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Abstract. Intermittent rivers and ephemeral streams (IRES)
constitute a large fraction of global river networks, provide
important ecosystem services, and are increasing in num-
ber with climate change. Yet, observing stage and calculat-
ing discharge in IRES can be technologically and method-
ologically challenging. To address this problem, we develop
a method to classify relative stage categories from field cam-
era imagery, creating a time series of categorical flow states
without the need for direct stage measurements. Specifically,
we employ a Logistic Regression model to classify condi-
tions of no water, low water levels, or high water levels for
an ephemeral stream located in the upper Russian River wa-
tershed of California (US). We trained our algorithm using
hourly field camera images from 2017–2023, and validated
the image classifications with 15 min continuous stage obser-
vations. We then used image classifications to perform qual-
ity control on the continuous stage time series, which allowed
us to identify when the stream was dry and when the sensor
malfunctioned. Next, we compared the image classifications
to publicly accessible modeled discharge from the NOAA
National Water Model CONUS Retrospective Dataset. We
discuss how in-situ monitoring including field cameras and
the classification of field camera imagery, combined with sur-
face meteorology and soil moisture observations, provides
detailed hydrologic information important for understand-
ing how climate affects IRES. Because the image classifica-
tion approach is transferable to other ephemeral stream sites
equipped only with field cameras, this methodology provides
a low-cost option for observing relative stage on sparsely-

measured IRES that can augment existing hydrologic model-
ing used by water managers.

1 Introduction

Global climate models (GCMs) agree that California (CA)
will experience warming with climate change (e.g., Hayhoe
et al., 2004; Leung et al., 2004; Pierce et al., 2013; Polade
et al., 2014), and will face significant and variable changes
in hydroclimate (Dettinger, 2016; Persad et al., 2020). An-
nual average precipitation projections are less certain than
those for temperature (Polade et al., 2017), with GCM pro-
jections from the Coupled Model Intercomparison Project
(CMIP) Phase 6 showing a wide range of possible precipi-
tation changes for CA. Li et al. (2022) narrowed these wide-
ranging projections to estimate that CA precipitation will in-
crease by 10 %–34 % and 7 %–32 % by the end of the 21st
century, for northern and central-southern CA, respectively.
Therein, climate change is expected to increase the propor-
tion of annual precipitation delivered via atmospheric river
(AR) storms, and extreme precipitation events from ARs are
expected to become more common (Gershunov et al., 2019).
Simultaneously, warmer temperatures, which correspond to
increased evaporative demand, can lead to landscape drying
and less runoff generation during dry periods (Underwood
et al., 2018; Albano et al., 2022).

Effects of climate change on hydrology have already been
observed in CA, including warmer spring temperatures lead-
ing to earlier spring runoff (Vicuna and Dracup, 2007).
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Similarly, snowline elevations in the Southern Cascade and
Sierra Nevada mountains are already increasing and are ex-
pected to continue rising while snow accumulation decreases
(Shulgina et al., 2023). At the same time, climate and land
use change are expected to increase the likelihood of extreme
flooding, which increases the probability of hydrologic fail-
ure at major dams in CA by 2100 (Mallakpour et al., 2019).
These amplifications of temperature and precipitation vari-
ability impact water management, highlighting the need to
develop tools to support water management adaptation (Mal-
lakpour et al., 2019).

In particular, the prevalence of intermittent rivers and
ephemeral streams (IRES) is expected to increase with cli-
mate change, and IRES remain vulnerable to anthropogenic
threats (Acuña et al., 2014; Chiu et al., 2017; Gutiérrez-
Jurado et al., 2019). IRES are defined as flowing waters
that stop flowing or go dry at some point along their course
(Datry et al., 2017) and they represent over 50 % of the
world’s river network and global discharge (Acuña et al.,
2014; Gutiérrez-Jurado et al., 2019). Flow initiation mech-
anisms for IRES include saturation-excess and infiltration-
excess overland flow; interflow from saturated and unsatu-
rated soils; and groundwater flow (Gutiérrez-Jurado et al.,
2019). IRES flows support a variety of ecosystem processes
and biodiversity by providing water to downstream river sys-
tems, nourishing riparian vegetation, and providing habitat
for fisheries (Acuña et al., 2014). For example, IRES pro-
vide crucial habitats for the spawning and rearing of eco-
nomically important species including coho salmon (Kerezsy
et al., 2017). Fishes in IRES are threatened by habitat frag-
mentation due to climate change, river regulation, and water
extraction (Kerezsy et al., 2017).

IRES and the downstream ecosystems they support are
uniquely vulnerable to climate change. For example, Moidu
et al. (2021) investigated the effect of climate variability on
end-of-season (September or October) IRES wetting condi-
tions for 25 streams in the lower Russian River watershed.
They find that antecedent precipitation at seasonal to multi-
year time scales strongly predicts end-of-season flow state
alongside static landscape attributes such as geology, soil
type (Gutiérrez-Jurado et al., 2019), and degree of weather-
ing. Monitoring in Critical Zone Observatories (CZO) else-
where shows that the effects of climate change on IRES can
be localized, as exhibited by decreasing precipitation in two
observatory catchments located in France and Mali leading
to different outcomes: a decrease in flow and an increase in
flow, respectively (Fovet et al., 2021). Furthermore, water-
borne disease pathogens can be sensitive to river intermit-
tency, and might be expected to change with climate change
and human alterations to IRES catchments (Bertassello et al.,
2021).

