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Abstract. Water cycle reanalyses, generated by integrating
observations into hydrological and land surface models, pro-
vide long-term and consistent estimates of key water cy-
cle components. Reanalyses are essential to understand hy-
drological variability, extreme events such as droughts and
floods, and to improve water resource management. Over the
past two decades, the assimilation of terrestrial water stor-
age anomaly data from the GRACE and GRACE Follow-
On (GRACE/-FO) missions has significantly enhanced these
reanalyses, as GRACE/-FO observations uniquely constrain
total water storage variability across all terrestrial compart-
ments. Incorporating GRACE/-FO data has led to major ad-
vances in representing trends in key hydrological variables,
climate-driven changes in the water cycle, and anthropogenic
influences such as irrigation-induced groundwater depletion
— factors often poorly captured in models. With processing
pipelines now being developed for low-latency short-term
data products from the upcoming next-generation gravity
missions, we expect that low-latency periodically updated re-

analyses and analyses from assimilation will become more
relevant.

However, challenges remain, particularly in resolving
mismatches in spatial and temporal resolution between
GRACE/-FO observations and high-resolution models, and
there is no consensus yet on the optimal approach for assim-
ilating GRACE/-FO data. In light of the upcoming launches
of next-generation gravity missions and the development
of increasingly sophisticated Earth system modeling frame-
works, this review synthesizes insights from approximately
60 GRACE/-FO data assimilation studies in an attempt to
converge to best practices. The review reveals that the most
effective assimilation strategies leverage (robust modifica-
tions of) the classical ensemble Kalman filter and localiza-
tion techniques, explicitly account for correlated observation
errors, and address biases contained in the observations as
well as those arising from model perturbations. Unmodeled
processes must be carefully handled through signal separa-
tion, multi-source assimilation, or removal prior to assimila-
tion. Future directions include developing low-latency prod-
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ucts for near-real-time assimilation, integrating enhanced and
combined satellite observations, and employing machine-
learning approaches for downscaling and hybrid assimila-
tion. Collectively, these strategies provide a pathway toward
more accurate, physically consistent, and operationally use-
ful water cycle reanalyses.

1 Introduction

The distribution of water on Earth shapes the daily lives of
individuals and societies and is, in turn, influenced by hu-
man activities. Quantifying and monitoring water resources
is critical to ensuring water availability for human consump-
tion, supporting agriculture, predicting natural hazards, and
addressing climate change through mitigation and adapta-
tion strategies. Continental freshwater resources are stored in
groundwater aquifers, soils ranging from the surface through
the root zone to deeper layers, surface water bodies, snow or
ice sheets, and plants. These water storage compartments are
inextricably linked to both global and regional water, carbon
and energy cycles and interact with various components of
our Earth system, such as the biosphere. The dynamics of
water storage and fluxes undergo significant changes due to
human activities, and shifts in the frequency and patterns of
hydrological extremes driven by climate change.

Our current understanding of water storage dynamics
across different terrestrial compartments relies on global and
regional hydrological and land surface models, remote sens-
ing, and in situ observations. However, global numerical
models often underestimate long-term trends in terrestrial
water storage (TWS), do not accurately capture extremes of
wet and dry conditions (Scanlon et al., 2018; Forootan et al.,
2024), often do not account for human impacts, and struggle
to represent the seasonal cycle of TWS variations effectively
(Scanlon et al., 2019). On the other hand, most in situ and
remote sensing data only provide insight into water storage
in specific land surface compartments.

Satellite gravimetry is the only remote sensing technique
that provides information on the vertically integrated varia-
tions of TWS, based on observations from the Gravity Re-
covery and Climate Experiment (GRACE) and its succes-
sor, GRACE Follow-On (GRACE-FO). However, their use at
subregional scales and in operational applications is limited
by their coarse spatial resolution of a few hundred kilometers
and their monthly temporal resolution. Integrating GRACE/-
FO observations into hydrological and land surface models
allows us to update all sub-monthly simulated water stor-
age compartments, which typically include groundwater, soil
moisture at different depths, surface water and snow, while
simultaneously downscaling the coarse GRACE/-FO obser-
vations to the higher resolution model grid (Fig. 1). Sev-
eral approaches exist for merging GRACE/-FO observations
with numerical models including Bayesian Model Averag-
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ing (BMA), machine learning (ML) — including deep learn-
ing (DL) — and data assimilation (DA) algorithms (Sect. 3).
DA offers the significant advantage of updating not only the
target state variables such as groundwater and soil mois-
ture, but also related hydrological fluxes, including evapo-
transpiration, snowmelt, river discharge, surface and subsur-
face runoff, infiltration, and groundwater recharge and dis-
charge, in a physically consistent way (Fig. 1). DA can be
used to produce long-term reanalysis estimates of TWS to
support land system understanding (Baatz et al., 2021), or to
obtain the best current state estimate for operational forecast-
ing, as is needed for early warning systems (e.g. drought).
Given the monthly resolution of GRACE/-FO observations,
the line between both is vague, and we loosely use the term
reanalysis for both.

In their seminal paper, Zaitchik et al. (2008) introduced a
Kalman smoother algorithm for assimilating GRACE data
into the Catchment Land Surface Model (CLSM, Koster
et al., 2000) over the Mississippi river basin. Two key take-
aways from this pioneering work are as follows: first, the
demonstrated potential of DA to downscale coarse-scale
GRACE observations, and second, the success of vertical dis-
aggregation of TWS to updates in groundwater, soil moisture
and snow, with a particular enhancement of groundwater and
also river discharge modeling. Several subsequent studies ap-
plied GRACE/-FO DA to other hydrological and land surface
models.

A key variable of interest in GRACE/-FO DA studies is
groundwater, as it remains challenging to observe directly at
large scales and is significantly influenced by human activi-
ties (Doll et al., 2012; Girotto et al., 2017; Li et al., 2019).
Yin et al. (2020) validated GRACE DA results against more
than 150 in situ groundwater wells across the North China
Plain, demonstrating a substantial improvement in correla-
tion. Likewise, Tangdamrongsub et al. (2017) found that
GRACE DA enhanced the correlation between groundwater
storage estimates and well observations in the Hexi Corridor
in northern China, where a rapid groundwater decline was
identified and attributed to agricultural activities. Similarly,
Tangdamrongsub et al. (2018) reported that GRACE DA
improved estimates of groundwater depletion in the North
China Plain and Australia compared to global hydrologi-
cal models. Over Iran, Khaki et al. (2018c) showed that
GRACE DA more effectively captured the extensive ground-
water extraction occurring in the region compared to a stan-
dard model run. Aiming at applications for local water man-
agement, Stampoulis et al. (2019) set up a high-resolution
model over California and integrated GRACE data to deter-
mine water table dynamics.

Snow-dominated catchments contribute a large seasonal
component to TWS variations, and GRACE/-FO DA shows
great potential for constraining snow cover fraction and depth
in land surface or hydrological models, especially with multi-
sensor approaches (Su et al., 2010; Zhao and Yang, 2018;
Girotto et al., 2020; De Lannoy et al., 2022). Forman et al.
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Figure 1. The GRACE and GRACE Follow-On (GRACE/-FO) data assimilation (DA) concept: A numerical model simulates daily or even
subdaily individual water storage components and fluxes on a user-defined grid. In contrast, the GRACE/-FO satellites observe the total
variation in monthly TWS aggregated over large footprints and over all storage compartments. During DA, the model’s individual storage
compartments are updated towards the GRACE/-FO observations. These updates influence water fluxes — illustrated by the arrows in the
figure — as well as other related model variables such as soil temperature, energy fluxes, and plant growth.

(2012) demonstrated improved snowpack estimation over the
Mackenzie River Basin using GRACE DA. Subsequently,
Bahrami et al. (2021) showed improvements in grid-scale
snow estimates and highlighted their relationship to im-
proved flood simulations. Finally, Wang et al. (2021) dis-
cussed the potential conflicts in snow compartment updates
resulting from multi-sensor DA.

Long-term water cycle reanalyses using GRACE/-FO DA
have been shown to be effective in constraining trends not
only in TWS but also in other key hydrological variables
(van Dijk et al., 2014; Gerdener et al., 2022, 2023; Chi et al.,
2024). For instance, Chi et al. (2024) found that GRACE DA
amplified negative TWS and evapotranspiration (ET) trends
over Northern India and attributed these trends to high ir-
rigation rates. Jung et al. (2019) reported improved surface
soil moisture simulations resulting from GRACE DA in hu-
mid West African regions characterized by large TWS am-
plitudes.

The impact of GRACE/-FO DA on streamflow simula-
tions varies considerably by region. For example, Tangdam-
rongsub et al. (2015) reported only minor improvements in
streamflow simulations compared to gauging station obser-
vations in the Rhine catchment. In contrast, Getirana et al.
(2020a) demonstrated that updating groundwater and soil
moisture storage with GRACE DA led to significant im-
provements in streamflow forecasts over the Niger River
basin. Furthermore, Wu et al. (2022) conducted a global
GRACE DA study and found that streamflow estimates were
notably enhanced in snow-dominated catchments.
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The downscaling and disaggregation of GRACE/-FO data
through DA also improves drought monitoring and con-
tributes to water-related disaster warning systems. TWS-
based drought indices can be computed at the resolution
of the model grid and are available in near-real-time appli-
cations, such as NASA’s GRACE-based Drought Indicators
(https://masagrace.unl.edu/, last access: 10 December 2025;
Houborg et al., 2012; Li et al., 2019; Getirana et al., 2020b).
Moreover, DA enables improved attribution of droughts to
individual water storage components, such as soil moisture
drought and groundwater drought, as demonstrated for re-
gions like the Murray-Darling Basin (Schumacher et al.,
2018), over Europe (Li et al., 2012), and Mexiko (Arciniega-
Esparza et al., 2025). On the other hand, GRACE/-FO DA
also improves the simulation of wet extreme events, as shown
by Reager et al. (2015) for the Missouri River Basin, where
updated groundwater and snow water data helped constrain-
ing flood potential in the region.

In recent years, GRACE/-FO DA has been increasingly
integrated into multi-sensor DA systems, mainly in com-
bination with remotely sensed surface soil moisture data.
An attempt by Tian et al. (2017) demonstrated improved
estimates of surface soil moisture, root-zone soil moisture
and groundwater — compared to in situ observations — by
joint assimilation of GRACE and SMOS data over Australia.
These results have been confirmed by Girotto et al. (2019)
over the United States, by Khaki and Awange (2019) over
South America, and by Khaki et al. (2019) for the Murray-
Darling and Mississippi River basins. Building on this work,
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Khaki et al. (2020) further incorporated leaf area index to
investigate the impact of individual observational datasets
on DA results, model parameter estimation and model pre-
diction. The study found that while single-sensor DA led
to greater improvements for individual variables, the multi-
sensor approach produced the most consistent improvements
across all variable estimates, consistent with the findings of
Tangdamrongsub et al. (2020). More recently, Mehrnegar
et al. (2023) reported similar results using different Bayesian
and Markov chain Monte Carlo merging algorithms. Schulze
et al. (2024) demonstrated that the degradation of simu-
lated streamflow through GRACE DA could be mitigated to
some extent by additionally assimilating streamflow obser-
vations. Another multi-sensor DA framework was developed
by Wongchuig et al. (2024) over the Amazon River Basin.
This framework integrated observations of water surface el-
evation, TWS, flood extent, and soil moisture, demonstrat-
ing that multi-sensor DA consistently outperformed single-
sensor DA experiments.

In other applications, GRACE/-FO DA output has demon-
strated potential in removing hydrology-induced deforma-
tion from Global Navigation Satellite System (GNSS) ver-
tical deformation time series, which could help reveal un-
derlying geophysical signals (Springer et al., 2019). Sim-
ilarly, but with a different objective, Tangdamrongsub and
Sprlak (2021) showed that GRACE/-FO DA effectively cap-
tures hydrology-induced loading deformation of the land sur-
face, offering promising applications, particularly in data-
sparse regions. Furthermore, Jensen et al. (2024) utilized
GRACE/-FO DA results to evaluate long-term drying and
wetting trends in TWS within CMIP6 models. Recently,
Khaki et al. (2023) assimilated GRACE-FO data based on
along-orbit line-of-sight gravity differences into a land sur-
face model, enhancing its ability to capture high-frequency
water storage variations. This method is particularly valuable
for simulating wet extremes. Moreover, Soltani et al. (2024)
were the first to assimilate GRACE data into a land surface
model coupled with a dedicated subsurface model with three-
dimensional groundwater flow within a multi-sensor frame-
work. Furthermore, the integration of DA frameworks with
machine learning techniques, as demonstrated by Liu et al.
(2021), has shown promise in improving groundwater level
predictions at lead times of several months. Finally, the im-
pact of human activities, such as groundwater pumping and
irrigation — often not represented in land surface models but
potentially corrected through GRACE/-FO DA - has gained
increasing attention (Girotto et al., 2017; Nie et al., 2019;
Getirana et al., 2020b). However, this remains a challenging
task, as assimilation increments are not always allocated to
the correct storage compartments, highlighting the need for
further research.

The above studies use a variety of different hydrological
and land surface models and different GRACE/-FO obser-
vation products and differ significantly in their assimilation
algorithms. Developing an assimilation framework requires
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several methodological choices, including (i) the selection of
the observation grid (Forman and Reichle, 2013), (ii) the han-
dling of observation error correlations (Eicker et al., 2014;
Khaki et al., 2017¢), (iii) the choice among various sequential
DA techniques, including localization methods and emerg-
ing DA algorithms (Khaki et al., 2017b, 2018a; Shokri et al.,
2018, 2019), (iv) adopting strategies for applying analysis
increments and updating the model (Girotto et al., 2016),
and (v) selecting other observables within multi-sensor DA
(Girotto et al., 2019; Tangdamrongsub et al., 2020).

Previous review papers have focused on providing an
overview of methods for assimilating GRACE data into hy-
drological models, with an emphasis on error modeling and
data assimilation algorithms (e.g. Soltani et al., 2021). This
paper aims to provide a thorough synthesis of existing stud-
ies, highlighting the various application areas and offering
a systematic analysis of the common settings within current
DA frameworks. Additionally, we synthesize the current state
of research, evaluate the present lack of consensus within the
community regarding DA strategies, and outline directions
that may support convergence and open up perspectives on
new directions.

In Sect. 2, we start with the representation of simulated
TWS in hydrological and land surface models and establish
the link to observed TWS from GRACE/-FO. We also exam-
ine possible choices for GRACE/-FO data products, the han-
dling of observation errors, and necessary post-processing
steps. Section 3 provides a comprehensive review of existing
GRACE/-FO DA frameworks, analyzing key methodological
choices, technical aspects, and the advantages and limitations
of different approaches. This is followed by a discussion of
validation strategies for DA experiments in Sect. 4. A major
point of this paper is to identify current challenges and open
issues in GRACE/-FO DA frameworks, which we explore
in Sect. 5. Finally, we conclude in Sect. 6 with perspectives
on future research directions and in Sect. 7 with a synthesis
of best practice recommendations and key next steps for the
community.

