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Abstract. Accurate large-scale hydrological predictions are
essential for water resource planning. However, many land
surface models encounter difficulties in capturing stream-
flow timing and magnitudes, particularly in large catch-
ments and when calibrated across broad regions and mul-
tiple hydrological variables. In this study, two Long Short-
Term Memory (LSTM)-based approaches are assessed to en-
hance streamflow predictions across Australia: (i) LSTM-
C, a standalone rainfall-runoff LSTM that relies solely
on precipitation and potential evapotranspiration as inputs,
and (i) LSTM-QC, a rainfall-runoff LSTM that incorpo-
rates runoff outputs from the Australian Water Resources
Assessment-Landscape model (AWRA-L), which can also
be interpreted as a post-processor for AWRA-L. These
approaches are tested in 218 minimally impacted catch-
ments from the CAMELS-AUS dataset under three cross-
validation strategies — temporally out-of-sample, spatially
out-of-sample, and spatiotemporal out-of-sample — to evalu-
ate their robustness for historical reconstructions, predictions
in ungauged basins, and a proxy for climate-projection sce-
narios. The results indicate that both LSTM-QC and LSTM-
C consistently outperform AWRA-L runoff across nearly all
catchments and exceed the predictive skill of a widely used
conceptual model (GR4J) in most basins. Under a temporally
out-of-sample framework, LSTM-QC demonstrates a perfor-
mance advantage over LSTM-C by leveraging information
embedded in AWRA-L, particularly when fine-tuned to lo-
cal catchment observed data. This advantage is primarily at-

tributed to the LSTM’s ability to correct systematic biases
in AWRA-L and enhance channel-routing signals. However,
under spatial and spatiotemporal cross-validation LSTM-C
performs comparably well, suggesting that a purely data-
driven approach can generalize effectively to ungauged or
future conditions without reliance on AWRA-L.

1 Introduction

Traditionally, land surface models have been used to sim-
ulate key hydrological variables such as runoff, soil mois-
ture, and evaporation across very large regions — often at
continental scale. The widespread spatial coverage of these
model predictions often trades off against accuracy: many
land surface models face challenges in accurately capturing
observed streamflow dynamics, particularly in large catch-
ments, where they often perform worse than simple cali-
brated conceptual streamflow models. The Bureau of Me-
teorology’s (the Bureau’s) AWRA-L (Australian Water Re-
sources Assessment — Landscape; Shokri et al., 2018; Frost
and Shokri, 2021; Sharples et al., 2024), for instance, pro-
vides gridded hydrological outputs across the continent, but
can perform poorly in simulating streamflow in compari-
son with calibrated conceptual rainfall-runoff (CRR) mod-
els (Frost et al., 2021). AWRA-L underpins the Australian
Bureau of Meteorology’s Australian Water Outlook service
(https://awo.bom.gov.au, last access: 6 January 2026) that
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provides historical simulations (from 1911 until yesterday),
seasonal forecasts, and long-range projections under climate
change scenarios for a wide range of applications (e.g. an-
tecedent conditions and seasonal outlooks for flood/fire risk,
long term water availability assessment). Improving its pre-
dictions is thus likely to have significant benefits for Aus-
tralian water managers and citizens. It is worth noting that
while many land surface models were originally developed to
provide boundary conditions for Earth system models rather
than for direct streamflow prediction, AWRA-L was specif-
ically designed for water balance estimation and runoff pre-
diction across Australia, with an emphasis on hydrological
applications rather than atmospheric coupling, and calibrated
to streamflow observations.

There are two main causes for AWRA-L’s underperfor-
mance in relation to CRRs. First, AWRA-L is calibrated to
multiple streamflow gauges, remotely sensed soil moisture,
Evapotranspiration (ET) and Terrestrial Water Storage from
Gravity Recovery and Climate Experiment (GRACE), with
calibration carried out jointly for all gauges to a single ob-
jective for the entire continent (Frost et al., 2021). The focus
of this approach is on overall water balance, rather than one
single component of the water balance (e.g. streamflow) and
heterogeneity of the landscape means that individual site per-
formance is not targeted. This means that streamflow simu-
lation performance at any given gauge trades off against (1)
overall performance at gauges across Australia and (2) per-
formance at simulating variables other than streamflow. Sec-
ond, AWRA-L does not attempt to simulate channel routing
processes (e.g. routing delay, transmission losses); stream-
flow is simulated at a given point by accumulating gridded
runoff within a catchment area (it is noted that routing and
losses and interactions with dams for water accounting pur-
poses is simulated by a separate model, so AWRA-L was not
designed to incorporate these processes). This means that the
timing of streamflow peaks and recessions can disagree with
observations, particularly in larger catchments. In addition,
the sometimes-imperfect representation of hydrological pro-
cesses in AWRA-L (and any model) reduces confidence in
its streamflow predictions. AWRA-L also does not explic-
itly simulate lakes or large reservoirs. While the catchments
used in this study are not impacted by major reservoirs and
were nominally selected to avoid the impact of farm dams
(see Zhang et al., 2013), small farm dams are widespread
across many agricultural regions of Australia. These can sig-
nificantly alter runoff and storage patterns, particularly dur-
ing dry years, by reducing downstream flows. Although farm
dams are not directly represented in AWRA-L, their effects
are likely partially captured through calibration where ob-
servational data are available and farm dams were present.
Recent studies have highlighted the growing regional im-
pact of farm dams on water availability under climate change
(Malerba et al., 2021; Pefia-Arancibia et al., 2023).

AWRA-L’s lack of channel routing is common to sev-
eral gridded land surface models, and accordingly past stud-
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ies have highlighted the importance of improving stream-
flow routing, and/or adding processing methods to incorpo-
rate this process in these models. Wu et al. (2014) devel-
oped a coupled land surface and routing model that lever-
ages real-time satellite-based precipitation data for global
flood estimation. Their findings underscore the need to aug-
ment land surface models modeling approaches to improve
flood prediction accuracy. Similarly, Li et al. (2013) intro-
duced a physically based runoff-routing model, demonstrat-
ing its effectiveness in simulating hydrological processes
within land surface and Earth system models. Yassin et al.
(2019) presented methods for improved representation of
reservoir operations within hydrological models, advocat-
ing for improved parameterization methods. Yamazaki et al.
(2011) introduced the CaMa-Flood model, which enhances
floodplain representation by incorporating subgrid-scale to-
pographic parameters. Their work demonstrates the impor-
tance of considering floodplain inundation dynamics in river
routing models. These findings collectively indicate that en-
hanced routing techniques are important to improve simula-
tions of streamflow dynamics in land surface models across
a range of catchment sizes and characteristics.