Due to the significant but relatively poorly understood con-
tribution of IRES to downstream water systems – natural
and managed – better understanding and managing of IRES
networks is an important component of climate change re-

silience and adaptation in arid regions like the western US.
For example, finding ways to keep water in the cooler, often-
forested headwaters longer by increasing groundwater stor-
age and maintaining IRES flow for longer periods of time
benefits freshwater ecosystems, including valuable fisheries
(Dettinger et al., 2023). Strategies for keeping water in head-
water streams longer include “natural” options such as wet-
land restoration, beaver dam analogues, and forest thinning,
as well as “managed” options such as Forecast Informed
Reservoir Operations (FIRO; Dettinger et al., 2023), which
uses weather and reservoir inflow forecasts to support more
flexible reservoir operations (AMS, 2020). The functionality
of any such strategy for climate change adaptation in IRES
systems cannot be evaluated without comprehensive moni-
toring.

Problematically, observing IRES systems has historically
been limited and challenging, especially because many IRES
are in remote areas that may be difficult to access (Magand
et al., 2020). In addition to inaccessibility, developing an in-
situ monitoring network for stage and discharge on IRES is
difficult because nascent gage networks may have less ex-
pertise, support, or funding compared to established national
programs that generally focus on perennial streams (Vlah
et al., 2024). There are also many environmental challenges
to monitoring IRES, including turbulent flow, sediment, and
debris flows following storms (Vlah et al., 2024). Estimat-
ing discharge from stage using a rating curve approach can
be especially difficult for IRES (Vlah et al., 2024), which
are often located in less accessible areas with less-developed
channels. While comprehensive monitoring of IRES across
a wide variety of watershed sizes and climates is important
(Fovet et al., 2021), it is rarely achieved.

In the absence of comprehensive in-situ monitoring, low-
cost methods for detection of IRES states (e.g., wet or dry
conditions) using satellite remote sensing can be useful. For
example, Tulbure et al. (2022) used Landsat-8 and Sentinel-
2 to detect ephemeral floods in Australia’s dryland Murray-
Darling Basin and Fei et al. (2022) used Sentinel-1 and Dig-
ital Elevation Models to map alpine IRES in the Tibetan
Plateau. While publicly-available satellite remote sensing
can help map IRES in some instances, cloud cover and veg-
etation often obscure streams from view and the generally
narrow water surface of IRES can be difficult to resolve.

Another low-cost method for determining IRES states is
using simple sensors that record time series data to indicate
the stream state. For example, a measure of high electrical
conductivity indicates that a stream is wet and low (or zero)
conductivity indicates that a stream is dry (Chapin et al.,
2014). Observations of water occurrence from conductivity
sensors have also been combined with time-lapse imagery
and stage measurements to gain a broader understanding of
the spatial and temporal characteristics of the stream net-
work (Kaplan et al., 2019). Alternatively, stream tempera-
ture measurements have been used in combination with sta-
tistical models to determine the presence of water in sev-
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eral IRES in the northwest Great Basin desert, USA (Aris-
mendi et al., 2017). Finally, observations of sound produced
by rivers can be used as a proxy for stage (Osborne, 2022),
and may present another scalable low-cost solution to IRES
monitoring.

Citizen science approaches can also be used to obtain
IRES data. For example, CrowdWater is a mobile phone
application that enables installation of virtual staff (stream
stage measurement) plates on streams to measure relative
stage over time (Seibert et al., 2019). As of November 2023,
CrowdWater had over 18 900 virtual staff plate contribu-
tions mainly on perennial streams, and over 19 000 tem-
porary stream contributions. Users can determine the sta-
tus of temporary streams using the following categories:
“dry streambed”, “wet streambed”, “isolated pools”, “stand-
ing water”, “trickling water”, or “flowing water” (CrowdWa-
ter, 2023). Another citizen science effort is an app called
DRYRivERS that asks users to identify the state of a river or
stream as flowing, disconnected pools, or dry (Truchy et al.,
2023). Nevertheless, data acquired from citizen science ap-
proaches has its limits (e.g., variable participation, data qual-
ity) and is not always usable for science or management ap-
plications.

Because in-situ measurement of IRES is frequently not
possible, modeling approaches are useful. Durighetto and
Botter (2021) used a precipitation-based empirical model
calibrated on field survey data to create a time-lapse visual-
ization of IRES streamflow state in the Rio Valfredda catch-
ment in the Italian Alps. Forghanparast and Mohammadi
(2022) used a long short-term memory (LSTM) model to pre-
dict streamflow in IRES in the Texas headwaters of the Col-
orado River. Similarly, many contemporary studies use deep
learning algorithms trained with hydrologic observations to
predict streamflow in IRES and perennial streams (Kratzert
et al., 2019; Le et al., 2021; Feng et al., 2023).

In-situ image-based (i.e., field camera) approaches provide
another method to observe and quantify water level in IRES.
Image-based approaches can provide visually verifiable im-
age data without disrupting the stream channel, and can be
used with or without water level measurement equipment.
Takagi et al. (1998) identified water levels from images by
finding the interface between a slanted metal strip and its
refracted reflection. More recently, field studies have iden-
tified water levels from field camera images based on the
color contrast of the water-air interface using methods sim-
ilar to Otsu (1979) that segment grayscale images based on
their gray-level image histogram. Leduc et al. (2018) used a
time-lapse camera and methods accounting for image qual-
ity issues to identify the stage and width of a stream in Al-
berta, Canada, finding that their image-based estimates gen-
erally agreed with daily stage measurements from a pres-
sure transducer. Zhang et al. (2019) found that near-infrared
imagery has greater contrast at the water-air interface even
during inclement weather, making the water line easier to
identify on processed images of the staff gage. Noto et al.

(2022) used low-cost stage cameras and reference poles to
estimate 30 min stage with minimal error at five IRES test
sites in the Montecalvello catchment of Italy. Similarly, Bir-
gand et al. (2022) used time-lapse images of a tidal creek
with a dedicated, high-contrast target background to accu-
rately measure stage using open-source software for water
level measurement (Chapman et al., 2022). To estimate river
discharge in Brazil, Rodrigues et al. (2025) apply a combi-
nation of Large-Scale Particle Image Velocimetry and max-
imum entropy estimation to smartphone videos. While they
are successful in some cases, these methods require specific
equipment that make them less suitable for widespread use,
and it remains that the image segmentation methods required
by most of these approaches (Otsu, 1979; Leduc et al., 2018;
Zhang et al., 2019; Noto et al., 2022) can struggle to function
when lighting conditions are poor.

