totally different conclusionparameter values or structures everywhere. The principles
Whereas Beven (1995) suggests that scaling theories wilire general and we have at least a qualitative understanding
ultimately prove to be impossible and that is thereforeof their implications, but the difficulty comes in the fact
necessary to recognise the scale dependence of mod#lat we are required to apply hydrological models in
structures, Bléschl (2001) suggested that it is in resolvingarticular catchments, all with their own unique
the scale problem that the real advances will be made inharacteristics.
hydrological theorising and practice in the future. How do
these two viewpoints bear on the application of distributed .
hydrological models? The problem of uniqueness

Let us assume for the moment that it might be possible tgn the last 30 years of distributed hydrological modelling
develop a Scaling theory that would allow the definition of there has been an |mp||c|t under|ying theme of deve|0ping
grid or element scale equations and parameter values Qigeneral theory of hydrological processes. It has been driven
the basis of knowledge of the parameter values at smallajy the pragmatic realist philosophy outlined earlier. The
scales. Certainly some first attempts have been made to dgea that if we can get the description of the dynamics of
so in subsurface flows (e.g. Dagan, 1986, and others) anie processes correct then parameter identification problems
surface runoff (e.g. Tayfur and Kavvas, 1998). Attempts argyill become more tractable is still strongly held. However,
also being made to describe element scale processes in terjisa recent paper, | have put forward an alternative view:
of more fundamental characteristics of the flow domain,that we should take much more account of the particular
such as depositional scenarios for sedimentary aquifers. Thigharacteristics of particular catchment areas, i.e. to consider
reveals the difference between hydrology and some othefe question of uniqueness of place much more explicitly
subject areas in this respect. In hydrology, the developmerniBeven, 2000a).
of a scaling theory is not just a matter of the dynamics and |t js useful in this respect to consider the case where we
organisation of the flow of the fluid itself. In surface and could define the “perfect” model description. In its equations,
subsurface hillslope hydrology, the flovaisvaysresponding  such a model would properly reflect all the effects of local
to the local pore scale or surface boundary conditions. ThReterogeneity on the flow dynamics and the nonlinearities
characteristics of the flow domain determine the flow gssociated with the coupling of different flow processes. Test
velocities. Those characteristics must be represented agmulations with such a model would show how it takes
parameter values at some scale. Those parameter values mgstount of the redistribution of the inputs by a vegetation
be estimated in some way. But the characteristics argover; the initiation of local overland flows, reinfiltration
impossible to determine everywhere, even for surface I’UﬂOf(f)n heterogeneous surfaces, initiation and propagation of
if it occurs. For subsurface flow processes the characteristiggreferential flows, the effects of local field drainage and
are essentiallyunknowablewith current measurement ditches etc. Such a model clearly has the potential to produce
techniques. Thus, they must be inferred in some way fronpredictions that are accurate to within the limitations of
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measurement errors. However, such a model must still havehoice of word is intended to indicate an explicit recognition
some way of taking account of all the local heterogeneitieshat, given the limited measurements available in any
of the flow domain in any application to a particular application of a distributed hydrological model, it will not
catchment. In short, even the perfect model has parametebe possible to identify an “optimal” model. Rather, we should
that have to be estimated. accept that there may be many different model structures
Presumably, the perfect model will embody within it someand parameter sets that will be acceptable in simulating the
expressions to relate the parameter values it requires to soragailable data.
measureable characteristics of the flow domain (indeed, the It is worth stressing in this that, even if we believed that
perfect model seems to require that a scaling theory is, ime knew the perfect model structure, it would not be immune
fact, feasible). This could be done in either a disaggregatioto the problem of equifinality in applications to particular
or aggregation framework. A disaggregation frameworkcatchments with their own unique characteristics. Limited
would require making inferences from catchment scaleaneasurements, and particularly the unknowability of the
measurements to smaller scale process parameters. Thagbsurface, will result in equifinality, even for the perfect
would be similar to the type of calibration exercise againsmodel.