Apart from physically based approaches for representing
routing, several methods have been developed applying ma-
chine learning to estimate streamflow. For instance, Nagesh
Kumar et al. (2004) used a feedforward Artificial Neural Net-
work to estimate monthly flow time series of a single river.
Recent advances in deep learning, particularly in Long Short-
Term Memory (LSTM) networks, offer promising alterna-
tives to traditional hydrological models. LSTMs are designed
to model sequential data, making them well-suited for hy-
drological systems. When trained on observed data LSTMs
have shown significant potential for streamflow prediction by
directly learning from data rather than relying on predefined
physical processes (Kratzert et al., 2018, 2019; Nearing et al.,
2021). LSTMs have demonstrated significant potential both
as standalone hydrological models and as post-processors to
land surface models, where they improve streamflow rout-
ing and prediction. LSTMs offer at least two key advantages
over conceptual rainfall-runoff or routing models. The first is
their ability to accept novel predictors, allowing the easy in-
corporation of static and dynamic predictors without a fixed
perspective on how they contribute to the representation of
the hydrological process, potentially providing additional in-
formation to improve predictions. The second is their ability
to ‘learn’ hydrological theory, when trained on a sufficiently
large cohort of catchments (Nearing et al., 2021; Kratzert
et al., 2024). A third advantage is that they are not con-
strained by physical laws such as mass balance, which allows
them to implicitly correct biases in the input data. In con-
trast, in land surface models, uncertainty in the inputs typi-
cally propagates directly to the outputs.

LSTM models have been shown to be effective as post-
processors of streamflow predictions from land surface mod-
els and other hydrological models. We will refer to these
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as hybrid approaches following Slater et al. (2023). Frame
et al. (2021) demonstrated that LSTMs, when used as a post-
processing technique on the U.S. National Water Model,
markedly improved predictions. Also in the US, Konapala
et al. (2020) showed that hybrid models that combine physi-
cally based model outputs with LSTMs can significantly en-
hance streamflow simulation capabilities across a range of
catchments. Yu et al. (2024) implemented a hybrid approach,
applied over the Great Lakes region of North America,
called the Spatially Recursive (SR) model, which integrates
a lumped LSTM network with a physics-based hydrological
routing simulation. They demonstrated enhanced streamflow
prediction capabilities. This approach outperformed stan-
dalone lumped LSTM models, especially for large basins
and ungauged basins, by considering spatial heterogeneity
at finer resolutions. Interestingly, LSTM models have also
been successfully applied in cascade configurations, where
multiple LSTM models are stacked in sequential layers, with
the outputs of one layer serving as inputs to the next. This
approach is particularly useful for medium-range streamflow
forecasts, as it allows the model to first predict intermediate
variables, such as precipitation, which are then used to re-
fine the final streamflow predictionClick or tap here to enter
text.Click or tap here to enter text.

While hybrid approaches improve streamflow predictions
from land surface models, the combination of land surface
model and LSTM may not outperform a standalone LSTM.
For example, Frame et al. (2021) found that using a stan-
dalone LSTM produced more accurate predictions in un-
gauged basins than a hybrid land surface model-LSTM. It
thus remains an open question as to which land surface
model-LSTM hybrids are worthwhile, and which would be
better replaced with LSTM-only models. The value of hy-
brid approaches may depend on the application context. For
example, hybrid models may be particularly valuable for cli-
mate change scenario analysis, where maintaining physical
consistency with land surface model outputs is important.
Conversely, standalone LSTM models may be more advanta-
geous for applications such as prediction in ungauged basins,
where maximizing data-driven performance is the priority. In
addition, in cases where LSTMs improve predictions from
land surface model, the source of the improvements may be
interpreted as the information content provided by the land
surface model. Land surface models often exhibit two main
deficiencies: routing errors and systematic biases in specific
catchments. Routing errors primarily affect the timing and
shape of the hydrograph, while systematic biases reflect con-
sistent over- or underestimation of flow magnitude, regard-
less of timing. By comparing hybrid models trained with
short input sequences (i.e. one time step) to those trained with
longer sequences, we can distinguish the type of informa-
tion AWRA-L contributes. Short sequence lengths limit the
LSTM’s ability to correct routing errors, meaning improve-
ments in this case are more likely due to information related
to bias correction.
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The major aim of this study is to assess the performance of
streamflow predictions from an AWRA-LSTM hybrid, which
has never been previously assessed. We use both static at-
tributes (e.g. fixed catchment characteristics such as catch-
ment area) and dynamical predictors (streamflow predictions
from AWRA-L, precipitation, potential evaporation) to con-
struct the AWRA-LSTM hybrid. Different approaches have
been previously adopted to establish hybrid land surface
model and LSTMs (e.g. Frame et al., 2021; Lima et al., 2024;
Tang et al., 2023). We therefore investigate how best to im-
plement the AWRA-LSTM hybrid by refining the method we
use to apply the LSTM, including the choice of dynamic and
static predictors. Once the model is developed, we are able
to diagnose the relative contributions of bias-correction and
routing improvements. A secondary aim of this study is to es-
tablish the performance of LSTMs both as a post-processor
for AWRA-L and as a standalone hydrological model in Aus-
tralia. While we expect previous findings from other studies
to be replicated — e.g. that standalone LSTMs will generally
outperform conceptual rainfall-runoff models for predictions
in ungauged basins (Kratzert et al., 2019) — replicating these
findings in Australia is an important precursor to the adop-
tion of LSTMs for a broad range of uses here.

To rigorously test our findings, we test performance in 218
catchments from the CAMELS-Aus dataset (Fowler et al.,
2021). We evaluate the performance of the model using spa-
tial and temporal out-of-sample cross-validation to assess its
generalization capability. The cross-validation experiments
test LSTM post-processed AWRA-L predictions for three ap-
plications:

— Predictions in ungauged basins. AWRA-L is regularly
applied for continental scale water accounting and water
forecasting, including in ungauged basins.

— Predictions in gauged basins for periods outside the
gauge record. A key application of AWRA-L is to assess
long-term trends in the historical hydrological function
of Australian catchments (e.g. Ho et al., 2023; Wasko
and Nathan, 2019).

— Predictions in ungauged basins for periods outside
of gauged records. AWRA-L is used to generate
long-range climate projections, including in ungauged
basins, and this cross-validation strategy serves as a
proxy for testing climate projection capabilities.

In each experiment, AWRA-LSTM predictions are compared
with the unprocessed accumulated runoff from AWRA-L and
a high-performing conceptual rainfall-runoff model in GR4J
which has been extensively applied and evaluated in the Aus-
tralian context. Coron et al. (2012) provide a comprehen-
sive evaluation of GR4J performance across 216 Australian
catchments under diverse climate conditions. Hapuarachchi
et al. (2022) describe the use of GR4J as part of the opera-
tional ensemble streamflow forecasting system for Australia.

Hydrol. Earth Syst. Sci., 30, 757-777, 2026
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Zheng et al. (2024) further demonstrate the application of
GRA4J in projecting future streamflow under various climate
change scenarios for Australia.

This study aims to contribute to these ongoing questions
by evaluating the performance of an AWRA-LSTM hybrid,
assessing its strengths and limitations as both a diagnostic
tool and a predictive model, particularly for Australian hy-
drological contexts. Additionally, by exploring these dynam-
ics, we aim to inform the broader application of hybrid and
standalone models, guiding future hydrological modeling ef-
forts.

