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Abstract

This paper explores the potential for assessing the impacts of climate change upon flood frequency for the gauged, upland Wye
catchment at Plynlimon, Wales, UK, while taking account of uncertainty in modelling rainfall-runoff processes under current
conditions. A continuous simulation methodology which uses a stochastic rainfall model to drive the rainfall-runoff model
TOPMODEL is utilised. Behavioural parameter sets for both the rainfall model and TOPMODEL are identified prior to the climate
change runs using the Generalised Likelihood Uncertainty Estimation (GLUE) methodology. The “medium-high” UKCIP98
climate change scenario, obtained from the HadCM2 GCM simulations, is used as a starting point for a variety of different scenarios
at the catchment scale. It is demonstrated that while the scenarios have only a small impact upon the likelihood weighted flood
frequency uncertainty bounds in comparison with the current condition scenario, the risk of a given discharge as an element in the
distribution of T year floods is changed. This underlines the need to account explicitly for uncertainty within hydrological

modelling, especially in estimating the impacts of climate change.
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Introduction

One of the key assumptions of flood: frequency analysis is
that the return period of a flood peak of given magnitude is
stationary with time (e.g. NERC, 1975). This assumption is
only valid if a catchment’s long-term climatic, physical and
hydrological characteristics are also relatively constant with
time. Recent studies (e.g. Wigley and Raper, 1992; Arnell
and Reynard, 1996; Hulme and Jenkins, 1998; Pilling ez 4/,
1998; Hulme ez al., 1999), however, have demonstrated the
variability of climate characteristics and the potential for
hydrological impacts of future climate change. The UK
Climate Impacts Programme (e.g. UKCIP98, Hulme and
Jenkins, 1998), for example, derived several possible climate
change scenarios for the UK in the 21st Century using
output from the Hadley Centre global climate model (or
GCM), HadCM2. These scenarios included changes to
precipitation and evapotranspiration.

These changes may have serious implications for flood
frequency (e.g. Lettenmaier and Gan, 1990; Beven, 1993a;
Naden ez a/., 1996; Panagoulia and Dimou, 1997; Gellens
and Roulin, 1998). If so, then there is a clear need to
estimate the impacts of climate change upon flood fre-
quency. This is a complex problem. A GCM is subject to
large uncertainties in its representation of the current
climate at regional, and smaller, scales (especially with

respect to rainfall). In addition, a GCM’s economic and
computational cost also often prohibits the number of
multiple runs which can be made. Thus, it is not currently
possible to assign specific probabilities to climate change
predictions. The predictions must rather be evaluated as
potential scenarios that are dependent on assumptions of
future greenhouse gas inputs and current GCM modelling
technology. This situation is further complicated by the
choice of GCM (different models may yield different
results, e.g. Kattenberg ez al., 1998) and the large spatial and
temporal scales at which GCMs operate. HadCM2, for
example, utilises gridboxes of the order of 250 km in size,
with estimated changes to climate variables (such as rainfall)
being stored at a monthly timescale for each gridbox (Hulme
and Jenkins, 1998).

The use of GCM output with a rainfall-runoff model
(e.g. for the purpose of flood frequency estimation by con-
tinuous simulation at the catchment level) therefore
normally requires some form of spatial downscaling (Bloschl
and Sivapalan, 1995; Hulme and Jenkins, 1998; Kilsby et al.,
1998). This can be subject to large errors, especially with
respect to rainfall (e.g. Pilling ez o/, 1998). In addition, a
decision as to how to apply the estimated monthly changes
at the smaller timesteps required by the rainfall-runoff
model (e.g. the hourly timestep used by Blazkova and
Beven, 1997) must also be made.
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In a previous study, Wolock and Hornberger (1991) used
a stochastic rainfall model, together with the rainfall-runoff
model TOPMODEL (Beven ez al., 1995; Beven, 1997,
2000) and a temperature and potential evapotranspiration
" model, in order to investigate the effects of climate change
upon the hydrology of the White Oak Run catchment,
Virginia, USA. It was demonstrated that there was con-
siderable uncertainty associated with the magnitudes and
directions of the resulting changes in the catchment’s
hydrological characteristics when multiple realisations of
different climate change scenarios were simulated. )

In what follows, the continuous simulation methodology
developed by Cameron ez al. (1999) is used to investigate the
impacts of climate change upon flood frequency for a
gauged, upland catchment in the UK. This features the use
of TOPMODEL together with a stochastic rainfall model,
under the Generalised Likelihood Uncertainty Estimation
(GLUE) framework (Beven and Binley, 1992). Several
different implementations of HadCM2 climate change
scenarios at the catchment scale are considered. Uncertain-
ties involved in the estimations are highlighted and the
practical implications for flood management and engineer-
ing design are discussed.

