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Abstract. Skilful seasonal hydrological forecasts are benefi-
cial for water resources planning and disaster risk reduction.
The UK Hydrological Outlook (UKHO) provides river flow
and groundwater level forecasts at the national scale. Along-
side the standard Ensemble Streamflow Prediction (ESP)
method, a new Historic Weather Analogues (HWA) method
has recently been implemented. The HWA method samples
within high resolution historical observations for analogue
months that matches the atmospheric circulation patterns
forecasted by a dynamical weather forecasting model. In this
study, we conduct a hindcast experiment using the GR6J hy-
drological model to assess where and when the HWA method
is skilful across a set of 314 UK catchments for different sea-
sons. We benchmark the skill against the standard ESP and
climatology forecasts to understand to what extent the HWA
method represents an improvement to existing forecasting
methods. Results show the HWA method improves river flow
forecasts most notably in winter, with skilful winter river
flow forecasts now possible across the UK compared to the
standard ESP method where skilful forecasts were only pos-
sible in southeast England. Winter river flow forecasts using
the HWA method were also more skilful in discriminating
high and low flows across all regions. Catchments with the
greatest improvement tended to be upland, fast responding
catchments with limited catchment storage and where river
flow variability is strongly tied with climate variability. Skil-
ful winter river flow predictability was possible due to rel-
atively high forecast skill of winter atmospheric circulation
patterns and the ability of the HWA method to derive high
resolution meteorological inputs suitable for catchment hy-
drological modelling. However, skill was not uniform across

different seasons. Improvement in river flow forecast skill
for other seasons was modest, such as moderate improve-
ments in northern England and northeast Scotland during
spring and little change in autumn. Skilful summer flow pre-
dictability remains possible only for southeast England and
skill scores at some catchments were reduced compared to
the ESP method. This study demonstrates that the HWA
method can leverage both climate information from dynam-
ical weather forecasting models and the influence of initial
hydrological conditions. An incorporation of climate infor-
mation improved winter river flow predictability nationally,
with the advantage of exploring historically unseen weather
sequences. The strong influence of initial hydrological con-
ditions contributed to retaining year-round forecast skill of
river flows in southeast England. Overall, this study provides
justification for when and where the HWA method is more
skilful than existing forecasting approaches and confirms the
standard ESP method as a “tough to beat” forecasting system
that future improvements should be tested against.

1 Introduction

Seasonal streamflow forecasting is a valuable tool in water
resources and disaster risk management. In the UK, seasonal
streamflow forecasts are used by the Environment Agency,
private water companies, the agricultural industry, and oth-
ers in the environment and leisure sectors, to assess the risk
of oncoming and ongoing drought, as well as the poten-
tial risk during flood-prone seasons. Water resource deci-
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sions such as reservoir operations and water transfer schemes
can benefit from seasonal streamflow forecasting products,
as well as prospects for irrigation and groundwater abstrac-
tions. The UK Hydrological Outlook (UKHO) has been op-
erational since 2013, providing monthly and seasonal fore-
casts of river flows and groundwater levels (Prudhomme et
al., 2017), and undergoes continual assessment and develop-
ment. The skill of seasonal hydrological forecasting systems
is typically lower than short-range forecasts that are used for
flood event prediction. Seasonal river flow predictability de-
rives mainly from the initial hydrological conditions (e.g. soil
moisture and groundwater storage and current river levels)
and the predictability of weather and climate over the fore-
cast period (Wood et al., 2019). The relative contributions of
these two factors for river flow predictability varies between
different catchments for different lead times (Li et al., 2009;
Wood and Lettenmaier, 2008).

1.1 Drivers of UK rainfall

The UK is located in the mid-latitude belt of predominantly
westerly winds. There are strong windward and leeward ef-
fects in both rainfall and streamflow (Svensson and Jones,
2002). Rainfall is higher in the north and west because of
the combined effect of orography and exposure to the humid
westerly winds. Here, autumn and winter makes the largest
contribution to the annual total, because the most frequent
and intense depressions occur during these seasons. In con-
trast, the sheltered south and east of the country receives less
rainfall, and the distribution through the year is more even
(Hulme and Barrow, 1997).

In winter, the southeast to northwest rainfall and stream-
flow gradients are typically enhanced during a season with a
positive North Atlantic Oscillation (NAO) index (Svensson
et al., 2015). The NAO is the leading mode of variability in
the North Atlantic, characterised by a seesaw in pressure be-
tween the subpolar Icelandic low and the subtropical Azores
high regions of the North Atlantic Ocean. For a positive win-
ter NAO, there is a clear northward shift and intensification
of the North Atlantic storm track. The NAO accounts for at
least half of the seasonal rainfall variability in the northern
British Isles and Scandinavia (Seager et al., 2020). A positive
NAO establishes low-level westerly or south-westerly time-
mean flow from the eastern North America to Scandinavia,
resulting in increased rainfall in northwest Europe as the en-
hanced southwesterlies and associated storms meet topogra-
phy. For the UK, a positive NAO is generally associated with
wetter than average conditions, but there are substantial re-
gional differences. Rainfall over western UK is strongly pos-
itively correlated with the winter NAO but this relationship is
weak or marginally reversed for southeastern UK with these
regions seeing a slight decrease in rainfall during a positive
NAO phase. In contrast, a negative winter NAO is associated
with negative rainfall anomalies for the UK as a whole. Re-
gionally, a negative winter NAO is negatively correlated with

rainfall across western UK but marginally associated with
wetter than average conditions in parts of eastern and central
England (West et al., 2019).

In summer, the NAO influences UK rainfall and is associ-
ated with the North Atlantic jet latitude. Its pattern is north-
shifted compared to its wintertime counterpart. A positive
summer NAO (commonly referred to as SNAO) is charac-
terised by the jet stream passing far to the north of the UK
and thus drier than average conditions. A negative SNAO
is associated with a more southerly jet position close to the
UK and results in wetter than average conditions (Folland et
al., 2009; Dunstone et al., 2018). However, the total summer
rainfall variability explained by the SNAO is smaller than
its winter counterpart, and could also be influenced by large
internal climate variability, soil moisture anomalies, sea sur-
face temperatures and other modes of climate variability (e.g.
East Atlantic EA pattern) (e.g. West et al., 2021; Wilby et al.,
2004).

From a hydrological perspective, catchments across the
UK differ in river flow response to climate variability. Catch-
ments in southeastern UK can be either slowly or quickly
responding to rainfall. Groundwater dominated catchments
on permeable geology (particularly chalk) can have a stream-
flow response delayed by months (e.g. Chiverton et al., 2015)
since groundwater provides a large reservoir to feed rivers.
Small catchments on impermeable clay, however, do not have
similar large reservoirs and hence may respond much more
quickly, even within a matter of hours. Catchments in the
north and west are more homogeneous, with hilly and/or im-
permeable catchments being predominantly fast-responding.
Significant positive relationships were found between the
winter NAO and elevated river flows in northwest UK but
a very weak response was found for catchments in the south-
east, partly attributed to regional differences in rainfall as
outlined above but also due to the effects of physical catch-
ment characteristics which further affect rainfall-river flow
propagation (West et al., 2022). In the summer, the influ-
ence of the SNAO on river flows is weaker than winter but
are more spatially coherent with the phase of the EA pattern
playing a moderating role which strengthen or reduce rainfall
and hence river flows (West et al., 2021). Summer river flows
are also highly influenced by antecedent conditions, includ-
ing lagged responses to wintertime river flows and summer
atmospheric circulation indices (Svensson and Prudhomme,
2005; Wilby et al., 2004).

1.2 Methods of Seasonal Streamflow Prediction

Existing approaches for river flow forecasting range from dy-
namical weather forecasting models to statistical approaches
and can broadly be categorised into four main strands. First,
deterministic statistical methods such as the flow persistence
method generates river flow forecasts by repeating the flow
anomaly in the most recent month. Similarly, the flow ana-
logue method uses historical river flows sequences that are

Hydrol. Earth Syst. Sci., 30, 905–927, 2026 https://doi.org/10.5194/hess-30-905-2026



W. Chan et al.: UK Hydrological Outlook using Historic Weather Analogues 907

most similar to the recent past as the forecast (Quinn et al.,
2021; Svensson, 2016). An assessment of the skill in the UK
showed that skilful forecasts using the persistence/flow ana-
logue forecasts can be made for slow-responding catchments
in southeast England with large storage capacities (Svensson,
2016). Skilful persistence forecasts were similarly found for
lowland, permeable catchments in the Republic of Ireland by
Quinn et al. (2021).