Finally, machine learning and deep learning models have
been successfully applied to field camera images to iden-
tify stage, velocity, and/or discharge primarily on perennial
streams. For example, Tosi et al. (2020) calculated stream-
flow velocities on the Brenta and Tevere rivers in Italy us-
ing a machine learning algorithm that tracks features across
consecutive site images. For stream sites with reliable cel-
lular data coverage, a cloud-based computer vision stream
gauging system can use short videos from a stereo camera
to adaptively learn to estimate stage, surface velocity, and
discharge (Hutley et al., 2023). Gupta et al. (2022) trained a
deep convolutional neural network (CNN) model to recog-
nize relative measures of streamflow using U.S. Geological
Survey (USGS) timelapse camera photos from six non-IRES
monitoring locations. They found that the CNN model per-
forms almost as well as traditionally estimated streamflow re-
liant on manual discharge data. Windheuser et al. (2023) used
deep neural network models trained on both images and time
series data, including precipitation and USGS gage height,
to predict flood stage for two rivers in Georgia (US), show-
ing the strength of combining machine learning with other
data sources. Using image processing and deep learning for
streamflow prediction is an emerging field that has mainly
focused on perennial streams. Gupta et al. (2022) and Noto
et al. (2022) highlight the need to create algorithms focused
on IRES.

Here, we explore whether visual features in daytime im-
agery are sufficient to reliably classify IRES flow states for
monitoring purposes. This research is motivated by data lim-
itations common to IRES networks, the increasing availabil-
ity of low-cost field camera equipment and imagery, and sci-
entific interest in improving IRES monitoring due to their
unique ecological value and sensitivity to climate change. We
first introduce our study area: a headwater stream in the upper
Russian River watershed, CA. Then, we describe methods for
using a combination of machine learning and field camera
imagery to classify water levels on IRES. Lastly, we evalu-
ate the performance of the image-trained machine learning
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model and demonstrate the value of the approach for moni-
toring and understanding IRES in California and elsewhere.

2 Methods

2.1 Study site and data

The Center for Western Weather and Water Extremes
(CW3E) at the Scripps Institution of Oceanography installed
a hydrologic and meteorological sensor network during the
fall and summer of 2017 in the upper Russian River wa-
tershed, CA (Fig. A1; Sumargo et al., 2021; Ralph et al.,
2022). This network supports a reservoir operations strat-
egy called Forecast Informed Reservoir Operations (FIRO)
at Lake Mendocino, an impounded reservoir used for drink-
ing water, flood control, hydroelectric generation, and recre-
ation (Jasperse et al., 2020). The upper Russian River wa-
tershed is a rain-dominated basin characterized by a variable
Mediterranean climate with warm, dry summers and cool,
wet winters where atmospheric rivers can result in heavy
rainfall and flooding (Sumargo et al., 2021). The mountain-
ous portion of the watershed that drains into Lake Mendocino
is composed of Mesozoic Franciscan Formation bedrock and
is a lightly-managed combination of shrub/scrub, forest (de-
ciduous, evergreen, and mixed), and herbaceous land cover
(USGS, 2023); in contrast, the alluvial valleys are largely
cultivated or developed (Cardwell, 1965; USGS, 2023).

We focus our image classification exercise on imagery ob-
tained at one of six continuous streamflow monitoring sites
in the upper Russian River watershed (Fig. A1), located in
the 7.05 km2 Perry Creek sub-watershed (Fig. 1). We also
use a nearby surface meteorology site, Deerwood (DRW in
Fig. 1). The Perry Creek watershed is primarily composed
of Franciscan sandstone with steep slopes that are prone
to landslides (Delattre and Rubin, 2020). Perry Creek is an
ephemeral stream at the stream site (PEC), which is located
in a narrow, steep gorge ∼ 20 m downstream from a ∼ 5 m
tall waterfall (Fig. A2) and just upstream of Lake Mendo-
cino. The PEC site was chosen for this study because it had
potentially erroneous and noisy stage measurements relative
to nearby sites, making the field camera imagery useful for
quality control of stage data.

The PEC site is equipped with a staff plate and a stilling
well containing a Solinst Levelogger (18 August 2017–11
October 2023) or HOBO MX2001-04-SS-S pressure trans-
ducer (11 October 2023–current) that record water levels at
15 min intervals (Fig. 2). There is missing data due to the in-
ability to perform site maintenance because of the COVID-
19 pandemic from 31 August 2020–24 February 2021. At-
mospheric pressure from the DRW meteorological monitor-
ing site was used to barometrically compensate stage at PEC
measured by the Solinst Levelogger until the installation of
a Solinst Barologger at PEC in January 2022 (Appendix A1;
Figs. A3, A4). While DRW is not in the PEC watershed, it

is less than 1 km from PEC and has continuous 2 min ob-
servations for the entire study period. We also use DRW’s
observations of precipitation, relative humidity, temperature,
and soil moisture (5, 10, 15, 20, 50, and 100 cm) for August
2017–November 2023. In October 2023, telemetry was in-
stalled at PEC, which includes a HOBO MX2001-04-SS-S
pressure transducer and a HOBO MicroRX data logger, pro-
viding near real-time stage measurements. Prior to the instal-
lation of a HOBO telemetry system, stage data was down-
loaded directly from Solinst Leveloggers. The stilling well
and staff plate configuration were not altered at the time of
HOBO telemetry installation.