The study site

The 10.6 km> Wye catchment at Plynlimon, Wales, UK,
was selected as a study site (Fig. 1). This catchment
possesses an upland terrain consisting of a high relief of
weathering resistant slates and shales, overlain by peat and
grassland. Both rainfall and runoff are fairly high (approxi-
mately 2457 mm year !, and 2075 mm year !, respec-
tively). The mean annual flood is 19.2 m’s~!, while the flow
duration curve exhibits Q50, Q75 and Q95 values of
0.360 m*~", 0.178 m*s™! and 0.070 m®s~'. Pipeflow is

known to occur within the soils (Kirby ez /., 1991; Sklash ez

al., 1996). The catchment is therefore very responsive to
storm rainfalls.

The Wye has been one of the Centre for Ecology and
Hydrology’s major experimental catchments since 1968
(e.g. Kirby er al, 1991). A large data set is therefore
available. This includes 21 years (1969-1989) of hourly flow
and catchment average hourly rainfall data (or CAHR),
derived from a network of 21 gauges. Nineteen years of
MORECS (Thompson et al., 1981) monthly potential
evapotranspiration data are also available for the 40 km
square in which the Wye catchment lies. These data have
been temporally disaggregated to a daily level according to
the pattern of daily potential evapotranspiration estimates
for 1988 for the MORECS synoptic site at Ludlow College,
England, UK.

This large data set for the Wye catchment has formed the
basis for many previous modelling studies. These have
included the use of both physically-based, distributed
models (such as the IHDM e.g. Morris, 1980; Binley ez
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al., 1991; and SHE e.g. Bathurst, 1986) and simpler, semi-
distributed models (notably TOPMODEL e.g. Beven,
1987; Quinn and Beven, 1993). For computational reasons,
flood frequency studies have employed the latter simpler
model types in order to simulate the catchment response. In
the studies of Beven (1987) and Cameron er al. (1999), a
stochastic rainfall generator was used in conjunction with
TOPMODEL to generate one hundred and one thousand
year simulations with an hourly timestep, respectively.

Many previous climate change impact studies (e.g.
Naden et al., 1996; Kilsby ez al., 1998) have been conducted
at regional or large catchment scales (typically ranging from
hundreds to thousands of km?® with respect to catchment
area) but without any consideration of the uncertainty in the
predictions arising from the uncertainty in modelling the
rainfall-runoff process. The results presented in this paper
therefore demonstrate a new direction for climate change
impact studies at the local scale for a gauged catchment
(climate change studies at ungauged sites would be subject
to further uncertainties, Calver et al., 1999).

The hydrological model

Full details of TOPMODEL may be found in Beven ez al.
(1995), and Beven (1997, 2000), so only a brief summary is
outlined here.

TOPMODEL is a simple semi-distributed model of

Fig. 1. The location of the Wye catchment.
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catchment hydrology that estimates storm runoff from a
combination of variable saturated surface contributing area
and subsurface runoff (e.g. Beven 1986, 1987; Quinn and
Beven, 1993). The dynamics of the contributing area for
rapid runoff as the catchment wets and dries are based
on a quasi-steady state analysis. As with many other
TOPMODEL applications (see Beven, 1997), the topo-
graphic index In (a/tan f) is used as an index of hydrological
similarity, where a is the area draining through a point, and
tan B is the local surface slope. The use of this form of
topographic index implies an effective transmissivity profile
that declines exponentially with increasing storage deficits.
In this study, the derivation of the topographic index from a
catchment digital terrain model utilises a modified form of
Quinn ez al.’s (1991, 1995) multiple flow direction algorithm
(see Cameron et al., 1999).

Evapotranspiration losses are controlled by potential
evapotranspiration and storage in the root zone with the
parameter Sy, (effective available water capacity at the
root zone). The potential evapotranspiration estimation
routine uses the same seasonal sine curve as Beven (1986,
1987) and Blazkova and Beven (1997) with a single mean
hourly potential evapotranspiration (PET) parameter. This
was derived from the available 19 years of daily potential
evapotranspiration estimates.

In a previous study of the Wye by Cameron ez a/. (1999),
it was shown that, when driven by the observed catchment
average hourly rainfall (or CAHR), TOPMODEL could
reproduce successfully the observed 21 year record of
hourly annual maximum (ANNMAX) flood peaks. It was
also demonstrated that it is possible to identify parameter
sets which provide reasonable simulations of both the
observed hourly ANNMAX flood frequency curve and the
21 year continuous hourly hydrograph. However, because
of errors in the input rainfalls, observed discharge peaks and
model structure, these hydrograph simulations are not
always able to reproduce accurately the exact timings and
rankings of the observed hourly flood peaks. Similar find-
ings have also been made in other flood estimation studies
(e.g. Lamb, 1999) and this suggests that this may be a
generic problem in current hydrological modelling.

Further modelling of the ANNMAX flood peak record
was achieved through the coupling of TOPMODEL with a
stochastic rainfall model. This permitted multiple one
thousand year continuous hourly discharge time series to be
generated and analysed in order to estimate the probability
distribution of the floods of a given magnitude. Here, this
latter approach is utilised in order to investigate the impacts
of climate change upon the hourly ANNMAX flood peaks
of both short and long return period (e.g. 10 to 100 years).