2 Methods
2.1 Data
2.1.1 AWRA-L predictions

AWRA-L runs on a daily time step on a 0.05° grid, with
national historical outputs available from 1911 onward.
AWRA-L v7 (most recent iteration of AWRA-L) was cal-
ibrated using data from 295 catchments over the period
1981-2011, employing a objective function that incorporates
weighting of the following observations in each catchment
GRACE Terrestrial Water Storage (TWS: 50 %), streamflow
(35 %), satellite-based soil moisture (7.5 %), satellite-based
evapotranspiration (ET: 2.5 %), and satellite-based vegeta-
tion fraction (5 %), which are then combined further over
all catchments (Frost and Shokri, 2021). AWRA-L version
7 was extensively validated against a range of observational
datasets (Frost et al., 2021). AWRA-L generates a number of
variables that can potentially serve as predictors (e.g. evapo-
ration, soil moisture, runoff, deep drainage). In this study, we
focused only on runoff (denoted Q). In AWRA-L, Qo i
derived from surface flow, baseflow, and interflow. The dis-
charge from these sources is routed (at a pixel scale) through
a conceptual surface water store, S;. The primary function
of this store is to replicate the partially delayed drainage of
storm flows, which is typically observed in all but the small-
est and fastest-responding catchments. As noted in the in-
troduction, however, the model lacks channel routing (with
independent grid cells with no lateral flow), creating chal-
lenges when calculating the streamflow at the outlets of large
basins (i.e. those with a time of concentration greater than
one day).

Streamflow at catchment outlets/gauges was calculated
by summing Q. from all grid cells within the catchment,
weighted by the proportion of each grid cell within the catch-
ment. However, this approach does not account for in-stream
routing, stream losses, overbank flow, or storages. The time
series of the accumulated runoff for each catchment was used
for both benchmarking (to compare as a baseline methodol-
ogy) and as a dynamic predictor for the LSTM model.
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2.1.2 CAMELS-AUS

The CAMELS-AUS dataset (Fowler et al., 2021, 2024) con-
sists of streamflow, meteorological variables, and various
catchment attributes (222 Australian catchments in the ver-
sion 1 and 561 in the version 2) for catchments that have
been minimally impacted by human activities. We used the
following data from the CAMELS-AUS:

— Streamflow. This serves as the predictand and is used
to evaluate model performance over the period 1975—
2014 in CAMELS-AUS version 1 and 1975-2022 in
CAMELS-AUS version 2.

— Rainfall. CAMELS-AUS includes two time series of
catchment-averaged rainfall. We used the “awap_rain”
product, which is taken from the Bureau’s Australian
Gridded Climate Data (AGCD). AGCD is produced at
a spatial resolution of 0.05° (~ 5km) by interpolating
data from its extensive network of meteorological sta-
tions.

— Potential Evaporation (PE). Among several evaporation
products available, we selected “et_morton_wet_silo”
from CAMELS-AUS. This product estimates potential
evaporation under wet conditions using the Morton wet
environment method, which accounts for factors such as
temperature, humidity, wind speed, and solar radiation.
The data is provided by the Queensland Government’s
SILO database, offering an upper limit of evaporation
potential.

— Static Attributes. Static attributes are assumed to be con-
stant over time and provide essential catchment charac-
teristics. These attributes include mean annual precipi-
tation, mean annual PE, aridity, and other climatic and
geomorphological features such as average slope and
catchment area. These static attributes help contextual-
ize the dynamic data and improve the model’s ability to
generalize across different catchments.

— Catchment Boundaries. CAMELS-AUS provides catch-
ment delineations. The catchment boundaries were used
to subset the AWRA-L gridded dataset to calculate total
discharge at gauges as daily timeseries.

To illustrate the diversity of catchments used, Fig. 1 shows
their spatial distribution across Australia overlaid with the
Koppen—Geiger climate classification (Stern et al., 2000).

2.2 LSTM model

In this study the LSTM model architecture (Hochreiter and
Schmidhuber, 1997) was based on the work of Kratzert et al.
(2019). The LSTM structure comprises four key compo-
nents — an input gate, forget gate, cell state, and output gate —
which collectively manage information flow and maintain the
network’s long-term memory (Fig. 2).
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Figure 1. Spatial distribution of CAMELS-AUS vl catchments used in this study, overlaid on the Koppen—Geiger climate classification.
Numbers in parentheses indicate the number of catchments in each climate class.
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Figure 2. Diagram of the LSTM model structure used in this study.

The input sequence at each timestep includes one or more
dynamic predictors. At the end of the sequence, the hidden
state of the LSTM network is used to predict a single stream-
flow value as the target via a dense layer with one hidden
layer of size 10. For all experiments, an LSTM hidden state
size of 256 was used, along with smooth-joint Nash—Sutcliffe
Efficiency (NSE) (Kratzert et al., 2019) loss function, and a
sequence length of 365 d. All dynamic predictors were stan-
dardized with the mean and standard deviation of the calibra-
tion data across all catchments.
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2.3 Predictors and target variables

The LSTM models use spatially averaged Qo from AWRA-
L, and rainfall and ET from CAMELS-AUS as dynamic
predictors as well as 12 static predictors, which represent
the characteristics of each basin (Table 1). Additionally, the
sine and cosine of the day of the year (doy), calculated as
sin(2wdoy/365) and cos(2wdoy/365), are included as dy-
namically varying predictors to capture seasonality. The tar-
get variable is gauged daily streamflow from the CAMELS-
AUS dataset, which is normalized by catchment area and ex-
pressed in millimetres.

2.4 Evaluation

2.4.1 Cross-validation approaches: TooS, SooS and
TSooS

To evaluate the performance and generalizability of the
LSTM models, three cross-validation techniques were em-
ployed: buffered Temporal out of Sample (TooS), Spatial
out of Sample (SooS), and Temporal-Spatial out of Sample
(TSo00S). Each technique was designed to evaluate the model
under different scenarios of data availability and variabil-
ity. In addition, we reserved a separate hold-out test period
(2014-2022), drawn from CAMELS-AUS version 2, which
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Table 1. Static and quasi static features for LSTM Model.

Category Predictor Description
Climatic and Precipitation Characteristics (static) p_mean Mean Annual Precipitation
pet_mean Mean Annual Potential Evapotranspiration
Aridity Aridity (Mean Annual PET/Mean Annual Precipitation)

p_seasonality
high_prec_freq

high_prec_dur

Precipitation Seasonality

Frequency of High-Precipitation Days (> 5 times mean
annual)

Average Duration of High Precipitation Events

Catchment and Geomorphological Characteristics
(quasi-static)

catchment_area
mean_slope_pct
prop_forested

Catchment Area
Catchment Mean Slope
Proportion of Catchment Occupied by Forest

Upsdist
Strdensity
Strahler

Maximum Flow Path Length Upstream
Ratio of Total Length of Streams to Catchment Area
Strahler Stream Order at Gauging Station

lies outside both the AWRA-L and LSTM calibration periods
and was not used in training or validation.

TooS — buffered temporally out-of-sample cross-
validation. This approach divides the entire dataset
into k temporal folds (in this case, k = 4). Where for each
fold 10 years data out of 40 years overall were designated
as the validation set, and the remaining periods were used
to train the model (Table 3). A trailing buffer of five years
was applied after the validation period and subsequent
training period to prevent data leakage and ensure temporal
independence. This process was repeated for each fold,
with each period serving as the validation set, while the
model was trained on the other periods. After running the
validation across all the folds, the results from each fold
were combined to create a complete set of simulations
produced in the validation mode.