The PEC site is also equipped with a trail field cam-
era: a Wingscapes TimelapseCam Pro (6 November 2017–
23 May 2018), Spypoint Link S Dark (27 January 2022–
10 October 2023), or Force-S-Pro (11 October 2023–May
2024) which take photos of Perry Creek at hourly intervals
(30 min intervals for 11 October 2023–May 2024; Fig. 2).
The Wingscapes field camera only took photos from 05:00–
18:00 Pacific Standard Time (PST; UTC−8), while the oth-
ers took photos at all hours. In general, field equipment is
susceptible to failure, including problems due to environ-
mental exposure, such as water damage or reduced power
generation from dirty solar panels. Field cameras at PEC
malfunctioned frequently; the cameras were offline during
June 2018–January 2022, June–July 2022, and March 2023–
September 2023. The Wingscapes TimelapseCam Pro trail
camera was prone to having its timestamp drift between field
visits by as much as an hour, but we determined that these im-
ages were still likely representative of the approximate stage
since flow states within an hour are sufficiently correlated.

Each field camera image captures the staff plate,
streambed, and surrounding environmental features such as
vegetation and rocks (Fig. A3). During occasional site main-
tenance, a handful of photos included people or were not
focused on the streambed; we did not remove any of these
from the dataset. Nighttime images are poorly illuminated,
with the camera’s flash overexposing nearby vegetation and
slightly illuminating the staff plate, making it difficult – if
not impossible – to discern streambed conditions at night.
Field camera images were downloaded manually during rou-
tine site maintenance once or twice each year. Site servicing
also included clearing brush to prevent the camera from hav-
ing an obstructed view of the stream.

Stream channel surveys and manual discharge measure-
ments were collected from late 2017 through March 2024 at
PEC. Manual discharge measurements were performed peri-
odically, with a focus on capturing the full range of flow con-
ditions. Manual discharge measurements were performed us-
ing a handheld flow meter (Pygmy, AA, or Hach MF Pro) and
top-setting wading rod at discrete intervals along a measur-
ing tape placed perpendicular to the streamflow (Turnipseed
and Sauer, 2010). These discharge measurements were taken
near the staff plate, with the staff plate level noted for data
validation. As of water year 2024, there were 12 manual dis-
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Figure 1. The Perry Creek (PEC) study site in the upper Russian River’s Lake Mendocino watershed, California, US. (a) The location of
the Russian River watershed (inset); the pink polygon shows the location of the study area shown in (b). (b) Perry Creek watershed and
the Center for Western Weather and Water Extremes (CW3E) monitoring sites: the stream monitoring site at Perry Creek (PEC), the soil
moisture and surface meteorology site at Deerwood (DRW), and associated hydrologic features (legend). Image data sources: CW3E and
National Hydrography Dataset Plus (NHDPlus) High Resolution (Moore et al., 2019; Esri).

Figure 2. Perry Creek (PEC) streamgage station equipment. The staff plate, stilling well, and water level sensor (left) are located at the side
of the streambed; the field camera (right) is located across the stream channel, facing the staff plate.

charge measurements at PEC, which is not sufficient to create
a stable rating curve for converting stage to discharge. Nev-
ertheless, these measurements are still useful for beginning
to constrain the magnitude and range of discharge values at
PEC.

Finally, we use the NOAA National Water Model (NWM)
Retrospective Version 2.1 dataset, a retrospective simulation
from February 1979–December 2020 using version 2.1 of
the NWM. This version uses land surface modeling based

on the NOAH-MP Land Surface Model and meteorologi-
cal inputs from the Office of Water Prediction’s Analysis of
Record for Calibration (NOAA, 2024a). We compare hourly
NWM discharge from a segment that overlaps the location
of PEC (Fig. A5; reach ID: 8268225) to PEC imagery, stage,
and manual discharge data. Although the NWM was not cal-
ibrated using data from the PEC site, it was calibrated us-
ing data from the USGS East Fork Russian River streamgage
(EFR in Fig. A1; Cosgrove et al., 2024), also located within
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the Lake Mendocino watershed. We chose the NWM for this
comparison because it is a publicly-available dataset that is
accessible to water managers and available for streams across
the entire US. There is also precedent for using the NWM in
combination with machine learning in the Russian River wa-
tershed as in Han and Morrison (2022) who used a LSTM to
correct hourly NWM discharge predictions.

In summary, the following stage, discharge, and imagery
data were available at PEC from 18 August 2017–30 Novem-
ber 2023: continuous 15 or 5 min stage observations for
91.3 % of the study period (with occasional missing data dur-
ing site maintenance and prolonged missing data from 31
August 2020–24 February 2021), continuous hourly NWM-
modeled discharge from August 2017–November 2020, 11
manual discharge measurements mainly from 2018, and
15 821 field camera images. Available field camera im-
ages documented the periods of November 2017–May 2018;
February 2022–May 2022; August 2022–February 2023; and
October 2023–November 2023.

2.2 Classifying water levels in field camera images

We used a supervised machine learning image classification
approach to identify when there was no water, low water lev-
els, high water levels, or an obstructed view at PEC using
field camera images from August 2017–November 2023. The
image classification approach involves multiple steps: image
preparation; machine learning model selection, training, and
evaluation; the development of measures to assess classifi-
cation confidence; and a comparison of resulting classifica-
tions with observed stage, manual discharge measurements,
modeled discharge, and hydrologic observations. This study
develops an image classification method for PEC, which is
transferable to any site with consistent streambed imagery.