The stochastic rainfall model

Full details of the development of the stochastic rainfall
model and its application to the Wye’s CAHR data are

detailed in Cameron ez a/. (1999). In that study, it was shown
that the model could satisfactorily reproduce the Wye’s
hourly and daily extreme rainfall amounts. An identical
modelling approach is utilised here, so only a brief summary
is provided.

_The stochastic rainfall model is based upon the available
data and generates random rainstorms via a Monte Carlo
sampling procedure. The model characterises a storm in
terms of a mean storm intensity, duration, inter-event
arrival time and storm profile. A rainstorm is defined as any
event with 2 minimum intensity of 0.1 mm at an hour, with a
minimum duration of 1hr and a minimum inter-event
arrival time of 1 hr. This definition accounts for 99% of the
rainfall data in the observed series.

It is assumed that mean storm intensity is dependent
upon storm duration. This is modelled by subdividing the
available observed sample of storm events (derived from the
21 year record of CAHR) into seven duration classes of
similar mean storm intensity: 1 hr, 2 to 3 hr,4 to 10 hr, 11 to
16 hr, 17 to 27 hr, 28 to 62 hr, and >63 hr. For each
duration class, log-transformed mean storm intensity is
modelled using the empirical cumulative density function
(cdf) derived from the storm events located within that
class.

In order to permit the generation of events unrecorded
within the available catchment storm series, the upper tails
of the cdfs are extrapolated via a Generalised Pareto distri-
bution (GPD). The GPD has the distribution function:

F(x) =1— (1 + [(x — u)/a]) /"
F(x) =1 — exp[—(x — u)/0]

Kk#0

k=0

(1)

Where F(x) is a non-exceedance probability, x is a shape
parameter, » (the intensity threshold) is a location par-
ameter, x- is an exceedence (where ¥ > #), and o is a scale
parameter.

This distribution is initially fitted using maximum
likelihood. For the 1hr, 2 to 3hr and >63 hr duration
class, an upper bound, based upon the maximum observed
UK rainfalls, is introduced to the fit in order to prevent the
generation of unrealistically high mean storm intensities (see
Cameron et al., 1999). It introduces a dependency between
the shape (k) and scale (6) parameters of the GPD and
therefore does not increase the number of parameters
required.

The storm duration and inter-event arrival time charac-
teristics derived from the observed event series are also
modelled using their empirical cdfs. In both cases, it is
assumed that the observed samples require no further
extrapolation. .

The final component of the model is a storm profile. Th
observed 21 year rainstorm event series (a total of 10058
events) is utilised to provide an extensive database of storm
profiles for each duration class (Cameron e al, 1999).
These are normalised by cumulative volume and total
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duration. During a model run, the normalised profiles are
randomly selected in order to provide storm profiles for the
simulated rainfall events.

The Generalised Likelihood
Uncertainty Estimation (GLUE)
framework

Every flood frequency estimate is subject to some degree of
uncertainty. The major sources of this uncertainty in the
continuous simulation approach include the limitations of
the observed data series and the choice of rainfall and
hydrological models (especially with respect to the model
structures, and their calibration/validation). In this study,
the Generalised Likelihood Uncertainty Estimation
(GLUE) framework of Beven and Binley (1992) was used
to assess the resulting uncertainty in the predictions (see
also Beven, 1993b; Freer et al., 1996; Franks et al., 1998;
Cameron et al., 1999).

The GLUE methodology rejects the concept of a single,
global optimum parameter set and instead accepts the
existence of multiple acceptable (or behavioural) parameter
sets (Beven, 1993b). In a previous study of the Wye
catchment by Cameron et al. (1999), GLUE was used to
identify one thousand behavioural TOPMODEL parameter
sets and one thousand behavioural GPD parameter sets for
each duration class of the rainfall model.

A TOPMODEL parameter set was defined as behavioural
if it could produce adequate reproductions of both the
Wye’s observed hourly annual maximum flood frequency
curve (as assessed via a log likelihood measure, /(p)) and the
catchment’s continuous 21 year continuous hourly hydro-
graph (as assessed via the Nash and Sutcliffe, 1970, effi-
ciency with a minimum acceptability threshold of 70%)
when TOPMODEL was driven by the observed rainfall
series (see Cameron ez al., 1999). Within each parameter set,
four TOPMODEL parameters had been sampled from
separate uniform - distributions prior to the evaluation.
These are: the exponential scaling parameter (m), effective
available water capacity of the root zone (S,n.y), mean log
transmissivity of the soil at saturation of the surface (In( 7)),
and standard deviation of log transmissivity (S7DT). Table
1 contains the bekavioural ranges of these parameters.