Second, ensemble probabilistic river flow forecasts can
be made with information from historical climate. The most
common technique is the Ensemble Streamflow Prediction
(ESP) approach, where ensemble forecasts are made by as-
suming the repetition of meteorological traces (rainfall, po-
tential evapotranspiration and temperature) from historical
years (Day, 1985). ESP is widely used for streamflow fore-
casting, including in the UK Hydrological Outlook. The
source of skill for ESP derives from initial hydrological con-
ditions (e.g. antecedent catchment storage in soils, aquifers
and snowpack) which are often predictable at long lead times
(Wood and Lettenmaier, 2008). ESP skill varies across the
UK, with the highest skill at catchments underlain by per-
meable aquifers with high catchment storage capacities in
the south and east, which show skilful forecasts up to a year
ahead in some cases (Harrigan et al., 2018). Fast-responding
catchments with low storage capacities in the north and west
show lowest skill which drops rapidly with lead time. ESP
skill also varies with seasons, with forecasts in the winter and
autumn months having highest skill for high storage catch-
ments in south/east. ESP represents a low-cost and efficient
approach in the absence of skilful meteorological forecasts
and are often used as a benchmark forecast for other forecast-
ing approaches to compare against (Harrigan et al., 2018).

The third approach for streamflow forecasting is stylised
scenarios such as creating plausible river flow trajectories us-
ing hydrological models by assuming rainfall over the next
month or season matches a pre-selected percentage of the
long-term average (LTA) (e.g. 60 %, 80 %, 100 % and 120 %
of LTA). The UK Environment Agency uses this method
in their monthly Water Situation Reports (e.g. Environment
Agency, 2022) as a low-cost method to provide a forward
look at the magnitude of river flows that can be expected
given specific rainfall volumes. The same approach is also
used by UK water companies to provide a forward out-
look and bears similarity with a more routine exploration
of plausible worst cases. For example, large ensembles of
initialised climate model simulations (e.g. pooled hindcasts
from seasonal forecasting systems or decadal prediction sys-
tems) have been employed to provide physically plausible
weather sequences to understand plausible extreme events
that may be more severe than what has been historically ob-
served (Chan et al., 2024; Kay et al., 2024; Thompson et al.,
2017).

Finally, probabilistic ensemble river flow forecasts can
also be made by directly using output from numerical
weather prediction models (NWP) or climate models. For ex-

ample, the Global Flood Awareness System (GloFAS) cou-
ples the ECMWF Integrated Forecasting System (IFS) en-
semble meteorological forecasts with the LISFLOOD hydro-
logical model to generate river flow forecasts at the global
scale on a daily basis (Harrigan et al., 2023). A similar ap-
proach has been applied operationally within the UKHO by
using a spatially distributed monthly water balance model
driven by national-scale or regionally averaged monthly rain-
fall forecasts from the Met Office GloSea forecasting system
(Bell et al., 2017). However, statistical or computationally in-
tensive dynamical downscaling methods would be required
to reconcile coarse scale outputs from NWP models before
they can be used for detailed catchment hydrological mod-
elling. Hence, most past applications in the UK rely on sta-
tistically downscaling or spatially and temporally disaggre-
gating forecast data.

Different types of hydrological models can be applied
with any of the above river flow forecasting methods. Hy-
drological models can generally be categorised as con-
ceptual, process-oriented/physically-based and data-driven.
First, conceptual models, where hydrological processes are
parameterised through a series of storage components, are
widely use given its low data requirements and computa-
tional efficiency. Conceptual models are used in river flow
forecasting in the UK (e.g. Harrigan et al., 2018). Sec-
ond, process-oriented models aims to simulate hydrologi-
cal processes based on fundamental physical laws but are
data intensive and more computational demanding (e.g. US
National Water Model Cosgrove et al., 2024). Third, data-
driven approaches such as machine learning models to sim-
ulate river flows (e.g. LSTMs – Kratzert et al., 2019 and
Lees et al., 2021 for Great Britain) are emerging and hybrid
approaches combining traditional hydrological models with
machine learning post-processing (e.g. Slater et al., 2023)
are also increasingly used. Although not yet applied oper-
ationally in the UK, machine learning methods have been
applied to improve hindcast skill over a range of time scales
from monthly river flow forecasts (e.g. Akbarian et al., 2023)
to decadal flood prediction (e.g. Moulds et al. 2023).

1.3 Conditioned ESP approaches

Several studies have demonstrated that forecast skill can be
improved by incorporating climate information in ESP fore-
casts, often referred to as conditional ESP. As catchment
precipitation and temperature (and river flows) are affected
by large-scale modes of climate variability„ conditional ESP
forecasts can be made by sub-sampling only the meteorologi-
cal traces that share the current climate states (e.g. current El
Nino-Southern Oscillation (ENSO) phase) (Mendoza et al.,
2017). Following this method, Wood and Lettenmaier (2006)
found beneficial forecast improvements for catchments in
western United States, particularly during strong ENSO
phases with similar improvements in forecast skill of 5 %–
10 % found by Beckers et al. (2016) in the Columbia River
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basin. An alternative to sub-sampling ESP forecasts is to as-
sign weights to ESP traces in post-processing based on simi-
larity with atmospheric circulation information of the recent
past (Baker et al., 2021; Mendoza et al., 2017). In Europe,
studies have shown that the forecast skill for the winter NAO
has improved substantially and shows useful levels of pre-
dictability at seasonal lead times (Scaife et al., 2014; Smith
et al., 2020). Recent research further demonstrated that the
influences of global teleconnection patterns (e.g. those from
ENSO) on the NAO can be predicted with long lead times (up
to 1 year) (Scaife et al., 2024). This opens up the opportunity
to leverage the improved predictability in atmospheric circu-
lation patterns to improve the skill of river flow forecasts,
especially in catchments where a strong positive relation-
ship between climate variability and river flows are found.
Stringer et al. (2020) demonstrated a Historic Weather Ana-
logues (HWA) approach to generate winter rainfall and tem-
perature forecasts by sub-selecting independent “analogue”
months from the historical observations that resembles spa-
tially the seasonal dynamical signals (i.e. atmospheric cir-
culation patterns) forecasted by the Met Office GloSea sys-
tem. While conditioned ESP methods rely on sub-sampling
or weighting historical traces based on large-scale climate
signals, the HWA approach further advances this concept by
identifying specific historical weather patterns that closely
match forecasted atmospheric circulation states. This enables
forecasts to more directly leverage reliable dynamical model
outputs and can provide higher spatial resolution than tra-
ditional ESP-based methods. This approach thus takes ad-
vantage of forecasted atmospheric circulation characteristics
which may be more reliable than the direct forecasts of rain-
fall and considers probabilistic weather regime forecasts (i.e.
likelihood of specific atmospheric circulation configurations
at different lead times) (e.g. Richardson et al., 2018). The
HWA approach also enables forecasting at higher spatial res-
olutions as high-resolution observations (e.g. 1 km) can be
used to generate analogue forecasts.