2.2.1 Image preparation

We only used images taken between 09:00 and 16:00 PST
because low-light images are more difficult to classify, even
with a flash. To apply our method, all images were required
to have the same dimensions. We selected a resolution of
1000×1200 pixels (Fig. 3a) because it was low enough to en-
sure that each image focused on the staff plate and streambed.
Thus, the image size was determined by resolution con-
straints rather than through empirical or experimental testing.
This cropping largely removed the effect of seasonal changes
in vegetation that dominates the broader field of view and
can make classification more difficult. Since the field cam-
eras were reinstalled during some field visits at slightly dif-
ferent locations along the bank opposite the staff plate, there
were four slightly different viewing angles of the streambed
in the images. Cropping the images helped minimize the ef-
fect of these different angles. After cropping, we extracted
the date the image was taken and the array of RGB pixel val-
ues from each image. The image preparation steps were per-

formed using Python scripts with the sci-kit learn (Pedregosa
et al., 2011c) and sci-kit image packages (Van der Walt et al.,
2014).

We then labeled a subset of images for supervised learn-
ing. Of the 4177 total PEC images taken from 09:00 to
16:00 PST during August 2017–November 2023, we manu-
ally labeled 537 images with four distinct categories: “no wa-
ter”, “low water” level, “high water” level, and “obstructed”
(Fig. 3b). We selected more than half of these 537 images
using random selection and selected the remaining images
manually using visual inspection to attain a representative
sample across the four categories. This resulted in the pur-
poseful selection of a labeled data set within which there
were different numbers of images across categories, i.e.,
samples were “unbalanced” across categories. A small subset
of images show stream states from similar time periods (i.e.,
dates and times are not regularly sampled), but because illu-
mination and stream stage can vary by the hour even within
the same day, we determined that the irregular time sampling
should not bias model evaluation given the sample size. Be-
cause this study is limited to imagery from the study period,
our analysis and modeling strictly reflect that period. How-
ever, if the variation in imagery and corresponding flow dur-
ing the study period captures the seasonal and inter-annual
variability typical of other years, then the selected images
may be considered broadly representative. In our case, the
study period includes the full range from wet to dry years
and thus arguably captures this variability.

Our objective was to prioritize the classification of water
presence or absence – a defining feature of IRES, by exploit-
ing the visual differences in water surface texture and color
for the “low” and “high” water categories. Firstly, we manu-
ally labeled images that consisted primarily of branches and
leaves blocking the view of the streambed as “obstructed”
even if we could discern the stream state. Images with some
foliage present, but where the majority of the streambed was
visible, were not labeled as “obstructed”, and were assigned
a water level label. We then assigned the “low water” cat-
egory to images with any presence of water, for which the
water surface was characterized by low turbidity (i.e., clear
water such that the staff plate is often reflected in the water)
and the presence of little to no riffles. We assigned the “high
water” category to images according to the presence of rif-
fles, or even rapids, often with higher turbidity indicated by
the water color being a light brown compared to the typically
clear water. We assigned the “no water” category to images
that lacked pooling or flowing water in the streambed. To
maintain independence of categories, each of the 537 images
were assigned only one category even if they were visually
similar to multiple categories (e.g. relatively clear water with
some ripples).

We processed the images to minimize the effects of dif-
ferent amounts of sunlight by converting the color images
to black and white (Fig. 3c), increasing their contrast and
flattening them using the histogram of oriented gradients
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Figure 3. Examples of imagery preparation steps for example field camera images. (a) Spypoint Link S Dark image for Perry Creek (PEC)
from 1 December 2022, during a “no water” period; the image is cropped to center on the staff plate and set to a size of 1000× 1200 pixels.
(b) The four categories of labels for field camera images, showing each water level condition: “No Water”, “Low Water”, “High Water”, and
“Obstructed”. (c) Examples of the grayscale conversion of (b). (d) The corresponding visualization of the histogram of oriented gradients
(HOG) transformations of (c).

(HOG) transformation (Lowe, 2004; Dalal and Triggs, 2005;
Fig. 3d), and scaling their pixel values using the Python
scikit-learn package (Pedregosa et al., 2011c). These trans-
formations decreased color differences due to the time of day
and season while making the water-air interface easier to dis-
tinguish.

2.2.2 Machine learning model

Within an individual model training and testing run, we ran-
domly split the 537 labeled images into 70 % training data
(375 images) and 30 % testing data (162 images). Figure 4
shows an example of this train-test split and demonstrates
the unbalanced proportion of labeled images within different
categories. We used the 375 training images to fit a logis-
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Figure 4. Percentage (vertical axis) of labeled Perry Creek field
camera images within each of the final model run’s training (70 %)
and testing (30 %) set split (colors) according to the label category
(horizontal axis).

tic regression model using the Python scikit-learn package
(Pedregosa et al., 2011c). The logistic regression model is
a multinomial log-linear regression model typically used for
categorical classification. We chose a multinomial classifica-
tion model instead of a binomial classification model (i.e.,
for the presence or absence of water) in order to account for
the “obstructed” view images, and to classify different flow
states with distinct visual differences: “low water” versus
“high water”. In this model, the classification of “high wa-
ter”, “low water”, “no water”, or “obstructed” is determined
by a linear combination of variables that represent the value
and orientation of the pixels in each image.

We selected the logistic regression model as the classifica-
tion model in part due to its estimation of a probability for
each categorical classification, where the estimated probabil-
ity for a category is a function of the pixel values from the
prepared image (see Sect. 2.2.1). We used a standard scikit-
learn package implementation of a multinomial logistic re-
gression model with L2 regularization (for mathematical de-
tails, see Pedregosa et al., 2011a). For model fitting, we used
a cross-validation (CV) routine with six stratified “K” folds,
meaning the training data were internally split into K (six)
different training and validation sets that preserved the per-
centage of images within each labeled category.

We used 20 randomly-selected training and testing splits
from the labeled image dataset to fit the model for six model
“configurations”. Each configuration combined one of three
different category weights and two different solvers, result-
ing in a total of 120 model training and testing runs. The
three category weights were: no category weights; balanced
category weights (due to our unbalanced data); and manually

determined weights. We assigned manual weights to empha-
size water presence categories (“high water” and “low wa-
ter”) over “no water”, and gave the “obstructed” category a
weight higher than “no water” (reflecting its smaller sample
size) but lower than the water categories, given its lesser im-
portance. The two solvers were lbfgs and newton-cg; a third
solver, saga, was unable to converge at the selected maximum
number of 300 iterations (and up to 1000 iterations). All re-
maining model parameters were set to the default scikit-learn
package values (see Pedregosa et al., 2011b).