catchment discharges that is often carried out today. It clearly There has been a commonly expressed hope that, in the
leaves scope for multiple parameter sets being able téuture, remote sensing information would lead to the
reproduce the catchment scale behaviour in a way that igossibility of more robust estimates of spatially distributed
consistent with the model dynamics. parameter values for distributed hydrological modelling in
An aggregation process implies that information will be applications to unique catchment areas. Pixel sizes for
required on the heterogeneity of parameter values withimemote sensing are at the same scale, or even sometimes
the catchment area. We will not, however, be able tdiner, than distributed model element scales and in many
determine those parameters everywhere in a particulamages we can easily detect visually spatial patterns that
catchment area with its own unique characteristicsappear to be hydrologically significant (we can include here
especially because the perfect model would tell us that it iground probing radar and cross-borehole tomography
the extremes of the distribution of characteristics that mayechniques that give some insight into the local nature of
be important in controlling storm runoff generation. It is the subsurface flow domain). However, the potential for
always more difficult to estimate the extremes of aremote sensing to provide the information required would
distribution than the first two moments (even where theappear to be limited. The digital numbers stored by the sensor
distribution can be characterised in simple form). Thus, ao not give direct estimates of the hydrogical variables or
very large number of measurements would be requiregharameters required at the pixel scale. They require an
without any real guarantee that they are spatially cohereninterpretative model. Such a model will, itself, require
Since our current measurement techniques have seveparameter values to reflect the nature of the surface, the
limitations in assessing spatial variability then it would seemstructure and state of the vegetation, the state of the
that the aggregation approach would also result in a largatmosphere, etc. In fact, the digital numbers received by the
number of model parameter sets being consistent with theser may already have been processed by an interpretative
model dynamics in reproducing the large scale behaviourmodel to correct for atmospheric effects etc. in a way that
Thus, even if we knew the structure of the perfect modelmay not reflect all the processes involved even if the
uniqueness of place leads to a very important identifiabilityinterpretative model is physically “realistic”. The user may
problem. In the case of the perfect model, this could bevish to leave such corrections to the imaging “experts”, but
considered as simply a problem of non-identifiability i.e. awill then need to apply a further interpretative model for
unique (“optimal”) set of parameters would exist, if only the hydrological purposes he/she has in mind. The resulting
we had the measurements available to be able to identify itincertainties may, at least sometimes, be very significant
In practice, with limited measurements available there wouldsee for example Franlkd al, 1997), especially where the
most probably be a non-uniqueness problem i.e. that thengarameters of the interpretative model might also be expect
appear to be several or many different optimal parameteto change over time, e.g. with vegetation growth or
sets but the measurements do not allow us to distinguiskenescence.
between them. However, we cannot normally assume that Thus, remote sensing information will also be subject to
we are using such a perfect model structure. Thus, Beveequifinality in interpretation and uncertainty in prediction.
(1993, 1996a,b) has suggested that it is better to approadrhis will be compounded by the need to couple interpretative
the problem of uniqueness of place using a concept ofmodels for satellite or aircraft images which, except under
equifinality of model structures and parameter sets. Thisunusual circumstances, give only information on near surface
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emissions, to models of the subsurface. However, it is wortlgeneral likelihood measures, including fuzzy measures, can
repeating that it is often possible to see hydrologicallybe used in which case only conditional prediction limits or
significant patterns in some images. Thus, it should bepossibilities are estimated. Different likelihood measures can
expected that there is useful information on the distributedbe combined using Bayes equation or a number of other
responses of particular hillslopes and catchments to benethods (Beveet al, 2000; Beven, 2001a).
gained from remote sensing, but it will certainly not solve There is one other implication of equifinality that is of
the problem of uniqueness. particular importance in distributed modelling. Distributed
models have the potential to use different parameter values
. . for every different element in the spatial discretisation. In
The problem of eqUIfma“ty general this means that many hundreds or thousands of
The recognition of equifinality arose out of Monte Carlo parameter values must be specified. Clearly it is not possible
experiments in applying models with different parameterto optimise all these parameter values, they must be estimated
sets in simulating catchment scale discharges (Beven arsh the basis of some other information, such as soil texture,
Binley, 1992; Duaret al, 1992; Beven, 1993). It resulted vegetation type, surface cover etc. Values are available for
in some interestingly different responses. The University odifferent types of soil, vegetation etc in the literature.
