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Abstract. Flood impacts can be enhanced when they occur
shortly after droughts. Hydrological models are useful tools
to better understand the underlying processes and mecha-
nisms driving the response of floods occurring in close suc-
cession to streamflow drought. However, it is yet unclear
how well hydrological models capture these compound ex-
treme events and which modeling decisions are most impor-
tant for model performance. To address this research gap, we
calibrated four conceptual bucket-style hydrological models
with different structures (GR4J, GR5J, GR6J, and TUW) for
63 catchments located in Chile and Switzerland using differ-
ent calibration strategies. Specifically, we assessed the rela-
tive importance of different methodological choices in sim-
ulating and detecting observed drought-to-flood transitions,
including model structure, streamflow transformation, and
the Kling–Gupta efficiency (KGE) formulation and weights
used to calibrate the model parameters. We demonstrate that
model performance, as expressed by the KGE, does not
guarantee a good performance in terms of detecting stream-
flow extremes and their transitions. Further, we show that
a model’s performance with respect to capturing extreme
events primarily depends on how well it captures stream-
flow timing. Our results also highlight that model structure,
catchment characteristics and meteorological forcings play a
key role in the detection of transitions. Overall, we find that
model representation of drought-to-flood transitions is gener-

ally poor, especially in semi-arid and high-mountain catch-
ments compared to humid low-elevation catchments. Ulti-
mately, our study provides insights for further model im-
provements to simulate and better understand drought-to-
flood transitions and to identify regions prone to this hazard.

1 Introduction

Hydrological extreme events such as streamflow droughts
and floods are expected to become more frequent, severe,
and persistent in a warming climate (e.g., Gu et al., 2023;
Asadieh and Krakauer, 2017; Martin, 2018; Tabari et al.,
2021). This can lead to severe impacts on infrastructure, agri-
culture, water supply, and hydropower generation (e.g., Mc-
Clymont et al., 2020; McMartin et al., 2018; Lehner et al.,
2006; Sivakumar, 2011; Wasti et al., 2022), as well as social
and political systems (e.g., Doocy et al., 2013; Hurlbert and
Gupta, 2017; Kiem and Austin, 2013; Visconti, 2022).

Studies focusing on hydrological extreme events and their
impacts often assume temporal and/or spatial independence
between them, neglecting that extremes may be multivariate
phenomena (Banfi and De Michele, 2022; Brunner, 2023).
However, the impacts of floods can be enhanced when they
occur during or shortly after dry periods (e.g., Barendrecht
et al., 2024; Swain et al., 2018; He and Sheffield, 2020;
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Rashid and Wahl, 2022). For instance, Handwerger et al.
(2019) and Valenzuela et al. (2022) have demonstrated an in-
crease in the occurrence of landslides in California and Chile
due to shifts from meteorological drought to intense precip-
itation. Similarly, Dietze et al. (2022) have shown that the
2018–2020 drought in Europe enhanced debris mobilisation
during the 2021 flood in the Eifel region of western Germany
and Belgium. In 2017, intense precipitation broke the 2012–
2016 drought in California and led to severe flooding, the ac-
tivation of the emergency spillway of the Lake Oroville dam
for the first time in its history, and the declaration of emer-
gency (Griffin and Anchukaitis, 2014; Robeson, 2015; Wang
et al., 2017). Despite evidence of the interactions between
drought and flood events, they are still most frequently stud-
ied independently (e.g., Ward et al., 2020; Quesada-Montano
et al., 2018; Di Baldassarre et al., 2017).

The transition from drought to flood can occur within
hours or days, whereas the transition from floods to droughts
can range from weeks to years, leading to different wa-
ter management challenges and reaction times for decision-
makers (Hammond et al., 2025). Due to the inherent
asymmetry in spatiotemporal characteristics and underly-
ing drivers, as has been recently reviewed by Swain et al.
(2025) from both meteorological and hydrological perspec-
tives, drought-to-flood transitions often have more severe im-
pacts than flood-to-drought transitions.

Both hydrological droughts and floods are linked to me-
teorological conditions such as precipitation surplus/deficit
or low/high evapotranspiration rates. However, it has been
shown that meteorological dry-to-wet spells are only weakly
associated with hydrological drought-to-flood transitions,
with a propagation rate of just 10 % within a 30 d period, and
that wet spells are less likely to lead to floods than dry spells
are to cause droughts (Brunner et al., 2025). Consequently,
the occurrence and drivers of these compound events are not
yet fully understood (e.g., Matanó et al., 2022, 2024; Brun-
ner, 2023; Götte and Brunner, 2024; Hammond et al., 2025;
Brunner et al., 2025). Similarly, it is yet unclear how increas-
ing hydrological volatility in a warming climate (Swain et al.,
2025) will translate to changes in drought-to-flood transition
behavior.

Process-based hydrological models can provide valuable
insights into how streamflow and/or other hydrological fluxes
and states react to variations in meteorological and climate
inputs (Hrachowitz and Clark, 2017). In recent decades, sev-
eral efforts have been made to improve the realism of hydro-
logical models in terms of spatial variability (e.g., Dembélé
et al., 2020), the simulation of low (e.g., Garcia et al., 2017)
and high flows (e.g., Mizukami et al., 2019), or the repre-
sentation of flood-triggering mechanisms and spatiotempo-
ral coherence (e.g., Brunner et al., 2020, 2021), under cur-
rent and changing climatic conditions (e.g., Fowler et al.,
2018). However, modeling hydrological extreme events such
as droughts and floods is still challenging (e.g., Mizukami
et al., 2019; Bruno et al., 2024), especially when multi-

ple variables are involved. Such cases include, for example,
modeling the dependence between flood peaks and volumes
(Brunner and Sikorska-Senoner, 2019), or modeling the spa-
tial dependence of floods happening in different locations
(Brunner et al., 2021). This complexity suggests that captur-
ing consecutive drought-to-flood events might not be trivial
either. As model evaluations targeted at compound extremes
have not yet been performed, it is still unclear how well hy-
drological models can, in fact, capture drought-to-flood tran-
sitions.

Hydrological modeling involves making decisions about
model structure (i.e., process representations and parameter-
izations), spatial discretization, meteorological forcings, and
parameter estimation approach (e.g., calibration/evaluation
periods, hydrological target variables or signatures used in
objective functions), which affect hydrological simulations
and whose importance might vary depending on the mod-
eling purpose (e.g., Mendoza et al., 2016; Mizukami et al.,
2016; Baez-Villanueva et al., 2021; Guo et al., 2017; Melsen
et al., 2019). Previous studies have highlighted that such
modeling decisions can substantially influence simulated hy-
drological extremes and their uncertainties (e.g., Alexander
et al., 2023; Melsen and Guse, 2019; Melsen et al., 2019).
They have also shown that the choice of objective function
for model calibration, model structure, and spatial discretiza-
tion (forcings and domain) are the most influential decisions
on modeling outcomes. While these previous studies have
focused on analyzing the impacts of modeling decisions on
drought and flood attributes (e.g., severity, duration), they
have not looked at how these decisions influence event detec-
tion, i.e. whether or not a model can capture extreme events
below or above a certain threshold. Moreover, previous work
has focused on individual extremes instead of looking at
them in a multivariate setting (Brunner, 2023). As such, it is
unclear how individual modeling decisions might influence
the representation of hydrological transitions.

Hydrological modeling often relies on a calibration pro-
cess to find parameter values that minimize discrepancies be-
tween observations and simulations of a target variable (e.g.,
streamflow). The calibration process requires defining an ob-
jective function to measure the similarity between observa-
tions and simulations. In general, these objective functions
are defined based on “least squares” formulations such as the
widely used Nash-Sutcliffe Efficiency (NSE; Nash and Sut-
cliffe, 1970) and the Kling–Gupta Efficiency (KGE; Gupta
et al., 2009). Although alternative objective functions have
been proposed to enhance the robustness of calibrated param-
eters and hydrological consistency (e.g., Fowler et al., 2018;
Yilmaz et al., 2008; McMillan, 2020), KGE and NSE remain
widely used for model calibration and evaluation (e.g., Kle-
meš, 1986; Motavita et al., 2019; Seibert et al., 2019; Beven,
2025).