2.2.3 Model performance

Each of the n test-set image classifications falls into one of
four categories: “no water”, “low water”, “high water”, or
“obstructed”. For each category, the classification outcome
is recorded as true positive (TP), false negative (FN), false
positive (FP), or true negative (TN). Consider the “no water”
category as an example. If a test-set image labeled as “no
water” is correctly classified as “no water”, it is recorded as
a TP; if misclassified as “low water”, “high water”, or “ob-
structed”, it is a FN. In contrast, if a different image labeled
as anything other than “no water” is classified as “no water”,
it is a FP; if classified correctly as any category other than
“no water”, it is a TN. We used a confusion matrix to assess
these outcomes.

To evaluate the performance of different model configu-
rations, we computed key statistical metrics for the test set
results across the 20 model runs within each of the six model
configurations. Specifically, we calculated the mean, stan-
dard deviation, maximum, and minimum prediction accuracy
(Eq. 1). To assess accuracy across categories, we computed
the mean balanced accuracy (Eq. 2), defined as the average
of recall (Eq. 3) for each classification category l = 1, . . . , L.
This approach ensures that model performance is not domi-
nated by the majority category – “no water”. Next, we iden-
tified the best-performing model configuration based on the
highest mean prediction accuracy and mean balanced accu-
racy across the six model configurations. Once selected, we
used this model configuration to run the model with a fixed
random seed for the train-test split and cross-validation rou-
tine, ensuring static parameterization. We refer to this as the
“final model”. Then, this final model was used to classify the
unlabeled images. Although this final model produces iden-
tical results for repeated runs on a given operating system,
slight variability may occur across different operating sys-
tems due to differences in floating-point precision and paral-
lel processing. To evaluate final model performance, we used
the test set to calculate the prediction accuracy (Eq. 1), bal-
anced accuracy (Eq. 2), recall (Eq. 3), precision (Eq. 4), and
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F1 score (Eq. 5; Pedregosa et al., 2011c).

Prediction accuracy=
TP
n

(1)

Balanced accuracy=
∑

Recalll
L

(2)

Recall=
TP

TP+FN
(3)

Precision=
TP

TP+FP
(4)

F1=
2 ·TP

2 ·TP+FP+FN
(5)

2.2.4 Classification confidence

We developed confidence levels (i.e., high, moderate, and
low) for classifications of “no water” and “any water”, where
“any water” includes images classified as either “low water”
or “high water”. To do this, we used test set images classified
as “no water” or “any water” from the 20 model runs with
the best-performing model configuration. From these data,
we established confidence levels by comparing classification
probability distributions to classification outcomes (TP, FN,
FP, or TN) for the “no water” and “any water” categories. We
defined “confidence levels” using probability value thresh-
olds determined by visually and qualitatively assessing diver-
gence in the distributions (boxplot medians and whiskers) of
the estimated classification probabilities for “no water” and
“any water” across the TP, FN, FP, and TN classification out-
comes.

2.3 Comparing image classifications to observed and
modeled hydrology

To understand how the classified imagery from the final
model relates to stage and discharge times series, we com-
pared our classified imagery to coinciding PEC stage, manual
discharge measurements, and NWM discharge. This compar-
ison is intended to help us understand to what extent classi-
fied field camera imagery can improve the often-limited and
variable quality of observational and modeled stage and dis-
charge data in IRES systems. We do this comparison graph-
ically by overlaying time series plots of the barometrically
compensated PEC stage with the classifications of concur-
rent, high-confidence image classifications. This time series
plot allowed us to visualize discrepancies between image
classifications and stage that enabled quality control of stage
data (Appendix A2). The quality-controlled, barometrically
compensated PEC stage data were then used for all subse-
quent analyses.

We compared the quality-controlled stage data to the
NWM discharge and manual discharge measurements by
overlaying each time series with corresponding high-
confidence image classifications. We also use boxplots to vi-
sualize the ranges of stage and NWM discharge that corre-
spond to each category of medium- and high-confidence im-

age classifications. Using a scatter plot stratified by image
classification category, we compared the PEC stage to NWM
discharge and manual discharge measurements to determine
the magnitude of discrepancy between data sources. For ex-
ample, we calculated how often the observed stage at PEC
was zero while the NWM predicted flow.

2.4 Environmental conditions

Finally, we compared our image classifications to surface
meteorology and soil moisture observations from DRW to
understand the concurrent and antecedent hydrologic con-
ditions associated with “high water”, “low water”, and “no
water” image classifications. We computed the daily total
precipitation along with the daily mean temperature, daily
mean relative humidity, and daily mean soil volumetric wa-
ter content (VWC) at multiple depths (5, 10, 15, 20, 50, and
100 cm). We then graphically compared these daily obser-
vations to the time series of PEC stage that corresponded
to high-confidence image classifications. Using scatter plots
and linear regressions of those visualized data, we evaluated
the relationship between 15 min stage observations stratified
by medium- and high-confidence image classification and the
following variables: the daily rolling mean soil VWC at 5 and
100 cm; the rolling sum precipitation at daily and monthly
time scales; 2 min mean temperature; and 2 min mean rela-
tive humidity. We compared the 15 min stage to aggregated
(rolling mean) values of soil moisture and precipitation to
represent antecedent moisture conditions, but compared the
same stage measurements to non-aggregated (2 min) temper-
ature and relative humidity to represent concurrent weather
conditions.