The HWA approach is operationalised as part of the
UKHO as a hybrid meteorological-based forecast method
that complements the standard ESP approach and the data-
driven persistence/analogue methods. This paper aims to
conduct a catchment-based investigation of the forecast skill
of the HWA method within a hindcast experiment over the
1993–2016 hindcast period using a catchment hydrological
model. A companion paper – Rhodes-Smith et al. (2025),
aims to analyse the skill of the HWA forecasts with an alter-
native hydrological modelling system, a nationally param-
eterised, spatially distributed hydrological model also used
within the UKHO. In this paper, we aim to address the fol-
lowing specific research questions:

1. When is the HWA forecasts skilful, across different sea-
sons?

2. Where are the HWA forecasts skilful, across UK catch-
ments and regions?

3. To what extent are the HWA forecasts an improvement
against the standard ESP approach?

2 Methods

2.1 Data

A total of 314 catchments from the National River Flow
Archive (NRFA) were chosen for this study (Fig. 1). The
same set of catchments is used operationally within the
UKHO. The catchments were chosen to represent a wide
range of hydroclimatic conditions across the UK, spanning
“flashy” fast-responding upland catchments in the north to
slow-responding, lowland catchments in the southeast un-
derlain by Chalk and Limestone aquifers. The catchments
include those that are studied by the National Hydrological
Monitoring Programme to assess river flow trends and past
floods and droughts. Out of the 314 catchments, 128 catch-
ments are part of the UK Benchmark Network (Harrigan et
al. 2017) that are relatively free from human influences. The
catchments spans nine hydroclimate regions based on clima-
tological and hydrological similarity (National River Flow
Archive, 2014) (Fig. 1). Table 1 shows selected statistics
across the 314 catchments and their hydroclimate regions.
Several derived rainfall/flow statistics (Standardised Annual
Average Rainfall – SAAR and Baseflow Index – BFI) and
physical catchment characteristics (catchment wetness in-
dex) were extracted from the NRFA database via the rnrfa
R package (Vitolo et al., 2016). BFI is a measure of catch-
ment storage with typical ranges between 0.15 (fast respond-
ing impervious catchments underlain by clay) to 0.9 (slow-
responding Chalk streams with a high baseflow component).
SAAR refers to the mean annual rainfall over each catchment
for the 1961–1990 period and the catchment wetness index
is a measure describing the proportion of time soils in the
catchment are defined as wet (i.e. low soil moisture deficits).
Several atmospheric circulation indices were also computed.
The NAO index is taken from University of East Anglia’s
Climatic Research Unit (CRU) and is based on the mean sea
level pressure difference between the Azores and Iceland us-
ing a 1951–1980 reference period. A more direct characteri-
sation of atmospheric circulation is obtained by the North At-
lantic jet stream intensity for the hindcast period, calculated
using zonal wind speeds taken from the ERA5 reanalyses
following Woollings et al. (2010) using the jsmetrics python
package (Keel et al., 2024) .

Observed daily river flow (m3 s−1), total rainfall
(mm d−1), and potential evapotranspiration (PET) (mm d−1)
were extracted for each catchment as input for catchment hy-
drological modelling. Observed rainfall and temperature was
taken from the 1km HadUK-Grid dataset (Hollis et al., 2019)
and PET was calculated using daily average temperature with
the McGuinness-Bordne equation calibrated specifically for
the UK (Tanguy et al., 2018). Previous comparison between
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the temperature-based McGuinness-Bordne equation and the
“reference” Penman-Monteith equation showed satisfactory
performance and was ranked the best out of seven alter-
native temperature-based equations (Tanguy et al., 2018).
While historical gridded PET calculated using the Penman-
Monteith equation are available across the UK, they are not
updated in real time and the operational UKHO relies on the
McGuiness-Bordne equation to estimate PET.

2.2 Hydrology Model

The GR6J (Génie Rural à 6 paramètres Journalier) hydro-
logical model version 1.0.2 initialised using the airGR R
package (Coron et al., 2017) was selected to simulate river
flows across the observational period and generate the river
flow hindcast archive. GR6J is a daily lumped catchment
hydrological model consisting of six model parameters for
model calibration (Pushpalatha et al., 2011). It is widely used
for both streamflow forecasting and water resources plan-
ning in the UK, including within the UKHO and by many
water companies (e.g. Anglian Water Drought Plan 2022).
GR6J shows reliable simulation of river flows across a di-
verse range of UK catchments and is particularly attrac-
tive given its parsimonious nature given the need for com-
putational efficiency with a large number of model runs.
GR6J was developed from the original four parameter vari-
ant GR4J model with the addition of two parameters de-
signed to improve simulation of low flows, particularly at
slow-responding catchments with a strong baseflow ground-
water contribution (Pushpalatha et al., 2011). The operational
UKHO recently switched from GR4J to GR6J to align with
industry norms and a comparison of ESP forecast skill be-
tween the two models show minimal differences for most
catchments across the UK1 . The input data required for
GR6J is daily catchment-averaged rainfall and PET and the
model was calibrated against observed river flows from the
UK National River Flow Archive (NRFA) with the in-built
automatic calibration procedure (Coron et al., 2023). The au-
tomatic calibration procedure uses a steepest local search al-
gorithm, and the modified Kling-Gupta efficiency calculated
from square root transformed simulated river flows (KGE2)
was chosen as the objective function (Kling et al., 2012).
Observed river flows over the 1961–2023 period were used
for hydrological model calibration and the top performing
parameter set according to KGE2 was subsequently used
to simulate river flows over the baseline period (retrospec-
tive simulation). The calibrated GR6J model results over
the baseline period showed satisfactory model performance
across the UK compared to observed river flows. The KGE2
score for the top performance parameter set across all se-

1Details of implications to ESP forecast skill from the switch
from GR4J to GR6J hydrological model within the operational UK
Hydrological Outlook can be found in the following website: https:
//hydoutuk.net/about/methods/river-flows, last access: 12 Febru-
ary 2026 Ta
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lected catchments is shown in Fig. 1 and model performance
is generally comparable or better than other lumped catch-
ment models applied for the UK (e.g. Lane et al., 2019).

2.3 Generating Historic Weather Analogues

The historic weather analogues are generated based on the
operational GloSea6 seasonal prediction system. GloSea6
provides 1- and 3-month forecasts every month for the op-
erational UKHO. GloSea6 is based on a version of the Met
Office Hadley Centre climate model (HadGEM3) with an at-
mospheric resolution of 0.83°× 0.55° and 85 vertical lay-
ers, and a 0.25° ocean resolution with 75 vertical layers
(MacLachlan et al., 2015). The operational system provides
seasonal forecasts (up to 6-months) from 2 simulations ini-
tialised at 00:00 UTC each day. Ensemble forecasts are ob-
tained by pooling members across 3 weeks (21 d) of initiali-
sation times, resulting in an ensemble size of 42 members. In
this study, retrospective forecasts (“hindcasts”) for each me-
teorological season over the 1993–2016 period are produced.
The hindcasts are initialised from a subset of dates (1st,
9th and 17th) each month as previously detailed in Stringer
et al. (2020). In total, we included 17 hindcast ensemble
members, pooled across the aforementioned three initialisa-
tion dates, giving a 51-member ensemble for each season.
The number of hindcast ensemble members and initialisa-
tion dates were chosen to resemble the operational system as
closely as possible, and the resulting 51-member ensemble is
similar in size to operational forecasts, thus providing a fair
reflection of operational forecast skill. An important purpose
of the hindcast is to estimate the skill of the forecast system,
as verification accrues too slowly to make such determina-
tions from real-time forecasts alone. Here, we use these hind-
casts, together with hydrological models, to estimate skill
in forecasting the hydrological conditions described in the
UKHO. Hindcasts include the four conventional meteorolog-
ical seasons (DJF – winter, MAM – spring, JJA – summer
and SON – autumn).

Traditionally, output from seasonal meteorological fore-
casting systems are averaged across the three-month season.
In addition, the spatial resolution of the global climate model
is relatively coarse. Hydrological models within the UKHO
require daily and high spatial resolution meteorological in-
put (e,g, 1 km gridded rainfall and temperature). Stringer et
al. (2020) developed a means of downscaling outputs from
seasonal forecast systems to provide suitable spatiotemporal
resolution inputs for use in UK hydrology modelling. The
key to this methodology is matching hindcast member atmo-
spheric circulation (as measured by the mean sea level pres-
sure (MSLP) pattern) with the average circulation pattern for
periods in historical records from 1960. This analogue ap-
proach is applied to the individual months of the 3-month
season, so each analogue season can be comprised of se-
quences of days drawn from different years. By this means,
the pool of possible seasonal analogues is substantially in-

creased, and more extreme seasons than are contained in the
observational record can be achieved (Fig. 2). By finding
real months that are analogues of predicted monthly patterns,
high-resolution records of observed daily UK climate can be
used to infer plausible scenarios of rainfall and temperature
at the local scale and at daily resolution. For each of the 51
original GloSea6 members, we construct 10 analogue-based
seasonal sequences of 1 km resolution daily meteorological
variables for use in hydrological modelling. The “best” 10
analogues are selected based on the smallest Euclidian dis-
tance between the MSLP patterns of real months and the
predicted monthly patterns over the North Atlantic-European
domain centred on the UK, giving a total of 510 analogue
ensemble “members” for each forecast member (i.e. 10 ana-
logues× 51 GloSea6 ensemble members).