The Kling–Gupta Efficiency (KGE), originally proposed
by Gupta et al. (2009), has been one of the most popular per-
formance metrics used in hydrology over the last decades.
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Thanks to the possibility of disaggregating it into its three
components – bias, variability, and correlation – KGE pro-
vides interpretability and diagnostic power. It has been ap-
plied for many modeling purposes, including the analysis
of streamflow extremes (e.g., Gu et al., 2023; Hirpa et al.,
2018). Calibrations are often considered successful if the
KGE performance exceeds a certain threshold during both
the calibration and evaluation periods (e.g., KGE> 0.4). It
is also often assumed that the KGE criterion can be used as
a proxy for how well a model represents streamflow proper-
ties such as extreme events (e.g., Lema et al., 2025; Cinkus
et al., 2023; Zhao et al., 2025). However, model evaluations
often do not explicitly evaluate how drought or flood events
are represented at the event scale. As a consequence, it re-
mains unclear how suitable of a proxy KGE and alternative
formulations (Gupta et al., 2009; Kling et al., 2012; Pool
et al., 2018; Tang et al., 2021; Pizarro and Jorquera, 2024) or
adaptations (e.g., transformations and weights; Garcia et al.,
2017; Wu et al., 2025; Mizukami et al., 2019) are for de-
scribing model accuracy in terms of extreme events and their
consecutive occurrence.

In summary, it is unclear how different modeling deci-
sions, such as the choice of the hydrological model, objective
function, and streamflow transformations, affect drought-to-
flood transition simulations and how well overall perfor-
mance metrics, such as KGE, relate to a model’s ability to
capture streamflow extremes. It remains to be explored which
modeling choices are most suitable for capturing these com-
pound hydrological extreme events without compromising
hydrological consistency (i.e., representation of different hy-
drological processes or properties). To address these research
gaps, we investigate the extent to which hydrological models
can represent consecutive drought-to-flood transitions and
the impact of model structure and calibration choices on
their representation. Specifically, we address the following
research questions:

– How suitable is the KGE for calibrating models aimed
at jointly simulating streamflow droughts and floods?

– Which modeling choices (e.g., model structure, KGE
formulation, etc.) are most important for simulating
droughts, floods, and their transitions?

– In which catchments are drought-to-flood transitions
most challenging to model and detect?

To address these questions, we performed several cali-
bration experiments with four conceptual bucket-type hy-
drological models (GR4J, GR5J, GR6J, and TUW) across
63 catchments in Chile and Switzerland. In our experiments,
we tested different configurations of the Kling–Gupta ef-
ficiency (KGE) to assess their performance in simulating
and detecting observed transitions. These configurations in-
cluded five KGE formulations (Table 1), two streamflow
transformations (i.e., Q and 1/Q) and their linear combina-

tion (i.e., 0.5×KGE(Q)+ 0.5×KGE(1/Q)), and four dif-
ferent weights applied to the variability term of the KGE
(c2 = 1,2,4,8). Secondly, we assessed the relative impor-
tance of each methodological choice for detecting events and
ensuring hydrological consistency. Finally, we explored the
link between model performance and hydrometeorological
and physiographic catchment descriptors.

2 Study domain and data

The study domain encompasses 24 and 39 near-natural catch-
ments in Chile (CL; Fig. 1a) and Switzerland (CH; Fig. 1b),
respectively. These catchments are selected based on the
availability of complete daily streamflow records between
1981 and 2020 for at least 30 years, with a complete year
being defined as one in which all months had information for
at least 90 % of the days. We characterize the hydroclimatol-
ogy of the catchments in our study domain by the wetness
index (P/PET), runoff coefficient (Q/P ), p-seasonality and
q-seasonality index, and fraction of precipitation falling as
snow (fsnow) over the period 1985–2020. The p-seasonality
index (Woods, 2009; Berghuijs et al., 2014), as well as its
analogue, q-seasonality, describes the seasonality of precipi-
tation (or streamflow) and the degree of synchronization with
the temperature seasonality. The fsnow is computed accord-
ing to the formulation proposed by Woods (2009) and ranges
from 0 (all precipitation falls as rain) to 1 (all precipitation
falls as snow).

This characterization shows that selected catchments span
a wide range of hydroclimatic characteristics (Fig. 1c), from
energy to water-limited, and different hydrological regimes
(Fig. 1d), from snowmelt (e.g., p-seasonality<−0.5
and q-seasonality> 0.5) to rainfall-dominated (e.g., p-
seasonality<−0.5 and q-seasonality<−0.5). Some catch-
ments are positioned above the water limit (i.e.,Q/P = 1) or
below the energy limit (i.e.,Q/P = 1−1/(P/PET); Fig. 1c),
which suggests an underestimation of precipitation – which
might require correcting for precipitation undercatch (e.g.,
Newman et al., 2015; Stisen et al., 2012; Hughes et al.,
2021) – or a surplus of streamflow due to, e.g., uncertain-
ties in stage-discharge relationships or glacier and/or ground
water contributions.

The CAMELS Chile (CL; Alvarez-Garreton et al., 2018a)
and Switzerland (CH; Höge et al., 2023a) datasets are used to
obtain the meteorological forcings, streamflow records, snow
water equivalent (SWE) estimates, and catchment boundaries
for the catchments in the two study domains. The meteoro-
logical forcings of both datasets, CR2Met version 2.5 for
Chile (Boisier, 2023) and RhiresD version 2 for Switzer-
land (MeteoSwiss, 2021b, a), are based on local gridded
observation-based products, while SWE products are based
on a snow cover model and data assimilation (for more de-
tail refer to Cortés and Margulis, 2017; Magnusson et al.,
2014). We prefer these local products over global ones
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Table 1. Summary of KGE formulations. In each formulation, the term dynamics stands for the representation of the temporal evolution of
the target variable, while the terms variability and bias aim to characterize its distribution.

KGE
formulation

Components Description Reference

Original
(KGE)

Dynamics: Pearson correlation coefficient.
Variability: Ratio between the standard
deviation of the simulated and observed values.
Bias: Ratio between the mean of the simulated
and observed values.

Meta-objective function, oriented to quantify
the Euclidean distance between the absolute
error associated with each component.
Proposed to overcome the problems associated
with NSE (e.g., observed mean as baseline,
formulation, which could lead to large volume
balance errors or favor models/parameter sets
that underestimate the observed variability).

Gupta et al. (2009)

Modified
(KGE_mod1)

Dynamics: Pearson correlation coefficient.
Variability: Ratio between the coefficient of
variation of the simulated and observed values.
Bias: Ratio between the mean of the simulated
and observed values.

Modification in the variability component
defined in the original formulation (i.e.,
standard deviation ratio) aimed to ensure that
the bias and variability ratios are not
cross-correlated.

Kling et al. (2012)

Non-
parametric
(KGE_np)

Dynamics: Spearman’s rank correlation
coefficient.
Variability: Error between all ranked simulated
and observed values (i.e., flow duration curve)
normalized to remove the volume information
and keep only the distribution signal.
Bias: Ratio between the mean of the simulated
and observed values.

Reformulation of the variability and correlation
terms in a non-parametric way to address the
implicit assumptions of linearity and normality
of the data in the original formulation.

Pool et al. (2018)

Modified v2
(KGE_mod2)

Dynamics: Pearson correlation coefficient.
Variability: Ratio between the standard
deviation of the simulated and observed values.
Bias: Ratio between the mean of the simulated
minus the observed values and the standard
deviation of the observed values.

Modification in the bias component defined in
the original formulation aimed to avoid
anomalously negative values when the mean
value is close to zero.

Tang et al. (2021)

K-Moments
(KGE_km)

Dynamics: Pearson correlation coefficient.
Variability: Ratio between the coefficient of
variation of the simulated and observed values
defined from unbiased estimators of
non-central K-moments (alternative
formulation for the second moment).
Bias: Ratio between the mean of the simulated
and observed values.