A GPD parameter set was defined as behavioural if its fit
to the upper tail of the mean storm intensity cdf of the
duration class in question was acceptable (as assessed by a
log likelihood measure, {#)). An additional requirement was
that that GPD fit did not exceed an assumed upper bound of
rainfall intensity at levels of high non-exceedance prob-
ability (see Cameron ez al., 1999). Where the upper bound
featured in the earlier maximum likelihood fit, o was initially
sampled from a uniform distribution and x calculated.
Otherwise, both parameters were initially sampled from
separate uniform distributions. For each duration class,
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Table 1. Parameter ranges of 1000 behavioural
TOPMODEL parameter sets.
Paraméter Range

0.0089:0.0152 m
0.0016:0.1995 m
1.4403:7.9991 log
1.0048:9.1579 log

m (recession)

Smax (Maximum root zone storage)

T (transmissivity)

STDT (standard deviation from
transmissivity)

Table 2 contains the behavioural ranges of these parameters
together with their maximum likelihood estimates.

The one thousand behavioural TOPMODEL and rainfall
model parameter sets (combined randomly) were used to
simulate separate one thousand year continuous hourly
rainfall and discharge time-series. The hourly annual
maximum (ANNMAX) flood peaks were extracted from
each simulated discharge series. Likelihood weighted
uncertainty bounds for flood frequency were then calcu-
lated. This calculation required the use of a combined
measure (CM), which assumed equal weightings between
the rainfall and TOPMODEL parameter sets. For the £ th
behavioural simulation, CM is defined as:

nd

CMy = exp{l(p), + 1/nd - Y [L(6)],}  (2)

i=1

Where 7d is the number of cdfs requiring extrapolation
(seven), and /(6) is the rescaling of each value of /(6) such
that they share a common scale with {p).

The CM likelihood weights were rescaled over all of the
behavioural simulations in order to produce a cumulative
sum of 1.0. A cdf of discharge estimates was constructed for
each ANNMAX peak using the rescaled weights. Linear
interpolation was used to extract the discharge estimate
appropriate to cumulative likelihoods of 0.05, 0.5, and 0.95.
This allowed 90% uncertainty bounds, in addition to a
median simulation, to be derived (see also Freer ez al., 1996;
Cameron et al., 1999). The cumulative likelihood weighted
distribution used in this procedure is calculated using:

ns

POr <4) = |S(CM/ S CMIQrs <] ()
k=1

k=1

Where P is a probability, Q is a discharge of T years return
period, ¢ is a discharge, and #s is the number of behavioural
simulations. :

In the present study, the one thousand behavioural
TOPMODEL and rainfall model parameter sets, together
with their original likelihood weightings, are used to
produce a 1000 element series of 1000 year hourly rainfall
and discharge time-series for several different climate
change scenarios. Hourly ANNMAX flood frequency
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Table 2. Maximum likelihood estimates and parameter ranges for the 1000 bekavioural GPD parameter
sets fitted to the log-transformed upper tails of the duration class mean storm intensities.

Class No. Stm Scale (o) Shape (k)
Max. Like. Estimate Range Max. Like. Estimate Range
lhr 200 0.6016 0.5542: —0.1244 —0.1146 :
0.6546 ‘ —0.1353
2-3hr 200 0.3772 0.3474:  —0.0925 —0.0852 :
0.4104 —0.1006
4-10hr 200 0.3584 0.3246: —0.2588 —0.1955 :
0.3939 —0.3117
11-16hr 200 0.5633 0.5120: —0.3512 —0.2905 :
0.6190 —0.4011
17-27hr 200 1.0244 0.9391: - —0.5651 —0.5091 :
1.1186 —0.6221
28-62hr 40 1.7265 1.3450 :  —1.1299 —0.8759 :
2.2138 —1.4488
= 63hr 25 0.2867 0.2119: —0.0899 —0.0865 :
0.3779 —0.1543

likelihood weighted uncertainty bounds are then calculated
for each scenario.

¢

Climate change scenarios

The recent UKCIP98 “medium-high” climate change
scenario available from the UK Hadley Centre experiments
(HadCM2) was used in this study (Hulme and Jenkins,
1998; Hulme ez al., 1999). In this scenario, it is assumed that
there is a compound 1% per annum increase in greenhouse
gas concentration with no change in the concentration of
sulphate aerosols. Since the results of the scenario may
depend upon the point at which the increasing greenhouse
gas concentrations are introduced, four ensemble HadCM2
runs were used (Hulme and Jenkins, 1998). With the
exception of the point of initial greenhouse gas increase, the
conditions surrounding these runs are identical. This in-
cludes the use of annual flux-correction that were necessary
for this generation of GCM predictions. Since it is not
currently possible to assign probabilities to climate change
scenarios (Hulme and Jenkins, 1998), the climate change
estimates from each run were assumed to have equal likeli-
hoods. There does not appear to be any realistic alternative
to this assumption at the current time. Every uncertain
prediction in this study is therefore the response to a par-
ticular scenario provided by the HADCM?2 simulations of
future conditions. The uncertainties estimated under the
GLUE methodology are due only to the uncertainty in
simulating the rainfall-runoff process under current condi-
tions. To our knowledge, however, this is the first time that

¢, such uncertainties have been assessed relative to the impact

of predicted future change.