Seasonal forecast systems often exhibit a “signal-to-noise”
problem in which the modes of climate variability are skil-
fully predicted but with an amplitude that is too small to be
consistent with this level of skill (Eade et al., 2014; Scaife
and Smith, 2018). A further aspect of the HWA approach as
described in Stringer et al. (2020) is that for winter (DJF) the
GloSea6 circulation patterns used in the generation of ana-
logues are modified to increase the amplitude of the North
Atlantic Oscillation (NAO) component of the circulation pat-
tern. For winter (DJF), the NAO is inflated by a factor of ap-
proximately 2 prior to analogue selection. This overcomes
the lack of signal amplitude in many NAO-related variables,
including rainfall, which would otherwise tend to make the
predicted statistical distributions of rainfall too similar from
year to year. Overall, Stringer et al. (2020) showed that the
ensemble mean winter rainfall forecasts using the HWA ap-
proach is well correlated with observations over the 1993–
2016 hindcast period, particularly for western UK and North-
ern Ireland which have greater influence from predictable
NAO variability. Figure S1 shows correlation of HWA en-
semble mean hindcast rainfall and HadUK-Grid observed
rainfall for all seasons and each catchment. The ensemble
mean hindcasts show good correlation with observed rainfall
across northern and western areas for winter and spring and
moderate correlation for northern and southwest England in
autumn. Hindcast rainfall is least well correlated with ob-
served rainfall in the summer where large parts of the UK
show negative correlations, suggesting low seasonal forecast
skill of atmospheric circulation and drivers of rainfall in the
summer (Weisheimer and Palmer, 2014). A national-scale
comparison of the HWA rainfall forecasts and the HadUK-
Grid observed rainfall at 1 km, including at ungauged loca-
tions is included in the companion paper: Rhodes-Smith et
al. (2025).
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Figure 1. Model performance based on the modified Kling-Gupta efficiency (KGE) calculated from square root transformed simulated river
flows (left) and the nine UK hydroclimate regions used to aggregate and summarise skill score results (right).

2.4 Generation of river flow hindcasts

2.4.1 Standard Ensemble Streamflow Prediction (ESP)

A river flow hindcast archive using the standard ESP ap-
proach was compiled over the hindcast period (1993–2016)
for each catchment and season. For each season in the hind-
cast period, three-month lead time seasonal ESP hindcasts
were generated using the calibrated GR6J model forced with
daily meteorological traces (rainfall and PET) from the his-
torical observation record (four years prior to the forecast
initialisation period to spin-up the hydrological model). Fore-
casts were then made by forcing the GR6J model with meteo-
rological traces taken from the equivalent three-month period
for each year in the historical observations (1962–2015). In
accordance with Harrigan et al. (2018), a leave-three years-
out cross validation (L3OCV) was employed where meteo-
rological traces from the initialisation year and the two suc-
ceeding years are excluded. This is to account for possi-
ble teleconnection persistence and avoid inflation of fore-
cast skill. For example, for a hindcast initialised for JJA
2000, meteorological traces of JJA from 1962. . . 2015 were
used to drive the hydrological model, excluding traces from
2000, 2001 and 2002For hindcasts initialised in 2014 and
2015, meteorological traces from 1962 and 1962, 1963 were
removed respectively to satisfy the L3OCV procedure and
maintain the 51-member ensemble (in the same procedure

as Harrigan et al., 2018). The mean daily streamflow for the
3-month forecast is taken as the forecast value.

2.4.2 Historic Weather Analogues (HWA)

A separate hindcast archive using the HWA approach was
compiled over the same hindcast period as the standard ESP
method for each season. The initialisation procedure as above
was followed to obtain the initial hydrological conditions for
each catchment. At each forecast initialisation date, the GR6J
model for each catchment was forced with daily rainfall and
PET from all 510 HWA ensemble members. For example,
assuming December 2013, January 1989 and February 1999
are the analogue years/months making up a particular fore-
cast ensemble member of a given winter, the daily rainfall
and temperature sequence for those analogue months/years
are taken from adjusted HadUK-Grid observations and used
to drive the hydrological model after initialisation. This is
repeated for each of the 510 analogue ensemble members.

Although analogues are selected to match the forecast
pressure pattern, the associated rainfall and temperature
needs to be adjusted to account for observed long-term
trends. Suppose the forecast is initialised for December 2015
and the first month of the analogue forecast takes histori-
cal rainfall observations from December 1990, the analogue
rainfall should account for the long-term observed increas-
ing trend in December rainfall between 1990 and 2015, so
the analogue rainfall is appropriate for the specific forecast
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Figure 2. Schematic outlining the Historic Weather Analogues
method for an example winter (2014/2015). Panel (a) shows GloSea
forecast of standardised sea level pressure (SLP) anomalies over
winter 2014/2015. Panel (b) shows the mean SLP anomalies across
all 510 historical weather analogues ensemble members. Panel (c)
shows the SLP anomalies of five example analogue variants where
each variant is made up of three months from different historical
years (i.e. December 2013/January 1989/February 1984). Panel (d)
shows the average rainfall across the UK from the five example ana-
logue variants. The analogue sampling contains ten analogue vari-
ants per ensemble member and is repeated for each of the 51 en-
semble members of GloSea5 with a total of 510 analogue forecasts.

year. In this specific example, an estimate of the long-term
trend (mm over 25 years between 2015 and 1990) relating
to factors other than the NAO (see Stringer et al.in prepa-
ration) is used to modify analogue rainfall amounts. This
changes the 1990 rainfall sequence by distributing the contri-
bution from the trend according to the proportion of monthly
rainfall falling on each day (i.e. if a day has 25 % of the
monthly rainfall, 25 % of the rainfall due to the trend is ap-
plied to it). In the hindcast experiment, it is possible for
analogue years to be selected from “future” years after the
year of forecast initialisation and the long-term trend is re-
moved in such a case. The long-term trend in rainfall is pos-
itive for all months apart from April. Trends are stronger in
autumn and winter (both > 0.0045 mm d−1 yr−1) compared
to weaker trends in spring (0.001 mm d−1 yr−1) and summer
(0.003 mm d−1 yr−1). For temperature, the estimated trend is
simply added to or removed from the daily temperature se-
quence prior to the calculation of PET. As expected, the long-
term trend in temperature is positive for all months and the
highest for summer (average +0.024 °C d−1 yr−1) followed
by spring (0.021 °C d−1 yr−1), autumn (0.017 °C d−1 yr−1)
and winter (0.013 °C d−1 yr−1). Hydrological hindcasts are
always initialised from the start of each season.

2.5 Skill Scores

Forecast skill is evaluated by using statistical skill scores
which measure the quality of the hydrological forecast
against observations relative to the accuracy of a bench-
mark forecast against observations. The benchmark forecast
is taken as either a probabilistic climatology forecast or the
standard ESP forecasts. Simulated river flow over each fore-
cast period driven by observed meteorological data (i.e. the
baseline retrospective simulation) for each catchment is used
as proxy observations from which skill scores are calculated
rather than a direct comparison against observed river flows.
This is a common approach to isolate the effect of improve-
ment in meteorological forcing data rather than hydrolog-
ical model error or biases (Harrigan et al., 2018; Pappen-
berger et al., 2015; Wood et al., 2016). Our use of the “ret-
rospective simulation” also enables direct comparison with
previous hindcast skill assessment of the standard ESP ap-
proach at the same UK catchments by Harrigan et al. (2018).
The Continuous Ranked Probability Score (CRPS) and the
Ranked Probability Score (RPS) and their equivalent skill
scores (CRPSS and RPSS) are chosen to evaluate the skill
of the hindcasts. CRPS and RPS reward reliable (statistically
consistent with observations) and sharp (confident, concen-
trated) forecasts, and indirectly also captures discrimination
(the ability to distinguish between different outcomes). Addi-
tionally, CRPS/RPS are strongly bias-sensitive (Leutbecher
and Haiden, 2021), further supporting the choice to assess
skill score of the meteorological forecast method against ret-
rospective river flow simulation rather than observed river
flows to minimise potential to over-penalise the bias. Fore-
cast skill is defined as neutral if CRPSS values are between
± 0.05 and skilful if CRPSS values are above 0.05, in accor-
dance with Harrigan et al. (2018).