Modification in the variability component
defined in the original formulation aimed to
make it less sensitive to outliers and
non-normal distributions.

Pizarro and
Jorquera (2024)

such as ERA5 (Hersbach et al., 2020) because of their re-
liance on observations and high horizontal resolutions (ap-
proximately 5 km× 5 km for CR2Met and 2 km× 2 km for
RhiresD) that enable a better representation of precipitation
patterns in the complex topography of our study domains.
Further, these products have been widely used for hydro-
logical studies in Chile (e.g., Vásquez et al., 2021; Alvarez-
Garreton et al., 2021; Araya et al., 2023) and Switzerland
(e.g., Peleg et al., 2020; Fatichi et al., 2015; Tuel et al.,
2022). Streamflow records available through the CAMELS
datasets were acquired from the national agencies in each
country (i.e., the General Directorate of Water of Chile –
DGA and the Swiss Federal Office for the Environment –

FOEN). We compute topographic characteristics and hypso-
metric curves, which are needed to set up the snow routines,
using the catchment outlines from CAMELS and the Multi-
Error-Removed Improved-Terrain (MERIT) digital elevation
model (Yamazaki et al., 2019). Additionally, we retrieve time
series of actual evapotranspiration (ET) from the satellite-
and reanalysis-based GLEAM v3.8a dataset (Miralles et al.,
2011), which are spatially aggregated to the catchment scale
and used to complement the model performance assessment.
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Figure 1. Study domain and hydroclimatic characteristics com-
puted for the period 1985–2020 using data retrieved from CAMELS
Chile (CL) and Switzerland (CH). Location of catchments across
the study domain in (a) Chile and (b) Switzerland, (c) relation-
ship between wetness index (P/PET), runoff coefficient (Q/P ),
and mean annual precipitation, and (d) relationship of seasonal-
ity of precipitation and streamflow and fraction of precipitation
falling as snow. For p-seasonality and q-seasonality, positive (neg-
ative) values indicate summer (winter) dominated precipitation or
streamflow, while values close to zero indicate a uniform distribu-
tion across the year.

3 Methodological approach

Our methodological approach is illustrated in Fig. 2. Four hy-
drological models were calibrated against observed stream-
flow records, using five different formulations of the Kling–
Gupta efficiency (KGE) as objective functions. In addition,
we tested three streamflow transformations and four different
weights applied to the KGE variability term. This calibration
experiment resulted in 60 optimal parameter sets per model
and catchment (i.e., 5 KGE×3 transformations×4 weights).
We evaluated model performance based on (1) general

goodness-of-fit metrics such as the NSE (Legates and Mc-
Cabe, 1999; Althoff and Rodrigues, 2021), (2) simulation of
extreme events and transitions between them using categori-
cal indices, and (3) hydrological consistency in different pro-
cesses related to streamflow, snow, and evapotranspiration by
comparing simulated time series of these variables with ob-
servations or reference products. In this paper, we used the
terms “formulation” to refer to a specific definition of the
KGE (Table 1), “case” to refer to the application of KGE
weights or flow transformations, and “configuration” to re-
fer to the combination of a specific KGE formulation and a
specific case using certain weights and a specific streamflow
transformation. The cases without weights and/or the linear
combination between streamflow without (i.e., Q) and with
low-flow transformations (i.e., 1/Q) were used as a refer-
ence for the comparison of the results. To assess the statis-
tical significance of the differences between, e.g., the ability
to capture streamflow extreme events across models, as well
as other configurations tested in this study, we applied the
Wilcoxon test (Wilcoxon, 1945) at a 5 % significance level
and provided p-values where possible. The Wilcoxon test is
a nonparametric test used to determine whether two groups
differ statistically, without making any specific assumptions
about their distributions (e.g., normality). The following sec-
tions provide a detailed description of the different method-
ological steps.

3.1 Streamflow extremes characterization

We detected droughts, floods, and drought-to-flood transi-
tions using the methods proposed by Götte and Brunner
(2024). Their approach identifies periods of negative stream-
flow anomalies (i.e., droughts) using a daily varying thresh-
old based on a 30 d rolling quantile of the daily streamflow
data and high streamflow events (i.e., floods) using a fixed
threshold based on a quantile of the annual maximum stream-
flow values. We further required that all drought events have
a minimum duration of 30 d, and we merge droughts sep-
arated by fewer than 15 d (Van Loon and Van Lanen, 2012;
Fleig et al., 2006; Tallaksen et al., 1997) to limit the detection
of minor events. The thresholds for droughts (30th percentile
of the smoothed daily flow) and floods (40th percentile of
the annual maxima series) were set to ensure roughly one
streamflow extreme event of each type (i.e., drought and
flood) per year on average for each catchment (see Fig. S7
in the Supplement). This target was set in order to identify a
statistically representative number of extreme events, compa-
rable to the sample size that would be obtained by the com-
monly used annual maximum approach (e.g., Meylan et al.,
2012). Using the flood and drought events identified, we, in a
second step, identified transition events. Rapid (within 14 d)
and seasonal (within 90 d) transitions are defined based on
the number of days between the end of the drought and
the onset of the flood, following Götte and Brunner (2024).
Considering this definition and the thresholds adopted, we
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Figure 2. Overview of the methodological approach. See text for details.

identified one transition event every 4 years on average for
each catchment. Figure 3 illustrates the detection of droughts,
floods, and their transitions for two catchments within the
study domain.

3.2 Modeling approach

3.2.1 Hydrological models

We use four conceptual bucket-style rainfall-runoff hydro-
logical models: GR4J (Perrin et al., 2003), GR5J (Le Moine,
2008; Pushpalatha et al., 2011), GR6J (Pushpalatha et al.,
2011), all coupled to the snow accumulation-ablation mod-
ule CemaNeige (Valéry et al., 2014a, b), and TUWmodel
(Parajka et al., 2007), which is based on the HBV model
(Bergström and Forsman, 1973). All models have been
widely used within the hydrological community during the
last decades (Seibert and Bergström, 2022). GR4J, GR5J,
and GR6J (with 6, 7, and 8 parameters coupled with Ce-
maNeige, respectively; see Table S1 in the Supplement) were
chosen to explore how slight changes in model structure af-
fect simulated streamflow extremes, and the TUW model
(with 15 parameters; see Table S2) was selected to explore
how more complex models, in terms of the snow routine and
the representation of the processes occurring in the produc-
tion storage, simulate these phenomena.

Bucket-type conceptual models often include parameters
and functions that allow for non-conservative adjustments to
the water balance (i.e., artificially adding or leaking water).

While they can help correct potential mismatches, e.g., be-
tween topographical and underground catchments, they can
also compensate for biases in the forcing. To explicitly cor-
rect for biases in the meteorological forcings (as illustrated
in Fig. 1c), two parameters were included in the calibration
process in addition to the original setup for each hydrological
model. Specifically, a multiplicative parameter for precipi-
tation (dP) and an additive parameter for temperature (dT)
were included to adjust systematic biases in precipitation and
temperature.

The GR4J, GR5J, and GR6J models – hereafter referred
to collectively as GRXJ for simplicity – share the same
genealogy, meaning that they are based on the same core
structure. These models can be coupled to the snow mod-
ule CemaNeige, which partitions precipitation into liquid
and solid precipitation and simulates snow accumulation and
melt (rainfall and snowmelt enter the GRXJ structures). The
basic structure of the GRXJ family corresponds to the GR4J
model, which includes a parameter for production storage ca-
pacity, representing surface processes, and a parameter for
routing storage capacity, representing subsurface processes.
Additionally, GR4J includes an intercatchment exchange pa-
rameter and a unit hydrograph parameter that represents the
delay between precipitation and streamflow. GR5J adds an
additional parameter to the GR4J structure to improve the
intercatchment exchange function, while GR6J includes a
parameter for exponential storage in parallel to the routing
storage included in GR4J and GR5J to improve the repre-
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Figure 3. Example of the characterization of streamflow extremes and their transitions for two catchments within the study domain. (a) Biobio
River at Rucalhue in Chile, and (b) Dischma River in Switzerland.

sentation of groundwater processes (i.e., slow runoff). It is
important to note that the original structure of GR4J can-
not be recovered by setting the parameter X5 equal to zero
in GR5J, nor can GR5J be obtained by setting parameter
X6= 0.01 (the minimum value that can be adopted) in GR6J.
This is because, e.g., in GR5J the routing function differs
from GR4J, whereas in GR6J the effect of the exponential
storage (defined by X6) cannot be canceled. Thus, despite
having the same core structure, the models are intrinsically
different from each other.