2 Modeling and remote sensing of terrestrial water
storage changes

Remote sensing observations and numerical models provide
complementary insights into TWS, but they have signifi-
cant differences in spatial and temporal resolution, sources
of error, and correction requirements. Most hydrological and
land surface models simulate TWS as the sum of the indi-
vidual storage compartments, while GRACE/-FO products
provide only TWS anomalies (TWSA), i.e., the deviation of
TWS from a long-term mean. This section outlines the chal-
lenges associated with deriving TWSA from hydrological
and land surface models. It also presents the currently avail-
able GRACE/-FO products along with the commonly applied
geophysical corrections and downscaling techniques.

https://doi.org/10.5194/hess-30-985-2026
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2.1 Modeling terrestrial water storage

Numerical models simulate increasingly complex processes
that control water storage and fluxes, while they disregard
others depending on the intended application of the model.
Models used in GRACE/-FO analyses are generally clas-
sified into Global Hydrological Models (GHMs, Sood and
Smakhtin, 2015), and Land Surface Models (LSMs, Over-
gaard et al., 2006), with some hybrid models incorporating
features of both types. Each model category emphasizes dif-
ferent aspects of the water cycle. GHMs typically focus on
large-scale hydrological processes and often account for an-
thropogenic influences such as water abstraction, irrigation,
and reservoir management. In contrast, LSMs simulate land-
atmosphere interactions, prioritizing energy and water ex-
changes and often allowing the incorporation of the carbon
cycle. While GHMs primarily rely on simplified hydrolog-
ical equations that emphasize water movement, LSMs use
more detailed, process-based equations to model energy, wa-
ter, and carbon exchanges, but often with a poor representa-
tion of anthropogenic processes.

A key aspect of TWS modeling is the representation of
changes in individual water storage components. Common
GHMs and LSMs differ in how these individual storages
are simulated. For example, some models include detailed
representations of groundwater flow and aquifer dynamics,
whereas others treat groundwater more simplistically or omit
it altogether (Scanlon et al., 2018; Condon et al., 2021). It
is important to note that this hinders a quantitative compar-
ison of individual storages across different models or even
different versions of the same model; e.g. soil water storage
may refer to vastly different soil depths in differing mod-
els (Jensen et al., 2024). Similarly, processes such as river
routing, snowmelt, and evaporation are handled with vary-
ing degrees of complexity. Most models struggle with accu-
rately capturing the interactions between individual storage
components and the temporal and spatial variability of these
processes (Telteu et al., 2021).

Table 1 provides a summary of models that generate TWS
data at the global or continental scale. These models are
categorized by type into GHM, LSM, or hybrids thereof,
and their original capability to include anthropogenic in-
fluences (e.g., water management, land use changes). Most
global models are run at resolutions ranging between 0.5
and 0.25°, but continental-scale applications are available at
much higher resolutions down to a few kilometers.

2.2 GRACE-/FO products

The GRACE satellite mission (Wahr et al., 1998; Tapley
et al., 2004) monitored global TWS changes from 2002
to 2017, with its follow-on mission GRACE-FO, launched
in 2018 (Landerer et al., 2020), continuing these observa-
tions. TWS changes are an essential climate variable re-
flecting the impact of global climate change on water re-
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sources (Rodell and Reager, 2023). Three official analysis
centers process the GRACE/-FO observations, including the
Center for Space Research (CSR), the Jet Propulsion Lab-
oratory (JPL), and the Helmholtz Centre for Geosciences
(GFZ). However, other research institutions and universi-
ties also provide GRACE/-FO-derived datasets, e.g., NASA
Goddard Space Flight Center (GSFC), Space Geodesy Re-
search Group at the French National Centre for Space Stud-
ies (GRGS/CNES), the Ohio State University, the Techni-
cal University of Graz, and Tongji University. Besides, com-
bined solutions are available from the European Gravity Ser-
vice for Improved Emergency Management (EGSIEM, http:
/legsiem.eu/tools, last access: 10 December 2025). The most
commonly used GRACE/-FO data products are based on the
two main processing strategies of spherical harmonics (SH)
and mass concentration (mascon) methods that are usually
provided with monthly temporal resolution and a few hun-
dred km spatial resolution. These monthly gravity field esti-
mates are typically accompanied by an error estimate of the
measurement noise, provided either as formal errors or as full
covariance matrices (Chen et al., 2022). Estimating monthly
gravity fields involves reducing tidal and non-tidal high-
frequency mass changes in the atmosphere and ocean (e.g.,
by applying Atmosphere and Ocean De-Aliasing (AOD1B)
background model corrections, Shihora et al., 2022). Re-
cently, the estimation of daily SH-based products (such as
Mayer-Giirr et al., 2018) and five-daily mascon-based prod-
ucts (Retab et al., 2024) is gaining growing attention.
Post-processing of the GRACE/-FO SH coefficients (pro-
vided as Level-2 data products) includes replacing the
degree-1 (geocenter; e.g., Sun et al., 2016) and Cp9 and
C3o coefficients by solutions from Satellite Laser Ranging
(Loomis et al., 2019, 2020; Cheng and Ries, 2023) and ap-
plying corrections to account for glacial isostatic adjustment
(GIA, see Sect. 2.3). Furthermore, spatial filtering is essen-
tial to reduce noise from higher-order coefficients. This can
be achieved using an anisotropic filter (e.g., Kusche, 2007;
Klees et al., 2008b), which also helps to mitigate correlated
errors, or an isotropic filter (e.g., the Gaussian filter intro-
duced by Jekeli, 1981), which is often combined with a de-
striping filter to further reduces the impact of correlated er-
rors (Swenson and Wahr, 2006). To account for spatial leak-
age effects, several methods have been developed that at-
tempt to restore the lost signal in GRACE/-FO data. Com-
monly used approaches that depend on hydrological model
outputs are the multiplicative approach by Longuevergne
et al. (2010), the additive approach by Klees et al. (2007),
the grid factor scaling approach by Landerer and Swenson
(2012), and the unconstrained forward modeling approach
by Chen et al. (2015). Vishwakarma et al. (2017) devel-
oped a data-driven approach to overcome the dependency on
hydrological models and their associated uncertainties. All
provided Level-2 datasets are anomalies relative to a speci-
fied temporal baseline. As a result, expert knowledge is re-
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Table 1. Summary of some models that have been used to estimate total water storage anomalies. GHM: Global Hydrological Model;
LSM: Land Surface Model; G: Groundwater Model. AWRA: Australian Water Resources Assessment; CABLE: CSIRO Atmosphere Bio-
sphere Land Exchange; CLM: Community Land Model; HBV: Hydrologiska Byrans Vattenbalansavdelning (Hydrological Bureau Water
Balance Section); CLSM: Catchment Land Surface Model; CRUNCEP: Climate Research Unit National Centers for Environmental Predic-
tion; GSWP: Global Soil Wetness Project; HTESSEL: Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land; LISFLOOD:
Lisflood-Flood Forecasting System; MESH: Modélisation Environmentale Communautaire (Community Environmental Modeling); MGB:
Modelo de Grandes Bacias (Large Basin Model); ORCHIDEE: ORganizing Carbon and Hydrology In Dynamic EcosystEms; PARFLOW:
Parallel Flow Model; PCR-GLOBWB: PCRaster Global Water Balance; SWBM: Simplified Water Balance Model; SURFEX-TRIP: Surface
Externalisée (SURFEX) with Total Runoff Integrating Pathways; VIC: Variable Infiltration Capacity; W3RA: World Wide Water Resources
Assessment model; WGHM: WaterGAP Global Hydrology Model; WBM: Water Balance Model. The components available for each model
are indicated by SW: Surface Water, SM: Soil Moisture and GW: Groundwater.

Model Type Components Anthropogenic  Reference

AWRA-L LSM SW, SM, GW  Partial Viney et al. (2015)

CABLE LSM SW, SM No Kowalczyk et al. (2006)
CLM3.5 LSM SW, SM No Oleson et al. (2008)

CLM4 LSM SW, SM Partial Lawrence et al. (2011)
CLM5 LSM SW, SM, GW  Yes Lawrence et al. (2019)
CLSM LSM SW, SM, GW  No Koster et al. (2000)
HBV-SIMREG GHM SW, SM No Lindstrom et al. (1997)
HTESSEL LSM SW, SM No Balsamo et al. (2015)
LISFLOOD GHM SW, SM, GW  Yes Van Der Knijff et al. (2010)
MESH GHM/LSM Hybrid SW, SM, GW  Yes Pietroniro et al. (2007)
MGB GHM SW, SM, GW  Yes Collischonn et al. (2007)
Noah LSM SW, SM No Ek et al. (2003)

Noah-MP LSM SW, SM, GW  No Niu et al. (2011)
ORCHIDEE LSM SW, SM, GW  Partial Polcher et al. (2011)
ParFlow-CLM LSM+G SW, SM, GW  No Maxwell et al. (2015)
PCR-GLOBWB GHM SW, SM, GW  Yes Sutanudjaja et al. (2018)
SURFEX-TRIP LSM SW, SM No Decharme et al. (2013)
SWBM GHM SW, SM No Koster and Mahanama (2012)
VIC LSM SW, SM Yes Liang et al. (1996)

W3RA GHM SW, SM No Van Dijk (2010)

WGHM GHM SW, SM, GW  Yes Miiller Schmied et al. (2021)
WBM GHM SW, SM, GW  Yes Tiaden et al. (1998)

quired for making appropriate decisions for the individual
post-processing steps.

Gridded Level-3 datasets, i.e. TWSA grid values obtained
from SH, or mascon solutions that also provide a global
TWSA grid, might be more user-friendly for a wider commu-
nity. The mascon approach applies similar corrections com-
pared to the SH approach but uses equal-area spherical cap
mascons placed on the surface of an elliptical Earth to de-
rive global TWSA grids (see, e.g., Watkins et al., 2015). It
is important to distinguish between the native spatial resolu-
tion of the GRACE/-FO data of approximately 300 km (Kim
et al., 2024) and the spatial sampling used to provide Level-
3 TWSA grids, e.g., on 0.5 or 1° global grids. Some stud-
ies have compared the SH and mascon solutions for selected
river basins, e.g., Jing et al. (2019); Novék et al. (2021),
where statistically significant differences are observed for
several of the selected regions. A comparison with GNSS
vertical deformations for the Amazon basin showed slightly
better agreement with mascon solutions (Wang et al., 2023).

Hydrol. Earth Syst. Sci., 30, 985-1022, 2026

However, the authors also report larger differences between
different mascon solutions compared to differences between
different SH solutions (Wang et al., 2023). In orbit K-
band range-rate residuals (derived from Level-1B data prod-
ucts) and along-orbit line-of-sight gravity difference mea-
surements from the GRACE-FO laser ranging interferometer
can also be used to study hydrological processes (e.g., Eicker
and Springer, 2016; Ghobadi-Far et al., 2022).

Although GRACE and GRACE-FO provide a largely con-
tinuous record of TWSA, there is an observational gap be-
tween the missions of almost one year. Several studies have
addressed this gap using different methods, including phys-
ically based hydrological models (Zhang et al., 2022), inter-
polation and statistical approaches such as singular spectrum
analysis (SSA) and autoregressive (AR) models (Lecomte
et al., 2024; Lenczuk et al., 2022), and machine learning
techniques including convolutional or recurrent neural net-
works (Uz et al., 2022; Mo et al., 2022). Dynamic mode de-
composition (Libero and Ciriello, 2025) of GRACE/-FO data
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to extract essential spatial and temporal patterns could also
support these efforts. These techniques allow reconstruction
of TWSA during the gap while preserving both seasonal cy-
cles and long-term trends.

The GRACE/-FO data products are commonly accompa-
nied by uncertainty estimations. These might be provided
as standard deviations of SH or gridded TWSA or as fully
propagated error-covariance matrices (Sect. 3.3). Only full
error-covariance matrices reflect spatial correlations between
TWSA grid cells, which are particularly strong in the north—
south direction (e.g., Kvas et al., 2019). However, formal er-
ror covariances (or variances, if only standard deviations are
provided) reflect only instrument and orbital errors but not er-
rors in background models, and calibrated error covariances
should be preferred in DA applications (Klees et al., 2008a).

2.3 Geophysical corrections

Since GRACE/-FO observations contain signals that are not
representative of hydrological processes, geophysical correc-
tions are essential to extract the water storage changes of in-
terest. Glacial isostatic adjustment (GIA) is the effect of ice
unloading in response to the ice masses covering the Earth
during the ice ages, which is still present and thus sensed
nowadays, approximately 20000 years after the last glacial
maximum. The effect of GIA in GRACE/-FO TWSA is most
prominent in areas that are still covered by ice, e.g., Green-
land but also far-distance regions can be affected albeit with
a smaller magnitude. Typically, GIA is removed from the
GRACE/-FO TWSA by using models that incorporate ice
history and viscosity of the mantle to compute GIA mass
rates (Peltier, 2004; A et al., 2012; Caron et al., 2018). How-
ever, these GIA models are subject to considerable uncer-
tainties that inevitably create false trends in TWSA estimates
(Vishwakarma et al., 2021a).

Earthquakes are another source of mass redistribution that
are included in the GRACE/-FO data biasing the correct anal-
ysis of other hydrological signatures and events such as lin-
ear trends or droughts (Deggim et al., 2021). A temporal
model can be fitted to the data (e.g., Einarsson et al., 2010;
Deggim et al., 2021) that contains a co-seismic jump and a
post-seismic relaxation. In this way, large earthquakes can be
removed from the data, for example, the Sumatra-Andaman
earthquake in 2004. However, Gerdener (2024) found that the
removal of two earthquakes from GRACE/-FO TWSA prior
to DA did not significantly alter the results. Yet, the higher
spatial resolution which will be achieved with future gravity
missions might lead the earthquake correction to be a neces-
sary processing step prior to DA (Kusche et al., 2025).

Due to the mission constellation and background model
errors, the GRACE/-FO gravity fields provided as SH are af-
fected by high-frequency noise and correlated errors, requir-
ing filtering (e.g., Wahr et al., 1998; Jekeli, 1981; Kusche,
2007). As the filters cannot distinguish between signal and
noise, the signal magnitude is changed as well, which is
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known as leakage. Leakage is especially dominant for those
locations with large water bodies or at the coast. For example
for lakes, the signal within the lake is reduced by the filter and
smears into the surrounding land area. To account for leakage
before DA, approaches based on hydrological model output
or data-driven estimates are available, but these could in turn
also create another source of uncertainty (see Sect. 2.2 for de-
tails). Another possibility is the RECOG (REgional COrrec-
tions for GRACE) dataset (Deggim et al., 2021) that allows
the removal of signals from large lakes and reservoirs from
GRACE TWSA and the relocation to its spatial origin within
the lakes/reservoir outlines. The dataset was computed from
forward-modeling of surface water volume estimates of ma-
jor lakes sensed by altimetry and optical remote sensing.