An ensemble size correction was applied given the dif-
ferences between the number of members in the standard
ESP (51 members) and the HWA (510 members) methods
following Ferro et al. (2008). The ESP and HWA forecasts
are evaluated against a probabilistic benchmark climatol-
ogy created following the approach set out in Harrigan et
al. (2018) from the climatological distribution of observed
simulated river flows over 1965–2015 for each forecast pe-
riod. While the CRPSS is calculated based on absolute de-
viation of the forecast value with the observations, the RPSS
assess whether the forecast values are placed within the same
category of river flow values as in the simulated observations.
The river flow percentile thresholds used within the opera-
tional UKHO are detailed in Table S1 and were selected to
categorize observed and forecast values into five classes (low
to high flows) based on the distribution of historical observed
simulated river flows. The Relative Operator Characteristic
(ROC) score is further calculated to explore whether each
forecast method correctly predicts the occurrence of high or
low flow events. Thresholds for high and low flows are de-
fined based on the upper and lower tercile of observed simu-
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lated flows for each catchment, following the approach taken
in Donegan et al. (2021). The “easyVerification” R package
was used to calculate all skill scores (MeteoSwiss, 2023). For
CRPSS and RPSS, a value of 1 indicates perfect skill against
the benchmark and a negative value indicates greater skill
in the benchmark compared to the forecast method. For the
ROC score, the area under the curve (AUC) has a maximum
value of 1, indicating that all ensemble members correctly
predict the occurrence for a given high or low flow event.

3 Results

The results are presented in the following order. First, the
spatial distribution of skill (measured by CRPSS and RPSS)
are presented for both the standard ESP and the HWA ap-
proach with a comparison of skill between the two ap-
proaches. Second, the ability of both methods in discriminat-
ing high and low flow events are evaluated. Third, a specific
focus on hindcast for the winter season is presented with sev-
eral case studies related to the link between modes of climate
variability and river flow predictability.

3.1 Spatial distribution of skill

Figure 3 shows the spatial distribution of skill for the stan-
dard ESP and the HWA forecasts. The ESP forecasts are
most skilful compared to the benchmark climatology for
winter (58 % of catchments with CRPSS > 0.05), followed
by autumn (53 %), summer (30 %) and spring (29 %). For
the HWA forecasts, however, this ordering is slightly mod-
ified, with most skill (compared to the benchmark clima-
tology) seen in winter (73 %), followed by autumn (67 %),
spring (50 %) and summer (30 %). UK-wide mean ESP skill
against benchmark climatology is highest in winter (0.09),
followed by autumn (both 0.06) and lowest in summer (0.03)
and spring (0.02). For HWA, UK-wide mean skill is also
highest in winter (0.13), followed by autumn (0.09), spring
(0.08) and summer (0.03). Figure S2 shows skill scores ag-
gregated across UK regions for both the ESP and HWA meth-
ods against benchmark climatology across the four seasons.
As shown in Fig. 3, there is a distinct spatial variation in
skill during summer, with skilful forecasts for catchments
in the south and east UK but neutral or negative skill else-
where, particularly in northern England and Scotland. On a
regional basis, the most skilful region is the Anglian region in
winter and the least skilful is Northern Ireland (NI) in sum-
mer for both ESP and HWA. The Anglian and South East
regions remain the most skilful regions across all seasons for
both methods and are the only two regions showing moder-
ate skill on average in summer. There is substantial varia-
tion in CRPSS values for catchments within each hydrocli-
mate region, for example CRPSS values for catchments in
West Scotland range from −0.05 to 0.1 for the standard ESP
method and from 0.06 to 0.2 for the HWA method. For a con-

trasting region in the South East, CRPSS values range from
−0.04 to 0.5 for ESP and 0.01 to 0.5 for HWA. The equiv-
alent skill scores calculated using observed river flows (i.e.
instead of retrospective simulated river flows) shows a very
similar spatial distribution with a clear improvement in win-
ter flow predictability across northern catchments using the
HWA approach, with low skill in summer months away from
the southeast for both methods (Fig. S3)

Skill scores calculated by comparing HWA forecasts
against the standard ESP method show that the greatest im-
provement in skill with the HWA method is seen in winter,
particularly for upland catchments in northwest NI, North
West England and Scotland (Fig. 4). The spatial distribution
of skill is comparable between CRPSS and RPSS. There is
also some improvement in spring compared to ESP, particu-
larly for catchments in North East England and Scotland (WS
and ES), where 80 % (24 out of 30) and 73 % (57 out of 78)
of catchments had a positive CRPSS respectively. In other re-
gions, skill for ESP and HWA is generally comparable with
little spatial coherence except for some catchments in South-
west England and South Wales (SWESW) and Northern Ire-
land (NI) which shows a decrease in skill. Skill in most catch-
ments, particularly in northern and western areas is reduced
compared to ESP in the summer with the exception of some
in central and southern England where skill is comparable to
ESP. It should be noted that away from central and southern
England, catchments generally show neutral (CRPSS± 0.05)
or poor skill for both HWA and ESP methods for the summer.

Figure 5 shows the proportion of catchment within each
hydroclimate region with positive CRPSS and RPSS for
HWA against a baseline of ESP for all seasons. Generally,
RPSS shows improvement for more catchments compared to
CRPSS. The skill scores show a clear improvement in win-
ter for catchments in northern England, NI and Scotland.
For winter, at the national scale, 45 % of catchments have
a positive CRPSS (64 % with a positive RPSS), indicating
improvement in skill from the HWA method compared to
ESP. All the catchments in Western Scotland (35) and the
North-west England and North Wales region (NWESW) (35)
saw an improvement in skill with the HWA method when as-
sessed using CRPSS. In spring, the proportion of catchments
with an improvement in forecast skill compared to ESP are
less notable than in winter but there is still a notable improve-
ment nationally (including across Scottish and northwest re-
gions) when assessed using both CRPSS and RPSS. 7 of the 9
regions show an improvement in forecast skill for over 50 %
of catchments in spring when considering CRPSS. Forecast
improvement in autumn is seen for catchments in North East
England and NWENW and regions in the southeast although
the magnitude of that improvement is more modest compared
to winter and spring (as seen in higher CRPSS values cal-
culated by comparing HWA against ESP in Fig. 4). Gen-
erally, summer forecast skill using HWA is comparable or
worse than the standard ESP for the majority of catchments
in each region. When assessed using CRPSS, improvements
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Figure 3. Probabilistic hindcast skill for the ESP (top) and HWA (bottom) methods across the hindcast period (1993–2016) for 314 UK
catchments. The metric used is the CRPSS, and is calculated for the hindcast period by comparing HWA and ESP with benchmark climatol-
ogy (retrospective simulation) per season. Blue colours indicate the historic weather analogues method has higher skill than the benchmark
climatology (red colours show the historic weather analogues method is worse than climatology). White colours indicate neutrally skilful
forecasts. The direction of the symbol indicates the sign of the respective skill score.

were only found for a handful of catchments in all regions
with no regions registering improvements in more than 50 %
of catchments.

The skill scores during winter for individual catchments
within the hydroclimate regions show a large degree of sub-
regional variation in forecast skill (Fig. 6 for the West Scot-
land and Anglian regions and Fig. S4 for other hydrocli-
mate regions). For example, even within the Anglian re-
gion where winter flow forecasts averaged across the re-
gion exhibit good skill, some catchments (e.g. ID: 36010
Bumpstead Brook) show limited skill while others show very
high skill (e.g. 34014 Wensum). The improvement in win-
ter forecast skill is negatively correlated with the baseflow
index (BFI) (r =−0.44, p-value <0.05) and positively cor-
related with standardised annual average rainfall (r = 0.51,
p-value <0.05) and the catchment wetness index (r = 0.64,
p-value <0.05) (Fig. S5). The relationship shows that catch-
ments with the greatest improvement in winter skill tend to
be fast-responding catchments with a low baseflow contribu-
tion to river flows and are often wet catchments located in
upland regions with higher annual average rainfall.