In this study, the climate change estimates from the
“medium-high” scenario were obtained from the HadCM2
gridbox which contains the country of Wales, UK by
averaging the results of the four available ensemble runs.
Data for three 30 year timeslices were available. The time-
slices are: the 2020s (2010-2039), the 2050s (2040-2069),
and the 2080s (2070-2099). For all three of the timeslices,
the data includes the estimated changes to monthly rainfall
and annual potential evapotranspiration (Table 3). This data
indicates that, from the 2020s through to the 2080s, there
are estimated increases in winter monthly rainfall totals (in
this case, September to April), and decreases in summer
monthly rainfall totals (May to August). Annual potential
evapotranspiration is also expected to increase.

Monthly potential evapotranspiration change estimates
were also available for the 2050s timeslice only. In addition,
the changes to monthly rainfall estimated from each of the
four individual HadCM2 ensemble runs were available for
all three timeslices. These data are very important to this
study and will be given further consideration below.

The concepts of spatial and temporal downscaling are
important issues in terms of using GCM output at the local
scale (Beven, 1995; Bloschl and Sivapalan, 1995; Hulme and
Jenkins, 1998; Pilling ez 4l., 1998). Given the uncertainties
associated with both the GCM output and the spatial
downscaling procedures, it was decided to use the estimated
changes for the GCM grid box directly on the Wye catch-
ment. This procedure assumes that the changes modelled at
the grid box scale are applicable at the local, site specific,
level. In order to implement the HadCM2 estimated
changes to monthly rainfall at an hourly timescale, fifteen
different climate change scenarios were generated (Table 4,
where Scenario Z, “current conditions”, is equivalent to the
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Table 3. GCM estimated changes to monthly rainfall derived from the mean of four HadCM2 ensemble runs (ens. mean) and
the minimum (min.) and maximum (max.) flood frequency increase scenarios for three thirty year timeslices. Estimated
changes to annual potential evapotranspiration are only readily available for the former case.

2020s 2050s 2080s
% Change % Change % Change
Ens. mean Min. Max. Ens. mean Min. Max. Ens. mean Min. Max.
January 2.78 330 352 451 5.50 5.49 6.19 10.77 1098
February 4.57 000 642 7.43 -0.28 10.34 10.19 -0.84 20.67
March 1.52 -202 029 2.47 -319 058 3.38 —6.38 1.16
April 2,61 —-184 515 4.25 -294 8.09 5.82 —5.88 16.54
May -0.22 1.09 -036 —0.36 182 -0.72 —0.50 327 -145
June -1.20 4.67 3.1 194 7.39 5.06 —2.67 1440 10.51
July —5.77 -170 -298 -9.37 —298 —4.68 —12.85 —5.96 —9.36
August -3.19 —421 =227 519 -7.12 -3.88 -7.12 —-1392 -7.77
September 0.84 190 —0.27 1.36 434 —-0.54 1.87 6.25 —0.82
October 2.07 —4.48 1.49 3.36 -7.21 2.49 4.61 ~14.18 4.98
November 4.69 4.47 2.68 7.62 7.16 - 447 10.45 1431 8.94
December 5.02 515 474 8.16 8.45 8.87 11.20 16.70 17.73
Annual potential 0.86 n/a n/a 1.99 n/a n/a 3.58 n/a n/a
evapotranspiration
results previously obtained using the historical record by For each of the fifteen scenarios, a one thousand year

Cameron et al., 1999). This use of multiple scenarios  continuous simulation with hourly timestep was made for
permitted several different possible impacts of climate  each of the one thousand behavioural TOPMODEL and
change upon flood frequency to be explored. stochastic rainfall model parameter set combinations. The

Table 4. Summary of several possible climate change scenarios using HadCM2 estimated changes to monthly rainfalls — see
text for details.

Scenario  Timeslice Implementation of estimated monthly rainfall changes

no.

Z Current conditions n/a

Al 2020s Uniform

Bl 2050s Uniform

Cl1 2080s Uniform

A2 2020s Uniform minimum increase

A3 2020s Uniform maximum increase

B2 2050s Uniform minimum increase

B3 2050s Uniform maximum increase

C2 © 2080s Uniform minimum increase

c3 2080s Uniform maximum increase

A4 2020s Upper 10% of storms only

A5 2020s Upper 50% of storms only

A6 2020s Duration class 1 and 2 only

A7 2020s Duration class 3 to 7 only

A8 2020s Duration class 1 and 2 only if estimated increase, duration class 3 to 7 only if estimated
decrease - : o

A9 2020s Shorter winter arrival times, uniform summer changes
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likelihood weighted uncertainty bounds for the hourly
ANNMAX flood peaks were then calculated (using the
procedures outlined previously in this paper). With the
exception of scenario A9, all of the scenarios featured the
perturbation of an identical hourly rainfall series to that
generated in scenario Z. This was done in order to prevent
the possible impacts of climate change being confounded
with random rainfall realisation.