2.4 Downscaling

The coarse resolution of GRACE/-FO-derived TWSA maps
prohibits the monitoring of fine-scale hydrological signals.
For example, TWSA error matrices are typically affected
by inversion problems when provided on lower spatial res-
olution, e.g., for a 1° grid of global land TWSA (Eicker
et al., 2014; Gerdener et al., 2023). This limitation neces-
sitates the consideration of downscaling techniques before
or along with DA, with careful attention to error propaga-
tion during the process. Downscaling not only aims to im-
prove the spatial resolution of GRACE/-FO-derived TWSA
but also to deal with issues such as leakage correction.

Various approaches have been proposed for downscaling
GRACE/-FO data. A purely statistical approach to downscal-
ing relies on multivariate or bivariate linear relationships be-
tween coarse- and fine-scale datasets to generate downscaled
products. For instance, Yin et al. (2018) used the linear re-
lationship between GRACE data and high-resolution evapo-
transpiration data to enhance the spatial detail of GRACE-
derived groundwater storage anomalies. Similarly, Vish-
wakarma et al. (2021b) applied multivariate linear regres-
sion to downscale GRACE TWSA, leveraging relationships
with water storage fields from WGHM, multiple precipi-
tation datasets, evapotranspiration, and two distinct runoff
models.

However, although the water-balance equation and spatial
averaging are linear operations in theory, the empirical rela-
tionships between GRACE TWSA and fine-scale hydrolog-
ical variables are often nonlinear in practice. GRACE does
not observe many short-timescale fluxes or individual storage
components; it only measures the net mass change integrated
over large regions. Consequently, while GRACE captures the
integrated mass-change signal resulting from processes such
as soil-moisture dynamics, infiltration, recharge, runoff gen-
eration, groundwater—surface-water interactions, and anthro-
pogenic water use, it does not directly observe these pro-
cesses individually; their effects are embedded collectively
in the coarse-scale TWS signal, resulting in nonlinear em-
pirical relationships between GRACE TWSA and fine-scale
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data, including model-derived TWSA. So generally, linear
statistical methods face two key limitations: (i) they cannot
represent such nonlinear dependencies between coarse- and
fine-scale variables, and (ii) they produce downscaled esti-
mates without accounting for marginal or joint uncertainty
distributions.

While the first challenge remains difficult to address, a
Bayesian framework offers a solution to the second challenge
by providing a posterior distribution for the target variable. It
even allows the posterior distribution to be defined indirectly
using sampling techniques like Markov Chain Monte Carlo
(MCMCO). Recent work has employed MCMC to downscale
GRACE water storage changes, producing groundwater and
soil moisture estimates at approximately 12.5 km resolution
(Mehrnegar et al., 2021).

Although the Bayesian framework addresses uncertainty
estimates and can be used to downscale GRACE/-FO data, it
struggles to deal with the first challenge. To tackle this, non-
linear Machine Learning (ML) algorithms have been used in
GRACE/-FO downscaling, including Artificial Neural Net-
works (ANN) (Miro and Famiglietti, 2018), Boosted Regres-
sion Trees (BRT) (Seyoum et al., 2019), Random Forest (RF)
(Jyolsna et al., 2021), Long Short-Term Memory (LSTM)
networks (Gorugantula and Kambhammettu, 2022) and more
recently, Convolutional Neural Networks (CNN) (Gou and
Soja, 2024). However, despite their strengths, ML methods
typically lack physical interpretability and fail to provide
comprehensive uncertainty estimates, suggesting that alter-
native or complementary methods may be needed.

Recently, Tourian et al. (2023) proposed a copula-
supported Bayesian framework to tackle the two key chal-
lenges in statistical downscaling: modeling nonlinear depen-
dencies and quantifying uncertainty. This approach is sup-
posed to capture both linear and nonlinear dependencies be-
tween random variables without requiring explicit knowl-
edge of their marginal distributions. Using this method,
the posterior distribution is obtained directly, enabling the
derivation of the Maximum A Posteriori (MAP) solution as
the downscaled product and the posterior dispersion as an
uncertainty estimate for the downscaled result.

In contrast to the above mentioned techniques, DA meth-
ods take care of the horizontal and vertical downscaling by
design. This is discussed in Sect. 3.5. Prior to DA, it has to
be ensured that the GRACE/-FO data coverage matches with
the modeling domain.

2.5 Bias correction

As has been mentioned before, the GRACE/-FO data are
heavily processed to obtain TWSA estimates (Sect. 2.2, 2.3)
that would be representative of hydrological processes. This
processing involves smoothing which inevitably results in
signal loss. To restore the lost signal, some GRACE/-FO
products are accompanied by multiplicative gain factors,
which are applied to the gridded TWSA estimates (Landerer
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and Swenson, 2012). Furthermore, to combine GRACE/-
FO TWSA observations and TWS simulated by models, the
TWSA observations need to be converted to TWS by adding
a long-term climatology, or conversely, the model climatol-
ogy needs to be removed from TWS simulations before com-
puting bias-free observation-minus-forecast differences, or
innovations.

As a first order correction, the long-term mean can be ei-
ther removed from the model within the observation oper-
ator (see below) — matching the GRACE/-FO reference pe-
riod — or added to the GRACE/-FO time series prior to DA.
It is also possible to match the higher order statistical mo-
ments of the observations to those of the model, which is of-
ten done in the case when assimilating remotely sensed soil
moisture observations, to improve physical consistency and
numerical stability (Drusch et al., 2005; Kumar et al., 2009;
Albergel et al., 2017). To this end, Reichle and Koster (2004)
introduced the concept of Cumulative Distribution Function
(CDF) matching, and recent studies developed more sophis-
ticated methods including neural network-based approaches
(Kumar et al., 2012; Fairbairn et al., 2024). For TWSA DA,
the differences in the observed and simulated dynamic range
are often related to differences in amplitudes or trends (Scan-
lon et al., 2018, 2019). Some GRACE/-FO DA frameworks
adjust both the mean and the standard deviation to match
those of the model (Girotto et al., 2017; Khaki et al., 2020),
which can potentially absorb all of the product scaling efforts
above (Girotto et al., 2016) but sacrifice information con-
tained in the measurements. Other GRACE/-FO DA frame-
works prefer to retain the full information content of the
GRACE/-FO time series and only adjust the long-term mean
(Tangdamrongsub et al., 2020; Gerdener et al., 2023).

Ideally, any differences in trends should be reconciled to
have a theoretically optimal DA system, but in most cases,
the trend of the GRACE/-FO observations is kept to correct
missing trends in the model (due to missing processes). The
GRACE/-FO trend errors are in many regions between 5 %—
30% (or higher in regions strongly affected by GIA, e.g.,
Rodell et al. (2018); Zhao and Li (2017)) and are then im-
plicitly (suboptimally) considered in the DA framework by
weighting both observation and model forecast error. The
choice of bias correction will eventually influence the nature
of the remaining observation and forecast error covariances
(Dee, 2005; Eyre, 2016), which are discussed in Sect. 3.3 and
3.4.

3 Status of current GRACE/-FO DA frameworks

The assimilation of GRACE/-FO-derived TWSA into GHMs
and LSMs is typically conducted on a monthly timescale
as illustrated in Fig. 2. Throughout the month, an ensem-
ble of model states (xlf in Fig. 2) is simulated, represent-
ing individual water storage compartments. These state vari-
ables are translated into observation space, i.e., into TWSA,
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via an observation operator (H in Fig. 2, Sect. 3.5). The
DA algorithm — most commonly variants of the Ensem-
ble Kalman Filter (EnKF) or Ensemble Kalman Smoother
(EnKS) — integrates model predictions with observations (y
in Fig. 2) while accounting for their respective uncertainties.
For monthly TWSA DA, the distinction between a filter and
smoother is somewhat vague in the literature, and we will re-
fer to EnKF and EnKS interchangeably, as will be discussed
in Sect. 3.2. In any case, a monthly TWSA innovation (d;
in Fig. 2) is computed and usually translated into a monthly
increment, or else into a daily increment (dx; in Fig. 2), us-
ing the error cross correlations between daily and monthly
TWSA forecasts. The increment is then applied to the first or
final day of the month, providing the initial condition for the
next model run, or it is distributed across all days of the cur-
rent month by rewinding the model and integrating the model
for the entire month again (Fig. 2). All currently available
continental to global-scale land reanalysis products typically
use this “filter-like”” approach, i.e. using a filter or a smoother
with non-overlapping short one-month windows, for compu-
tational efficiency and because TWS varies at timescales of
less than a month. For long-term reanalysis, longer or mov-
ing smoothing windows could be explored in the future, as is
done for atmospheric or oceanographic reanalyses. Note that,
in contrast to the above described approaches, some studies
combine GRACE/-FO observations and model output after
the model has been run over the entire study period, without
incorporating new information into the model after each up-
date step (van Dijk et al., 2014; Mehrnegar et al., 2023). The
following sections provide a detailed discussion of each step
outlined in Fig. 2. For ease of reference, key DA terminology
is summarized in the glossary (Appendix A).

3.1 Review of existing GRACE/-FO DA frameworks

Table 2 provides a detailed overview of existing GRACE/-
FO DA frameworks and their characteristics, along with an
evolution of these frameworks. The frameworks exhibit no-
table differences in terms of filter algorithms, perturbation
processes, model update strategies, selected GRACE/-FO so-
lutions, and approaches to dealing with observation errors.
In their seminal paper, Zaitchik et al. (2008) utilized three
years of GRACE data, which were incorporated into the
CLSM model as catchment-averaged time series for four
subbasins of the Mississippi river basin. Later, this frame-
work has been extended and applied for exploring technical
aspects of the DA process, such as strategies for applying
analysis increments (Girotto et al., 2016). Concurrently, vari-
ous GRACE/-FO frameworks based on different models have
been developed. For instance, the WGHM model was inte-
grated within a joint calibration and DA framework (Eicker
et al., 2014), a W3RA-based DA framework was employed
to investigate water balance components over Australia (Tian
etal., 2017), and DA schemes for different LSMs were devel-
oped for investigating trends in different water storage com-
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partments (Springer et al., 2019; Nie et al., 2019; Zhao and
Yang, 2018; Stampoulis et al., 2019). Today, there are at least
12 GRACE/-FO DA frameworks based on different GHMs
and LSMs, and most of the studies to date have been con-
ducted for CLSM and W3RA (Fig. 3a). These frameworks
have been primarily developed and tested for individual river
basins rather than globally, the majority of which are located
on the North American continent, while only a small number
of GRACE/-FO studies have been conducted for the South
American and African continents (Fig. 3b).

Table 2 highlights that most GRACE/-FO DA frameworks
use the classical EnKF or EnKS approaches, but the effec-
tiveness of other sequential DA algorithms has also been
evaluated (Schumacher et al., 2016; Khaki et al., 2017b)
along with non-parametric alternatives (Khaki et al., 2018d).
Initially, GRACE/-FO data was assimilated at the basin or
subbasin scale, but later studies explored a range of grid
sizes, typically from 0.5 to 4° (Khaki et al., 2017c¢). So far, no
cross-framework consensus has been reached regarding the
optimal choice for the observation grid. It is crucial to con-
sider that for higher-resolution observation grids, obtained
after downscaling (Sect. 2.4), the examination of spatial cor-
relations is a logical approach (Khaki et al., 2017c; Springer,
2019), given the inherent limitations in the spatial resolution
of GRACE/-FO data, but this is not done as a standard so
far (Fig. 3d). At the time of the initial GRACE-DA studies,
only GRACE solutions in the form of SH coefficients were
available. However, subsequent studies have employed not
only mascon solutions but also Level-3 TWSA products de-
rived from SH solutions, which require less preprocessing
efforts (Fig. 3c, Sect. 2.2). As spatial filtering is employed in
the processing of SH solutions, which attenuates signals, ap-
proximately half of the studies utilize a rescaling procedure
to restore filtered signals (see Sect. 2.2 for further details).
To date, the majority of studies have been conducted using
SH solutions, which permit the consideration of spatial cor-
relations via the full error covariance matrices of the coef-
ficients, which can then be propagated onto the observation
grid. In contrast, studies utilizing mascon solutions or Level-
3 data may alternatively assume a fixed correlation length
(Fig. 3d). The latest research developments have begun to ex-
plore the direct incorporation of GRACE/-FO Level-1b data,
represented by along-orbit line-of-sight gravity difference
(LGD) measurements (Khaki et al., 2023). This approach
overcomes the limitations of the conventional method, of-
fering enhanced performance in capturing high-frequency
TWSA observations, including at submonthly time scales
(Sect. 6.3).

In recent years, multi-sensor DA frameworks have gained
popularity, through a combination of GRACE/-FO data with
other satellite data to better constrain the DA (see Sect. 1). To
the best of our knowledge, only the CLSM-based GRACE/-
FO DA framework has been used operationally, i.e. for the
NASA drought monitor for groundwater and soil moisture
conditions https://nasagrace.unl.edu/ (last access: 10 Decem-
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Table 2. Overview on GRACE/-FO DA frameworks and conducted studies (Status as of November 2024). Please refer to Table 1 for
details on the models in the first column. Abbrevations: R.B.: River Basin, MC: mascon, SH: Spherical Harmonics, no: not available, EnKS:
Ensemble Kalman Smoother, EnKF: Ensemble Kalman Filter, LETKF: Local Ensemble Transform Kalman Filter, LGD: line-of-sight gravity
difference, SQRA: Square root Analysis, K.-Takens: Kalman Takens, EnSRF: Ensemble Square Root Filter, UWCenKF: Unsupervised
Weak Constrained ensemble Kalman Filter, AEnKF: Adaptive Ensemble Kalman Filter, EAKF: Ensemble Adjustment Kalman Filter, SVM:
Support Vector Machine, LEnKF: Localized Ensemble Kalman Filter, * includes several GLDAS models (CLM, Mosaic, NOAH, VIC),
GLDAS: Global Land Data Assimilation System (Rodell et al., 2004), SM: soil moisture, GW: groundwater, Corr: correlation.