Figure 7 shows the skill for both methods in discrimi-
nating between events (upper or lower tercile river flows)
and non-events (middle tercile river flows) for all seasons

across each hydroclimate region, showing broadly consistent
regional patterns with the CRPSS and RPSS results above.
During winter, the HWA method results in more catchments
with good skill (ROC score > 0.6) in discriminating both low
and high flows across all regions compared to the standard
ESP where good skill was only seen for regions in the south-
east. ROC scores for catchments in southern England (i.e. SE
and ANG regions) are comparable between the two methods
for both high and low flow events with clear improvement
in skill for all other regions, specifically those in Northeast
England and Scotland (WS and ES). Across all considered
catchments, skilful discrimination of low flow events in win-
ter is achieved for 41 % of catchments using ESP and 88 % of
catchments with the HWA method, while skilful discrimina-
tion of high flow in winter is achieved for 35 % of catchments
with ESP and 72 % with HWA. In spring, the HWA method
generally shows skilful discrimination of high and low flow
events in most regions, except for low flows in NI where skill
deteriorated compared to ESP. ROC scores for other seasons
are similar between ESP and HWA with some regions show-
ing slight deterioration. Skill is particularly low across sum-
mer months for both ESP and HWA, highlighting that skill
in discriminating low and high flows in summer remains a
particularly notable challenge. Some regions saw a reduction
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Figure 4. Difference in skill levels between the HWA and ESP methods. HWA CRPSS (top) and RPSS (bottom) are shown for the hindcast
period (1993–2016) for each season across 314 UK catchments. Blue colours indicate the HWA method is better than the Ensemble Stream-
flow Prediction (ESP), red colours show the HWA method is worse than ESP. White colours indicate comparative skill between the two
methods. The direction of the symbol indicates whether the HWA skill is better (upward arrow) or worse (downward arrow) than benchmark
climatology according to CRPSS and RPSS.

in skill in summer with HWA compared to ESP (e.g. NI, ES
and WS for high flows).

3.2 Winter flow predictability

Winter saw the highest number of catchments registering im-
proved seasonal flow predictability against the standard ESP
method, particularly for upland, fast-responding catchments
in Northern England and Scotland. For other seasons, studies
have shown that total rainfall variability is less well explained
by the leading modes of climate variability and the influ-
ence of global weather patterns on UK weather also tends to
smaller. Hence, this section aims to further understand pre-
dictability for winter river flows in more detail by linking
river flow predictability to large scale atmospheric drivers.
Figure 8 shows the proportion of river flow forecasts in the
correct category compared to that in the retrospective simu-
lation calculations for both ESP and HWA averaged across
West Scotland for each winter within the hindcast period.
There is an increase in the percentage of correct forecasts
with the HWA method in 16 of the 23 winters. Forecast per-
formance improvement is more apparent for wetter than av-
erage winters, with a higher proportion of forecasts in the

correct category for HWA compared to ESP for 11 of the 13
wetter than average winters. There is a mixed picture for drier
than average winters, for example the HWA method showing
better forecast performance during winter 2010 but poorer
performance in winters 1996 and 2006, all of which coincide
with notable national hydrological drought episodes, but a
longer hindcast period and larger ensemble is required for a
more robust assessment.

Two case studies of winters with strong NAO signals are
selected to further explore winter river flow predictability.
Winter 1994/1995 had the strongest NAO+ signal in the
hindcast period while winter 2009/2010 was in a strong
NAO− phase. Figure 9 shows the probabilistic ESP and
HWA hindcasts and the retrospective simulation river flows
for both winters, visualised in the same format as the opera-
tional UK Hydrological Outlook and interactive online por-
tal (https://ukho.ceh.ac.uk, last access: 12 February 2026).
Winter 1994/1995 remains the third wettest UK winter since
1836, only surpassed by winters 2013/2014 and 2015/2016.
Numerous catchments exceeded their mean winter river
flows record at the time but it was notably followed by a
major drought after widespread rainfall deficits from spring
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Figure 5. Percentage of catchments with positive CRPSS (left) RPSS (right) values calculated from comparing the HWA forecasts against the
standard ESP forecasts for each season and each hydroclimate region. The percentage number is shown for each region and season. Regions
with more than 50 % of catchments showing improvement are shaded in blue colours whereas regions with less than 50 % of catchments
showing improvement is shaded by red colours.

1995 onwards (Institute of Hydrology and British Geologi-
cal Survey, 1996). Hindcasts for winter 1994/1995 using the
standard ESP method predicts normal to below normal river
flows across southern England with an increase in likelihood
for below-normal to low river flows elsewhere. Hindcasts us-
ing the HWA method instead indicates a reversal, showing
a heightened likelihood of above-normal to high river flows
for many catchments across northern and western Britain.
By construction, the normal category will often be the most
likely in any forecast given the percentiles chosen. Neverthe-
less, the HWA method gave warning of the increased risk of
the high flows for this winter, unlike the ESP method which
suggested the risk was lower than normal.

Winter 2009/2010, the third coldest winter for Scotland
since 1836, was characterised by a strongly negative NAO-
phase and prolonged dry conditions with a marked east-west
spatial contrast for rainfall (Prior and Kendon, 2011). Rain-
fall was notably below average across western UK with some
areas receiving less than half the average (Kendon et al.,
2013). The winter was a precursor to the multi-year 2010–
2012 drought, which began with widespread below normal
winter river flows across western Britain (Marsh et al., 2013).
Both the ESP and HWA hindcasts for river flows indicate a
higher likelihood of below-normal to low river flows across
the UK, agreeing well with what was observed. While the

spatial pattern from both methods were broadly similar, the
likelihood of low river flows is heightened in the HWA
method for most catchments compared to ESP. This further
illustrates results from the skill scores showing the improved
ability of the HWA method to discriminate between both
high and low flow events.

Winter river flows at catchments in North West UK, and
particularly Scotland strongly reflect rainfall variability given
their responsive nature. As winter NAO is a major mode of
climate variability associated with winter UK rainfall, the
ability of the HWA forecasts to consider predicted dynamical
signals substantially improves winter river flow predictabil-
ity. This contrasts with slower-responding catchments in
other parts of the UK where initial hydrological conditions
play a stronger role. The HWA approach does not sample
for analogues using the NAO index directly, but instead se-
lects analogues based on the spatial MSLP pattern. As the
NAO is a statistical description of atmospheric circulation,
North Atlantic jet stream characteristics are a more direct
characterisation of atmospheric circulation (e.g. winter jet
stream intensity or latitude). Figure 10 shows that winter
rainfall across Scotland is highly correlated with the NAO
index (r = 0.80) and the North Atlantic jet stream intensity
(r = 0.87). Winters with strong positive NAO are also often
associated with strong jet stream intensity. Within the hind-
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Figure 6. December–January–February (DJF) mean daily simulated flows (m3 s−1) averaged across catchments in two contrasting regions
(West Scotland and Anglian) and for five individual example catchments with varying skill in each region. Blue dots show the individual
ensemble members from the HWA method, the red solid line shows the HWA ensemble mean, the red dotted lines show the HWA spread
(25th–75th percentile), the dotted black line shows the ensemble mean of the standard ESP method and the solid black line shows retrospec-
tive simulated river flows. The correlation coefficients between the retrospective simulated river flows and the ensemble mean HWA and ESP
forecasts are shown on each plot.

cast period, six of the top ten years with the greatest improve-
ment in the HWA river flow forecasts relative to ESP (i.e.
higher % of ensemble members in the correct category) are
in a positive NAO phase (NAOI > 1) and are associated with
a strong jet stream intensity. The top three years with great-
est improvement are 1995/1996, 2015/2016 and 2013/2014.
Given the relatively short hindcast period and the large at-
mospheric circulation variability, a longer hindcast period
is required to understand whether there is a systematic and
statistically significant differences in forecast improvement
conditional on diverging NAO phases.

4 Discussion

This study completed a rigorous assessment of forecast skill
using both the standard ESP approach and a new Historic
Weather Analogues (HWA) approach over a common hind-
cast period. Overall, we find that the HWA method retains
much of the forecast skill of the standard ESP but is a clear

improvement in winter months with modest improvements in
spring. The degree of skill improvement is dependent on the
season and on climatic and physical properties of individual
catchments.

4.1 When and where is HWA skilful?

The HWA forecasts are skilful relative to climatology for
most catchments in the Anglian, Severn Trent and South
East regions for all seasons. In the winter, the HWA fore-
casts are also skilful for catchments in in North West England
and Scotland (CRPSS > 0.05 for 73 % of all selected catch-
ments). Skilful forecasts are also possible for some catch-
ments in spring and across North West and North East Eng-
land in autumn. In the summer, the HWA forecasts exhibit
neutral to negative skill for catchments across North West
England and Scotland and skilful forecasts remain possi-
ble only for catchments in the south and east. The source
of forecast predictability over catchments in the south and
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Figure 7. ROC scores averaged across each hydroclimate region for the standard ESP method (top) and the HWA method (bottom) for each
season and for lower tercile (low flows) (left) and upper tercile (high flows) (right). Cells with ROC scores < 0.6 are greyed out.