Arizona group response was that a better method foHowever, such values will themselves have been back-
identifying the optimal parameter set was required, leadingalculated or optimised against observations gathered in
to their development of the stochastic complex evolutionspecific (unique) locations under particular sets of forcing
methodology, as embodied in the UA-SCE software. Othetonditions. One of the lessons from GLUE studies is that it
experiments in global optimisation have explored simulateds theparameter sethat is important in giving a good fit to
annealing, genetic algorithms and Monte Carlo Markovthe observations. Itis very rarely the case that the simulations
Chain methodologies (e.g. Kuczera, 1997, Kuczera an@re so sensitive to a particular parameter that only certain
Parent, 1999). A further recognition that the results of evervalues of that parameter will give good simulations. More
a global optimisation depended strongly on the evaluatioroften a particular parameter value will give either good or
measure used has lead to the exploration of multi-objectivéad simulations depending on the other parameter values
optimisation techniques such as the Pareto optimal seh the set. Thus, bringing together different parameter values
methodology of Yapet al (1998) and Guptat al (1999),  from different sources is no guarantee that, even if they were
again from the Arizona group. The underlying aim, however,optimal in the situations where they were determined, they
has still been to identify parameter sets that are in somwill give good resultgs a set in a new set of circumstances.
sense optimal. Be warned!

The response of the Lancaster University group was
d|ff§rent. They were prepareq to 'rgject the idea that afrhe problem of uncertainty
optimal model would ever be identifiable and develop the
concept of equifinality in a more direct way. This lead to The aim of the GLUE methodology is to produce a set of
the Generalised Likelihood Uncertainty Estimation (GLUE) behavioural models that properly reflect the uncertainties
Methodology (Beven and Binley, 1992; Bewtral, 2000,  arising from the modelling process and that reproduce the
Beven, 2001a). GLUE is an extension of the Generalisedbserved behaviour of the catchment within the limitations
Sensitivity Analysis of Hornberger, Spear and Youngof measurement error. This is not always easy because of
(Hornberger and Spear, 1981; Spekal, 1994) in which  errors in the input data and errors in the model structure,
many different model parameter sets are chosen randomlipoth of which may be difficult to asseaspriori. This is
simulations run, and evaluation measures used to reject sondemonstrated quite nicely in the simulation results of Freer
models (model structure/parameter set combinatioms)ras et al. (1996) where a timing error in the initiation of
behaviouralwhile all those considered Ashaviouralare ~ snowmelt in the model results in a long period where the
retained in prediction. In GLUE the predictions of the GLUE model prediction limits parallel but do not bracket
behavioural models are weighted by a likelihood measurghe observations. This could of course be corrected, either
based on past performance to form a cumulative weightelly adding a stochastic error model or, if the interest is in
distribution of any predicted variable of interest. Traditional short term forecasting, by data assimilation.
statistical likelihood measures can be used in this framework, In principle, the additional uncertainties arising from
in which case the output prediction distributions can beestimation errors in input data and other boundary conditions
considered as probabilities of prediction of the variable ofcould also be included in GLUE but this has not normally
interest. However, the methodology is general in that mordeen done, for reasons of both computational requirements
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and the problem of defining a model for that type ofrejected (are not decidable) on the basis of the data to hand.
uncertainty. Thus, again, the results will be conditional: Additional data, or different types of data, might mean that
conditional on the input sequences used, the model structurege could reject more of the models that up to now have
considered, the random parameter sets chosen, and theen behavioural in this sense.