SooS — spatially out-of-sample cross-validation. In this ap-
proach, the dataset is divided into four spatial groups, with
each group containing a unique set of catchments. The model
was trained on data from three of these groups and validated
on the remaining group. This process was repeated for each
fold, allowing each group of catchments to serve as a vali-
dation set once. Care was taken to ensure that nested catch-
ments (i.e., catchments that share upstream-downstream re-
lationships within the same river system) are grouped to-
gether. This prevents cases where hydrologically similar re-
gions appear in both training and validation sets, which could
lead to data leakage (a situation where the model learns pat-
terns from similar catchments in the training set, leading to
overly optimistic validation performance). To mitigate this,
each nested group was assigned exclusively to either training
or validation, ensuring independence between the two.

After all folds were used as the validation set, the vali-
dation results from each fold were combined to produce a
complete assessment of model performance across all catch-
ments. This method tests the model’s ability to generalize to
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Figure 3. Spatial distribution of catchments used in SooS cross-
validation.

new, unseen spatial regions, making it suitable for evaluat-
ing its adaptability to areas with limited or no training data
(Fig. 3).

TSooS — temporally and spatially — out-of-sample cross-
validation. The TSooS approach combines both temporal
and spatial cross-validation to provide the most stringent as-
sessment of model performance. A 2 x 2 fold-splitting tech-
nique was used, where folds 0 and 1 and folds 2 and 3 from
the TooS and SooS experiments were merged, effectively di-
viding the dataset into four quadrants with both spatial and
temporal splits. This setup allows the model to be trained in
one quadrant and validated in a non-adjacent quadrant, ensur-
ing that the validation data remain distinct from the training
data in both time and space. This method is strict because
it requires the model to work well with new times and loca-

https://doi.org/10.5194/hess-30-757-2026
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Table 2. Buffered temporal out of sample cross-validation folds.

Fold Training Period

Validation Period

Fold 0 1 January 1990-31 December 2014 1 January 1975-31 December 1984

Fold1 1 January 1975-31 December 1984 and 1 January 1985-31 December 1994
1 January 2000-31 December 2014

Fold2 1 January 1975-31 December 1994 and 1 January 1995-31 December 2004
1 January 2010-31 December 2014

Fold3 1 January 1975-31 December 2004 1 January 2005-31 December 2014

tions, making it a strong way to test the model’s ability to
handle different and realistic hydrological situations.

2.4.2 Evaluation Metrics

We evaluated model performance primarily using the Nash—
Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970), which
measures how well predicted streamflow matches observa-
tions relative to the mean of the observed series. NSE is de-
fined as

A2
NSE = 1 — Z;(yt — V) (1)

Z[(yt _§)2 '

where y; and y,; are the observed and predicted discharged at
time ¢, and y is the mean observed discharge. NSE provides
an overall measure of performance across all time steps but
is more sensitive to high flows. To provide complementary
information on other parts of the hydrograph, we also report
NSE calculated in square-root space and the absolute bias in
appendices. For each catchment, the best-performing model
was defined as the one achieving the highest NSE, without
applying a buffer.

2.5 Experimental Design
2.5.1 Model Design

We examine how different combinations of dynamic predic-
tors influence the performance of our LSTM models in pre-
dicting streamflow. Two experiments were conducted:

— The first experiment included both the AWRA-L output
(i.e., gridded runoff from surface and subsurface pro-
cesses at a Skm x 5km resolution across Australia) and
additional climate variables, specifically rainfall and
evaporation, as predictors in the LSTM. Although these
climate variables (or at least very similar estimates of
precipitation and potential evapotranspiration) are used
within the AWRA-L model, we hypothesized that in-
corporating them directly might retain valuable infor-
mation. Specifically, transformations of these climate
variables may not be adequately captured by the AWRA
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conceptualization, leading to conditional errors. By in-
corporating these variables, we aimed to correct such
errors and enhance the LSTM’s predictive skill. This
model will be referred to as LSTM-QC.

— The second experiment completely bypassed AWRA-L,
using only climate variables (rainfall and potential evap-
otranspiration) as predictors. In this setup, the LSTM
essentially acts as a rainfall-runoff model, eliminating
any dependence on AWRA-L. This model will be re-
ferred to as LSTM-C.

In addition to these dynamic predictors, both models also
used catchment attributes to provide spatial context. Two cat-
egories of attributes were considered:

— Static predictors: geomorphological characteristics that
are independent of climate and can be assumed to re-
main stable over time if no major developments occur
in the catchment area. These include features such as
catchment area, mean slope, proportion of forest cover,
stream density, Strahler order, and maximum upstream
distance.

— Quasi-static predictors: climatic characteristics, such as
mean annual precipitation and potential evapotranspira-
tion, which may change due to long-term climate vari-
ability or climate change. For temporal cross-validation
(TooS), it is important to consider the period over which
these variables are calculated. By default, the climatic
attributes provided with CAMELS-AUS are calculated
for the entire available record. However, for proper
TooS cross-validation, it is necessary to exclude the val-
idation period and recalculate these climatic variables
for each fold. This prevents information leakage and en-
sures that predictors reflect only the calibration data.
Recalculation is particularly important when training
the model in a wet or dry period and testing its gen-
eralizability to an opposite condition.

To avoid confusion, we therefore refer to geomorphological
attributes as static predictors, since they do not vary across
time windows, and to climatic attributes as quasi-static pre-
dictors, since they must be recalculated for different time pe-
riods.
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The full set of predictors used in each model configura-
tion is summarized in Table 3, with the detailed definitions
of static and quasi-static predictors provided in Table 1.

2.5.2 Training approach

The initial experiment involved calibrating a continental
LSTM model using data from all catchments simultaneously.
This calibration enabled the model to learn general patterns
and relationships across diverse geographical and climatic
conditions.

The training data were prepared using a sliding window
approach with a sequence length of k =365d. For each
catchment n, the dynamic predictors at time ¢ are represented
by the feature vector x;, € R? (rainfall, potential evapora-
tion, AWRA-L runoff, and seasonality terms), and the static
attributes are represented by a, € R” (climatic and geo-
morphological characteristics). For each sample, the input
sequence is the matrix X; , = [X/—k+1.n,...Xsrn] € Rkxd
which together with a,, is used to predict observed discharge
of day ¢, y; ». This produced overlapping samples that were
shuffled across all catchments to form a diverse training set.

The LSTM parameters @ were optimized to minimize
the smooth-joint Nash—Sutcliffe Efficiency loss function
(Kratzert et al., 2019), £(9;., yr.n), where predictions are
given by 3, = Mo ([X; k41,05 - - » Xi.n])-

To evaluate whether the general knowledge gained from
the continentally calibrated model could be further enhanced
at the individual catchment level in TooS experiments, an
additional fine-tuning process was implemented. After de-
veloping the continental-scale model, before implementing
it for validation, further training of all model parameters is
conducted using only the data from the calibration period of
each catchment. This step allows the model to better capture
localized patterns by adjusting its parameters to reflect the
unique characteristics of individual catchments. In the SooS
and TSooS cross-validation experiment, fine-tuning for in-
dividual catchments would not be realistic in a true out-of-
sample scenario, as no target catchment data would be avail-
able for adjustment.

To recognize the uncertainty in the training process, each
calibration and validation was repeated 10 times, and the me-
dian of the 10 simulations was used to calculate performance
metrics.

2.5.3 Decomposing the effect of bias-correction and
routing

Any improvement achieved through post-processing the
AWRA-L outputs can originate from two primary sources:
correcting systematic model errors (bias-correction) and ad-
dressing temporal misalignments caused by the absence of
channel routing in the AWRA-L model. To investigate the
relative contributions of these two sources, two versions of
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the LSTM post-processors with different predictor sequence
lengths were designed.