The TUW model consists of a snow, soil, groundwater
(subsurface flow), and a routing routine, similar to the HBV
model (Bergström and Forsman, 1973). One of the major dif-
ferences between the HBV and TUW models lies in their
snow routines. The TUW model does not allow for meltwa-
ter or rainfall to be retained within the snowpack, nor does
it account for the refreezing of liquid water. The snow rou-
tine partitions between liquid and solid precipitation and es-
timates snow accumulation and melt. Rainfall and snowmelt
enter the soil routine, where actual evaporation, soil mois-
ture, and recharge are estimated. Then, the recharge flow
goes to the groundwater routine, represented by two storages

that produce surface runoff and quick flow (upper), and base-
flow (lower). The sum of these flows is delayed in the routing
routine using a triangular transfer function. Unlike the GRXJ
models, which follow a water balance approach to character-
ize the production storage, TUW estimates evapotranspira-
tion and recharge based on an explicit conceptualization of
soil moisture content.

While both CemaNeige and the snow routine implemented
in the TUW model follow a degree-day factor approach, there
are differences in (i) the characterization of the precipita-
tion phase (TUW allows the existence of a mixed partition
between rain and snow), (ii) the conditions for snowmelt
(free parameter in the TUW model and set to 0 °C for Ce-
maNeige), and (iii) the presence (or absence) of a parame-
ter to correct for snowfall undercatch (not available in Ce-
maNeige). These differences also explain the number of pa-
rameters that each of the snow routines has (two and five for
CemaNeige and the snow routine in the TUW model, respec-
tively).

Despite their structural differences and conceptualizations
(for further details refer to Astagneau et al., 2021b), these
models provide simplified representations of some hydrolog-
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ical states, fluxes, and processes at the catchment scale using
precipitation (P ), mean temperature (T ), and potential evap-
otranspiration (PET) at daily time steps as inputs. To estimate
PET, we used the approach proposed by Oudin et al. (2005),
which is based on temperature and requires latitude and the
day of the year as a proxy for extraterrestrial radiation. Addi-
tionally, as the snow module CemaNeige can be configured
in a semi-distributed way, we discretized each catchment into
equal-area elevation bands based on the hypsometric curve
by considering 10 elevation bands for all evaluated model
structures. To make simulations comparable across model
structures, precipitation and temperature inputs for the TUW
model were extrapolated through 10 elevation bands follow-
ing the approach implemented in the GRXJ models, based on
the orographic gradients defined by Valéry et al. (2010).

3.2.2 Calibration strategy

The parameters of each model structure, as well as the forc-
ing adjustment parameters introduced, were calibrated us-
ing daily streamflow records and the Dynamically Dimen-
sioned Search (DDS; Tolson and Shoemaker, 2007) over the
period 2000–2020. This calibration period was defined to
capture the current hydroclimatic conditions in the model-
ing setup. Note that, because the temperature-adjustment pa-
rameter was incorporated, potential evapotranspiration was
recalculated at each evaluation run within the calibration al-
gorithm to maintain consistency between the two variables.
Additionally, following the traditional calibration approach
proposed for GRXJ models (e.g., Pelletier and Andréassian,
2022), a parameter-space transformation is applied to im-
prove the search process during calibration (details in Ta-
ble S3).

Different objective functions based on the KGE configu-
ration were used to calibrate each model. In its most general
form, the KGE (Eq. 1) compares simulations to a reference
based on three components, i.e., dynamics (e.g., correlation),
variability (e.g., standard deviation), and bias (e.g., mean).
KGE values range from negative infinity to one, which rep-
resents the optimum. How each component is defined de-
pends on which KGE formulation is used. To the best of our
knowledge, there exist five such formulations in the litera-
ture (Gupta et al., 2009; Kling et al., 2012; Pool et al., 2018;
Tang et al., 2021; Pizarro and Jorquera, 2024, more details
in Table 1). Additionally, different scaling factors or weights
(i.e., c1, c2, and c3 in Eq. 1) can be used to put more em-
phasis on some of the components of the KGE as well as
different streamflow transformations to give more weight to
specific parts of the flow distribution (e.g., Thirel et al., 2024;
Mizukami et al., 2019). To emphasize low flows, for exam-
ple, flows can be transformed to the inverse of streamflow
(i.e., 1/Q; e.g., Garcia et al., 2017; Wu et al., 2025). Further,
linear combinations of the KGE applied to flows with and
without transformation (i.e., Q and 1/Q, respectively) have
been presented as useful objective functions to find a good

compromise between high- and low-flows (e.g., Araya et al.,
2023; Knoben et al., 2020; Muñoz-Castro et al., 2023).

KGE= 1−

√√√√√ (c1 · (dynamics− 1))2

+(c2 · (variability− 1))2

+(c3 · (bias− 1))2
(1)

For each hydrological model and catchment, 60 different
objective functions were implemented based on the possi-
ble combinations of the following methodological choices:
(i) 5 KGE formulations (Table 1), (ii) 3 streamflow trans-
formation cases (High, Low, High-Low), and (iii) 4 weights
applied to the variability term of the KGE (i.e., in Eq. 1,
c2 = 1,2,4,8). For the low-flow transformation (Low; i.e.,
using 1/Q), a constant equal to 1 % of the mean streamflow
was added to the series to avoid zero-flow problems (see e.g.,
Pushpalatha et al., 2012; Garcia et al., 2017; Knoben et al.,
2020). To facilitate the notation associated with the stream-
flow transformations tested here, we refer to the case as “Hi”
(High) when a certain formulation of KGE was applied to
untransformed streamflow (i.e., Q), while “Lo” (Low) refers
to the case where a low-flow transformation was applied (i.e.,
1/Q). We refer to the linear combination of both cases (i.e.,
0.5×Hi+ 0.5×Lo) as “HiLo”.

3.3 Model accuracy assessment

We assessed model accuracy both in terms of general model
performance and the ability of the model to capture extreme
events and the transitions between them. We followed a tra-
ditional split-sample test approach (Klemeš, 1986; Beven,
2025) to assess the general model accuracy over two time
periods defined as (i) calibration (2000–2020) and (ii) eval-
uation (1985–1999). To test for general accuracy and hy-
drological consistency across the calibration experiments
tested here, we computed several goodness-of-fit metrics
(e.g., KGE) and hydrological signatures (e.g., seasonality,
low- and high-flows). First, we assessed model performance
across the 60 configurations by comparing the values ob-
tained for each objective function during calibration. Sec-
ond, we assess the predictive skill of our calibrated models
by comparing their performance during calibration with that
of a simple daily mean flow benchmark. This benchmark is
defined as the mean flow for each day, calculated from all
instances over the calibration period (referred as BM05 in
Knoben, 2024). Third, we assessed model performance by
looking at biases in a set of hydrological signatures, includ-
ing seasonality, statistical properties (mean, variance), flow
duration curve-derived signatures (e.g., mid-segment slope),
and annual extremes (see Table S5). We conducted this anal-
ysis in two steps: (i) we analyzed the models’ ability to re-
produce the seasonal timing (seasonality) of streamflow (Q),
snow water equivalent (SWE), and actual evapotranspiration
(ET); and (ii) we computed biases in streamflow-derived sig-
natures. The results of this general model performance as-
sessment are presented in Supplement Sect. S1.
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To assess the model’s capability to detect streamflow ex-
tremes and their transitions, we used the Critical Success In-
dex (CSI; Eq. 2), which is formulated based on the number of
hits (H; events identified both in the reference/observations
and the simulations), misses (M; events only identified in
the reference/observations), and false alarm events (F; events
identified only in the simulations). The CSI values vary be-
tween zero and one, with one representing the optimum. We
defined hits as simulated events overlapping at least 50 % of
the time window with their observed counterparts. Addition-
ally, a tolerance window of 30 and 5 d was defined before
the onset and after the end of an observed drought and flood
event, respectively. In short, we aimed to evaluate the mod-
els’ ability to capture streamflow extremes and their transi-
tions rather than their characteristics (e.g., cumulative deficit
during the drought period, flow peak, etc.).