Assimilation System ‘ GRACE/-FO Data ‘ Application
Model Study Area Filter ‘ Type Grid Corr ‘ References Scope
CLSM Mississippi R.B. EnKS SH subbasins  no Zaitchik et al. (2008) spatial, temporal, vertical
downscaling
Mackenzie R.B. EnKS SH, MC  subbasins no Forman et al. (2012) GRACE-DA in a snow
dominated catchment
North America EnKS SH subbasins  no Houborg et al. (2012) drought indicators based on
GRACE-DA
Europe EnKS SH subbasins  no Lietal. (2012) drought monitoring
Mackenzie R.B. EnKS synth. subbasins  no Forman and Reichle (2013) impact of observation grid
Missouri R.B. EnKS Level-3 1° no Reager et al. (2015) regional flood potential
USA EnKS Level-3 1° 3° Girotto et al. (2016) strategies for applying analysis
increments
USA EnKS Level-3 1° no Kumar et al. (2016) integration of GRACE data
into the NLDAS system
India EnKS Level-3 1° 3° Girotto et al. (2017) TWS depletion
global EnKS MC 0.5° 2° Lietal. (2019) improved modeling of GW
storage variations
USA EnKF Level-3 3° 2° Girotto et al. (2019) improved shallow GW
estimation
West Africa EnKS MC 0.5° no Jung et al. (2019) improved modeled surface SM
West Africa EnKS MC 0.5° no Getirana et al. (2020a) improved seasonal streamflow
forecast
USA EnKS MC 0.125° no Getirana et al. (2020b) seasonal hydrological forecast
initialization
USA EnKS MC 0.125° no Getirana et al. (2020b) seasonal hydrological forecast
initialization
Volga R.B. EnKS synth. 1° 300 km | Wang et al. (2021) improved snow water and TWS
estimates
global EnKF MC 3° 2° Felsberg et al. (2021) landslide prediction
CLM3.5 North America EnKS SH 4° no Su et al. (2010) improved snow estimation
Europe LETKF SH 0.5° cov Springer et al. (2019) daily hydrological loading in
GPS time series
Europe LETKF SH 0.5° cov Klos et al. (2021) noise in daily GPS time series
WGHM Mississippi R.B. EnKF SH 5° cov Eicker et al. (2014) joint calibration and DA
Mississippi R.B. multiple | synth. 5° cov Schumacher et al. (2016) impact of error correlations
Murray-Darling R.B.  EnKF SH 0.5° cov Schumacher et al. (2018) drought representation
South Africa EnKF SH 4° cov Gerdener et al. (2022) signatures in precipitation —
water storage — vegetation —
evapotranspiration
global EnKF SH 4° no Gerdener et al. (2023) global land water storage
dataset release 2
global LESTKF | SH 4° cov Gerdener (2024) global land water storage
dataset release 3
Mississippi R.B. EnKF SH 4° cov Schulze et al. (2024) joint DA with streamflow
observations
GLDAS*, W3RA  global EnKF ‘ SH 1° no ‘ van Dijk et al. (2014) a global water cycle reanalysis
wflow_hbv Rhine R.B. EnKF ‘ SH subbasins  no ‘ Tangdamrongsub et al. (2015)  improved GW estimates
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Table 2. Continued.
Assimilation System ‘ GRACE/-FO Data Application
Model Study Area Technique ‘ Type Grid Corr ‘ References Scope
W3RA Australia EnKS MC 3° no Tian et al. (2017) improved water balance
components
Australia multiple SH 1° cov. | Khaki et al. (2017b) assessing sequential DA
techniques
Australia SQRA SH mult. cov. | Khaki etal. (2017c¢) impact from spatial error
correlations, localization
Australia K.-Takens SH 1° cov. | Khaki et al. (2018d) investigating alternative DA
approaches
Bangladesh SQRA SH 1° cov. | Khaki et al. (2018b) subsurface water storage
depletion
Iran SQRA SH 1° cov. | Khaki et al. (2018c) water storage depletion
multiple R.B. UWCEnKF SH 3° cov. | Khaki et al. (2018a) new DA technique
Mississippi R.B.,  SQRA, K.-Takens | SH 3° cov. Khaki et al. (2019) Assimilating multi-mission
Murray Darling satellite products
R.B.
South America EnSRF SH 3° cov. | Khaki and Awange (2019) improved GW and SM
estimates
Mississippi R.B., UWCenKF SH 1° cov. Khaki et al. (2020) multi-mission DA
Murray Darling
R.B.
global, selected EnKS, EnKF SH mult. cov. | Yangetal. (2025) a generalized framework for
R.B. GRACE/-FO DA
High Plain ConBay SH 0.1° no Mehrnegar et al. (2023) multi-sensor DA, improved
Aquifers simulated GW
global EnKF SH,LGD 1° no Khaki et al. (2023) new DA approach based on
Level-1 data
Brahmaputra EnKS/EnKF SH subbasins  no Retegui-Schiettekatte et al. (2025) daily TWSA DA during flood
R.B. events
PCR- Hexi Corridor EnKS SH 0.5° cov. | Tangdamrongsub et al. (2017) improved water resources
(China) estimates
GLOBWB Australia EnKS SH 0.5° cov. | Tangdamrongsub et al. (2018) GW storage variations
Central S.-E. EnKS SH 0.5° 3° Tangdamrongsub and Sprldk (2021)  hydrology-induced land
Asia deformation
AWRA-L Murrumbidgee EnKF synth. basin no Shokri et al. (2018) assimilation into a
R.B. high-resolution model
Murray-Darling AEnKF MC 3° no Shokri et al. (2019) alternative assimilation
algorithms
CLM4 global EAKF MC-daily  1° no Zhao and Yang (2018) robust global SM and snow
estimation
global EAKF MC-daily 1° no Wau et al. (2022) improved river discharge
estimation
CLM5 East Asia EAKF MC 0.5° no Chi et al. (2024) hydrological trends
Noah-MP High Plains EnKS MC 0.5° no Nie et al. (2019) irrigation induced GW trends
Aquifer
VIC Central Valley direct insert MC 0.5° no Stampoulis et al. (2019) improved representation of
water table
CABLE Goulburn R.B. EnKS SH basin - Tangdamrongsub et al. (2020) improved SM and GW
estimates
North China EnKF SH, MC 1° cov. | Yinetal. (2020) improved water storage
Plane estimates
MESH Liard R.B. EnKS SH basin - Bahrami et al. (2021) improved snow simulations
Noah North-East US EnKF, SVM MC 0.5° no Liu et al. (2021) combined machine learning
and DA approach
ParFlow-CLM  part of Iran EnKF SH 1° no Soltani et al. (2024) DA in a coupled
surface-subsurface model
MGB Amazon R.B. LEnKF Level-3 subbasins  no Wongchuig et al. (2024) advances in

multi-observational DA
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Figure 2. General concept for assimilating monthly GRACE/-FO-derived TWSA into GHMs and LSMs along with most relevant Ensemble
Kalman Filter (EnKF) equations showing two options for applying the assimilation increments: After computing the increments, the model
is either (A) rewound and re-run over the month with the increments Sxil .. .Sx?o distributed across all days, or (B) updated by applying the
full monthly increment 6x;" at the end of the month. Please note that the equations provided refer to the EnKF and are expressed for each
ensemble member i. The Kalman Gain matrix determines the update weights based on the state and observation error covariance matrices.
X'/ and Y’/ are matrices of forecast state anomalies and forecast state observation-space anomalies, respectively. Each column represents
the deviation of one ensemble member from the ensemble mean. For further details on the equations for other DA algorithms, refer to the

literature cited in Sect. 3.2.
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Figure 3. Statistics of common settings in GRACE/-FO DA experiments, including the (a) hydrological model used, (b) continent of study,
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(¢) GRACE/-FO observation product (analysis approach), and (d) observation error model (Status as of October 2024).
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ber 2025; Houborg et al., 2012; Li et al., 2019; Getirana et al.,
2020b). Recently, the groundwater storage changes from the
GLWS2.0 dataset developed at the University of Bonn via
assimilating GRACE/-FO TWSA data into the WaterGAP
model have been integrated into the operational water and
biodiversity risk assessment tools of the WWF (World Wide
Fund for Nature, 2024).

3.2 DA algorithms

Most TWSA DA studies use a variant of the sequential
EnKF or EnKS (Evensen, 1994, 2009; Lorenz et al., 2015).
For monthly GRACE/-FO TWSA DA, the line between the
EnKF and EnKS is vague in literature. Whereas a filter typ-
ically assimilates observations at one instant, a smoother
would assimilate observations at multiple time steps over a
longer observation window. One can state that the assimi-
lation of a single monthly GRACE/-FO TWSA observation
at one instant is done through an EnKF. However, since the
TWSA is a monthly aggregate, it is often used to update an
entire time window of state variables in a retrospective analy-
sis and this process is then often referred to as an EnKS (e.g.,
Zaitchik et al., 2008; Li et al., 2012; Forman et al., 2012;
Kumar et al., 2016; Tian et al., 2017; Li et al., 2019; Geti-
rana et al., 2020b; Wang et al., 2021; Bahrami et al., 2021;
Tangdamrongsub and Sprlak, 2021). In any case, the EnKF
and EnKS represent the probability distribution of the system
state using a dynamic ensemble of model simulations (see
Egs. 27 to 39 in Nerger et al., 2005), and thereby overcome
the need for a linear(ized) model to analytically propagate
the forecast uncertainty in a traditional (extended) Kalman
filter or smoother. The ensemble approach is computation-
ally efficient, making it suitable for large-scale systems and
real-time applications, and can further provide uncertainty
estimates for both state variables and parameters. Neverthe-
less, all ensemble techniques are sensitive to the choice of
ensemble size, which can lead to sampling errors, especially
with small ensemble sizes or in highly nonlinear systems. In
such cases, the ensemble may fail to capture the true vari-
ability of the system, and it is particularly prone to collapse,
meaning that all ensemble members converge to the same
state (Mitchell et al., 2002). Furthermore, strictly speaking
the EnKF and EnKS are optimal and unbiased only when
errors are Gaussian (Sect. 3.4), however unless strong non-
linearities lead to violations of this assumption they usually
work in a satisfactory way. This is a known limitation and
can result in biased estimates. In the context of GRACE/-
FO DA, recent advancements have sought to address these
issues through techniques such as localization (Hunt et al.,
2007), covariance inflation (Anderson and Anderson, 1999),
and modifications of the EnKF or EnKS, including square
root filters (Tippett et al., 2003) and alternative methods like
particle filters (Crisan, 2001).

Localization is supposed to mitigate spurious long-range
correlations, restrict the influence of observations on nearby
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grid cells, and improve performance with limited ensemble
sizes. This can be achieved either through covariance local-
ization, which modifies the forecast error covariance matrix
(E{X in Fig. 2) using a distance-dependent tapering func-
tion, or through domain-based localization, where the anal-
ysis is performed independently for local regions or grid
points (Kirchgessner et al., 2014; Evensen et al., 2022), or
a combination of both. These two approaches imply that
long-range correlations in the forecast error covariance ma-
trix are damped or removed, respectively. In the case of co-
variance localization, the influence of distant observations
on model state updates is reduced by damping error cross-
covariances between state variables and observation predic-
tions. The covariance localization scale is typically set to a
multiple of the spatial autocorrelation length in the forecast
errors. Meanwhile, via domain localization, the state update
is restricted to the assimilation of nearby observations within
an influence radius, as illustrated in Fig. 2 of De Lannoy
et al. (2016) for the case of soil moisture DA. Most often,
both approaches are used together. Thus, both localization
approaches mitigate the impact of spurious error correlations
in GRACE/-FO TWSA data and have proven highly benefi-
cial for GRACE/-FO DA (Schumacher, 2016; Khaki et al.,
2017¢). Additionally, covariance inflation methods, which
prevent filter divergence by artificially increasing the ensem-
ble forecast spread, are commonly applied in GRACE/-FO
DA frameworks (Khaki et al., 2020; Gerdener et al., 2023).

Square root filters, such as the Ensemble Transform
Kalman Filter and the Ensemble Adjustment Kalman Fil-
ter, were designed for improved numerical stability and
reduced sampling errors compared to the standard EnKF
(Schumacher et al., 2016; Khaki et al., 2017b). Particle fil-
ters and smoothers, also known as Sequential Monte Carlo
methods, are another class of sequential DA techniques that
have been applied for GRACE/-FO DA (e.g., Khaki et al.,
2017b, 2018d). These techniques utilize a set of particles
to represent the probability distribution of the system state,
propagating these particles through the model and weighting
them based on their agreement with the observations. How-
ever, particle filters and smoothers are computationally more
demanding, especially for high-dimensional systems.

More recently, machine learning algorithms in conjunction
with traditional DA methods have been put forward to assim-
ilate GRACE/-FO data. For instance, Liu et al. (2021) pro-
posed a support vector machine framework integrated with
DA for groundwater level forecasting using GRACE/-FO
data. The effectiveness of such hybrid approaches depends
on the availability of high-quality training data and the abil-
ity to generalize across different hydrological contexts. Such
data-driven methods have also been extensively applied to
reconstruct past (Humphrey et al., 2017) and forecast future
(Li et al., 2024) GRACE-like TWSA. To clarify the rela-
tive strengths and limitations of the DA methods discussed
in this part, Table 3 provides a structured comparison of their
computational requirements, underlying assumptions, advan-
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tages, and known challenges in the context of GRACE/-FO
TWSA assimilation.

3.3 Observation errors

After bias correction (Sect. 2.5), GRACE/-FO data still con-
tains inherent errors that, if not adequately accounted for, can
propagate through the assimilation process and affect the ac-
curacy and reliability of the assimilated model version. In tra-
ditional EnKF and EnKS approaches, observations are per-
turbed with additive noise to represent the random error.

The first GRACE/-FO DA studies assumed spatially uni-
form and uncorrelated errors in the range of 10 to 30 mm
equivalent water height (Zaitchik et al., 2008). However,
in reality the observation errors may not be uniformly dis-
tributed across the observed area (Sect. 2.2) and Eicker et al.
(2014) highlighted the importance of understanding the im-
pact of anisotropically correlated TWSA observation errors
on state estimates. Since then, three major strategies have
emerged to address this issue, which are applied either in-
dividually or in combination. First, the grid spacing can be
chosen to match the native resolution of the TWSA maps,
resulting in either thinning or aggregation of the grid, typ-
ically to 3 or 4° spacing (Eicker et al., 2014; Khaki et al.,
2017c; Girotto et al., 2019; Gerdener et al., 2023). However,
this means that some possible signal loss is accepted. Sec-
ond, spatial correlations between observation grid cells may
be taken into account either by prescribing a fixed correla-
tion length, typically 3°, or by taking into account full error
covariance matrices (Shokri et al., 2019; Tangdamrongsub
and Sprlék, 2021; Wang et al., 2021). Third, researchers have
proposed localization techniques that account for spatial cor-
relation errors in the DA process (Tangdamrongsub et al.,
2017; Gerdener, 2024). By ensuring that the influence of ob-
servations is appropriately weighted based on their spatial
proximity to model grid points, these techniques can enhance
the reliability of GRACE/-FO data integration into numerical
models by limiting in particular the impact of spurious long-
range correlations (Khaki et al., 2017c¢).