All experiments described thus far use a sequence length
of 365 d, allowing the model to capture temporal dependen-
cies and account for flow routing — an effect that occurs over
several days as water moves through river systems. This con-
figuration is expected to correct both systematic biases and
routing errors. Additionally, a series of experiments using
shorter sequence lengths (i.e., 1, 2, 3, 4, 5, 10, 30, and 60d)
was conducted to analyze the sensitivity of the model predic-
tive performance to this variable. When a single day is used,
the model primarily focuses on correcting immediate daily
discrepancies in the outputs, addressing bias without captur-
ing temporal flow patterns.

By comparing the performance of these models, the
sources of improvement can be decomposed. Significant sen-
sitivity to sequence length would indicate that fixing tempo-
ral dependencies — and thereby correcting routing errors —
contributes substantially to the model’s enhanced accuracy.
Conversely, minimal performance differences would suggest
that most improvements are attributable to bias-correction
alone.

2.6 GR4J

To test the performance of our AWRA-LSTM hybrid setup,
we compare it to the GR4J conceptual rainfall-runoff model
(Perrin et al., 2003). GR4] is a four-parameter model, devel-
oped through a rigorous process of parameter reduction to
enable strong performance with automated calibration algo-
rithms. It has been widely tested in Australia and abroad, of-
ten outperforming other conceptual rainfall-runoff models in
automated calibration experiments (Coron et al., 2012). For
this study, we optimize GR4J with shuffled complex evolu-
tion (Duan et al., 1994). To ease optimization and to enable
parameters to be applied to different catchments under spa-
tial cross-validation studies, we scale and transform GR4J
parameters (see Appendix A). In all cases, GR4J is initial-
ized for 5 years before parameters are optimized.

For SooS and TSooS cross-validation experiments, we use
a distance-weighted regional estimation (Regional) to pro-
duce GR4J parameters. For each recipient catchment we es-
timate a global parameter-set from N donor catchments by
maximising an inverse-distance weighted objective:

N
NSEgiobal = Y _ w,NSE,, )
n=1
(1/dy)"
=—""  a>1 3)
YL (1/di)e

where NSE,, is the Nash-Sutcliffe Efficiency for the nth
donor catchment, w, is the weight applied to the nth donor
catchment such that Z,Ilvz 1w, =1, and d, is the Euclidean
distance between the catchment centroid of the target catch-
ment and the nth donor catchment. « controls the emphasis
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Table 3. Predictors used in LSTM-C and LSTM-QC models.

Model Dynamic predictors Static and quasi-static predictors
LSTM-C — Rainfall, — Climatic attributes
— Potential evapotranspiration — Geomorphological attributes
(see Table 1)
LSTM-QC — Rainfall — Climatic attributes

AWRA-L runoff

Potential evapotranspiration,

— Geomorphological attributes
(see Table 1)

on nearby catchments: the higher the value, the more em-
phasis is put on more closer catchments. We choose o =2
for this study. We found that this regionalisation method
tended to outperform a conventional “nearest-neighbour” re-
gionalisation in cross-validation experiments (not shown for
brevity).

3 Results

This section evaluates the performance of the LSTM mod-
els under different configurations and cross-validation strate-
gies. It first examines model development, assessing the ef-
fect of fine-tuning, dynamic predictor selection, and the in-
clusion of static predictors. The next part benchmarks model
performance across three applications: long-term historical
simulations, predictions in ungauged basins, and a proxy for
climate projections, while also analyzing spatial patterns in
model performance. The final part investigates systematic er-
ror correction and the influence of sequence length on model
predictions.

3.1 Post processor refinement
3.1.1 Effect of finetuning

Figure 4 shows the performance of the LSTM-QC model ac-
cording to NSE using the national LSTM-QC without fine
tuning, then with local fine tuning. The left panel shows the
NSE probability exceedance curve for 218 catchments, with
the fine-tuned model (blue) consistently outperforming the
global model (red), especially at higher exceedance probabil-
ities of NSE values across catchments. The right panel maps
where each model performs best: blue points indicate gauges
where fine-tuning outperformed, while red points show the
opposite. The inset pie chart reveals that 95.4 % of catch-
ments benefited from fine-tuning. These results demonstrate
the effectiveness of fine-tuning for better model adaptation
to local conditions. It should be noted that in the four catch-
ments where performance decreased after fine-tuning, two
are ephemeral rivers with highly intermittent flow regimes,
and two have relatively short or limited records. These con-
ditions make them particularly difficult to model, as extreme
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variability can lead to overfitting during fine-tuning, meaning
the generalized global model may sometimes perform better.
From here on, only fine-tuned results are presented for TooS
cross-validation.

3.1.2 Dynamic predictor selection

The LSTM was used in two forms: (i) as a post-processor for
AWRA-L, where we used AWRA-L Qy along with climate
data (rainfall and ET) as predictors (LSTM-QC); and (ii) as a
rainfall-runoff model without dependency on AWRA-L, us-
ing only climate data as dynamic predictors (LSTM-C). Fig-
ure 5 illustrates the effect of selecting dynamic predictors on
model performance. In each catchment, the best-performing
model is defined as the one with the highest NSE value.
To avoid reliance on marginal differences, the exceedance
curves also show the proportion of catchments where perfor-
mance gains exceed any given threshold, providing a clearer
picture of whether improvements are both consistent and
substantial. LSTM-QC performs better in the TooS experi-
ment for 66.1 % of catchments (Fig. 5a and d). However, in
the SooS and TSooS experiments, adding AWRA-L Qi as a
predictor generally does not improve performance compared
to the LSTM-C predictions (Fig. 5b, c, e, and f).

AWRA-L is calibrated over the period 1970-2011. There-
fore, when using AWRA-L’s Qy as a predictor in a TooS
cross-validation, there is a potential risk of information leak-
age from the calibration phase into the cross-validation. To
determine if this leakage significantly contributes to the ob-
served improvement of LSTM-QC over LSTM-C, the cali-
brated model for the third fold (calibrated for 1975-2004)
was used to simulate flows outside the AWRA-L calibra-
tion period, from 2012-2022, using the CAMELS-AUS V2
dataset. The dashed lines in Fig. 5a confirms that LSTM-QC
outperforms LSTM-C for 2012-2022 in the TooS experiment
as the difference is greater than zero for approximately 60 %
of catchments, similar to the general results.

3.1.3 Static predictors

Figure 6 compares the effect of cross-validation of static cli-
matic variables (see Sect. 2.5.2) on model performance when
using TooS cross-validation, both without (Fig. 6a) and with
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LSTM-QC without finetuning; inset pie chart shows the proportion of catchments in which LSTM-QC with finetuning outperformed (under-
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(Fig. 6b) fine-tuning. Recalculating the quasi-static climatic
variables for the calibration period at each fold slightly but
consistently reduces the performance of predictions. Conse-
quently, we cross-validate climate predictors for TooS and
TSoo0S experiments in the remainder of the paper.