CSI=H/(H +M +F) (2)

3.4 Assessment of the relative importance of modeling
decisions

To assess the relative importance of modeling decisions on
the detection of streamflow extremes and their transitions, we
conducted an analysis of variance (ANOVA; Fisher, 1992;
Kaufmann and Schering, 2014). The ANOVA enabled us to
examine the relationship between different modeling deci-
sions (e.g., choice of structure and different decisions related
to calibration) and quantify their relative importance in ex-
plaining the total variance in the target variable (e.g., CSI).
Thus, by dividing the total variance into different groups,
genuine sources of variation that are not explained by chance
can be identified. We assumed that the total variance (TV)
in the target variable can be mainly explained by the dif-
ferences between hydrological models (HM), KGE formula-
tions (KGEf), streamflow transformations (QTR), and KGE
component weights (W ). If, for example, weights do not have
a significant impact on the detection of streamflow extremes,
we would expect a low value for the term “W”, that is a lower
relative importance (i.e.,W/TV) for explaining the total vari-
ance with respect to other decisions. Based on this conceptu-
alization and considering a residual term (RS) that groups all
the interactions between decisions and the variance that we
cannot explain from them, the ANOVA can be expressed as
follows:

TV= HM+KGEf+QTR+W +RS (3)

We also analyze the relative importance of the differences
between catchments by including them in the ANOVA test.
However, we ultimately removed this component from the
explanatory variables because its influence sometimes dom-
inated the results, thereby hiding the contribution of the in-
trinsic modeling decisions being tested to the variability ob-
served in the CSI values.

3.5 Identification of important processes in simulating
drought-to-flood transitions

To identify the most important processes in simulating
drought-to-flood transitions, we assessed which model pa-
rameters explain the detection of events. To do so, we ana-
lyzed the relative importance of each model parameter in es-
timating the CSI through an ANOVA test applied per catch-
ment. This analysis, expressed by Eq. (4), considers the 60
alternative configurations (i.e., parameter sets) available per
model and catchment and uses the total variance explained
(TV) by each parameter (θi ; where i = 1, . . .,Np, and Np is
the number of parameters) as a proxy for the importance
of the associated variable/process in explaining event detec-
tion. The approach used to analyze the relative importance of
the parameters explaining the variance of the CSI may have
problems if the parameters do not show enough variation be-
tween the different configurations. However, despite the sim-
ilarities in the configurations used for calibration, almost all
the parameters show high variability among the calibrated
parameter sets per catchment (see Fig. S15).

TV=
Np∑
i=1

θi +RS (4)

4 Results

4.1 General model performance assessment

Before looking at model performance in terms of captur-
ing extreme events, we assessed the overall performance
of the four models used. For this, we independently evalu-
ated the calibration results for each configuration. Our re-
sults shown comparable performance across the hydrologi-
cal models evaluated here (Fig. S1). For instance, all config-
urations outperform the defined daily mean flow benchmark
(see Fig. S2), indicating that our models have greater pre-
dictive power with respect to the long-term observed stream-
flow series. Our more detailed analyses show that the sea-
sonality of variables such as streamflow, SWE, and ET are
simulated accurately, with median performance values across
catchments and configurations between 0.79–0.98 (with 1.0
being the optimum). However, our evaluation shows that us-
ing weights for the variability term of KGE greater than 2
can be detrimental to the overall performance of the model,
both in terms of representing the seasonality of the aforemen-
tioned variables (Fig. S3) and some hydrological signatures
such as the high- and low-segments of the slope in the flow
duration curve (FDC, Fig. S4). In general, the use of flow
transformations yields values that are consistent with what
the application seeks to capture (e.g., low-flows are better
simulated with “Lo” transformation and high-flows are bet-
ter simulated without transformation; see Fig. S5). There is
little difference between different models and KGE formu-
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lations when weights and the HiLo transformation are used
(Fig. S6). Considering those configurations with comparable
performance (i.e., removing those relying on weights greater
than 2), average accuracy across configurations ranges be-
tween 0.87–0.92, 0.88–0.93, and 0.75–0.85, for the high-,
mid-, and low-segment of the slope of the FDC, respectively.
Further details on overall model performance are presented
in Sect. S1.

The results presented subsequently are based on the simu-
lations with the HiLo (i.e., 0.5×KGE(Q)+0.5×KGE(1/Q))
configuration, except for specific cases for which all 30 con-
figurations (i.e., removing weights greater than two) per
catchment were used (e.g., ANOVA tests). Previous stud-
ies have already shown that the use of this configuration re-
sults in a good compromise between simulating low and high
flows (e.g., Garcia et al., 2017; Thirel et al., 2024; Lema
et al., 2025).

4.2 Suitability of KGE for calibrating models aimed at
simulating drought-to-flood transitions

Next, we assess how strongly the general model performance
described by the KGE is linked to the capability of the model
in detecting extreme events. To do so, we compared the ob-
jective function value retrieved for one of our calibration con-
figurations – the original KGE formulation configured with
unweighted HiLo (i.e., c2 = 1 and HiLo= 0.5×KGE(Q)+
0.5×KGE(1/Q)), which is later used as a reference – with
the performance in detecting droughts, floods and their tran-
sitions based on the CSI (Fig. 4). Our comparison clearly
shows that model performance varies across catchments and
model structures for both the KGE and CSI. While the overall
performance described by the KGE can potentially be used
as a proxy for a model’s performance in capturing droughts
for some catchments (e.g., points close to the optimal val-
ues for both KGE and CSI, i.e., 1, and CSI ranges from 0.18
to 0.74 for GR4J and from 0.18 to 0.78 for TUW), this link
between general model performance and event detection is
neither generalizable to floods and transitions, nor to all the
models tested here. Rather, a high KGE does not necessarily
imply a high CSI for these two types of events.

While KGE is not necessarily a good proxy for how well a
model captures extreme events (especially floods and tran-
sitions), some specific KGE formulations might be better
suited for this task than others. We evaluate this in a next
step by exploring to what extent different adjustments in the
“basic” configuration used for the analysis presented above
can (or cannot) improve the performance in detecting stream-
flow extreme events and, particularly, drought-to-flood tran-
sitions.

4.3 Impacts of KGE configurations on drought-to-flood
transition simulations

To assess the added value of the application of weights to the
variability term of the KGE as well as the use of different
KGE formulations for detecting independent extreme events
and their transitions, we use the GR4J model as an exam-
ple to quantify differences in CSI between the unweighted
original KGE (reference) and alternative cases (e.g., weights
and/or KGE formulations; Fig. 5). We find that, in the con-
text of a large-sample study, weighting the variability term of
the KGE does not consistently enhance model performance
in detecting streamflow extremes and their transitions (me-
dian difference is centered around 0 in both cases) and may
even be detrimental. Further, weighting the variability term
can substantially worsen flood detection (e.g., GRXJ models,
Fig. S10). Additionally, we find that using a modified KGE
formulation, rather than the original, does not substantially
improve model performance. In short, the use of weights and
the choice of the KGE formulation do not play a dominant
role in the overall performance of the model over the study
domain. These findings are consistent across the other model
structures tested (see Fig. S10).