likelihood measures chosen for model evaluation. All these In some cases new data might mean that we could reject
choices, however, must be made explicit and can be subjeatl the models we have available, in which case we might
to critical review by end-users (and reviewers). have to revise the model structures or potential parameter
In simulation, the use of a stochastic error model raisesets considered in the analysis. In this case we could actually
some interesting issues. It should be expected that thgain understanding. If models continue to work acceptably
structure of the modelling errors should vary over time. Thiswell but cannot be distinguished then there is really no way
has long been recognised in terms of the heteroscedasticitf deciding between them. If we have to reject models then
of errors but, in hydrological series, it should also be expectedie will gain much more information about what might be
that the errors will be non-gaussian and changing in skevan appropriate process description. If we have to reject all
between high and low flows. Thus it may be difficult to models then we will have to query the model structure itself,
formulate a statistical error model (and likelihood function) or look more closely at how meaningful are the observations
that is consistent over both time and, with the GLUEthat we are using to decide on model rejection. However,
methodology, for different behavioural parameter sets thatejection of all models will also mean that we have no
may also vary locally in their bias and error covariancepredictions, so we might (just possibly) instead choose to
structures. So much of statistical parameter inference igelax our criteria for retaining models as “acceptable”.
predicated on the implicit assumption that the “true” model
is available, that the rejection of that possibility in favour of
a concept of equifinality means that some new approachegS there a way ahead? How far can we gO?
are needed. GLUE is one such approach that can be usédoking at the problem of equifinality as a question of
for models for which it is computationally feasible. It has decidability allows an interesting reformulation of the GLUE
been used for distributed and semi-distributed models oveapproach, to the extent that Beven (2001b) has suggested
limited domains but clearly there are still some distributedthat it allows an Alternative Blueprint for distributed model
modelling problems for which the parameter dimensionalityin hydrology, to replace that of Freeze and Harlan (1969). It
and computational times mean that a full Monte Carlois not, however, an alternative set of descriptive equations.
analysis remains infeasible. However, it is an open questioithe discussion above suggests that, although we know that
as to whether the affordable parallel computer power to déhe Freeze and Harlan description is inadequate, we do not
so will arrive before we develop the conceptual andyet have the measurement techniques that would enable us
theoretical developments or measurement techniques thé formulate a new scale dependent set of process
might make a GLUE-type analysis unnecessary. descriptions. Thus we will have to resort to the variety of
One response to the equifinality problem is to suggestonceptual formulations that are currently available (this
that the problem only arises because we are using podncludes Richards equation which, as applied as a sub-grid
models (Beven, 1996a). Again, there is a widespread beligarameterisation in practice, is certainly a conceptual model
that if we could get the model dynamics right then perhapshat should be expected to have scale dependent parameter
we would have less parameter identification problems. Thevalues, Beven, 1989, 1996b).
analysis above suggests that this belief is not justified. Even Within the GLUE framework this is not a problem in
the perfect model will be subject to the problem of principle, only a problem of computational resources.
equifinality in applications and we know very well that we Ignoring computational limitations it will be possible in
have not quite attained the perfect model. Clearly, thereforegrinciple to evaluate different model conceptualisations, and
we are using poor models in that sense but many modenparameter sets within those conceptualisations, to evaluate
modellers, as instrumentalists, will argue that despite theiwhich models are behavioural and which should be rejected,
limitations they are the best models available (often givingaccording to some statistical or more pragmatic criteria.
quite acceptable simulations) and they are what we mudturther, it will be possible to give some relative ranking to
make use of in practical prediction. Thus, it is perhaps beghe different behavioural models in terms of the likelihood
to view the uncertainty arising from equifinality as a questionweights to be used in the determination of prediction limits.
of decidability. The fact that we have many models that givdt is true that many modellers find that the relativism inherent
acceptable simulations of the available data does not medn this type of GLUE methodology is totally incompatible
that they are poor models. It only means that they cannot baith a view of hydrology as a science. | suspect that many
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end-users of hydrological predictions would take a similar (iii) Define the range for each parameter in each model.