3.2 Applications

The LSTM model was evaluated across three distinct ap-
plications to assess its versatility and performance in dif-
ferent hydrological contexts. We benchmarked the LSTM-
QC model against both the raw AWRA-L and GR4J simu-
lations, focusing on: (1) long-term historical simulations in
gauged catchments (TooS cross-validation), (2) predictions
in ungauged basins (SooS cross-validation), and (3) a proxy
for climate projection capabilities (TSooS cross-validation).
Figure 7 presents the benchmarking NSE results across these
applications. The NSE in square root space and the absolute
bias are presented in the Appendix.

3.2.1 Application 1 — long term historical simulation
(TooS)

LSTM-QC with fine-tuning significantly outperformed GR4J
in TooS experiments (Fig. 7a and d), achieving superior re-
sults in 77.5 % of catchments. Both LSTM-QC and GR4J
performed considerably better than the AWRA-L model. It
should be noted that AWRA-L employs a continental-scale
calibration approach with a single set of parameters derived
nationwide, while both GR4J and the fine-tuned LSTM-QC
benefit from catchment-specific calibration. Thus, we do not
expect AWRA-L to perform well in relation to the other mod-
els and included AWRA-L only as a reference.

3.2.2 Application 2 - predictions in ungauged basins
(SooS)

LSTM-QC generally outperformed both GR4J and AWRA-
L models in SooS experiments (Fig. 7b and e). Specifi-
cally, in 69 % of catchments LSTM-QC performed better
than GR4J. However, the regionally calibrated GR4J pre-
forms better than LSTM-QC in catchments with poorer NSE.
The regional calibration applied to GR4] is particularly adept
at avoiding very poor performance, a notable advantage over
both AWRA-L and LSTM-QC.

3.2.3 Application 3 — a proxy for climate projections
(TSooS)

The TSooS results were largely consistent with those ob-
served in the SooS approach (Fig. 7c and f): in 67 % of catch-
ments, LSTM-QC outperformed regionally calibrated GR4J.

This experiment is categorized as TSooS because valida-
tion data are independent in both space and time. Specifi-
cally, the model is trained on half of the catchments over half
of the available period and tested on the other half of the
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catchments during the remaining period. This setup ensures
that the validation set comprises entirely unseen catchments
and time periods, providing a more stringent test of model
generalization than TooS and SooS.

3.2.4 Spatial pattern

While the LSTM-QC model generally outperformed GR4J
across all three applications, certain regions showed a clear
advantage for the GR4J model. In areas such as Western
Australia and the western parts of Victoria — characterized
by unique hydrological behaviors (Grigg and Hughes, 2018;
Saft et al., 2015) — the GR4J model demonstrated superior
performance. Comparing the TooS cross-validation (which
involves fine-tuning) and the other two (SooS and TSooS)
shows that fine-tuning improves the performance of LSTM
in these regions. These findings highlight the potential lim-
itations of a highly generalized LSTM approach in regions
with distinct hydrological dynamics.

3.3 Systematic Error Correction and Routing Impact
of LSTM Performance as a Postprocessor

Figure 8 shows the performance of LSTM-C and LSTM-QC
models for different LSTM predictor sequence lengths un-
der a TooS cross-validation. At a sequence length of one, the
performance of LSTM-QC for the median and upper band
is similar to AWRA, but catchments with lower performance
show improvement when LSTM-QC was used. This suggests
that bias correction has little effect on the upper 50 % of
catchments, but for the lower tail of the distribution, LSTM
improves AWRA through bias correction. The median and
upper tail of the distribution improve after a sequence length
of three, showing an improvement in performance metrics,
which is mostly due to the channel routing processes and ad-
ditional lag processes such as percolation, groundwater in-
teractions, and human influences (e.g., farm dams). The per-
formance of LSTM-QC improves considerably when the se-
quence length is increased from 1-365 d.

Conversely, LSTM-C performs poorly at very short se-
quence lengths. This is unsurprising: without the ability to
attenuate climate forcings or catchment/channel routing pro-
cesses, we do not expect LSTM-C to be able to simulate
streamflow efficiently. The different responses of LSTM-QC
and LSTM-C to sequence length suggests that AWRA-L’s
built-in hydrological processes capture at least some of the
long-term hydrological memory through its storage compo-
nents. However, the LSTM-QC model’s continued improve-
ment with longer sequences indicates its ability to compen-
sate for AWRA-L’s lack of in-stream routing capabilities.

The comparison with LSTM-C at very short sequence
lengths is not intended as a practical configuration for stan-
dalone LSTMs, which are known to require longer sequences
to perform well. Instead, it serves as a baseline to illustrate
the added value of AWRA-L runoff: even when the sequence
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length is too short for LSTM-C to capture catchment mem-

ory, LSTM-QC can leverage AWRA-L to resolve routing

processes.
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4 Discussion

The results of this study highlight the significant potential
of LSTM networks in streamflow prediction as a rainfall-
runoff model (LSTM-C) or as a rainfall-runoff model that
incorporates additional information from AWRA-L land sur-
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Figure 8. Performance of LSTM-C and LSTM-QC across different predictor sequence lengths under a TooS cross-validation showing the

information gain from including AWRA-L runoff.

face model (LSTM-QC), which can also be viewed as a
post-processor for AWRA-L. The comparative analysis be-
tween LSTM and conceptual models, such as AWRA-L and
GR4J, reveals the strengths and limitations of each approach,
shedding light on the trade-offs between model complexity,
and performance. Through a series of experiments, we have
demonstrated how LSTM models can improve streamflow
estimation across various regions and for different applica-
tions including prediction in gauged catchments, ungauged
catchments and for projection studies.

LSTM models strongly outperform AWRA-L in stream-
flow prediction. Notably, predictive performance of LSTM-C
models, which rely solely on climate data, surpass AWRA-
L. However, incorporating AWRA-L outputs into the LSTM
models (LSTM-QC) provides measurable information gain
in temporal out of sample results by leveraging additional
hydrological information provided by AWRA-L. This sug-
gests that in gauged catchments, benefits can be gained from
using AWRA-L as an input to LSTM models. However, there
is a trade-off between complexity and gains in predictive per-
formance, as LSTM-QC'’s slight advantage may not always
justify the additional data requirements of an LSTM, espe-
cially when aiming for generalized, scalable models suitable
for ungauged basins.

Kratzert et al. (2019) showed that using static catch-
ment characteristics as predictors improves the LSTM results
when trained over multiple catchments. In our study, two
types of static predictors — geomorphological and climatic
characteristics — were employed to specify catchment char-
acteristics. Geomorphological features, being independent of
climatic factors, are considered stable over time unless sig-
nificant changes, such as land-use alterations or infrastruc-
ture development, occur within the catchment area. These
features provide a reliable foundation for catchment charac-
terization. Conversely, climate characteristics, such as mean
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precipitation and evapotranspiration, are subject to long-term
changes due to climate variability and long-term climate
change. As these predictors are more sensitive to temporal
shifts, they require careful consideration when used in pre-
dictive models, particularly in the context of temporal cross-
validation procedures. We observed slight but consistent im-
provements in performance when the static variables were
calculated over the entire available period (including valida-
tion period), which is coming from information leakage from
validation to calibration period, compared to when the cal-
culation of these variables was cross-validated. Accordingly,
we recommend that when a temporal split is involved in cross
validation, i.e. TooS and TSoo0S cross-validation, it is neces-
sary to recalculate the static climatic variables for each fold.