4.4 Importance of model structure

Our results show that drought detection is typically more re-
liable than that of floods and transitions between the two
(Fig. 6). However, there are no significant differences in
the detection rate of droughts, floods and their transitions,
across the hydrological models. While the CSI median val-
ues slightly improve when switching from the GR4J model
to the other GRXJ and TUW versions for droughts (0.49
to 0.55), this is not the case for floods and transitions. For in-
stance, for floods, GR5J stands out among the GRXJ models
(CSI= 0.30, compared to 0.22 and 0.18 for GR4J and GR6J,
respectively), while for transitions, GR6J shows a better per-
formance compared to the simpler models (CSI= 0.30, com-
pared to 0.25 and 0.29 for GR4J and GR5J, respectively).
This suggests that adding more parameters does not neces-
sarily lead to improved model performance when detecting
extreme streamflow events.

These results hold independently of the country consid-
ered (see Fig. S11 for a comparison between Swiss and
Chilean catchments). However, the detection of extreme
events is more challenging in catchments located in Chile
compared to those located in Switzerland, with differences
in the median CSI between countries (i.e., CSICH−CSICL)
lying around 0.28, 0.12, and 0.16 for droughts, floods, and
drought-to-flood transitions, respectively.

Different model structures can result in similar streamflow
simulations even though they represent hydrological fluxes
and states in different ways. To illustrate this, we compare
simulated fluxes obtained for an observed seasonal drought-
to-flood transition in the Dischma river in Switzerland across
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Figure 4. Comparison between the Kling–Gupta Efficiency (KGE) for the calibration period and the Critical Success Index (CSI) for
droughts, floods, and transitions, based on the simulations with the models (a) GR4J, (b) GR5J, (c) GR6J, and (d) TUW calibrated with
the unweighted original KGE formulation as the objective function. The dispersion bars are associated with the 10th and 90th percentiles
across catchments, while the central shape indicates the 50th percentile. Transparent circles show results for each catchment. For both KGE
and CSI, the optimal value is 1.

the four hydrological models (Fig. 7). While three out of four
models capture the transition event successfully (GR6J fails
in capturing its timing) and show similar temporal patterns
of ET, snowmelt, and SWE, the contribution of baseflow
(presented as a percentage of total runoff) varies strongly
among them. Consequently, the analysis of the drivers as-
sociated with such transition events will vary depending on
which model structure is analyzed. Although there is a high
agreement between the models in terms of the detection of
the event in this sample case (i.e., 3 out of 4), such agree-
ment is not necessarily apparent for all events and catchments
(Fig. 4).

4.5 Relative importance of different modeling decisions

Our previous results showed no significant differences when
pooling results by model (Fig. 6). However, when it comes
to the relative importance in explaining the total variance
of the detection skill, the results of the ANOVA show that
the most important modeling decision in simulating extreme

events and their transitions is the choice of a suitable model
structure, followed by the choice of the streamflow transfor-
mation (Fig. 8). In contrast, the choices of KGE formulation
and weights do not have a strong impact on the performance
in simulating streamflow extremes. For floods, the transfor-
mation is more important because of the loss of performance
in representing high flows when the model is calibrated with
a low-flow transformation (Fig. S5). This highlights the im-
portance of selecting the appropriate transformation accord-
ing to the modeling objectives. Additionally, when catchment
characteristics are included as an explanatory variable, they
strongly influence drought detection, while they have little
effect on flood detection (see Fig. S13). The relative impor-
tance of the methodological choices is similar when analyz-
ing other categorical indices, such as the probability of de-
tection, false alarm ratio, and frequency bias (see Fig. S12).
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Figure 5. Difference in the CSI for GR4J simulations obtained us-
ing model calibrations with no weights and the original KGE (refer-
ence) versus different weights and KGE formulations (alternative)
for (a) droughts, (b) floods, and (c) transitions. Values above (be-
low) 0 indicate better (worse) performance of the reference com-
pared to the alternative. Each boxplot displays the information of
63 values (i.e., one per catchment).

4.6 Model accuracy depends on catchment
characteristics

We further explore the relationship between model accuracy
and catchment characteristics using Spearman’s rank corre-
lation coefficient. To this end, we focus on the CSI obtained
for the different types of extreme events of interest (droughts,
floods, and transitions) generated with the GR4J and TUW
models calibrated with the unweighted HiLo original KGE
formulation (Fig. 9; extended version including all models
in Fig. S14). Drought-to-flood transitions are more difficult
to capture in semi-arid (negative correlation between aridity
index and CSI), high-mountain (negative correlation between
mean elevation and CSI), and flashy (negative correlation be-
tween the slope of the flow duration curve and CSI) catch-
ments than in humid low-elevation catchments with high

Figure 6. Critical Success Index (CSI) for (a) droughts, (b) floods,
and (c) drought-to-flood transitions, based on the simulations with
GR4J, GR5J, GR6J, and TUW (different colors) calibrated with the
unweighted HiLo original KGE formulation as the objective func-
tion. Each boxplot displays the information of 63 values (i.e., one
per catchment).

streamflow elasticity to precipitation (Fig. 9). This result is
generalizable to the other models and the different KGE for-
mulations tested (see Fig. S14).

4.7 Linking model performance to hydrological
processes during streamflow extremes

We conduct an ANOVA test to analyze the relative impor-
tance of different model parameters in detecting streamflow
extremes and their transitions (Fig. 10; the extended version
with rapid and seasonal transitions is presented in Fig. S18).
We show that some model parameters are relatively more im-
portant than others (e.g.,X4 for floods in GRXJ models), but
that the relative importance of a given parameter can vary
substantially across catchments. All of the hydrological mod-
els show a high importance of the parameters aimed to adjust
the forcings (i.e., dP and dT for all the models as well as SCF
in TUW model, which seeks to correct for the snow under-
catch). For the GRXJ models, X3 (routing store capacity) and
X4 (unit hydrograph time constant) are most important in the
simulation of low and high flows compared to the rest of the
parameters, which is accentuated when more complexity is
added to the base structure (i.e., GR6J). In the TUW model,
which has more parameters than the GRXJ structures, the
relative importance of each parameter is more uniform, and
their relative importance is low, except for the parameter k0
(storage coefficient for very fast response), which becomes
more important for flood detection in comparison to, e.g.,
drought detection.
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Figure 7. Example of how different hydrological fluxes and states – such as runoff (Q), baseflow, actual evapotranspiration (ET), snowmelt,
and snow water equivalent (SWE) – are simulated for an observed drought-to-flood transition in the Dischma river (Switzerland) with the
GR4J, GR5J, GR6J, and TUW hydrological models calibrated with the unweighted HiLo original KGE formulation.

5 Discussion

5.1 Simulation of compounding streamflow extreme
events

We find that the hydrological models tested are better at de-
tecting droughts (median CSI across catchments and KGE
formulations: 0.50–0.58) than floods (median CSI across

catchments and KGE formulations: 0.13–0.34), and their per-
formance in detecting drought-to-flood transitions is closely
related to (and likely limited by) their performance in de-
tecting floods (0.25–0.33; Fig. 4). This difference in drought
and flood simulation performance can be attributed to the dif-
ferent timescales associated with these two types of extreme
events: while droughts vary in duration from months to years
(or decades), floods develop, and may also subside, in a mat-

https://doi.org/10.5194/hess-30-825-2026 Hydrol. Earth Syst. Sci., 30, 825–848, 2026



838 E. Muñoz-Castro et al.: Simulating compound streamflow extremes

Figure 8. Results of the analysis of variance (ANOVA) applied to the Critical Success Index (CSI) for droughts, floods, all drought-to-flood
transitions (i.e., rapid and seasonal), rapid transitions (< 14 d), and seasonal transitions (< 90 d).

Figure 9. Spearman’s rank correlation coefficient between different
catchment attributes and the CSI for (a) droughts, (b) floods, and
(c) drought-to-flood transitions, based on the simulations with GR4J
and TUW calibrated using the unweighted HiLo original KGE for-
mulation as the objective function. The circles with thick outlines
indicate correlation coefficients with p-values lower than 0.05.

ter of hours or days. This is consistent with the poor perfor-
mance of all the models tested in capturing rapid transitions
(i.e., occurring within 14 d). Moreover, we obtained CSI val-
ues greater than zero for rapid transitions only in 13 basins
(not shown). Overall, our analyses highlight that these fast
processes are rather difficult to capture in conceptual rainfall-
runoff models like GRXJ and TUW.