3 Results

3.1 Model performance

The model configuration with the lbfgs solver and balanced
category (class) weights performed best across the 20 model
runs, with a mean prediction accuracy of 91 % and a mean
balanced accuracy of 78 % (Table 1). In general, the mean
balanced accuracy was lower than the mean prediction ac-
curacy for each model configuration due to lower recall for
the “obstructed” category compared to the other categories,
resulting from a smaller training and test set size for the
“obstructed” category. These performance metrics represent
model performance evaluated on the testing set; we compare
model predictions of flow states generated from both labeled
and unlabeled images to stage and discharge measurements
in Sect. 3.3.

Within the 20 runs of the best-performing model config-
uration (lbfgs solver and balanced category weights), the
minimum prediction accuracy was 85 % and the maximum
prediction accuracy was 96 %, with a standard deviation of
2.7 % (Table 1). To illustrate the final model’s performance
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Table 1. Model configuration accuracy metrics across the six model configurations. Model configurations include the combination of solver
and category weight options (rows), and accuracy metrics (columns) include the mean, standard deviation, maximum, and minimum for
prediction accuracy, and mean balanced accuracy for the 20 model iterations (different random training and testing data splits) within each
configuration. The first row shows the best-performing model configuration.

Solver Category Mean Std. dev. of Max. Min. Mean balanced
weight accuracy accuracy accuracy accuracy accuracy

lbfgs Balanced 0.91 0.027 0.96 0.85 0.78
lbfgs None 0.90 0.027 0.96 0.85 0.70
lbfgs Custom 0.90 0.027 0.96 0.85 0.72
newton-cg Balanced 0.90 0.030 0.96 0.83 0.76
newton-cg None 0.89 0.026 0.94 0.85 0.70
newton-cg Custom 0.90 0.027 0.96 0.85 0.72

within and across individual label categories, we used a con-
fusion matrix (Fig. 5) to show classification outcome counts
from the final model run. Classification outcomes across
these 20 model runs are shown in parentheses in Fig. 5, which
lists the range of counts of correct and incorrect classifica-
tions for individual labels. For example, “obstructed” im-
ages are misclassified as “high water” images a maximum
of 7 times within any individual model run, but “high wa-
ter” images never get classified as “obstructed”. Figure 5
also illustrates the data used to compute summary statistics
of model performance. The most common incorrect classifi-
cation within these 20 model runs was the classification of
“low water” images as “no water”, which occurred in 2.8 %
of all classifications. In addition, “obstructed” images were
occasionally misclassified as either “high water” or “no wa-
ter” (1.1 % and 1.8 % of these classifications, respectively).
Due to the stream’s ephemerality, it is likely that there was in
fact no water at PEC in the “obstructed” images misclassified
as “no water”. Similarly, 2.4 % of image classifications were
classifications of an incorrect water level (i.e., a “low wa-
ter” classification when the image’s label was “high water”
and vice-versa). Because there is some overlap in image fea-
tures that distinguish “low water” and “high water” images,
incorrect water level magnitude classifications are expected,
but do not detract from the utility of the model for predic-
tion of IRES water presence or absence. The standard devi-
ation of prediction accuracy across these 20 model runs was
low (0.027, Table 1), indicating that any individual model run
would produce similar image classifications when applied to
the unlabeled images.

To run the final model, we used a static parameterization of
the best-performing model configuration – lbfgs solver and
balanced category weights. Table 2 shows accuracy metrics
by image category for the final model run, showing greater
than 0.80 for precision, recall, and F1 scores across all cate-
gories except for the recall and F1 scores for the “obstructed”
category. Supplement Fig. A6 shows an example of test set
output for the final model.

Figure 5. Confusion matrix showing test set classification counts
from the final model run. The matrix displays classification counts
from the final model run (colors, centered text) and the range of
classification counts across the 20 model runs (parentheses) using
the best-performing model configuration – lbfgs solver and bal-
anced category weights.

Table 2. Precision, recall, and F1 scores for the final model run.

Category Metric

Precision Recall F1 score

High water 0.93 0.88 0.90
Low water 0.89 0.81 0.85
No water 0.91 0.99 0.95
Obstructed 1.00 0.44 0.62

3.2 Classification confidence

We define levels of classification confidence based on assess-
ment of the distributions (Fig. 6) of classification probabili-
ties from the 20 model runs of the best-performing model
configuration across TP, FN, FP, and TP classification out-
comes. To assign levels of confidence, we chose thresholds
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in classification probability distributions that prioritized min-
imizing the risk of a false classification. To do so, we com-
pared the distribution of true positive probabilities to false
positive probabilities; we did not use false negative probabil-
ities in the assessment of confidence because the probabil-
ity of false negative outcomes is inherently much lower than
the false positive probability for images with “no water” and
“any water” labels (Fig. 6). We also did not use true nega-
tive probabilities in determining classification confidence be-
cause a true negative outcome represents any label other than
the one considered.

We assigned a “high” confidence level (Fig. 6, green) if
the classification probability fell within the range of proba-
bilities greater than the lower whisker for true positive classi-
fications; this captures the full range of probabilities (exclud-
ing outliers) for true positive outcomes while not overlap-
ping with the interquartile range for false positive outcomes
for both the “no water” and “any water” categories. We as-
signed a “medium” confidence level (Fig. 6, yellow) if the
classification probability fell within the range of probabili-
ties less than or equal to the lower whisker for true positive
classifications and greater than the median for false positive
classifications; this captures some of the outlier probabilities
for true positive outcomes, but recognizes that some prob-
abilities in this range may be false positive classifications.
Finally, we assigned a “low” confidence level (Fig. 6, red)
if the classification probability was less than or equal to the
median of false positive classifications. For the final model’s
classification of unlabeled images, we evaluated each im-
age classification’s model-estimated probability according to
these threshold values to provide categorical high, medium,
and low confidence assignments for each classification. We
subsequently used these confidence assignments, alongside
their image classifications, to evaluate correspondence be-
tween water level classifications and modeled and observed
water levels.