3.4 Forecast errors

In ensemble-based DA approaches, the forecast uncertainty
is estimated by perturbing key components such as forcing
data, state variables, and model parameters (Table 4). The
perturbation scheme is designed based on the assumption
that model uncertainties are unknown and are propagated
from model inputs (e.g., forcing data), configuration (such
as number of soil layers and static parameters), and model
physics. However, due to the finite ensemble size, the per-
turbation process can introduce unrealistic long-range corre-
lations within the ensemble. In high-dimensional systems, a
small ensemble struggles to represent the true error structures
accurately.
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Forcing data such as precipitation, temperature, and solar
radiation are usually obtained from global atmospheric re-
analyses and often perturbed by adding or multiplying ran-
dom noise to represent uncertainties in these variables. Spa-
tial correlation errors are often introduced during the pertur-
bation process, to reflect the reality that reanalysis errors are
often spatially correlated, e.g., due to topography influences.
Additionally, correlations among variables can be accounted
for to preserve the proper interactions between forcing vari-
ables during DA (Reichle et al., 2007).

Perturbing state variables — such as soil moisture or snow,
which define the current condition of the system — ensures
that the ensemble represents a range of possible states. This
becomes especially important when the perturbation from
forcing data is small or does not impact all state variables
that contribute to TWS. In GRACE/-FO DA, state variables
typically include all components of TWS, such as soil mois-
ture, groundwater, and snow. However, the choice of which
state variables to perturb depends on the design of the DA
scheme and the model employed. While perturbing all vari-
ables contributing to TWS is one option, another approach
is to perturb only a few selected state variables, or alterna-
tively, to use only parameter perturbation, as described be-
low (Nie et al., 2019; Tangdamrongsub et al., 2018; Springer
et al., 2019). Introducing correlations among TWS variables
can also help maintain realistic interactions and behavior in
the TWS estimates (Kumar et al., 2016). This ensures that the
ensemble better reflects the system’s actual dynamics during
the DA process. Challenges may arise from non-Gaussian be-
haviour of variables contributing to TWS (Sect. 5.3).

Finally, parameters that govern hydrological processes
and/or describe soil properties can be perturbed to reflect un-
certainties in the physical or empirical relationships within
the model. In real-world applications, many parameters are
either estimated from limited data, or based on assumptions
that may not be valid under all conditions. Perturbing these
parameters allows the ensemble to explore a range of pos-
sible model behaviors, which is crucial for accurately es-
timating the true state of the system, especially when cer-
tain model processes are poorly formulated. The implemen-
tation of parameter perturbation may be simpler in models
where parameters are pre-calculated (Tangdamrongsub et al.,
2017), but it becomes more complex in models where param-
eters are determined dynamically, such as through look-up
tables (Peters-Lidard et al., 2007). Dedicated studies are of-
ten required to determine the sensitivity of model parameters
and uncertainty ranges, ensuring that the perturbations ade-
quately capture the variability (Benke et al., 2008; Herrera
et al., 2022).

The above perturbations may create an unintended bias
in the forecast errors. To address this, the ensemble can be
readjusted after each perturbation step to better fit a Gaus-
sian distribution, using an unperturbed model run in paral-
lel with the ensemble to correct the mean perturbation bias
(Ryu et al., 2009). Furthermore, modern DA systems also
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Table 3. Comparison of DA methods and ensemble tuning techniques commonly applied in GRACE/GRACE-FO DA cases. Computational
cost is rated qualitatively: WITTeTesy (low), WYYy (moderate), WRWIYYY (moderate—high), Wk R3¥ (high), Wkl k & (very

high).
Method/Technique Computational ~ Key Assumptions Strengths Limitations/Notes
Cost
EnKF ) ¢ giakoiks Assumes Gaussian Efficient for large-scale hydrology; ~ Sampling errors for small
(moderate) unbiased errors; real-time capable; uncertainty ensembles; prone to ensemble
ensemble approximates  quantification collapse; requires localization and
covariance inflation
EnKS .8 ¢ geks Same as EnKF; assumes  Improved temporal consistency; Higher memory and computational
(moderate— temporal error suitable for monthly GRACE/-FO cost; retrospective only
high) correlation over assimilation windows
smoothing window
Square-root filters ) ¢ gRakoks Same Gaussian Uncertainty quantification, reduced  Still requires localization and
(ETKF, EAKF, (moderate) assumptions as EnKF sampling noise; improved inflation; additional linear algebra
ESTKF) numerical stability; smaller steps
ensembles possible
Particle b 0.0 0.0 ¢ No Gaussian Handles nonlinear and Computationally infeasible for
Filters/Particle (very high) assumption; fully non-Gaussian dynamics; global LSMs; particle degeneracy
Smoothers general Bayesian accommodates multimodal states unless many particles are used
formulation
Hybrid Machine b phakasok Requires representative  Can reduce structural model error; ~ Can generalize poorly;
Learning-DA b 0 ¢ gRoid training data; assumes enables downscaling or emulation; GRACE/-FO record is short;
(variable) model transferability useful where physics are weak physical consistency may weaken
Localization ARITITe- Forecast error Mitigates spurious long-range Choice of radius is subjective; too
(covariance or .0 8 ok correlations decay with correlations; essential for small strong localization distorts updates;
domain) distance ensembles; improves stability in often combined with inflation
GRACE/-FO DA
Covariance Inflation ) pRaRokoks Forecast ensemble Prevents filter divergence; widely Over-inflation causes noise or
(low) under-dispersion can be  used in GRACE/-FO DA; prevents  instability; parameters often tuned
corrected underestimation of forecast model empirically
multiplicatively or error covariance
additively
Adaptive Inflation b 8 _¢gXatoks Innovation statistics Online tuning reduces need for Additional computation; may react
(moderate) correspond to correct offline sensitivity tests; improves poorly to biased observations or

ensemble spread

filter robustness

large model error

provide opportunities to calibrate forecast uncertainties au-
tomatically during runtime, rather than relying solely on
offline perturbation design. Techniques such as adaptive co-
variance inflation (Anderson, 2007) and relaxation-to-prior-
spread (RTPS) or relaxation-to-prior-perturbations (RTPP)
(Whitaker and Hamill, 2012) dynamically adjust ensemble
spread using innovation statistics to compensate for under-
or over-dispersive ensembles. In addition, stochastic model
error estimation and hierarchical Bayesian approaches allow
perturbation magnitudes or model error parameters to be up-
dated online (Ruiz et al., 2013; Berry and Harlim, 2017).
These automated strategies reduce the reliance on extensive
offline sensitivity analyses and enable forecast uncertainties
to evolve consistently with model-observation discrepancies.
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3.5 Innovations and increments

When assimilating GRACE/-FO data into models, key con-
siderations include the mismatch in spatial and temporal res-
olution, along with the decision of whether to compute inno-
vations and increments at the observation or model resolu-
tion (in space and time). Today, the most common approach
for assimilating GRACE/-FO data is to use monthly TWSA
maps, which have a coarse spatial resolution (~ 300km),
capturing large-scale changes in TWS. In contrast, GHMs
or LSMs operate at much finer spatial (order of km) and
temporal (daily or subdaily) scales. This discrepancy cre-
ates a challenge, as localized water storage dynamics (such
as small-scale groundwater variations or snow in complex
terrains) may be smoothed out in the GRACE/-FO ob-
servations (Sect. 5.2.2). Recent research has also explored
submonthly assimilation intervals using weekly or daily
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Table 4. Summary of perturbations applied in various hydrological and land surface models for GRACE/-FO DA, including the types of
state variables, meteorological forcing variables, and calibrated parameters perturbed. CD: Catchment deficit, SE: Surface excess, SMC:
soil moisture; SWE: snow water equivalent; GW: groundwater storage; PCP: precipitation; SWR: shortwave radiation; LWR: longwave
radiation; RAD: radiation; TEMP: air temperature; minT/maxT: minimum/maximum air temperature; PET: potential evapotranspiration;
infR: infrared surface temperature; SysE: systematic error; radE: random error; TRMM: Tropical Rainfall Measuring Mission; maxDrain:
maximum subsurface drainage rate; DrainRt: drainage rate; TWS: terrestrial water storage, see Table 1 for model abbreviations.

Model Perturbed state Perturbed meteorological Perturbed parameters Reference
variable forcing variable (input or calibrated)
AWRA-L - PCP (50 %), RAD (30 %), - Shokri et al. (2018)
minT (0.3°), maxT (0.25°)
CABLE - SWR (10 %), TEMP (10 %), Soil texture (10 %), Tang et al. (2020)
PCP (TRMM product) Saturated fraction (10 %),
maxDrain (10 %),
DrainRt (10 %)
CLM - PCP (30 %), SWR (30 %), Soil texture (10 %) Su et al. (2010),
LWR (30 W m~2), TEMP (2°) Springer et al. (2019)
CLM-ParFlow - PCP (10 %) Soil texture (10 %) Soltani et al. (2024)
CLSM CD (0.02 mm), PCP (50 %), SWR (30 %), - Reichle et al. (2007);
SE (0.05 mm), LWR (50 Wm™2) Girotto et al. (2016)
SWE (0.12 %)
MESH SWE (0.0004 mm)  PCP (50 %), SWR (30 %), - Bahrami et al. (2021)
LWR (20 Wm™2)
MGB - PCP (25 % SysE and 70 % Several storage, residence Wongchuig et al. (2024)
radE) time and river related
parameters
Noah - PCP, TEMP, RAD, infR, - Liu et al. (2021)
TEMP (1 % of mean)
Noah-MP SMC PCP (30 %), SWR (30 %), - Nie et al. (2019)
(1075- LWR (50 Wm™2)
104 mm3 mm_3),
GW (0.01 mm)
PCR-GLOBWB - TEMP (2°), PET (30 %), 15 TWS-related Tangdamrongsub et al. (2017)
PCP (TRMM product) parameters (20 %)
wflow_hbv - PCP (10 %), TEMP (15 %), SMC and runoff routine Tangdamrongsub et al. (2015)
PET (15 %) parameters (10 %)
WGHM - PCP (30 %), TEMP (2°) 22 parameters Eicker et al. (2014);
Schumacher et al. (2016)
W3RA - PCP (60 %), SWR - Tian et al. (2017)
(50 Wm—2),
TEMP (2°)

observation datasets (Khaki et al., 2017c; Wu et al., 2022;
Khaki et al., 2023; Retegui-Schiettekatte et al., 2025), which
is discussed in detail in Sect. 6.2.

Depending on the temporal and spatial scale at which
model simulations and observations are compared, GRACE/-
FO DA can be categorized into two types: DA with TWSA
innovations computed at the spatial and temporal resolu-
tion of GRACE/-FO observations, and DA with TWSA in-
novations calculated at the model’s spatial resolution which
is generally finer than that of GRACE/-FO data. The latter
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choice is unique to GRACE/-FO DA - see Sect. 5.2 for a dis-
cussion of the specific challenges associated with each ap-
proach. In most GRACE/-FO DA frameworks, TWSA fore-
casts (also called observation predictions) are computed at
the resolution of the GRACE/-FO observations. The daily
or subdaily model state variables (groundwater, soil mois-
ture, ...) at the pixel scale are mapped to monthly coarser-
scale TWSA observation predictions. TWSA innovations are
formed by taking the difference between observation predic-
tions and GRACE/-FO observations, and these TWSA inno-
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vations are then projected to model state increments via er-
ror cross covariances between these state variables and their
associated TWSA observation predictions (Fig. 2). This pro-
cess involves several steps that are implemented in the obser-
vation operator (Reichle et al., 2014): (i) computing TWS(A)
for each model grid cell by summing individual storage com-
partments (and possibly removing the climatology), (ii) spa-
tially aggregating model grid cells to match the GRACE/-FO
observation grid, and (iii) temporally aggregating the mod-
eled observation predictions to the monthly GRACE/-FO ob-
servation frequency, by averaging all or select days within the
month. The second approach takes on a simplified strategy
by interpolating or downscaling GRACE/-FO data directly
onto the model’s finer grid, where innovations are then com-
puted independently at each model grid cell (Tangdamrong-
sub et al., 2015; Nie et al., 2024; Chi et al., 2024).

Assimilation increments are computed for each entry of
the state vector. Typically, the state vector is filled with water
storage in individual compartments, such as root-zone soil
moisture, snow, and groundwater of considered model grids,
allowing for the disaggregation of TWSA updates during
the DA process (Khaki et al., 2017b; Gerdener et al., 2023).
However, storage compartments with a small contribution to
the overall TWS variability, such as canopy water, are of-
ten excluded from the state vector to prevent instabilities and
spurious updates in these variables. For monthly GRACE/-
FO DA, monthly increments are computed using the state er-
ror covariances on the last day of the month, or the monthly
increment is computed as an average of daily resolved incre-
ments (Girotto et al., 2016). This monthly increment is then
applied either to the first day or the last day of the month
or distributed across all days by iterating through the entire
month again.

In addition to updating model state variables, model pa-
rameters can also be adjusted during DA by augmenting the
state vector with parameters sensitive to TWSA observations
(Schumacher et al., 2016). This approach requires a prior
sensitivity study to identify the most relevant parameters.

4 Validation of DA experiments

This section discusses the validation of GRACE/-FO DA
experiments using independent observation-based datasets,
where different metrics are applied and tailored to the vari-
ables of interest and the specific applications. Key chal-
lenges such as data sparsity, scale mismatches, and uncer-
tainty quantification are addressed.

4.1 Commonly used validating variables and metrics

Hydrological applications often use GRACE/-FO TWSA ob-
servations to benchmark GHMs or LSMs (Scanlon et al.,
2018; Jensen et al., 2019). However, once GRACE/-FO data
is assimilated, it can obviously no longer serve as an indepen-
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dent validation dataset. Since direct TWS measurements are
rare, the performance is typically evaluated using indepen-
dent observations corresponding to the model’s storage com-
ponents (e.g., soil moisture, groundwater, snow water equiv-
alent (SWE)) or to fluxes impacted by the assimilation (such
as runoff, streamflow, river water levels, and evapotranspi-
ration (ET)). Recently, GPS measurements of vertical land
motion have also been used as a reference dataset for vali-
dation. It is important to note that datasets used as model in-
puts, or observational constraints for assimilation in addition
to GRACE/-FO TWSA, are not independent.

Validation metrics can be broadly categorized into bias and
variance dimensions. Bias metrics assess systematic errors
between model and reference targets, including bias, Mean
Absolute Error (MAE), Root Mean Square Error (RMSE),
trends, and climatology (seasonal amplitude and phase).
Root Mean Square Difference (RMSD) is sometimes used
in place of RMSE when the reference dataset is not consid-
ered as a definitive “ground truth” to highlight discrepancies
between datasets without implying that one is entirely ac-
curate. Besides, because models, satellite retrievals, and in
situ measurements involve different assumptions that may re-
flect real-world dynamics differently, they typically exhibit
very different mean values and variability, therefore, abso-
lute bias evaluations are not always meaningful (Reichle and
Koster, 2004). Instead, unbiased RMSE or RMSD (ubRMSE
or ubRMSD) can be used to isolate variance-related errors by
removing bias (Girotto et al., 2016).