view. (iv) Reject any parameter combinations that cannot be
However, my own view is that there is actually an justified as physically feasibke priori.
opportunity here to put hydrological prediction on a firmer (v) Compare the predictions of each potential model with
scientific basis (see Beven, 2000a). Let us pursue the idea the available observed data (which may include both
of equifinality as a problem of decidability given the available catchment discharge and internal state measurements,
data a little further. The idea of accepting many behavioural as well as any qualitative information about catchment
models in prediction because they have all given simulations processes) and reject any models which produce
that are consistent with the available data does not mean unacceptable predictions, taking account of estimated
that those models are indistinguishable, nor that we could error in the observations.
not decide between those models given the right sort of data. (vi) Make the desired predictions with the remaining
This is perhaps best viewed in terms of a mapping of the successful models to estimate the risk of possible
landscape of a catchment into the model space (Beven, outcomes.
2000a, b, 2001b). Accepting the concept of equifinality, each
landscape unit might be represented by many differentn terms of the assessment of physically realistic distributed
behavioural models in the model space. The mapping wilmodels in hydrology the most important steps in this process
therefore be an uncertain or fuzzy mapping depending oare the rejection of models that cannot be considered as
what type of evaluation measures are used, with differenphysically feasible, eithea priori, or as resulting in
landscape units mapping into possibly overlapping areas afinrealistic predictions.
the model space. The differences in predicted behaviour for There is an interesting further stage that might prove to
the behavioural models for each landscape unit can then bee useful in the future. If, in principle, a model structure or
reflected in mapping the results of simulations in the modeket of model structures has an adequate range of hydrological
space. functionality and that functionality can be mapped in the
One of the interesting features of this view of the modellingmodel space for a certain set of input conditions then the
processes is that, in principle, everything is known abougreas oflifferentfunctional response can be mapped out in
the simulations in the model space. If the models are ruthe model space. Thus, it may only be necessary to make
purely deterministically with a single set of input forcing representative predictions for these different functionally
data this will be a one to one mapping. But even if the modesimilar areas of the feasible model space and not for all
is stochastic and the inputs are treated stochastically thgoossible models in the feasible space, thereby increasing
the output statistics could still be mapped in the model spacéhe computational efficiency of the methodology, at least in
subject only to computational constraints. Thus differencegrediction. The definition of what constitutes functional
in predicted behaviour in the model space can be identifiedimilarity is, of course, an issue and will undoubtedly vary
and an exploration of the model space might then providavith the aims of a project. A first attempt at the application
the basis for setting up some testable hypotheses that might such a strategy, in the context of defining land surface to
allow some of the behavioural models to be rejected on thatmosphere fluxes over a heterogeneous landscape, has been
basis of a new data collection programme within anoutlined by Franket al. (1997; see also Beven and Franks,
underlying falsificationist framework. The approach is then1999).
analogous to that of multiple working hypotheses (the
behavioural models) with an experimental programme, .
designed to differentiate between them and (hopefully) falsifyS ome unresolved questlons """
or reject some of them. This might then be represented abhe approach outlined above provides a way forward for a
hydrological science to the end-user and/or research grastientific approach in distributed hydrological modelling.
awarding agency. It recognises that different functional responses within the
It is this process that forms the Alternative Blueprint of model space may be a guide to hypothesis formulation and
Beven (2001b). The Alternative Blueprint as method cantesting. It recognises that the landscape unit to model space
be summarised by the following six stages: mapping may be uncertain or fuzzy in nature. It recognises
that uniqueness of place is not just a problem of trying to
(i) Define the range of model structures to be consideredidentify a unique model parameter set (as usually assumed
(i) Reject any model structures that cannot be justifiedwith most current applications of distributed models). It
as physically feasibla priori for the catchment of recognises the primary importance of data in evaluating and
interest. rejecting models as physically feasible. It recognises that



K.J. Beven

new conceptual developments are unlikely to happen quicklyhe spatial data be used to suggest different model structures
but can incorporate them easily as necessary. Indeed, it mayhere predictions of current model structures are shown to
be that conceptual model developments are most likely tdbe deficient? These questions can be posed within the
happen when we are forced to reject all the available model&lternative Blueprint but will require commitment in
because of inconsistency with data. applications of the methodology to detailed data sets.