Similarly, care has to be taken when using land surface
model outputs if they have been calibrated (as is the case
with AWRA-L). Because they are computationally intensive,
it is often infeasible to subject land surface models to multi-
ple re-calibrations to carry out rigorous cross-validation. This
was the case in our study. This raises the concern that when
AWRA-L is used as a predictor, it could potentially trans-
fer information from the validation period to the training pe-
riod through its calibrated parameters. Since AWRA-L cali-
bration relies on a single set of parameters across all catch-
ments in Australia, any information leakage is likely to be
minimal. To assess whether the observed improvements from
incorporating AWRA-L were due to information leakage or
if AWRA-L was genuinely enhancing model performance, a
simulation for the 2011-2022 period (outside of AWRA-L’s
calibration range) was conducted. The results showed that
the LSTM-QC model, which includes AWRA-L as a pre-
dictor, still slightly outperformed the LSTM-C model under
TooS cross-validation. Accordingly, we recommend that out-
of-temporal sample testing be conducted when using a land
surface model as a predictor, if possible.
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The comparison between fine-tuning and global calibra-
tion for the LSTM models using TooS cross-validation
showed that fine-tuning significantly improved model per-
formance. This localized fine-tuning allowed the model to
better capture catchment-specific hydrological patterns, im-
proving its predictive accuracy. These findings are consistent
with previous studies, which have also highlighted the ad-
vantages of tailoring models to local conditions to enhance
predictive performance (Frame et al., 2021; Kratzert et al.,
2018). In contrast, global calibration, which uses a single
model trained on all catchments without further adjustment,
showed lower performance, especially when applied to un-
seen catchments with distinct climatic and geomorphologi-
cal characteristics. However, fine-tuning was not applied in
SooS and TSooS cross-validation due to the lack of vali-
dation catchment data in the calibration phase, highlighting
the advantages of fine-tuning when such data is available. It
should be noted that regionalized fine-tuning using nearby
catchments could be a viable alternative, although it was not
implemented in this study.

The sensitivity of the LSTM-QC and LSTM-C to the
length of predictors passed to the model was investigated,
enabling a decomposition of the information provided by
AWRA-L in terms of bias-related signals and routing-related
signals. The results highlight distinct patterns of improve-
ment achieved by the LSTM across different catchment
types. In well-performing catchments, where the AWRA-
L benchmark already demonstrates relatively high accuracy
(NSE > 0.5), the primary benefit of the LSTM model is
to correct timing errors in streamflow predictions. When
an LSTM model is applied with a sequence length of just
one day, its capacity to capture the temporal dynamics of
streamflow routing is limited. Consequently, improvements
in these cases are primarily attributed to systematic error
correction rather than advancements in routing, confirm-
ing that the LSTM model cannot significantly surpass the
AWRA-L benchmark in such catchments without explicitly
addressing routing and timing. We also note that the influ-
ence of sequence length is partly modulated by catchment
size: larger catchments tend to benefit more from the inclu-
sion of AWRA-L runoff at very short sequence lengths, as
its partial surface water storage provides additional memory.
However, this advantage diminishes as longer sequences al-
low the LSTM itself to capture the relevant dependencies

Furthermore, the findings indicate that the LSTM using
the AWRA-L predictor (LSTM-QC) in TooS cross validation
outperforms climate-only predictors (LSTM-C) providing
more accurate streamflow predictions due to its integration of
detailed hydrological processes. The AWRA-L predictor im-
plicitly includes the effects of multiple storage mechanisms,
specifically three soil layers, groundwater and surface water
storages, and therefore contributes to a deeper understand-
ing of catchment water flow and retention. Consequently, the
LSTM-QC model requires only a shorter backward-looking
window since much of the necessary memory for slow rout-
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ing processes is already embedded within AWRA-L’s struc-
ture. However, a slight performance boost is observed by ex-
tending the sequence length beyond 5-10d, particularly in
LSTM-QC, suggesting that for some catchments enhanced
slow routing processes are necessary.

The demonstrated superior performance (through TooS
cross validation) of LSTM-QC in long-term historical sim-
ulation has significant implications for water resource man-
agement and planning. This capability is particularly valu-
able for water accounting studies, environmental flow as-
sessments, and infrastructure planning in gauged catchments.
The model’s ability to outperform GR4J while maintaining
consistent performance across multiple runs suggests that
LSTM-QC is likely to produce more reliable assessments of
long-term water balances. This robustness is especially cru-
cial for applications such as reservoir operation optimization,
where accurate long-term simulations of historical flow are
essential for developing operational rules. The enhanced per-
formance of the fine-tuned LSTM-QC also makes it suitable
for retrospective analysis of extreme events and their impacts
on water resources, providing water managers with a more
reliable tool for understanding historical catchment Behavior
and improving future management strategies. However, there
is a need to analyze in depth the predictions made of extreme
events so as to be certain of the model’s robustness and its
applicability in various scenarios.

The LSTM outperformed GR4J under all cross-validation
experiments for the majority of Australian catchments. This
is a noteworthy outcome: GR4J is a widely used and high-
performing rainfall-runoff model in Australian conditions.
Perhaps the least surprising of these is the SooS performance,
as LSTMs have been shown in a variety of studies to outper-
form conceptual models for predictions in ungauged basins
(Frame et al., 2021; Kratzert et al., 2019). This capability has
broad practical applications, particularly in remote areas and
developing regions where gauge networks are sparse. The
LSTM model’s ability to outperform traditional GR4J sim-
ulations derived from regional calibration suggests its poten-
tial for improving water resource assessments in ungauged
catchments, supporting applications such as small-scale hy-
dropower development, irrigation planning, and flood risk as-
sessment. The consistent performance across different catch-
ment types indicates that the model more successfully cap-
tures the underlying hydrological processes and their spa-
tial variations than existing alternatives, making it a valu-
able tool for regional water resource planning and manage-
ment in data-scarce regions. It should be noted that in regions
such as Western Australia and the western parts of Victo-
ria — characterized by distinct hydrological behavior (Hughes
et al., 2012; Petrone et al., 2010) — the GR4J model demon-
strated superior performance. We attribute this primarily to
the regionalization scheme employed in GR4J, which places
greater weight on nearby catchments and therefore captures
local hydrological signals that the LSTM, trained more glob-
ally, does not. While suboptimal LSTM training due to lim-
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ited exposure to relevant catchment attributes may also con-
tribute, we expect that training on larger or more diverse
datasets could reduce this gap. We conclude that LSTMs
should at least be considered for applications for which con-
ceptual rainfall-runoff models are currently used in Aus-
tralia.

The successful validation of LSTM using TSooS cross
validation demonstrates its potential for supporting climate
change adaptation strategies in water resource management.
This capability is particularly valuable for infrastructure de-
sign and long-term water security planning. The maintained
performance advantage in both spatial and temporal transfer-
ability indicates that LSTM could be effectively employed
in climate impact assessments, supporting decision-making
for adaptation measures such as reservoir design, environ-
mental flow provisions, and urban water supply planning un-
der various climate change scenarios. Moreover, this capa-
bility extends to regional-scale climate change vulnerability
assessments, where understanding potential hydrological re-
sponses across multiple ungauged catchments is crucial for
developing robust adaptation strategies.