Variance metrics focus on capturing how much the model
outputs vary from their expected values or fluctuate over
time. Common metrics include Pearson or rank correlation
(on raw, deseasonalized, or detrended data), or more inte-
grated metrics such as Nash-Sutcliffe Efficiency (NSE) and
Kling-Gupta Efficiency (KGE) coefficients. However, desea-
sonalizing and detrending rely on assumptions, like a fixed
seasonal cycle or linear trend. These assumptions can in-
troduce errors, especially in complex, nonlinear, or non-
stationary systems (Nie et al., 2024). Removing informa-
tion based on such assumptions effectively inserts distortions
into the data, which can significantly affect the validation re-
sults. For instance, nonstationary TWS changes, driven by
climate change and human activities, are increasingly preva-
lent (Rodell et al., 2018; Humphrey et al., 2016; Nie et al.,
2024). In such a context, validation strategies may consider
robustness and flexibility on data distribution assumptions.
For instance, some studies (Kumar et al., 2018) apply infor-
mation theory (Shannon, 1948) to assess whether the model
captures inherent variability and randomness in observations
without assuming linearity or stationarity.

Another emerging focus is evaluating whether GRACE/-
FO DA enhances the representation of extreme events like
droughts and floods (Houborg et al., 2012; Reager et al.,
2015; Li et al., 2019; Jung et al., 2019; Khaki et al., 2023).
However, validating drought performance is challenging due
to differences in propagation times and speeds across indica-
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tors. For example, validating a TWS-based drought indicator
using a vegetation or precipitation-based drought indicator is
difficult, as each responds differently to drought conditions
over space and time. Furthermore, establishing a consistent
ground truth for droughts is complicated due to human activ-
ities. For instance, during a severe drought, responding with
increased irrigation may maintain soil moisture levels, mak-
ing soil moisture-based drought indicators less representative
of actual drought conditions.

Overall, the design of validation depends on the goal of
the application, reasonable assumptions regarding the prop-
erties of the variable of interest, and the availability of reli-
able observational data. A non-exhaustive list of commonly
used datasets, variables, and metrics in GRACE/-FO assimi-
lation validation can be found in Table 5.

4.2 Impact of GRACE/-FO DA on model variables

The impact of GRACE/-FO DA on hydrological processes
varies with spatial scales, simulated storage components,
and external factors on water storage dynamics such as hu-
man impacts. An improved performance is especially present
in large river basins where natural variability dominates
(Humphrey et al., 2023). Challenges in model-only simu-
lations include underestimated amplitudes and seasonal dy-
namics of TWS due to model parametrization (Schellekens
et al., 2017) and underestimated trends and variability due to
uncertainties in meteorological forcings (Tang et al., 2020).
GRACE/-FO DA has proven effective in addressing these
issues, improving correlation and long-term trends in stor-
age components such as groundwater and soil moisture with
respect to observation-based datasets across various basins
(Zaitchik et al., 2008; Li et al., 2012; Li et al., 2019; Ku-
mar et al., 2016; Schumacher et al., 2018; Tangdamrong-
sub et al., 2018). These improvements underscore the value
of GRACE/-FO in capturing large-scale hydrological vari-
ability. However, the impact on other storage components,
such as SWE, is often mixed. SWE performance, for ex-
ample, may degrade, as GRACE/-FO lacks the resolution
to capture local snow dynamics for reliable spatiotemporal
scaling and mass redistribution. Mass tends to shift incor-
rectly from SWE into other water components, dampening
runoff responses and misrepresenting hydrological flows (Su
et al., 2010; Forman and Reichle, 2013; Zhao and Yang,
2018). Beyond storage components, the effects of GRACE/-
FO DA on fluxes like ET and runoff remain less consis-
tent (Springer, 2019; Nie et al., 2019; Chen et al., 2021).
For example, a model might overestimate groundwater stor-
age but underestimate baseflow; when GRACE/-FO DA de-
creases groundwater, it exacerbates the baseflow deficiency.
Or a model might not simulate groundwater pumping for
irrigation; GRACE/-FO DA will decrease groundwater and
thereby erroneously decrease ET (Girotto et al., 2017). In
potential applications of GRACE/-FO DA for surface and/or
subsurface components in coupled Earth System Models,
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such misrepresentations could degrade land-atmosphere or
land-ocean feedbacks.

GRACE/-FO DA has also proven effective in capturing
large-scale droughts (Li et al., 2019; Rodell and Li, 2023) and
floods (Reager et al., 2015; Khaki et al., 2023). It has been
effectively utilized in drought monitoring systems, such as
the U.S. Drought Monitor (Houborg et al., 2012). However,
GRACE/-FO DA still tends to underestimate extreme inten-
sities and is limited in representing events that occur rapidly
with short duration, such as flash floods, due to its coarse
temporal and spatial resolution (Sect. 5).

In regions with intensive human water management prac-
tices, such as those relying on groundwater pumping for irri-
gation, assimilating GRACE/-FO can improve groundwater
trends but may degrade other variables such as ET (Girotto
etal., 2017; Li et al., 2019) and degrade storage forecast skill
(Getirana et al., 2020b) if such human impact is not explic-
itly represented by the model. Nevertheless, the potential of
GRACE/-FO DA for improving groundwater monitoring and
informing decision-making processes has been indicated by
several studies (Zaitchik et al., 2008; Li et al., 2019).

4.3 Validation challenges and best practices

It is essential that spatial scale mismatch is resolved for
meaningful validation. While in situ stations provide mea-
surements of storage changes or fluxes at point scale, model
simulations are conducted on much broader scales. Addi-
tionally, given the coarse temporal and spatial resolution of
GRACE/-FO TWSA, improvements or degradations due to
the assimilation compared to in situ station data have to be in-
terpreted cautiously. Strategies such as averaging or interpo-
lating could be used when in situ measurements are densely
available to obtain a broader representation of measured stor-
age changes and fluxes.

Alternatively, many studies also set certain criteria to se-
lect representative sites to approximate basin or grid-level
variability (De Lannoy et al., 2007). Careful assumptions
need to be made when key data is missing or limited. For
instance, groundwater observations are usually available as
groundwater level changes. Specific yield needs to be used
to convert it into groundwater storage in order to be able to
compare it with model simulation. The information on spe-
cific yield is often only available at sparse sites or even un-
available, introducing further uncertainties into the valida-
tion (Khaki et al., 2017a). Additionally, quality control and
data cleaning are recommended for validation as in situ data
is also prone to missing periods or poor-quality measure-
ments (van Dijk et al., 2014). If scale mismatches cannot
be fully addressed, point-scale comparisons should be inter-
preted cautiously.

Remotely sensed hydrological products are now widely
used to validate GRACE/-FO DA simulations (Kumar et al.,
2016; Zhao and Yang, 2018; Khaki et al., 2019; Jung et al.,
2019). However, these datasets often differ in accuracy and
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Table 5. Non-exhaustive list of commonly used datasets, variables, metrics, and exemplary references in GRACE/-FO assimilation validation.
Abbreviations: SCAN: Soil Climate Analysis Network, USCRN: United States Climate Reference Network, ISMN: International Soil Mois-
ture Network, NASMD: North American Soil Moisture Database, ESA CCI: European Space Agency Climate Change Initiative, ASCAT:
Advanced Scatterometer, SMOS: Soil Moisture and Ocean Salinity, SMAP: Soil Moisture Active Passive, USGS: United States Geologi-
cal Survey, NSW: New South Wales, CMC: Canadian Meteorological Centre, GHCN: Global Historical Climatology Network, SNODAS:
Snow Data Assimilation System, GRDC: Global Runoff Data Centre, LEGOS: Laboratoire d’Etudes en Géophysique et Océanographie
Spatiales, ALEXI: Atmosphere-Land Exchange Inverse model, MODIS: Moderate-resolution Imaging Spectroradiometer, GLEAM: Global
Land Evaporation Amsterdam Model, USDM: United States Drought Monitor, NDVI: Normalized Difference Vegetation Index, FDM: Flood
and Drought Monitor, SPI: Standardized Precipitation Index, GNSS: Global Navigation Satellite System, R: Correlation, ubRMSD: unbiased
Root Mean Square Difference, RMSE: Root Mean Square Error, MAE: Mean Absolute Error, RMSD: Root Mean Square Difference, NSE:
Nash-Sutcliffe Efficiency, KGE: Kling—Gupta Efficiency.

Validation Target

Source of Reference Dataset

Validation Metrics

References

Surface/Root-zone
Soil Moisture

SCAN, USCRN, Australia in situ
(OzNet, OzFlux, CosmOz), ISMN,
NASMD, ESA CCI, ASCAT, SMOS,
SMAP

R, ubRMSD, bias, RMSE,
Triple Collocation, First
Order Reliability Measure

Houborg et al. (2012), Girotto et al. (2019),
Tian et al. (2017), Kumar et al. (2016),
Khaki et al. (2023), Zhao and Yang (2018),
Nie et al. (2019), Jung et al. (2019), Soltani
et al. (2024)

Groundwater USGS, Illinois Water State Survey, R, Anomaly R, TheilSen Zaitchik et al. (2008), Houborg et al.
Storage/Level Australia Groundwater Explorer, NSW  Slope, RMSE, Taylor (2012), Reager et al. (2015), Girotto et al.
groundwater archive, Central Ground Diagram (2017), Kumar et al. (2016), Tian et al.
Water Board of India (2017), Li et al. (2019), Getirana et al.
(2020b)
Snow Water CMC, GHCN, SNODAS, Copernicus MAE, R, RMSE Su et al. (2010), Forman et al. (2012), van
Equivalent/Snow SWE dataset Dijk et al. (2014), Kumar et al. (2016),
Depth Zhao and Yang (2018), Bahrami et al.
(2021), Khaki et al. (2023)
Runoff/Streamflow ~ GRDC, USGS discharge, Water Survey ~MD, RMSD, ubRMSD, R, Forman et al. (2012), Li et al. (2012),

of Canada, Global River Flow and
Continental Discharge Dataset

Anomaly R, NSE, KGE

Bahrami et al. (2021), Wu et al. (2022),
Khaki et al. (2023)

River Water Level

LEGOS Hydroweb

rank R

van Dijk et al. (2014)

Evapotranspiration

ALEXI, FLUXNET, MODIS
(University of Washington, MOD16),
OzFlux, GLEAM

RMSE, TheilSen Slope

Kumar et al. (2016), Tian et al. (2017),
Girotto et al. (2017), Nie et al. (2019),
Khaki and Awange (2019)

Drought Extremes

USDM, MODIS NDVI, African FDM,
SPI

R, rank R, percentile-based
drought categories

Houborg et al. (2012), Li et al. (2012), Li
et al. (2019)

TWSA

GNSS measurements of vertical elastic
loading

R, RMSE, power spectral
analysis

Tangdamrongsub and Sprlak (2021), Klos
et al. (2021), Gerdener et al. (2023)

consistency, making robust comparisons challenging (van
Dijk et al., 2014). When multiple independent datasets are
available for the same hydrological variable, triple colloca-
tion provides a way to assess the quality of each dataset with-
out assuming that any of them is error-free (Stoffelen, 1998;
Gruber et al., 2016). The method separates unpredictable
measurement noise (random errors) from systematic offsets
or scaling differences (calibration biases) based solely on the
mutual agreement among the datasets. As such, triple col-
location offers a practical solution for validation when more
than two datasets are collocated in space and time and should
therefore be considered a standard option.

When GRACE/-FO DA is applied in regions with signifi-
cant human water management, model state variables that are
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directly updated through assimilation such as soil moisture
and groundwater tend to improve remarkably (Girotto et al.,
2019; Tangdamrongsub et al., 2020), but the impact on other
processes like runoff or ET remains challenging. Among
these processes, runoff and streamflow have received con-
siderably more attention than vegetation-related processes
like ET and carbon fluxes. Including them in evaluations is
equally important to ensure a more comprehensive under-
standing of model behavior and to better reflect the intercon-
nected nature of hydrological and ecological processes.
Moreover, any preprocessing operations applied to the
data (for example deseasonalizing, detrending, spatial aver-
aging, or temporal aggregation) introduce additional uncer-
tainty which must be propagated into the final validation met-
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rics. Error propagation models can be used to quantify the
uncertainty of observational datasets by estimating how input
measurement errors or retrieval assumptions propagate into
derived variables. Such approaches can provide spatially ex-
plicit uncertainty estimates for each observation, thereby of-
fering a more comprehensive view of dataset reliability than
local in situ validations alone (Dorigo et al., 2010). Neglect-
ing these aspects can lead to overconfidence in skill estimates
or misinterpretation of variance metrics, particularly when
multiple data sources or preprocessing steps are involved.

An additional challenge is that both the model state dis-
tributions and even the retrieval error distributions may de-
part significantly from Gaussian assumptions. If validation
metrics assume Gaussian error or linear relationships (e.g.
RMSE, linear regression), the non-Gaussian nature of the
underlying distributions may skew results or invalidate con-
fidence statements. We therefore recommend assessing the
distributional characteristics of the errors (e.g., skewness)
and, where needed, applying non-Gaussian or rank-based
metrics (e.g., information-theoretic scores (Kumar et al.,
2018; Maina et al., 2024)) to ensure robust validation.

In multi-sensor assimilation settings, the role of GRACE
becomes less straightforward by only comparing the hydro-
logical states and fluxes. Analyses of the Kalman Gain ma-
trix (K in Fig. 2) or assimilation increments offer deeper in-
sights into how mass moves within the system. For example,
Girotto et al. (2019) observed that storage increments from
GRACE TWSA and SMOS soil moisture were negatively
correlated.

Lastly, because neighboring grid cells are spatially cor-
related for GRACE/-FO data, this dependency propagates
through DA outputs. Therefore, validation strategies must
avoid treating adjacent grid cells as independent and care-
fully interpret regional behavior in a spatially coherent man-
ner (Humphrey et al., 2023).

5 Current challenges and open issues

TWS processes possess unique dynamics and characteristics
such as their lagged responses to atmospheric effects (precip-
itation and ET). These properties present challenges to DA
techniques which were originally designed for linear pro-
cesses. Here, we discuss a wide range of issues and chal-
lenges, most of them are unique to GRACE/-FO DA, and
have not been fully explored in past studies.