There remain many unresolved questions that must be Finally, there is a real question as to how to develop
addressed in distributed modelling in the future. A collectiondistributed models that properly reflect the collective
of such questions arose out of the Francqui Workshop oimtelligence of the hydrological community. At first sight it
the future of distributed modelling in hydrology held in would appear that one major store of collective intelligence
Leuven in April 2000 (see Beven, 2000b, Beven and Feyens in the model software systems of the current generation
2001). Some of the most important, relevant here, includeof distributed models. | would venture to suggest, however,
how far do we need to consider the detail in processethat the continued application of models based on the Freeze
descriptions when there is no way to measure the local deta@ind Harlan blueprint is not an indication of much collective
necessary to support such descriptions? Can a model, fantelligence (Beven, 2001e). It is a simple response to the
example, based on a hysteretic storage discharge relationsHat that no coherent alternative has been proposed over the
for a hillslope be just as physically acceptable as the locdhst 30 years. “Progress” in that time has consisted in trying
hysteresis in soil moisture characteristics required by a fulavailable distributed models to see if they work with more
local application of the Richards equation (or, in the structureor less calibration and little reporting of cases where they
of the Alternative Blueprint woulglou reject ita priori as  have failed in their spatial predictions (though the graphics
physically infeasible)? have certainly improved). It remains to be seen if new model
A further question arises in applications requiring structures will develop out of new measurements (remote
distributed predictions (for example of the extent of floodsensing, tomographic imaging, incremental stream
inundation, of the risk of erosion, of potential source areaslischarges etc.) becoming available, but in the short term
for non-point pollution, etc). If it is accepted that accuracythis seems unlikely. Where then is the collective intelligence
in local predictions must be necessarily limited, when wouldof the hydrological community stored? There appear to be
predictions ofwhere rather thahow much be acceptable. two more important depositories. One is the back issues of
In some cases, such as those noted above, a relatiyeurnals relevant to hydrology, including journals in
assessment of the spatial distribution of risk, including arcomplementary fields (soil science, plant physiology,
assessment of uncertainty, might be sufficient for risk basedonlinear dynamics, etc); the other the field data sets that
decision making. have been collected from experimental and operational
There are still relatively few assessments of distributeccatchments over the years. It does seem at the current time
models that have included spatially distributed observationghat not much is being made of either of these sources of
in either calibration or evaluation. Most assessments arenformation and that a fundamental review of what is
still based on comparisons of observed and predictediecessary information for the development of future
discharges alone. This is perfectly understandable given thaistributed models is needed.