While the results of this study highlight the advantages of
LSTM models, it is important to acknowledge the challenges
associated with their application. One key consideration is
the computational and data overhead associated with training
LSTM models on large datasets, especially for applications
focusing on single catchments. In such cases, simpler models
like GR4J may offer a more practical alternative without the
need for extensive computational resources. Additionally, the
application of LSTMs, as implemented in this study, focuses
primarily on improving predictive skill rather than exploring
hydrological hypotheses. Unlike conceptual models, which
are designed to test causal relationships and provide insights
into hydrological processes, LSTMs function as data-driven
tools that excel in capturing patterns but are less suited for
unravelling the sensitivity of runoff generation to specific
predictors. Conceptual and land surface models also have
the advantage of providing outputs for a range of other hy-
drological variables (e.g., soil moisture, evapotranspiration,
groundwater storage), in addition to streamflow. This high-
lights a trade-off between prediction accuracy and the ability
to explore system dynamics, which must be considered when
selecting models for specific purposes.

5 Conclusion

The potential of Long Short-Term Memory (LSTM) net-
works to enhance streamflow predictions in Australia was
evaluated. The findings demonstrate that LSTM networks —
whether functioning as standalone rainfall-runoff models
(LSTM-C) or as rainfall-runoff models that incorporate addi-
tional information from AWRA-L (LSTM-QC), and thus can
also be interpreted as post-processors to AWRA-L — consis-
tently improve prediction accuracy across Australia relative
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to existing models. LSTM models outperformed traditional
approaches, including AWRA-L and GR4J, particularly in
applications involving ungauged basins, historical data anal-
ysis of gauged basins, and a proxy for climate projection sce-
narios.

This study highlights the applicability of LSTM-based
hydrological models and post-processors in climate adapta-
tion strategies, long-term water resource planning, infrastruc-
ture design, environmental flow provisions, and regional vul-
nerability assessments, especially in data-scarce or climati-
cally dynamic regions. The results confirm that LSTM net-
works, when fine-tuned to specific catchments, effectively
correct systematic biases and address routing deficiencies
in AWRA-L, achieving superior predictive performance in
gauged catchments. For TooS cross-validation, fine-tuning
yielded notable improvements, particularly in catchments
with less accurate AWRA-L predictions. Under SooS and
TSooS cross-validation, which precluded individual fine-
tuning, LSTM models benefited from the model’s general-
ization capabilities derived from broader datasets.

Incorporating  AWRA-L outputs into LSTM models
(LSTM-QC) provided marginal gains over standalone
LSTM-C models for TooS validation, with no obvious im-
provement in SooS and TSooS validation. This suggests that
while AWRA-L contributes some hydrological insights, the
additional complexity may not always justify its inclusion, at
least in a catchment scale streamflow application as trialed
here. The study underscores the importance of recalculating
quasi-static climatic predictors, such as mean precipitation,
during temporal cross-validation to avoid information leak-
age. Using static climate variables calculated over the cali-
bration and validation periods together can compromise val-
idation accuracy. Recalculation of these predictors for each
fold ensured that the model’s performance reflected its true
predictive capabilities.

Integrating AWRA-L outputs with LSTM models pro-
vided additional hydrological insights by incorporating pro-
cesses such as soil moisture storage and groundwater flow,
which improved predictions for shorter memory windows.
This integration was particularly effective in correcting sys-
tematic biases and routing errors, enhancing the represen-
tation of hydrological processes beyond what climate data
alone could achieve.

Overall, the research establishes the utility of deep learn-
ing, particularly LSTM networks, in refining outputs from
land surface models like AWRA-L. Future work should in-
vestigate incorporating dynamic predictors beyond runoff to
further improve LSTM models’ capacity to capture complex
hydrological processes.
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Appendix A: GR4J parameter adjustments and
transformations

Our implementation of GR4J differs slightly from that de-
scribed be Perrin et al. (2003). When inferring parameters
for each catchment, we scale parameters as follows:

)21 = X1 (Al)

X2 =0.67 x x» (A2)

x3=2.21xx3 (A3)
N

X4 = X4—— A4

X4 =X47e0 (A4)

where C is the catchment area. These scalings are based on
our experience and on the advice of the developers of GR4J
to maximize performance. To ease inference, we apply the
following transformations to the parameters:

logy(x1) (AS)
asinh (x») (A6)
log;o(X3) (A7)
log;(X4) (A8)

For SooS experiments, when applying parameters from
donor catchments to recipient catchments, we have to ac-
count for differences in catchment size between the donor
and recipient catchments for x4, as follows:

. 250
X4,d = M'd\/_C_
d

VG
250

(A9)

X4y =Xa4 (A10)
where X4 g is the X4 parameter from the donor catchment and
Cjq is the catchment area of the donor catchment, and X4 r is
the converted x4 parameter used in the recipient catchment
and C; is the catchment area of the recipient catchment.
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Figure A1l. Benchmarking LSTM-QC results against AWRA and GR4J. Top row is excedance curve of NSE sqrt across all catchments;
bottom row shows which model performs best for each catchment. The columns from left to right show TooS, SooS, and TSooS cross-

validation experiments
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validation experiments
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Uncertainty Analysis

To assess the robustness of the reported results, we conducted
two complementary analyses.

Block bootstrap analysis

Hydrological time series exhibit strong temporal depen-
dence, which can bias conventional resampling approaches.
To address this, we implemented a block bootstrap with a
block length of 365 d. For each model, 1000 bootstrap repli-
cates were generated and performance metrics recalculated.
The resulting confidence intervals provide an indication of
sampling uncertainty while preserving the temporal structure
of hydrological processes. This analysis confirms that the re-
ported improvements are not an artefact of isolated hydro-
logical events.
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Figure A3. Exceedance probability curves of NSE TooS, SooS, and TSooS experiments. Shaded regions show 95 % confidence intervals
from 1000 block bootstrap replicates (365 d blocks), confirming the robustness of LSTM-QC performance relative to AWRA-L and GR4J.
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Sensitivity to model initialization and randomness

Deep learning models are inherently stochastic, with vari-
ability introduced by random initialization and optimiza-
tion. To quantify this effect, we repeated each LSTM exper-
iment 10 times using different random seeds. Median per-
formance across runs is reported as the central curve, while
the lighter blue lines represent the variability across trials.
Although some spread is evident, the relative ordering of
LSTM, AWRA-L, and GR4]J is preserved across all repeti-
tions.
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Figure A4. NSE exceedance curves from TooS, SooS, and TSooS experiments. Thick blue line shows performance of median timeseries,
and lighter blue lines show results from 10 independent LSTM runs with different random seeds.
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Code and data availability. The datasets used in this study are
publicly available as follows: The AWRA-L dataset is available
from the Australian Bureau of Meteorology (BoM). For access,
visit the Australian Water Outlook website: https://awo.bom.gov.au/
(last access: 6 January 2026). SILO provides long-term climate
datasets, including rainfall and potential evapotranspiration, from
the Queensland Government. Access the SILO database at: https:
/Iwww.longpaddock.qld.gov.au/silo/ (last access: 6 January 2026).
The CAMELS-AUS dataset, including hydrometeorological time-
series and catchment attributes, is available through Earth System
Science Data. The dataset can be accessed via: Fowler et al. (2021)
(version 1) and Fowler et al. (2025) (version 2). The code developed
for this study is available upon request from the corresponding au-
thor due to licencing requirements.
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