In the above procedure there is an implicit assumption
that the behavioural parameter sets and likelihood weights
will not change under future conditions (and that only the
model inputs will change). Again, there appears to be no
other reasonably realistic assumption at the current time. It
should also be remembered that the likelihood weights do
reflect the catchment’s responses under a wide range of
conditions during the 21 year record.

In all fifteen scenarios, the impacts of climate change
upon potential evapotranspiration were implemented
through the perturbation of the PET parameter used in
TOPMODEL. This perturbation was calculated prior to a
model run, as:

PET, = PET; + (PET; - CHG/100) (4)

Where PET, is the value of PET used in a model run, PET;
is the value of PET calculated from the 19 years of daily
potential evapotranspiration estimates (0.05830 mm hrh,
and CHG is the change estimated by HadCM2.

For the 2050s timeslice, an examination of the implica-
tions of the choice of potential evapotranspiration change
estimates (i.e. monthly or annual) for the simulated hourly
annual maximum flood peaks was conducted. This
examination consisted of the simulation of a 1000 element
1000 year continuous hourly discharge time-series (as
described above). Monthly estimated changes to potential
evapotranspiration were initially used. Perturbation of the
simulated hourly rainfall amounts for a given month was
achieved through the uniform application of the HadCM2-
estimated change for that month (Table 3). The procedure
was then repeated using the estimated changes to annual
potential evapotranspiration. The resulting 5%, 50%, and
95% likelihood weighted uncertainty bounds calculated
from the hourly annual maximum flood peaks simulated
under each potential evapotranspiration regime were then
compared. It was determined that there were only negligible
differences between the two sets of results at the 10 year and
100 year return period levels. For consistency between the
three timeslices, the estimated changes to annual potential
evapotranspiration (Table 3) were therefore used in each
case.

For each of the three timeslices, the estimated change in
rainfall total for a given month was initially preserved
through the uniform application of the change to every
hourly rainfall value in that month. Primarily, this was
achieved through the direct use of the averaged “medium-
high“ UKCIP98 scenario (scenarios Al, Bl, and CI in

Table 4). In addition, since the “medium-high scenario’s
component ensemble runs can be assumed to have equal
likelihoods (see above), the climate change estimates
obtained from each of those runs were examined. This
was done in order to ascertain which of the individual runs
would drive the maximum, and the minimum, increases to
the magnitude of the simulated ANNMAX hourly flood
peaks.

This involved the testing of the changes estimated by
each ensemble run upon the different continuous hourly
one thousand year rainfall-runoff simulations. The lack of
potential evapotranspiration change data for these indivi-
dual ensemble runs necessitated the use of the estimated
change to annual potential evapotranspiration obtained from
the ensemble mean (Table 3). Given the very wet and flashy
nature of the Wye catchment, it is unlikely that this. data
restriction has a substantial impact upon the simulations of
the hourly annual maximum flood peaks. Table 3 contains
the changes to monthly rainfall from the identified
“minimum® and “maximum® ensemble runs, respectively.
These runs form the basis of scenarios A2 to A3, B2 to B3,
and C2 to C3 (see Table 4).

A further exploration of the different implementations of
the estimated monthly rainfall changes at the hourly level
was also conducted. This featured the direct use of the
“medium-high* UKCIP98 scenario for the 2020s timeslice
(Table 3). Several sub-scenarios were examined (Table 4).
These included the application of the changes to the storms
with the most intense hourly rainfall values alone (scenarios
A4 and AS5), and also to the storms belonging to particular
rainfall model duration classes (scenarios A6 to A8). For the
appropriate storms in these scenarios, the estimated changes
were applied in a proportional fashion. The most intense
hourly rainfall value in a given storm was therefore subject
to the largest absolute change.

In scenario A9, the increased monthly rainfall totals for
winter were achieved by increasing the frequency of the
winter storm events. This involved the setting of an upper
bound upon the storm inter-arrival times for each winter
month (Table 5). This was achieved through multiple
realisations using the stochastic rainfall model (with no
GPD extrapolation). Each realisation was assigned an upper
inter-event arrival time limit for a particular month, and the
results compared with those of an initial control run. For a
given month, if the change in the monthly rainfall total
approximately corresponded to that estimated by HadCM2,
then the limit was retained. The resulting bounds are
therefore not absolute, but serve as a useful guide for
exploring the estimated increase in the frequency of winter
rainfall in a way which is consistent with the HadCM2
simulations. ‘

It was also originally intended to reduce the storm
numbers in the summer months through the setting of a
lower bound upon inter-arrival time. However, it was found
that, for this very wet catchment, even small increases in
summer storm inter-event arrival time resulted in decreases
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Table 5. Approximate upper limits for winter arrival-times
in order to preserve HadCM2 estimated monthly rainfall
changes for the 2020s.