time and effort required in gathering the spatial data sets Itis, perhaps, opportune at this point to return to my PhD
necessary but it is really not acceptable (for a fine exampléhesis and the East Twin catchment. In his 1970 paper on
of a study that has made assessments of spatial predictiotige results of field studies in the East Twin, Darrell Weyman
see Uhlenbrook and Leibundgut, 2001). As Klemes (1986oted:
pointed out, even split record tests of models based ofilo produce a control section discharge of 12 litres/sec by
discharge data alone are not a strong test of model feasibilityhiroughflow alone from 540 m of bank requires a mean peak
for lumped models, let alone distributed models. Howeverthroughflow discharge of 1320 émin/metre. In contrast
the intention to test the spatial predictions of a distributedhe peak discharge from the sfihroughflow] plots was
model raises further questions. What sort of data should benly 185 crifmin/metre. On the other hand, measured seeps
collected as a useful and cost effective test? How best tiiom the soil at other locations on the channel gave peak
make use of spatial data that might already be available, fatischarges for this storm of up to 7800%min. The supply
example from observation wells or soil moisture profiles,area for these inputs is indeterminate but in terms of bank
when there may be a mismatch in scales between thiength is certainly not more than one metre as seep spacing
observations and the predicted variables? What sort ab often less than that distance.” (p.31)
evaluation or likelihood measures should be used when the Thirty years on is there a distributed model that could be
errors may be variable in structure in space and time? Casaid to be able to make use of this information? Or, within
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the Alternative Blueprint, would the existing modalsbe  developments in modelling into account. Clearly, if some
rejecteda priori at this site? Think about it in respect of radical change in modelling concepts is achieved in the
both principle and practice (and the naivety of a youngdfuture, perhaps driven by new measurement techniques, then
graduate student)! there should be the potential to include it. The challenge
will be to make a system that is “future proof” in this respect,
d . . f he f not only with respect to such new developments but also to
""" and a vision for the future the change of people who will run it and to changes in the
The Alternative Blueprint, outlined briefly above and in computer systems on which it might run. Then, gradually,
Beven (2001b), provides a framework for doing distributedwe will gain more real understanding about how local
modelling as hydrological science in a consistent way andhydrological systems really work, including all their local
in the face of the various adversities faced by the modellecomplexities. It is now possible to model the hydrology of
It is useful, within the sociology of science, to have such ahe globe (albeit with some uncertainty). More modestly and
methodology as a defence against criticism of the apparentlsnore importantly it should also now be possible to model
ad hocnature of some of the models that are reportedplaces on that globe in detail: still with uncertainty, but
especially those that use conceptual model elements tgradually learning about their particular characteristics and
interpret the information available from GIS overlays. particular idiosyncracies in hydrological response.
However, distributed models are not only being developed
because the computational resources, object oriente
programming languages, graphical interfaces, and spatiﬁ‘CknOWIedgementS
databases of today make it a relatively easy task to implemeiftthis paper is an extended version of the Dalton Medal lecture
such models, but because there is a demand for practicglven at the EGS XXVI General Assembly at Nice in March
prediction of the effects of land use change, of non-poin2001. One does not get to give such a lecture without being
source pollution, of the risks and impacts of erosion, and sin debt to a great number of people and | would particularly
on. The future of distributed modelling lies, in fact, not solike to thank Mike Kirkby who sent me in the right direction
much in the development of new theories for scaling oras an undergraduate and post-doc; Jim McCulloch who gave
process representation but in #pplicationof models and me a job at the Institute of Hydrology as a mathematical
their use over a period of time in specific catchments. modeller in spite of my degree in geography; George

This is very important because long term use in specifiHornberger for all the discussions about modelling while |
catchments implies an increasing potential for modelwas teaching at the University of Virginia; and Peter Young
evaluation, post-simulation audits, and learning about whergvho invited me to Lancaster and has kept my attention on
the model does not work. This suggests that including amhe data as a source of information, even if he does not
assessment of predictive uncertainty in modelling studiespprove of my use of the word likelihood. Then there are
will be a good idea for the modeller since it allows a greatethe many collaborators and friends who have contributed
possibility of being “right”, or at least of being wrong ideas and support, especially Tom Dunne, Eric Wood,
gracefully. It also suggests that, over time, there should be Andrew Binley, Bruno Ambroise, Charles Obled, Sarka
greater possibility of learning about the uniqueness ofBlazkova, André Musy and Jan Feyen, as well as the several
different places within an application area, building up thatgenerations of Lancaster graduate students and post-docs
knowledge, both qualitative and quantitative, in a form thatwho have actually done the real work, of whom Jim Freer
can be used to refine the representation of functionahas suffered the longest. Thanks are also due to the Francqui
responses within the framework of the Alternative Blueprint.Foundation for their support for the International Chair held
This will be one way of making use of the increased computeat K.U. Leuven in 1999/2000 and to NERC for supporting
power that will be available in the future: to build a systemwork on distributed modelling and the GLUE methodology.
that will store or re-run the results of past simulations in a
form that can be compared with a current situation; to
identify where there is drift or error in the simulations or References
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