5.1 Unmodeled TWS processes

GRACE/-FO observes the entire sum of TWS changes, but
models do not simulate all relevant storage compartments;
for example, some models do not simulate reservoirs, lakes
and glaciers (Sect. 2.1). As a result, DA may inadvertently
integrate these mass change signals into the TWS com-
partments that are simulated. It is therefore crucial to cor-
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rect GRACE/-FO observations for these signals before DA
(Sect. 2.3 and 2.5). We hope that with improving remote
sensing capabilities, e.g., from the SWOT mission, the data
base for such corrections will grow significantly. Future ver-
sions of hydrological models and LSMs might also take into
account improved representation of other processes, e.g., in
soil hydraulics (Vereecken et al., 2022).

In regions with significant human impacts on the water cy-
cle, explicitly representing human water use in models helps
to ensure realistic distribution of observed mass changes
among the storage components (Nie et al., 2019). However,
representing human water use in models is limited by the
availability, and the spatial and temporal resolution of water
use data. Another possible strategy is to assimilate GRACE/-
FO data simultaneously with other observational datasets to
better constrain the human-affected water budget (Tian et al.,
2017; Zhao and Yang, 2018; Girotto et al., 2019; Tangdam-
rongsub et al., 2020; Khaki et al., 2020; Nie et al., 2024,
Schulze et al., 2024). However, efforts are still needed to un-
derstand and resolve signal conflicts and improve the quan-
tification of uncertainties.

5.2 Computation of innovations

Innovations — the differences between model predictions and
observations — can be computed either at the resolution of
the observations or at the resolution of the model. Both ap-
proaches are used in current GRACE/-FO DA frameworks,
each with its own advantages and challenges.

5.2.1 DA with innovations at the observation resolution

When computing innovations at the spatial and temporal
resolution of the GRACE/-FO TWSA observations, all rel-
evant storage compartments within the model grid cells
corresponding to a given observation grid cell are aggre-
gated (Sect. 3.5). When applying an EnKF without applying
any localization for the entire globe, where a single high-
dimensional state vector represents the entire model domain,
DA at the resolution of the observations would be an ill-
posed problem. The combination of limited observational
constraints and the high dimensionality of the forecast state
vector leads to a rank-deficient system, making it difficult to
derive unique and stable state updates. Incorporating full ob-
servation error covariance matrices (X, in Fig. 2) can intro-
duce further numerical instability (Eicker et al., 2014; Ger-
dener et al., 2023). Therefore, many studies parallelize the
problem into updates to individual state vectors for each local
model domain or grid cell (Khaki et al., 2017c; Girotto et al.,
2019; Springer et al., 2019; Wang et al., 2021) — thereby im-
proving overall system stability by removing spurious long-
range correlations. This strategy is also discussed in the con-
text of domain localization in Sect. 3.2.
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Assimilation at the observation resolution enables the DA
algorithm to disaggregate information from the observations
onto the finer model grid, effectively using DA as a down-
scaling approach in which the finer-scale patterns are in-
formed by the model. For large study areas, especially in
high-resolution and highly parallelized models, this down-
scaling can involve quite some communication between pro-
cesses.

5.2.2 DA with innovations at the model resolution

After a priori interpolation of observations to the model grid,
they can be assimilated directly for each model grid cell,
which reduces computational complexity (Nie et al., 2019).
With a one-to-one relationship between an observation and
the state vector of a single model grid cell, this approach can
be considered as an extreme case of localization, where all
spatial correlations between model grid cells and between
model and observations are suppressed. This approach also
allows easy code parallelization and efficient GRACE/-FO
DA in an operational setting.

However, this approach has its own drawbacks. When
coarse-scale GRACE/-FO observations are applied directly
to finer model grid cells without any pre-spatial downscaling
and without applying variable observation errors, the spatial
details of simulated TWS are inevitably smoothed out; in re-
gions with complex terrains, this may suppress the dynamic
range of TWS at high-elevations while amplifying it in adja-
cent low-elevation grid cells as shown in Fig. 4.

More importantly, GRACE/-FO DA at the model resolu-
tion can lead to GRACE/-FO observed mass changes leak-
ing into unintended areas. For instance, mass change signals
related to seasonal snowpack in the Rocky Mountains of the
U.S. may incorrectly spread eastward into the plains with this
DA approach, while the reverse is also true, resulting in un-
derestimated TWS amplitude in the front range (Fig. 4). Sim-
ilarly, mass change signals from large surface water bodies
such as lakes and reservoirs can be inadvertently distributed
to surrounding areas if these signals are not properly man-
aged prior to GRACE/-FO DA.

5.3 Non-Gaussian behaviors of TWS processes

A fundamental assumption for the EnKF and EnKS is that
forecast errors are Gaussian, which is needed to achieve op-
timal output, i.e., minimized estimation errors. However, this
assumption is frequently violated by TWS processes (soil
moisture, groundwater and snow), degrading the effective-
ness of GRACE/-FO DA for constraining these processes.
Soil moisture typically exhibits a skewed distribution near its
two bounds, the wilting point and saturation (Li and Rodell,
2013). As a result, ensemble spreads must be kept small in
both dry and wet soil moisture ranges, limiting the ability of
GRACE/-FO DA to improve soil moisture in extreme condi-
tions.
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SWE is known to follow a log-normal distribution and
thus, perturbation errors added to SWE states are generated
in log-normal space. When these errors are transformed back
to normal space, the zero-mean errors become biased, with
greater biases for larger SWE estimates. While reducing per-
turbation errors can mitigate biases, it also limits the useful-
ness of GRACE/-FO DA in improving SWE estimates, espe-
cially in high mountain regions (Li et al., 2019).

Groundwater storage is practically unbounded and is ex-
pected to behave as a Gaussian process (Li et al., 2015).
However, non-linear model physics can introduce biases to
simulated groundwater. In particular, groundwater recharge
is often calculated as a power function of soil moisture (Niu
et al., 2011). Since power functions are highly skewed, the
ensemble recharge is inevitably biased even with an unbiased
soil moisture ensemble, resulting in a biased groundwater en-
semble (Ryu et al., 2009). Ensemble biases in groundwater
can persist for months due to groundwater’s long memory,
especially in models that simulate limited two-way interac-
tions between soil moisture and groundwater and during pro-
longed dry seasons.

Since groundwater controls baseflow generation, biases in
groundwater can propagate into simulated runoff similar to
that from soil moisture to moisture fluxes (Ryu et al., 2009).
While soil moisture, groundwater and snow estimates are still
constrained by GRACE/-FO observations despite their re-
spective biases, ensemble biases in runoff can go unchecked
because runoff is not constrained by any observations in a
typical GRACE/-FO DA framework, potentially leading to
erroneous conclusions. For example, in a model that under-
estimates baseflow, increases in baseflow from GRACE/-FO
DA may give an appearance that the improvement is due
to GRACE/-FO DA, while, in fact, the increased runoff is
caused by ensemble biases. Therefore, it is crucial to evalu-
ate ensemble biases in fluxes, particularly when they are the
primary focus for improvement.

5.4 Others

The effects of the issues described above are unevenly dis-
tributed across different climates and regions, often with
larger impacts in wet climates than in dry climates (Li et al.,
2019). This is likely since ensemble spreads in wetter condi-
tions can be increased through perturbation errors added to
precipitation while they remain small in dry climates due to
lack of rainfall (Sect. 3.4). Ensemble spreads may be strongly
affected by model physics as well. For a model with a strong
tendency for ET, ensemble spreads may not be able to sus-
tain in a dry climate where all available soil moisture is used
for ET quickly. Conversely, when a modeled state has mini-
mal interaction with other processes, ensemble spreads may
grow unchecked with time if perturbation errors are added
continuously. This is especially true for groundwater in a dry
climate where baseflow and the capillary rise is naturally low,
leading to weak groundwater dynamics.
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Figure 4. Spatial maps of TWSA from the CLSM model only (open loop), GRACE DA into CLSM and GRACE for a US western region
centered around Colorado in April 2006 (panels a, b and ¢); TWSA time series during 2003—-2007 for locations A and B (panels d and e).
CLSM refers to the NASA Catchment LSM. Further details on CLSM and this GRACE DA simulation can be found in Li et al. (2019).

In addition to the non-Gaussian behaviors discussed
above, GRACE/-FO DA (and most other DA) for state updat-
ing violates the water balance (Li et al., 2012; Schumacher,
2016) to some extent, which is the price to be paid to nudg-
ing a model run closer to real observations. Techniques exist
to mitigate this effect. Furthermore, model skill (e.g., bias)
in simulating fluxes may be anti-correlated with skill in sim-
ulating states (Sect. 4.2), because GRACE/-FO DA updates
may push TWS in a direction opposite to what would have
been needed to treat the underlying errors in the simulated
fluxes (Schulze et al., 2024). This is a motivation for devel-
oping new DA techniques that adjust TWS while maintain-
ing water balance by adjusting the fluxes instead of the states
(Girotto et al., 2021).

All DA frameworks require a faithful representation of
forecast and observation errors. For GRACE/-FO DA this
means estimates of the error variances and spatial covari-
ances for TWSA maps (Sects. 2.2 and 3.4). However, even
after two decades of analyzing GRACE/-FO observations,
the error structure of Level-2 SH data products is not well
understood, and in particular, error correlations due to mis-
modeled short-term mass variations (i.e. aliasing errors) are
not represented in current approaches. The reason for this
is that on one hand we have only few independent datasets
to calibrate GRACE/-FO error representations, and on the
other hand it appears challenging to quantify the errors in
Level-2 and -3 data (including mascon representations) that
are injected via incorrect atmospheric and oceanic non-tidal
and tidal background models (Shihora et al., 2024), and that
seem to dominate over satellite instrument errors. We sug-
gest that for future missions full error covariance matrix rep-
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resentations becomes part of the official products, even if it
would represent only the dominating patterns of error cor-
relation in space. We notice that several groups have as-
sessed the propagation of background model errors through
Monte Carlo simulation (Flechtner et al., 2016); however it
would be desirable if (i) background model ensembles used
in these approaches would seek to span complete understand-
ing of model errors (i.e. rely on independent datasets and
reanalyses), and (ii) such efforts aim to provide full-rank er-
ror variance-covariance matrices to the community instead of
the rank-defect sample covariance matrices.

6 Future directions

Recent research discussed in Sect. 3 primarily focuses on
current DA strategies, whereas Sect. 5 highlights the asso-
ciated challenges with some suggestions to advance DA al-
gorithms via e.g. multi-sensor DA and better water balance
closure. This section focuses on potential future directions
that can open up through new satellite gravimetry observa-
tions or data products.

6.1 Key strategies to increase the DA value of gravity
data

To address the challenges in GRACE/-FO DA using cur-
rently available tools and data, we propose two key strategies.
First, further enhancing the spatial resolution of GRACE/-FO
products prior to DA could greatly benefit the use of TWSA
retrievals. Beyond relying on future higher-resolution gravity
missions, the most intuitive approaches remain to downscale
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GRACE/-FO products within dynamic DA schemes (Girotto
et al., 2021; Forman and Reichle, 2013; Reichle et al., 2014),
using auxiliary datasets and advanced statistical methods
(Vishwakarma et al., 2021b; Tourian et al., 2023) or deep
learning techniques (Seyoum et al., 2019; Foroumandi et al.,
2023; Gou and Soja, 2024). Perhaps a combination of deep
learning and dynamic downscaling in a hybrid DA scheme
offers new perspectives. Second, improving the hydrologi-
cal consistency in GRACE/-FO DA is essential. On the one
hand, further development of DA systems is needed, includ-
ing refined error assumptions that better describe the rele-
vant variables, enforced physical constraints on water bal-
ance closure, improved representation of uncertainties, and
reduced bias for both model and observations. For instance,
Gou and Soja (2024) introduced a self-supervised DA work-
flow that ensures water balance closure in small basins while
preserving large-scale accuracy inherited from the GRACE/-
FO measurements. On the other hand, domain knowledge of
the underlying drivers of GRACE/-FO signals can help in pa-
rameterizing relevant processes in models, enabling more ac-
curate water redistribution across storage components, which
in turn enhances the estimates of relevant fluxes. This in-
cludes better representation of lake, reservoir, and glacier
dynamics as well as anthropogenic water activities. Alterna-
tively, regularly updated correction datasets can be developed
to remove signals in TWSA observations that cannot be rep-
resented by GHMs or LSMs.

To mitigate ensemble biases associated with non-Gaussian
behaviors of hydrological variables, we recommend tuning
the model prior to GRACE/-FO DA so that simulated TWS
is better aligned with GRACE/-FO observations. This step
reduces the need for large perturbation errors, and conse-
quently, minimizes ensemble biases. Tuning model parame-
ters to reduce systematic errors is also critical for improving
the performance of EnKF based approaches, which are de-
signed to correct random errors rather than systematic errors;
in addition, it helps reduce mass imbalances caused by large
DA updates. As noted earlier, the particle filtering method
(Crisan, 2001) is not restricted to specific statistical distribu-
tions and therefore can address the non-Gaussian issue; how-
ever, a large ensemble size is needed to effectively represent a
highly skewed distribution. Similarly, transforming functions
have been used for non-Gaussian data assimilation within a
3-D variational method (Van Loon and Fletcher, 2023) and
their application in variants of the EnKF warrants future in-
vestigation.

Recent years have seen substantial progress in applying
ML within DA systems for numerical models, particularly in
geophysical applications such as improving regional climate
simulations (Bocquet, 2023; He et al., 2023; Keller and Pot-
thast, 2024). GRACE/-FO DA frameworks can benefit from
ML at several stages of the assimilation workflow (Fig. 5).
As described above, ML can support observation preprocess-
ing, including gap filling and spatial downscaling of coarse
TWSA fields. ML can potentially act as a surrogate observa-
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tion operator and might also support the model update step by
learning hydrologically meaningful distributions of DA in-
crements across storage compartments. More intrusive uses
involve learning from the state corrections produced dur-
ing assimilation, enabling targeted model-error correction at
each forecast step (Arcucci et al., 2021). Finally, the DA al-
gorithms themselves (e.g., EnKF variants) can benefit from
ML - for instance, by automatically correcting the ensemble
spread through ML-based adaptive inflation or improving co-
variance structure by ML-based localization schemes — and
may even be replaced by ML architectures designed to em-
ulate full sequential filtering. However, these potential bene-
fits need to be balanced against the substantial computational
cost of training such models. In several meteorological appli-
cations, the training effort can exceed the runtime savings un-
less transfer learning strategies are used to adapt pre-trained
models to new domains or conditions. Similar considerations
are expected for GRACE/-FO DA, where the limited length
of the observational record poses additional challenges for
generating suitable training data.