5.2 Good general model performance does not imply
that extremes are well detected

Our results highlight that a good general model performance
in terms of KGE does not necessarily imply a good perfor-

mance in detecting streamflow extremes. Even models with
high accuracy, measured by traditional metrics such as KGE,
struggle to capture extreme events, particularly floods and
transitions from drought to flood (Fig. 4). These findings
are aligned with previous studies discussing the potential of
KGE to represent high-flow values or capture flashy stream-
flow dynamics (e.g., Astagneau et al., 2022; Brunner et al.,
2021; Mathevet et al., 2020). For instance, from a model-
ing perspective, Astagneau et al. (2021a) demonstrated that
the relationship between KGE values and a model’s capabil-
ity in simulating summer floods is weak. Similarly, Bruno
et al. (2024) showed that, during extreme low-flow condi-
tions, model performance is usually lower than during nor-
mal flow conditions. Spieler and Schütze (2024) showed that
the KGE lacks the capacity to provide information about de-
tailed processes, leading to gaps between model accuracy
(i.e., how well a model matches simulations with observa-
tions) and adequacy (i.e., how well a model captures key pro-
cesses and behaviors of the observed system). These findings
suggest that the traditional evaluation of hydrological models
through goodness-of-fit metrics such as KGE or NSE must be
accompanied by an explicit examination of their capability to
simulate and detect streamflow extreme events, e.g., by using
metrics such as the CSI.

From a process perspective, hydrological model underper-
formance can be linked to oversimplified or poorly repre-
sented (or understood) processes (Beven, 2019; Clark et al.,
2017; Hrachowitz et al., 2014; McMillan et al., 2018). For
instance, in the context of drought-to-flood transitions, pro-
longed dry conditions can alter soil properties, such as crack-
ing (Gimbel et al., 2016; dos Santos et al., 2016), wa-
ter repellency (Doerr et al., 2007; Leighton-Boyce et al.,
2007), and macropore connectivity (Or et al., 2013), chang-
ing the infiltration-runoff partitioning and potentially inten-
sifying catchment responses to precipitation. Despite their
importance for flood generation, these soil and near-surface
processes remain poorly understood and, consequently, are
rarely represented in conceptual or even physically-based hy-
drological models (Brunner, 2023; Barendrecht et al., 2024;
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Figure 10. Relative importance of parameters for explaining the Critical Success Index (CSI) for models (a) GR4J, (b) GR5J, (c) GR6J, and
(d) TUW based on the results of an analysis of variance (ANOVA).

Blöschl et al., 2019). This limits their ability to reproduce
streamflow extremes, such as droughts and floods, and rapid
shifts between them. Therefore, it is important to improve our
understanding of the processes behind transitions and how
they are represented in hydrological models.

5.3 The importance of different modeling decisions for
simulating streamflow extremes and their
transitions

Our results show that model structure is the most impor-
tant modeling decision for capturing extreme events and their
transitions (Fig. 8), which is consistent with previous studies
focused on the independent analysis of extreme events (e.g.,
Alexander et al., 2023; Melsen and Guse, 2019; van Kem-
pen et al., 2021). Among the structures tested, slight but non-
significant differences were found in terms of their perfor-
mance in representing streamflow extreme events (Fig. 6).
However, there is an evident decrease in performance in
detecting floods compared to droughts, which generalizes
across the four models tested. These deficiencies in flood

simulation performance translate to deficiencies in captur-
ing drought-to-flood transitions (Figs. 4 and 6). These find-
ings suggest that the lack of an explicit structural compo-
nent allowing for the simulation of floods that occur under
dry and low soil moisture conditions could explain the poor
performance associated with this type of compound event.
Indeed, Astagneau et al. (2022) highlighted that condition-
ing the storages and fluxes of a lumped conceptual hourly-
timestep model on rainfall intensities could benefit model
performance in catchments with a fast response to precip-
itation (i.e., flashy-catchments). For droughts, van Kempen
et al. (2021) have shown that the magnitudes of the low-flow
events are significantly affected by alterations in the archi-
tecture of the upper and lower storages, which is consistent
with the changes in performance among the GRXJ models
(Fig. 6), where small structural modifications lead to changes
in the detection of these events.

We demonstrated that the capability of a model to iden-
tify streamflow extreme events and their transitions in simu-
lations varies depending on its structure. In contrast, model
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accuracy in detecting extreme events does not necessarily de-
pend on the number of model parameters (Fig. 6). Several
studies have highlighted that including a more detailed rep-
resentation of hydrological processes in models does not nec-
essarily imply better accuracy (e.g., Orth et al., 2015; Valéry
et al., 2014a). This is because more realistic representations
require more detailed information to characterize the system
of interest (e.g., land cover maps, distributed forcings, a high-
resolution digital terrain model, soil properties), which are
not always available. Recently, Santos et al. (2025) found that
models with varying complexity can lead to similar robust-
ness issues, stressing the need to improve strategies for diag-
nosing the suitability of model structures to improve the un-
derstanding of specific hydrological processes (e.g., Spieler
and Schütze, 2024; Knoben et al., 2020).

The results presented here show that the choice of ob-
jective function is relatively less important compared to the
choice of model structure (Fig. 8). However, choosing an ap-
propriate transformation can be an important decision for im-
proving a model’s ability to capture flood events. Model per-
formance can be optimized both in terms of general perfor-
mance and the representation of extreme events (CSI) under
(a) the application of equal weights to all components of the
KGE (Fig. 5) and (b) the application of a streamflow trans-
formation that focuses on both high and low flows (Figs. S1–
S6). Our comparison also highlights that the potential ben-
efit from adjusting these choices (e.g., using other weights
or other transformations) varies widely between catchments
(Fig. 5). This is in line with the findings of Mizukami
et al. (2019), who found that the influence of weights on
model performance depends on model structure and catch-
ment characteristics. While none of the tested modifications
in the objective function consistently improve the simulation
of streamflow extremes across all catchments in the study
domain, some of the alternative KGE formulations could im-
prove the simulation of certain variables in certain catch-
ments.

The high relative importance of the forcing adjustment pa-
rameters for event detection (i.e., dP and dT for all the mod-
els as well as SCF in TUW model, which seeks to correct the
snow undercatch; Fig. 10) suggests that the meteorological
forcings can have a major impact on the detection of stream-
flow extremes and their transitions. Several studies have
shown that errors in meteorological forcing are a key chal-
lenge in hydrological modeling (e.g., Brunner, 2023; Döll
et al., 2016) due to, e.g., their large influence on the simula-
tion of snow processes (e.g., Tang et al., 2023; Günther et al.,
2019), or significant impacts on the partitioning between
evaporation and runoff (e.g., Nasonova et al., 2011). Here, we
attempt to reduce this effect by (1) preferring local meteoro-
logical products over global ones (e.g., Clerc-Schwarzenbach
et al., 2024), and (2) incorporating adjustment factors to ac-
count for potential systematic biases associated with them
(e.g., Hughes, 2024; Probst and Mauser, 2022). However, in-
troducing forcing adjustment factors could artificially com-

pensate for some model deficiencies by modifying the inputs
(e.g., Tang et al., 2023, 2025). This is evidenced by the high
dispersion of forcing adjustment factors within each config-
uration (Fig. S16) where, e.g., catchments with higher pre-
cipitation falling as snow tend to have higher values in pre-
cipitation adjustment. We acknowledge that the incorpora-
tion of forcing adjustment parameters could have an impact
on the partitioning of precipitation between ET and runoff.
However, this problem also occurs when working with dif-
ferent parameter sets, which may come from different cali-
bration functions. We have evaluated the impact of incorpo-
rating these additional parameters on the identifiability of the
original model parameters, showing that there are no mean-
ingful impacts (see Fig. S19). In light of these findings, we
surmise that improvement in the spatiotemporal representa-
tion of precipitation and temperature, as well as of the poten-
tial interactions between these variables, might represent a
critical step towards improved representations of compound
streamflow extreme events in hydrological models.