Month Limit upon storm inter-arrival time (hrs)
January 171
February 82
March 129
April 177
May n/a
June n/a
July n/a
August n/a
September 139
October 168
November 145
December 194

in the corresponding monthly rainfall totals which were
much larger than those of the HadCM2 estimates. One
possible solution to this problem would be to set an assumed
lower bound and modify the intensities of the summer
storms such that the monthly rainfall totals of the simula-
tions are consistent with the HadCM2 estimates. However,
it was felt that this approach would not be entirely in
keeping with the method used for the winter storms (since
only the frequencies, and not the intensities, of those storms
were modified). Furthermore, it is probable that the setting
of a lower bound in such a manner would be quite arbitrary.
In addition, a choice of procedure for rainfall intensity
modification would be required. Consequently, for reasons
of simplicity, the uniform application of change used in
scenario Al was also adopted for the summer period.

Results and discussion

For each of the scenarios outlined in Table 4, Table 6
contains the hourly discharge estimates for the 10 and 100
year return period ANNMAX flood events at the 5%,
median, and 95% likelihood weighted uncertainty levels.
These are also expressed as percentage changes from
scenario Z. Table 7 lists the ranges of the future return
periods estimated for the median modelled flood peaks
which have recurrence intervals of 10 and 100 years under
scenario Z.

From these tables, it can be seen that, with the exception
of the scenarios for the 2080s (Cl to C3), the changes in
flood peak discharge are generally relatively small. Indeed,
the 10 and 100 year recurrence interval flood events
modelled for scenario Z lie within the range of peak flows
estimated for the same return periods for the 2020s and the
2050s (Table 7). The larger increases in flood magnitude
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and frequency estimated for the 2080s can be explained by
HadCM2's simulation of greater amounts of winter rainfall
for that timeslice than for the 2020s or the 2050s (Table 3).

It is also possible to examine these results visually.
Figures 2a to 2c illustrate a comparison of the likelihood
weighted uncertainty bounds derived from scenarios Al, Bl
and Cl with those obtained from scenario Z. Figure 3
illustrates the cdfs calculated using the scaled likelihood
weights and discharge estimates for the 100 year return
period flood event of scenarios Z, Al, Bl and Cl. From
these figures, it can be seen that, although flood event
magnitude does tend to increase following climate change
(e.g. note the 2080s 95% uncertainty bound on Fig. 2c),
there is a considerable degree of overlap in the uncertainties
associated with all four scenarios.

A further indication of the spread of these uncertainties
can be obtained by considering the maximum and minimum
increase scenarios A2, A3, B2, B3, C2, and C3. From Table
6, two main findings are apparent. Firstly, although the
maximum and minimum increase scenarios generally yield
respectively greater and smaller increases to flood peak
magnitude than those estimated in scenarios Al, Bl and Cl1,
there are certain instances where this is not the case.

For example, the magnitude of the 100 year return period
event is estimated to increase by 2.62% on the 5% un-
certainty bound of scenario Al, but only by 1.21% at the
same level under scenario A3. This slight discrepancy can
be explained by the use of the individual ensemble run data,
rather than the ensemble average (Table 3), in the maximum
and minimum increase scenarios. Consequently, the
ensemble average data occasionally estimate greater changes
to the monthly rainfall totals than those estimated by the
separate component ensemble runs (e.g. November for the
2050s, Table 3).

Secondly, flood peak magnitudes are reduced in certain
of the minimum increase scenarios (e.g. a decrease of
—2.03% in the magnitude of the 10 year return period event
on the 95% uncertainty bound, Table 6). This is caused by
the large decreases in summer rainfall estimated by the
ensemble run used in these scenarios (Table 3).

Surprisingly, in scenario A4 (Table 6), the application of
change to the upper 10% of the storms only, also has the
effect of decreasing, rather than increasing, the magnitude
of the simulated flood peaks. This finding also applies to
scenarios A5 to A8, and to a lesser extent, to A9. This occurs
because the reduction in summer rainfall partially reduces
the quantity of antecedent soil moisture available for the
early winter flood events. This rainfall reduction also
suppresses the magnitude of what were ANNMAX summer
flood peaks in scenario Z (it should be remembered that
identical rainfall sequences were used for scenario Z and
scenarios Al to A8). Consequently, these peaks are replaced
in the overall ANNMAX series by winter events. Although
these events are enhanced, they do not quite equal the
magnitude of the previous peaks and the overall ANNMAX
peak magnitudes drop slightly. While a different rainfall
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Tuable 7. Estimated future ranges of return periods for the median ANNMAX flood event discharges associated with the 10
and 100 year recurrence interval events of scenario Z.