6.2 Low latency TWSA product DA

As noted previously, assimilating standard GRACE/-FO
products, which are delivered weeks to months after ob-
servation, limits their value for near-real-time DA applica-
tions. Low-latency gravity products would offer a solution
despite higher errors from automated processing. Latency
is influenced by the observational averaging window, with
a monthly mean product having a minimum latency of two
weeks, assuming an effective date at mid-month. Alterna-
tives, such as 21 d rolling window products updated daily or
weekly (Sakumura et al., 2016), reduce latency to as little as
11 d while enabling more frequent updates in the DA scheme.
However, since each rolling window field shares data with
previous and subsequent fields, assimilating all fields with-
out properly increasing observational uncertainty may over-
constrain the model (i.e., put too much weight on the obser-
vations relative to the simulated states). Additionally, shorter
averaging windows improve latency but degrade the effec-
tive spatial resolution of TWSA retrievals, which can neg-
atively impact DA accuracy (Sect. 3.3). Gouweleeuw et al.
(2018) and Retegui-Schiettekatte et al. (2025) demonstrated
that daily GRACE solutions from a Kalman filter approach
could resolve major flood events in the Ganges-Brahmaputra
delta, but these are among the largest signals that we ob-
serve worldwide. Low latency products will be essential for
optimizing the value of satellite gravimetry DA for opera-
tional applications, but only if these issues are carefully man-
aged. One option could be integrating TWSA forecast ap-
proaches on the basis of ML with data assimilation (Li et al.,
2024, 2025).
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Figure 5. Workflow of a data assimilation framework with potential machine-learning augmentations highlighted in blue; note that these
enhancements represent alternative components of the workflow, and it is generally not meaningful to apply ML at all components simulta-

neously.

6.3 Line-of-sight gravity measurement DA

Another approach to addressing the limited spatial resolu-
tion is the direct DA of higher-frequency LGD data into
GHMs and LSMs (Soltani et al., 2021). This approach of-
fers the potential for improved temporal resolution and a
deeper understanding of rapid mass transport processes such
as floods, droughts and human water management activities
(Han et al., 2005, 2006; Banerjee and Kumar, 2019). In con-
trast to monthly Level-2 or -3 products, LGD measurements
capture instantaneous changes in gravitational acceleration
between the two GRACE/-FO satellites as they orbit Earth
(Khaki et al., 2023). Thus, LGD data provide information
on gravity variations at much higher frequencies, potentially
revealing submonthly mass changes. Directly assimilating
LGD measurements also reduces temporal aliasing, leading
to a more accurate representation of hydrological processes
in models. Furthermore, the high temporal resolution of LGD
measurements opens up possibilities for near-real-time ap-
plications, such as flood forecasting and drought monitor-
ing. In a recent study, Khaki et al. (2023) presented a new
methodology based on the direct assimilation of LGD mea-
surements from the GRACE-FO laser ranging interferometer
(LRI) into an LSM using the EnKF. They showed that the
new approach not only offers improved accuracy when com-
pared to independent measurements but also performs bet-
ter in capturing high-frequency water storage variations im-
posed by submonthly climatic events due to its higher num-
ber of DA cycles within a month.

Despite the potential benefits, assimilating LGD measure-
ments presents challenges, for example, these measurements
are inherently noisier. Data processing and noise reduc-
tion are crucial to extracting meaningful geophysical signals
and efficiently incorporating GRACE/-FO daily products
into the models (Khaki et al., 2023). Additionally, assimi-
lating high-frequency LGD measurements demands signifi-
cant computational resources, necessitating efficient DA al-
gorithms. Furthermore, GHMs and LSMs need to be sophis-
ticated enough to represent the relevant processes at those
scales, potentially requiring refined model structures, im-
proved parameterizations, and the incorporation of additional

Hydrol. Earth Syst. Sci., 30, 985-1022, 2026

data sources. Nevertheless, there have been recent attempts
that have demonstrated the potential of assimilating LGD
measurements for various applications, including hydrologi-
cal modeling and ongoing research for ice mass balance as-
sessment, and earthquake and volcano monitoring.

6.4 GRACE-C,NGGM and future gravimetry missions

GRACE-FO, which launched in 2018, is unlikely to equal
GRACE in providing useful observations for 15 years. Er-
rors associated with the accelerometer data transplant (which
mitigates the impact of a faulty accelerometer on one of
the two GRACE-FO spacecraft) will be exacerbated as the
satellites’ altitudes decay during the current solar maximum
(Wiese et al., 2022; Harvey et al., 2022). Larger errors will
pose a new challenge for DA. Fortunately, the NASA/Ger-
man GRACE Continuity (GRACE-C) mission, with observa-
tional capability nearly identical to its predecessors (Wiese
et al., 2022), is planned to launch in 2029. This should en-
able continuity of satellite gravimetry observations through
at least 2034 (given a S-year design lifetime) or up to a
decade longer.

Further, ESA’s Next Generation gravity Mission (NGGM,
Haagmans et al., 2020; Massotti et al., 2021; Cesare et al.,
2022) is currently in phase B development and foreseen for
launch in 2032, most likely in an inclined orbit, complement-
ing GRACE-C’s polar orbit to what is known as “Bender
constellation”. NGGM will be again equipped with a laser
ranging instrument and electrostatic accelerometers.

Combining measurements from the two missions, as pro-
posed by the ESA/NASA MAss Change and Geosciences In-
ternational Constellation (MAGIC) Working Group (Daras
et al.,, 2024), would enable substantial improvements in
spatial and/or temporal resolution relative to a single pair
gravimetry mission with an equivalent level of uncertainty
(Heller-Kaikov et al., 2023; Daras et al., 2024; Kusche et al.,
2025). This is expected due to potentially reduced effects of
temporal aliasing in the Level-2 data generation, and thus po-
tentially being less reliant on background models and post-
processing methods. If MAGIC comes to fruition, it could
thus help to overcome some of the DA issues described ear-
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lier, including tradeoffs between latency and accuracy and
degradation of model output where high-resolution TWS sig-
nals exist. Experiments will be needed to confirm that assim-
ilating a single MAGIC product generates better results than
separately assimilating GRACE-C and NGGM products.

6.5 SLR-based TWSA product DA

GRACE was the first satellite mission dedicated to measur-
ing the time-varying gravity field (Wahr et al., 1998), but
ground-to-satellite laser ranging (SLR) measurements cap-
tured low-degree temporal variations in the gravity field as
far back as 1975 (Cox and Chao, 2002; Flechtner et al.,
2021). By 1993, SLR satellites and observations were suf-
ficient to derive mass change time series with subcontinen-
tal scale resolution. At continental to global scales, SLR
based TWSA time series compare favorably with those from
GRACE/-FO (Rodell et al., 2024). Assimilating SLR data
into a LSM would entail the same challenges as GRACE/-
FO DA but greatly magnified due to the extremely coarse
spatial resolution.

Simulations suggest (Najder et al., 2023) that adding
new SLR satellites could help in improving the accuracy
of low-degree spherical harmonic solutions and remove er-
ror correlation with Earth Orientation Parameters (EOP) and
site coordinates, however, this would likely not dramati-
cally improve resolution. Also, alternative approaches such
as fitting GRACE/-FO-derived TWSA Empirical Orthogonal
Functions (EOFs) directly to SLR ranges showed a promis-
ing effect on resolution (Locher and Kusche, 2021; Cheng
and Ries, 2023), but they rely on the hypothesis that the
main spatial patterns of TWSA variability did not change
significantly during past decades. Nevertheless, consider-
ing that most models struggle to simulate large-scale TWS
changes accurately and consistently across global, multi-
decadal timescales (Scanlon et al., 2018), the effort may be
worthwhile if done properly.

6.6 TWS products based on inversion of GNSS time
series

Time series of GNSS vertical land motion have been used
for validating GRACE/-FO-derived TWSA products as well
as DA-derived TWSA maps (Springer et al., 2019; Ger-
dener et al., 2023). Observed vertical land motion can be
related to mass redistribution data through elastic loading
theory and assumptions on reference frame realization (van
Dam and Wahr, 1998; Blewitt, 2003). Various regional and
global TWSA datasets have been derived experimentally
from GNSS network or Precise Point Positioning (PPP)
timeseries (see review in White et al., 2022), but this ap-
proach suffers usually from heterogeneous station density
and it is challenging to resolve loading signals beyond the
seasonal cycle (Rietbroek et al., 2014). It has been further
suggested that combining GNSS vertical land motion with
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InSAR and GRACE/-FO data enables one to isolate ground-
water decline and recharge from TWSA (Carlson et al., 2024)
in an inverse approach. Investigations would be required to
understand if GNSS and InSAR data could be useful in joint
GRACE/-FO DA systems.

7 Synthesis

The growing number of GRACE/-FO DA studies reflects
the increasing interest in these frameworks for a wide range
of applications, but it also reveals a variety of method-
ological choices and a lack of coordinated direction. This
paper compiled insights from existing studies and dis-
cussed the strengths and limitations of different approaches,
with the aim of providing best practice recommendations
for GRACE/-FO DA. In summary, we have identified key
methodological components that require further standardiza-
tion and community consensus:

1. Model and process description including error model-
ing. Successful GRACE/-FO DA depends, to some ex-
tent, on the physical realism of the underlying model.
Although GRACE/-FO DA can introduce water stor-
age signals that are not explicitly represented by nu-
merical models — such as those from groundwater ab-
straction — doing so without corresponding process rep-
resentation may lead to imbalances or degradation of
other model variables. Therefore, it is essential to ex-
plicitly incorporate key anthropogenic processes into
the model in order to fully exploit the information pro-
vided by GRACE/-FO observations. Additionally, pro-
viding a realistic representation of model forecast un-
certainty, ideally informed by prior sensitivity studies,
is crucial, particularly for the vertical disaggregation
of GRACE/-FO signals across storage compartments.
Most current GRACE-FO DA systems rely on Gaus-
sian assumptions, which can restrict the representation
of skewed or heavy tailed uncertainties in water storage
dynamics, so future work should develop more flexible
assimilation approaches that allow advanced statistical
descriptions of errors, including non Gaussian methods.

2. GRACE/-FO postprocessing. Gridded TWSA observa-
tions obtained from either SH or mascon solutions need
to be carefully corrected for geophysical signals that
are not represented in the GHMs and LSMs prior to
DA - a standard correction dataset is still missing. All
GRACE/-FO products require bias correction, at least
by aligning the long-term mean with the model. De-
pending on the application, this may also involve match-
ing higher-order statistical moments or applying multi-
plicative gain factors to restore signal loss introduced
during post-processing. Where possible, spatially dis-
tributed observation errors — ideally derived from full
covariance matrices — should be accounted for. With up-
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coming missions such as GRACE-C and NGGM, the
availability of standardized Level-3 products and reli-
able error estimates is expected to enhance consistency
in postprocessing.

3. DA strategy including algorithms and tuning. In terms
of the assimilation algorithm, EnKF and EnKS are
typically used, and square root variants are gener-
ally preferred due to their enhanced numerical robust-
ness. Localization remains essential in GRACE/-FO
DA, particularly for higher-resolution observation grids.
Furthermore, spatial correlations between observations
should be explicitly considered. In order to preserve
spatial detail and enable effective horizontal disaggre-
gation, it is preferable to compute innovations at the
resolution of the observations. The state vector should
include all storage compartments targeted for the ver-
tical disaggregation of GRACE/-FO observations. Cur-
rently, it is standard practice to assimilate monthly prod-
ucts. When temporally downscaled products are used
for specific applications, careful attention should be
paid to error propagation and to potential issues aris-
ing from strong temporal correlations in the downscaled
fields. Finally, assimilation increments are best applied
by rewinding and reintegrating the model over the same
month again to maintain temporal consistency — though
this may become less critical with the improved tempo-
ral resolution of future mission products.
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While past studies offer valuable insights, future work
should focus on establishing a set of standards to make
GRACE/-FO DA experiments more comparable, repro-
ducible and interpretable, so that DA results can clearly be
attributed to signals in the water cycle rather than to differ-
ences in methodology. Firstly, we propose defining a stan-
dardized benchmark experiment for GRACE/-FO DA. This
benchmark should specify the GRACE/-FO data products
and associated error assumptions, study area(s), meteoro-
logical forcing data, LSMs or GHMs, error modeling ap-
proaches, and assimilation strategies. It should be designed
to isolate and quantify the impact of each of these compo-
nents on the DA results. Second, the community must agree
on a core set of performance metrics and validation data
sets. This includes not only comparison to in situ observa-
tions but also ensemble spread diagnostics, water balance
checks, and analysis of assimilation increments. This could
be supported by community diagnostics following the exam-
ple of the Earth System Model Evaluation Tool (ESMVal-
Too). Third, we urge the formation of an intercomparison
initiative similar to the Land Surface, Snow and Soil Mois-
ture Model Intercomparison Project (LS3MIP), to system-
atically test and compare GRACE/-FO DA systems. Such
an effort, potentially hosted under the umbrella of, e.g, the
Global Energy and Water Exchanges (GEWEX) program,
would provide a controlled, transparent framework for evalu-
ating the influence of key choices in data, models, and meth-
ods through multi-group collaboration.
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Appendix A

Term/Acronym
3D-Var

4D-Var

Analysis state
Background state
Bias correction
DA

EnKF

EnKS

Error covariance matrix

Filter
Hybrid methods

Increment

Innovation

Inflation

Localization

Observation operator (H)

Particle Filter

Rewind/Re-run

Definition

Three-dimensional variational data assimilation: adjusts the model state at a
single time step by minimizing a cost function combining background and ob-
servations.

Four-dimensional variational data assimilation: adjusts initial conditions over
a time window to match observations distributed in time, minimizing a cost
function subject to model dynamics.

The model state after assimilation, obtained by optimally combining the back-
ground state and observations.

The model state prior to assimilation, representing the best estimate of the sys-
tem before incorporating observations.

Adjustments applied to model or observations to remove systematic differ-
ences.

Data Assimilation: combining model predictions and observations while ac-
counting for uncertainties.

Ensemble Kalman Filter: sequential DA using an ensemble to estimate state
and error covariances.

Ensemble Kalman Smoother: updates states over a time window using past
and future observations to improve earlier estimates. For GRACE/GRACE-FO
TWSA assimilation, the smoothing window is typically one month, meaning
the monthly observation is used to redistribute the increment across the days of
that month for improved temporal consistency.

Represents uncertainties in the background model and/or observations; used to
weight contributions in DA.

Sequential DA method updating the state at observation times.

Data assimilation approaches combining ensemble-based and variational tech-
niques to leverage the advantages of both.

Adjustment applied to the model state computed by the DA algorithm.
Difference between observations and model-predicted observations.

A technique to artificially increase the ensemble spread in sequential DA, com-
pensating for underestimation of uncertainties due to finite ensemble size or
model errors.

Limits the influence of observations to nearby model grid points to reduce spu-
rious correlations.

Maps model state variables to observation space for comparison with observa-
tions.

Nonlinear, non-Gaussian DA method using a weighted ensemble (particles) to
represent the probability distribution of the state.

Strategy distributing monthly increments across previous days to improve tem-
poral consistency.
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