Figure 8. Change in the fraction of DJF forecasts in the correct category (compared to the retrospective simulation) averaged across catch-
ments in Scotland. Dots on the left show the standard ESP method, diamonds on the right show the HWA method. Green arrows indicate
years with an improvement in the forecasts with the HWA method, red arrows indicate a decrease in forecast performance. Rainfall as a
percentage of average for each winter is shown on each panel. The year in the title refers to the year of the January and February.
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Figure 9. Case studies from the hindcast experiment for DJF 1994/1995 (top) and 2009/2010 (bottom). ESP hindcasts are shown in the left
panels, with HWA hindcasts in the central panels, and the river flow category for retrospective simulated river flows flows in the rightmost
panels. Note the visualisation style is the same as the operational UK Hydrological Outlook and in the interactive online portal. The colour
scheme has been adopted after extensive stakeholder consultation.

east comes from the persistence of initial hydrological condi-
tions as this region contains mainly groundwater dominated
catchments with high catchment storage capacities, contrast-
ing with relatively lower skill for fast responding catchments
where initial hydrological memory is quickly lost (Harrigan
et al., 2018). Catchments in the southeast also yield skilful
persistence forecasts as shown by Svensson (2016). The im-
portance of initial hydrological conditions in achieving skil-
ful hydrological forecasts in the UK is in line with conclu-

sions in previous hindcast experiments using ESP or mod-
ified ESP methodologies (Svensson, 2016; Svensson et al.,
2015). Harrigan et al. (2018) showed that the total catchment
storage (defined as the sum of storage components within the
GR4J hydrological model) is strongly correlated with ESP
skill across UK catchments and that skill declines at a much
slower rate for catchments with high storage capacity (e.g.
skilful forecasts can be made at seasonal or longer lead times
for catchments with high storage).
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Figure 10. Linking winter river flow predictability to atmospheric circulation patterns. (a) Scotland average rainfall against mean winter
North Atlantic jet speed (m s−1) for 1956–2018, with the years in the hindcast period highlighted. Panel (b) shows jet speed (m s−1)
against the North Atlantic Oscillation (NAO) index, with the dots coloured by the percentage of HWA forecasts in the correct category as
the retrospective simulation minus the percentage of ESP forecasts in the correct category as the retrospective simulation averaged across
catchments in Scotland for all years in the hindcast period – positive values indicate a higher percentage of forecasts in the correct category
in HWA compared to ESP.

Investigating the predictability of the winter NAO in vari-
ous forecasting systems (including the GloSea model), Baker
et al. (2018) found that they are able to capture the global
physical climate drivers and teleconnection pathways and
skilfully forecast winter NAO across Europe at seasonal or
longer lead times. The HWA approach makes use of both
the influences of initial hydrological conditions and the pre-
dictability of atmospheric circulation patterns. The ability to
consider atmospheric circulation predictability and their in-
fluence on regional UK rainfall is especially important for
North West England and West Scotland. Catchment stor-
age is often limited in these regions and rainfall is directly
translated into river flows with catchments often exhibiting
a “flashy” flow regime that is highly correlated with rainfall
variability and atmospheric circulation indices such as the
winter NAO. While HWA method considers predictability
of atmospheric circulation patterns in all seasons, the results
show higher skill during winter. This is due to higher forecast
skill for winter circulation patterns, thus providing a sound
justification to amplify the predicted ensemble mean dynam-
ical signals (e.g. winter NAO) to account for the signal-to-
noise problem in meteorological forecasts (Eade et al., 2014;
Scaife and Smith, 2018). Dynamical signals for other seasons
were not amplified as forecast skill for circulation patterns
during those seasons are less skilful compared to the winter
months.

4.2 Comparison with ESP

The results used the standard ESP approach as a benchmark
to assess where and when the HWA forecasts represent an
improvement. Across all seasons, the HWA forecasts gener-
ally have higher skill compared to ESP across most catch-
ments. The HWA approach represents a substantial improve-
ment in river flow predictability in northern and western ar-
eas where high skill derives from fast catchment response
to rainfall and a close association between river flow and
climate variability. In contrast, with the standard ESP, high
forecast skill in winter was only found for catchments in
southern England where large catchment storage capacities
and strong catchment memory of initial hydrolgical condi-
tions enhances predictability at long lead times. In the sum-
mer, skilful summer flow forecasts for both HWA and ESP
only remain possible across catchments in southern England
and are attributed to the strong influence of initial hydrolog-
ical conditions. This reflects previous findings in Harrigan
et al. (2018) using standard ESP and Svensson (2016) using
a data-driven flow persistence/flow analogue approach. The
HWA approach, as a conditioned ESP approach, would natu-
rally retain skill in areas with high total catchment storage, as
shown by year-round skill in summer flow predictability for
groundwater-dominated catchments in the south-east. How-
ever, the HWA forecasts show some deterioration in summer
forecast skill across isolated catchments away from southeast
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England. When assessing skill individually for each method,
there is little skill in the summer for either ESP or HWA
away from groundwater-dominated catchments in southern
England, hence catchments which showed a deterioration in
skill with HWA compared to ESP are generally those which
do not show skilful forecasts with ESP. For other seasons, the
HWA approach shows some improvements in spring, mostly
at catchments in northern England and northern Scotland and
modest improvements in southeast England. The compari-
son of skill scores between HWA and ESP for the selected
catchments in Northern Ireland in this study agrees well with
Donegan et al. (2021) which applied the same set of HWA
hindcasts at a wider set of NI catchments using the GR4J hy-
drological model, suggesting the largest improvement in skill
for forecasts initialised in winter months at fast-responding
catchments in northwestern NI.

The HWA method was operationalized within the UKHO
during winter DJF 2023/2024. Figure S6 shows the forecast
issued for winter 2023/2024 in December 2023. The wider
winter half year 2023/24 was the wettest on record for many
catchments across England and Wales (Chan et al., 2025).
The ESP method suggested higher than average river flows
for slow-responding catchments in south and east and a high
likelihood of flows in the normal range elsewhere. The HWA
method also suggested high river flows across the south and
east but also a higher likelihood of above normal and high
river flows for catchments in North Wales and northern Eng-
land. The higher likelihood of high flows forecasted by the
HWA method adds confidence to the results found in the
hindcast experiment, suggesting that improved considera-
tion of meteorological predictability in the HWA approach is
most critical in the winter months for fast-responding catch-
ments in northern and western areas.

While the HWA method shows improvement in skill
across northern and western UK in winter months, the stan-
dard ESP method remains a “tough to beat” forecasting sys-
tem, and in the absence of skilful meteorological forecasts
at seasonal or longer lead times, remains a computation-
ally efficient approach for hydrological forecasts. The re-
sults provide an indication of which method may be consid-
ered more skilful when intialised in different seasons (such
as greater skill for HWA forecasts in the winter) but fur-
ther reinforces the fact that ESP remains a low-cost, efficient
benchmark forecast method for which future improvements,
such as the direct use of skilful meteorological rainfall fore-
casts or forecast post-processing should be assessed against
(Harrigan et al., 2018; Pappenberger et al., 2015). A partic-
ular advantage to the HWA approach that is different to past
conditioned ESP approaches is the ability to explore histor-
ically unseen weather sequences from the shuffling proce-
dure applied. This introduces greater variability in the pos-
sible rainfall and PET sequences while preserving the atmo-
spheric circulation signal forecasted by weather forecasting
systems (e.g. Beckers et al., 2016). The assumption that his-
toric weather sequences (i.e. rainfall and temperature) would

remain static if they reoccur at the time of forecast initialisa-
tion was further addressed by applying climate trend correc-
tions to the rainfall and temperature variables for each ana-
logue sequence prior to their application in the hydrological
model. The re-trending procedure is currently not applied to
the standard ESP approach as the aim to explore the conse-
quences if the identical temperatures and rainfall sequences
in past years occur again remain important from a risk aware-
ness perspective.