5.4 Limitations and recommendations for future work

Our model calibration experiments focused on the simula-
tion of extreme streamflow events, which required the choice
of specific event definitions. Here, we defined hydrological
droughts and floods using threshold-based approaches, and
the thresholds were adjusted in a way to identify, on aver-
age, one event per year and catchment. Because this method-
ological choice does, to a certain degree, affect the outcomes
of the comparison, we tested different thresholds for defin-
ing streamflow extreme events. The results of this sensitivity
analysis indicate that using more flexible thresholds to define
droughts (i.e., higher percentiles) can enhance the detection
of these events, as more instances are identified, and they
tend to be less severe compared to more restrictive thresh-
olds (see Fig. S8). The improvement in drought detection
when the threshold is relaxed can be explained by the fact
that models generally struggle during more extreme hydro-
logical drought periods (e.g., Bruno et al., 2024), which are
relatively less frequent if the threshold is raised. However,
we did not find such an effect for floods and transitions, for
which we obtained similar model performances regardless of
the thresholds used (see Fig. S8). Similar results are obtained
when the overlap window used to identify the hits is modified
(Fig. S9). While our study shows that the choice of threshold
does not substantially affect model accuracy in terms of tran-
sition events, the method used to define streamflow extreme
events can have a major impact on the characteristics of the
transition events identified.

To support our analysis, we tested four bucket-type hydro-
logical models used within the hydrological modeling com-
munity (Addor and Melsen, 2019). Even though these mod-
els are at the lower end in terms of model complexity (Hra-
chowitz and Clark, 2017), and three of them share the same
core structure, they allowed us to perform a comprehensive
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analysis of different model structures at a lower computa-
tional cost than when using models with more complex struc-
tures (e.g., Clark et al., 2017; Orth et al., 2015; Poncelet et al.,
2017). Furthermore, previous studies have also shown that
more complexity does not necessarily imply better perfor-
mance (Fig. 6; e.g., Li et al., 2015; Merz et al., 2022).

These models have been calibrated based on daily stream-
flow records, using different objective functions derived from
KGE formulations, and considering the set of parameters
with the best performance as the optimum. However, it is
important to acknowledge that potential compensations for
biases in meteorological forcings or model deficiencies can
make the “optimal” parameter sets less identifiable (e.g.,
Clark and Vrugt, 2006; Vrugt et al., 2005; Beven, 2025).
Here, we explore the (dis)agreement between the optimal pa-
rameters for each configuration (Fig. S17), showing overall
agreement indices of around 0.5 (i.e., the parameters have a
range of variation of approximately 50 % of the parameter
space). Based on the evaluation of the models’ performance,
we were able to verify that, despite the dispersion of optimal
parameters, the simulations are consistent with the products
used to evaluate the models (Figs. S3 and S6). To (i) com-
plement model assessment, (ii) better define the parameter
exploration range, and (iii) lead to parameter sets that ensure
reliability and fidelity in representing hydrological processes,
hydrological variables other than streamflow, such as SWE or
ET, can provide useful information to improve hydrological
modeling.

Our results provide insights on possible avenues of fu-
ture research that could benefit drought-to-flood transitions
modeling, which include: (1) exploring the use of modular
platforms and a multi-model ensemble approach to quantify
model uncertainty and identify more suitable model struc-
tures (e.g., Saavedra et al., 2022); (2) improving our under-
standing of the role of the spatial variability of precipitation
for accurate flood simulations (e.g., Macdonald et al., 2025;
Astagneau et al., 2022); (3) assessing the benefits of model
runs at a subdaily timestep (e.g., hourly); and (4) explor-
ing alternative data-driven modeling approaches such as long
short-term memory (LSTM) networks (e.g., Frame et al.,
2022; Acuña Espinoza et al., 2025; Kratzert et al., 2018).

6 Conclusions

We performed a modeling intercomparison study to (i) ex-
plore to what extent hydrological models can simulate
drought-to-flood transitions and (ii) identify suitable mod-
eling choices aimed at capturing these compound extreme
events. For this intercomparison, we calibrated four concep-
tual bucket-type hydrological models (GR4J, GR5J, GR6J,
and TUW) for 63 catchments in Chile and Switzerland us-
ing 60 different configurations of the Kling–Gupta Efficiency
(KGE) as objective functions, based on five KGE formula-
tions, four scaling factors, and three streamflow transforma-

tions. Based on the results of this intercomparison, we draw
the following conclusions:

1. A satisfactory general model performance, as expressed
by the KGE, does not guarantee a good performance in
terms of detecting streamflow extremes and their transi-
tions. While KGE can serve as a rough proxy for low-
flow performance, it cannot for high-flows and drought-
to-flood transitions. Consequently, assessments of the
suitability of hydrological models for simulating ex-
treme events and their transitions should use metrics ca-
pable of directly quantifying performance in terms of
capturing extreme events, such as the critical success
index (CSI).

2. The most important modeling decision when it comes
to simulating floods, droughts, and their transitions is
the choice of a suitable model structure. However, in
a large-sample context, we demonstrate that the four
models tested here (i.e., GR4J, GR5J, GR6J, and TUW)
have similar performance, showing that adding more pa-
rameters does not necessarily improve the representa-
tion of extreme events.

3. In contrast, despite it still playing a large role in floods,
the choice of the objective function and its exact config-
uration are, overall, less important. The choice of a suit-
able streamflow transformation can improve the simu-
lation of extreme events to a certain degree. Specifi-
cally, a joint focus on high and low flows by equally
weighting the two streamflow transformations in the ob-
jective function (referred to as HiLo in our analysis)
can improve model performance without compromis-
ing its ability to capture streamflow extremes. However,
the choice of the exact KGE formulation and the use of
weights for the variability term of the KGE do not sub-
stantially affect the simulation of extreme events and the
direction of this effect depends on the catchment.

4. Drought-to-flood transitions are more difficult to cap-
ture in semi-arid, high-mountain catchments than in hu-
mid low-elevation catchments.

5. Overall, simulation of both high and low streamflow ex-
tremes (i.e., those associated with floods and droughts),
as well as transitions between them, remains challeng-
ing. This appears to be especially true for floods and
drought-to-flood transitions. This may complicate inter-
pretation of hydrologic response to increasingly volatile
hydroclimate forcings in a warming world, and suggests
that new modeling methods may be required to better
understand extremes and their transitions amid climate
change.

This methodological intercomparison highlights that sim-
ulating streamflow extremes and their transitions is not a triv-
ial modeling task and continued research is needed to im-
prove model accuracy for compound events. The results of
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this intercomparison study suggest that time is best invested
when focusing on improving model structures rather than
calibration procedures. Specifically, hydrological model de-
velopment should focus on improving the representation of
processes and components associated with the temporal dy-
namics of discharge, such as routing or the soil response to
intense snowmelt and rainfall. Additionally, the strong link
between model accuracy and parameters aimed at correct-
ing precipitation inputs suggests that the representation of
extreme events can be improved by investing in the quality
of meteorological forcing datasets. Investments in improving
the simulation of extreme events and their transitions are cru-
cial because hydrological models can not only support pro-
cess understanding related to compounding streamflow ex-
tremes, but can also be used to forecast such events at short
time scales and to project future changes in the occurrence of
drought-to-flood transitions. Such applications are critical to
ensure society’s preparedness for these types of hydromete-
orological extreme events.

Code and data availability. The R-scripts and data used to
produce the results shown in this paper – such as pa-
rameter sets used to generate the simulations and per-
formance metrics – are publicly available through Zenodo
(https://doi.org/10.5281/zenodo.14803500, Muñoz-Castro et al.,
2025). CAMELS-CL (Alvarez-Garreton et al., 2018a) is available
on PANGAEA (https://doi.org/10.1594/PANGAEA.894885,
Alvarez-Garreton et al., 2018b) and https://camels.cr2.cl/
(last access: 9 February 2026) while CAMELS-CH
(Höge et al., 2023a) can be downloaded from Zenodo
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