Timeslice  Estimated future return period range for current 10  Estimated future return period range for current 100
year recurrence event (yrs) year recurrence event (yrs)
2020s 8to 11 86 to 132 \
2050s 810 10 86 to 100
2080s 6to8 48 to 60
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Fig. 2. 90% uncertainty bounds derived from annual maximum peaks of 1000 behavioural TOPMODEL/ rainfall parameter sets with 1000 year
simulation length. Circles—observed hourly peaks; dark solid line—observed series with fitted GEV (maximum likelihood), dashed lines-90%
uncertainty bounds obtasned from climate change scenarios; dotted line — median simulation obtained from climate change scenarios; light solid lines—
90% uncertasnty bounds obtained for scenario Z (current conditions); light dash-dot line—median simulation obtained for scenario Z. A: 2020s
(scenario Al); B: 2050s (scenario Bl); C: 2080s (scenario CI).
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Fig. 3. Cumulative density functions calculated using scaled likelihood weights and discharge estimases for the 100 year return period flood event of
scenarios Z, Al, Bl and CI. . o ) . . . ‘ .
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sequence will yield different results (e.g. a possible increase,
rather than a decrease), it is very probable that, given the
results of scenarios Al to A3, B2 to B3 and C2 to C3, the
size of the change would only be large for the 2080s
timeslice. It is likely that this magnitude of change also
applies to the alterations to the winter storm inter-event
arrival times modelled in scenario A9.

Since no probabilities can be currently assigned to
different climate change scenarios, this study’s overall
results therefore suggest that, although there appears to be a
general tendency for flood frequency to increase as a result
of climate change, it may instead decrease or perhaps not
change at all! In other words, given the choice of catchment
and scenario, climate change generally appears to have only
a small effect upon flood frequency when the uncertainties
associated with the original observed data series, and
hydrological model structure, are considered explicitly.

Indeed, it is interesting to note that other climate change
rainfall-runoff modelling studies (e.g. Naden ez al., 1996;
Kilsby ez al., 1998) have estimated larger impacts upon flood
frequency than those presented in this paper. For the 2050s,
Naden er al. (1996) report a- 13.7% increase in the
magnitude of the daily peaks over threshold 10 year flood
event for the River Severn (a value comparable to the
present study’s results for the 2080s). For the 2080s, Kilsby
et al. (1998) estimate very large increases (e.g. 60%) in daily
ANNMAX flood magnitude for the Cobres basin, Portugal.
The differences in the sizes of the changes estimated in
these studies, compared with those of the present paper, can
perhaps be attributed to the different choice of catchment
environment, model, timestep, and downscaling and flood
frequency procedures used in each case. However, both
Naden er al. (1996) and Kilsby er al (1998), utilised a
rainfall-runoff model with a single optimal parameter set
and made no explicit attempt to account for the associated
modelling uncertainties.

Finally, from a flood management perspective, there is a
clear need to have reliable flood frequency estimates both
with and without climate change. In this context it is
important to recognise that, although the form of discharge
cdf for a given return period is not greatly changed relative
to the uncertainty in predicting current conditions (e.g. Fig.
3), the risk of a given discharge as an element in the
distribution of 7 year floods does change. For example, at a
return period of 100 years, the risk of a 51.92 m>s~! event
that is estimated at 0.5 under current cenditions changes to
0.62 by the year 2050 under scenario B1. From the findings
obtained in this study, it would seem that some form of
uncertainty estimation (such as the GLUE framework
presented) must be used if a proper assessment of flood
frequency within a risk-based decision framework is to be
achieved. It should then be possible to make more effective
management and engineering decisions. These include:
enhanced cost-benefit analysis and decision making for
flood defence schemes, more robust flood defence designs,
the continual assessment of their effectiveness, and
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increased public and professional awareness (Naden ez al.,
1996).

Conclusions

This paper has explored explicitly the uncertainties
associated with the impacts of climate change upon flood
frequency for a gauged, upland catchment in the UK. It has
featured the use of the continuous simulation methodology
developed by Cameron ez al (1999). The methodology
utilises a stochastic rainfall model to drive the rainfall-runoff
model TOPMODEL for a series of continuous 1000 year
simulations with hourly timestep. The uncertainty in the
resulting hourly annual maximum flood peaks is handled
within the GLUE framework of Beven and Binley (1992).

The “medium-high” UKCIP98 climate change scenario,
obtained from the HadCM2 GCM (Hulme and Jenkins,
1998) was used as a starting point for a variety of different
scenarios at the catchment scale. These featured the
different applications of the changes to the monthly rainfall
totals estimated by HadCM2 to the hourly level. The
scenarios comprised: uniform changes to hourly rainfall for
three 30 year timeslices (the 2020s, the 2050s and the
2080s), including those estimated from four different
ensemble runs of HadCM2, changes to the hourly rainfalls
of the most extreme storms and particular stochastic rainfall
model duration classes only, and increases to the number of
winter storm events. The estimated changes to annual
potential evapotranspiration were used to perturb the
parameter of the potential evapotranspiration model used
by TOPMODEL.

It was demonstrated that while the scenarios have only a
small impact upon the likelihood weighted flood frequency
uncertainty bounds in comparison with the current
condition scenario, the risk of a given discharge as an
element in the distribution of 7 year floods is changed. This
underlines the need to account explicitly for uncertainty
within hydrological modelling, especially in estimating the
impacts of climate change.
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