4.3 Potential future improvements

There are several areas for potential future work. More ac-
curate simulation of river flows from improved process rep-
resentation and parameterisation of hydrological models will
enable more accurate estimation of the initial hydrological
conditions at forecast initialisation. In this study, the GR6J
model is selected for its relative simplicity to enable a large
number of model runs efficiently. Future work could investi-
gate hydrological model uncertainty in UK river flows fore-
casts. The Probability Distributed Model (PDM) and the Hy-
drologiska Byråns Vattenbalansavdelning (HBV) model are
examples of alternative conceptual catchment hydrological
models that have previously been applied successfully at a
wide range of UK catchments for both short-term forecasting
and long-term climate projections. They can be used within a
multi-model benchmark framework (e.g. Lane et al., 2019) to
identify whether different representation of hydrological pro-
cesses could lead to improved skill for catchments with dif-
ferent physical characteristics (such as through the ongoing
Hydro-JULES model intercomparison project for the UK –
https://hydro-jules.org/uk-hydro-mip, last access: 12 Febru-
ary 2026).

There are also several areas of future work to further de-
velop methodologies within the UK Hydrological Outlook.
Sources of uncertainties along the modelling chain of op-
erational streamflow forecasting systems include hydrolog-
ical model uncertainties in the representation of initial hy-
drological conditions and uncertainties associated with the
structure and representation of initial weather states from op-
erational weather forecasting systems (Troin et al., 2021).
Further insights into the conditions when forecasts of atmo-
spheric circulation patterns are skilful were recently provided
by Baker et al. (2024), suggesting that global teleconnections
such as ENSO affects the predictability of the winter NAO
with higher NAO predictability during the El Niño phase.
For example, the forecast atmospheric circulation signal was
relatively weak in winter 2013/2014, which was a winter in
the neutral ENSO phase with strong stratospheric influences
(Huntingford et al., 2014). Conversely, the strength of the
signal for winter 2015/2016 was larger and it was part of one
of the strongest El Niño events on record. Improvement in
river flow predictability was comparatively large for winter
2014/2015 than for winter 2013/2014 (i.e. Fig. 8). A more
systematic influence of ENSO on NAO and thus winter river
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flow predictability may be confirmed with future work em-
ploying a longer hindcast period. Further refinement of the
analogue selection approach could consider predictability of
other modes of variability which may provide justification
for the amplification of dynamical signals in other seasons.
Improvements in the predictability of the East Atlantic pat-
tern, which exhibits strong influence on rainfall variability,
particularly across southern Britain (West et al., 2019), could
contribute to further advances in national summer river flow
predictability. Potential improvements in summer flow pre-
dictability can also be enabled with better understanding of
large-scale atmospheric teleconnections. For example, Che-
vuturi et al. (2025) recently demonstrated that summer flow
predictability across northern and western UK is linked to
variations in North Atlantic sea surface temperatures and re-
sulting atmospheric teleconnection pathways with signs of
long-range predictability (∼ 1.5 years ahead).

Applying post-processing techniques such as bias correc-
tion and multi-model blending can also substantially improve
the reliability and performance of hydrological forecasts (Ar-
senault et al., 2015; Chevuturi et al., 2023; Matthews et
al., 2022; Troin et al., 2021). For example, Chevuturi et
al. (2023) recently tested several approaches to blend hydro-
logical forecasts from multiple global land surface and hy-
drological models. They found that applying a weighted av-
erage of multi-model forecasts based on model performance
in conjunction with bias correction yields the greatest im-
provement in forecast skill and can be a suitable method to
communicate forecasts to end-users. Tanguy et al. (2025)
used the UKHO as a case study and showed that a quan-
tile mapping bias correction post-processing technique is a
computationally efficient and low-cost way to improve the
skill of hydrological forecasts by correcting for systematic
biases in hydrological model simulations. The authors also
showed that data assimilation can further improve ESP fore-
casts by adjusting the internal hydrological model states at
forecast initialisation, which may be beneficial at catchments
with high storage as a more accurate estimation of initial hy-
drological conditions is crucial. However, data assimilation
is computationally demanding and requires the availability
of live, near real- time observations, which remains a ma-
jor drawback to operational use. Further work is on-going
to blend the catchment-based results presented in this study
from different forecasting methods with those made using
gridded hydrological models. An eventual aim is to opera-
tionalise a multi-method and multi-model blended forecast-
ing system that either chooses the most effective method-
/model for each lead time/season (e.g. applying the HWA
method in place of standard ESP at fast-responding catch-
ments) or to weigh results based on the performance and re-
liability of different models/methods over a hindcast period
(Tanguy et al., 2025).

The current set up of the seasonal hindcast archive can-
not be used for shorter lead times as the circulation ana-
logues were chosen to match the seasonal mean forecast

MSLP pattern. However, sub-seasonal (i.e. monthly) fore-
casts using the HWA method are also made within the UKHO
using an analogous system where the forecast month are
split into three 10 d segments and the best match of the
forecast circulation pattern is chosen from the 10 d seg-
ments instead of the seasonal mean. The application of HWA
forecasts at even shorter lead times (e.g. sub-monthly and
weekly timescales) are currently in development (Rhodes-
Smith and Bell, unpublished report, 2024, https://nora.nerc.
ac.uk/id/eprint/538560, last access: 12 February 2026). Hy-
brid forecasts coupling statistical or machine learning tech-
niques with dynamical climate model forecasts further shows
promising opportunities to enhance hydrological forecasts
ranging from sub-seasonal to decadal timescales (Golian et
al., 2022; Slater et al., 2023; Slater and Villarini, 2018). For
example, sub-selecting hindcasts from decadal climate sim-
ulations based on their representation of atmospheric circu-
lation variability (e.g. winter NAO) coupled with a statistical
flood model for the UK showed skilful indication of flood
rich or flood poor decades, particularly for fast-responding
catchments in northwest UK (Moulds et al., 2023). This fur-
ther echo the results found in this study, illustrating the bene-
fits of incorporating climate information for forecasting river
flows at catchments where meteorological variability is a di-
rect driver of flow variability.

5 Conclusions

The Historic Weather Analogues (HWA) method builds on
the existing suite of forecasting methods within the UK Hy-
drological Outlook and aims to leverage the improved pre-
dictability of atmospheric circulation patterns to improve
the skill of seasonal river flow forecasts across the UK.
This study uses both climatology and the standard Ensem-
ble Streamflow Prediction (ESP) method as benchmarks to
assess river flow forecast skill of the new method at catch-
ments across the UK. The HWA forecasts represent a clear
improvement when compared to the standard ESP, notably
so for winter river flow predictability, particularly for catch-
ments in North West England and Scotland. This is compared
with ESP where skilful winter river flow forecasts were only
possible for catchments in South East England, where initial
hydrological conditions related to groundwater storage pro-
vides high seasonal predictability. Catchments with the great-
est improvement in winter river flow forecast skill tend to be
upland, fast responding catchments with limited catchment
storage and where river flow variability is strongly tied with
climate variability. Results also show that the HWA fore-
casts have greater skill in discriminating both high and low
flow events in the winter compared to ESP. The improved
winter river flow predictability derives from the predictabil-
ity of winter NAO (and the ability of the HWA forecasts to
match the predicted atmospheric circulation pattern), appar-
ently with more notable improvements in the forecasts of
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high river flows during wet winters in a positive NAO phase
although a longer hindcast period is required to confirm this.

Skilful prediction of summer river flows, particularly for
catchments away from South East England, should remain
an outstanding research priority. In the summer, both ESP
and HWA are skilful only for slow-responding catchments
in southern England with the HWA method showing simi-
lar or slight reduction in skill elsewhere. Forecasts for other
seasons (spring and autumn) suggest modest improvements
with larger improvements against ESP during spring, with no
significant decrease in skill compared to ESP. Future work
such as post-processing of river flow forecasts through bias
correction and data assimilation may further improve fore-
cast skill at catchments which the HWA forecasts already
exhibit strong improvements. The amplification of other dy-
namical signals, such as the East Atlantic pattern, and the
improved knowledge of global teleconnections driving UK
rainfall variability could ultimately improve forecasts of river
flows across all seasons.

This study demonstrates that the HWA method lever-
ages climate information from dynamical weather forecast-
ing models, leads to improvement in winter river flow fore-
casts in the northwest UK, and retains the forecast skill de-
rived from the influence of initial hydrological conditions,
which contributes to high forecast skill at South East England
catchments for all seasons. For spring, summer and autumn,
the standard ESP approach remains a “tough to beat” river
flow forecasting system against which future improvements
can be assessed.
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based on open-source libraries. The hydrological model GR6J was
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