3.3 Comparing image classifications to observed and
modeled hydrology

The medium and high confidence image classifications gen-
erally agreed with the PEC stage data. For example, a total of
94.6 % of images classified as “any water” corresponded to
stage greater than zero, while 99.9 % of images classified as
“no water” corresponded to a stage of zero. Low confidence
image classifications did not agree nearly as well; 61.5 % of
low confidence classifications identified “any water” when
stage was greater than zero, and 56.7 % identified “no water”
when stage was zero. This suggests that the model performed
well on unlabeled imagery for high and medium confidence
image classifications, but model performance decreased for
low confidence image classifications.

The median stage for medium- and high-confidence image
classifications for “high water” (27.1 cm) is greater than the
median stage for images classified as “low water” (19.1 cm;

Fig. 7a). In addition, the images classified as “high wa-
ter” contain all but two occurrences of stage above the 99th
percentile (46.1 cm, Table A1) at PEC (Fig. A7a). 75.1 %
(63.2 %) of images classified as high (low) water level corre-
sponded to stage above (below) the 90th percentile at PEC,
which is equivalent to a stage of 21.5 cm (Table A1).

We performed a similar comparison of classified images
with modeled discharge data from August 2017–August
2020. The median modeled discharge for images classi-
fied as “high water” (0.05 m3 s−1) is greater than the me-
dian modeled discharge for images classified as “low water”
(0.02 m3 s−1; Fig. 7b). In addition, the images classified as
“high water” contain most of the extreme flow events, indi-
cated by the “high water” classification containing almost all
of the outliers (Fig. A7). 67.9 % (90.2 %) of images classi-
fied as high (low) water corresponded to modeled flow above
(below) the 90th percentile (0.04 m3 s−1). All images clas-
sified as “no water” corresponded to flow less than the 80th
percentile (0.02 m3 s−1), but approximately 18.2 % of images
classified as “no water” have non-zero modeled discharge,
albeit near-zero.

Comparison of image classifications to stage data is a di-
agnostic tool for quality assurance of observed stage data,
which can be prone to sensor error, as shown for Decem-
ber 2022–February 2023 before (Fig. 8a) and after quality
control (Fig. 8b). The final corrected and quality-controlled
PEC stage time series (Fig. 9) is the product of standard
quality control (i.e. removal of stage observations taken dur-
ing sensor maintenance) and using image classifications to
support quality control. Specifically, image classifications
helped identify when the stage was zero for August 2017
to September 2023, supported the removal of erroneous data
for most of January 2023, and revealed that stage observa-
tions are likely artificially low from late 2017 to early 2018.
By comparing images classified as “no water” and the corre-
sponding observed stage (visually), we determined that stage
measurements oscillating near zero were noise instead of
short-duration flow events; we then set those measurements
to zero. An example of this is shown in Fig. 8a for Decem-
ber 2022 when the observed stage is less than zero with
corresponding “no water” image classifications. Noisy data
and stage measurements less than zero were an issue before
installing the HOBO MX2001-04-SS-S pressure transducer
and HOBO MicroRX data logger in October 2023; thus, the
image classifications were useful in validating when the ob-
served stage should be zero. Similarly, we used the stage time
series and the image classifications of “high water” images to
identify (visually) stage measurements that were erroneously
low, and subsequently removed those measurements. For ex-
ample, many of the images from January 2023 were classi-
fied as “high water”; however, the corresponding stage val-
ues were near zero or below zero (Fig. 8a). This indicated
sensor measurement error that was likely related to turbu-
lent flow conditions or debris from high flows; we flagged
and removed almost a month of these data from the record
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Figure 6. The distribution of classification probabilities from the 20 runs of the best-performing model configuration evaluated on test
set images. The panels show classification probabilities (vertical axis) across true positive, false negative, false positive, and true negative
classification outcomes (horizontal axis) for: (a) “any water” (“low water” or “high water”) classifications and (b) “no water” classifications.
The colors indicate the probability ranges used to assign high (green), medium (yellow), and low (red) confidence to image classifications.
The boxplots show the interquartile range (IQR; box), median (orange line), the upper/lower quartile ±1.5 · IQR (whiskers), and outliers
(points).

Figure 7. Distribution of Perry Creek (PEC) stage and modeled discharge for medium- and high-confidence water level classifications. The
boxplots show all values of stage (a) and modeled discharge (b) at PEC (vertical axis) corresponding to medium- and high-confidence (only)
classifications of images as high, low, and no water (horizontal axis). The boxplots show the interquartile range (IQR; box), median (bold
line), and the upper/lower quartile ±1.5 · IQR (whiskers); outliers were excluded from boxplots but not from the calculation of boxplot
statistics (see Fig. A7 for boxplots with outliers).

(Fig. 8b). Stage data after 1 February 2023 in Figure 8 are
uncertain as we do not have imagery available.

Similarly, in late 2017 through early 2018, images were
classified as “high water” while the observed stage was rela-
tively low (Fig. 9). This identified a time period during which
the stage sensor was likely pulled upwards in the stilling
well sleeve due to debris catching on the exposed data ca-

ble, according to a subsequent site inspection. We chose not
to remove the late 2017 through early 2018 stage data, but
acknowledge that the stage is likely underestimated: the im-
age classifications provided evidence that peak stage during
this time may have been higher than recorded by the (com-
promised) stage sensor. This demonstrates the importance
of critically evaluating observational data; in this case, im-
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Figure 8. Stage from the Perry Creek (PEC) site from Decem-
ber 2022–February 2023. No imagery was available after 1 Febru-
ary 2023. Stage values (black lines) are colored (points) by high-
confidence image classifications (only). (a) Shows the time series
before quality control, and (b) shows the time series after quality
control.

age classifications reveal that several months of WY2018 are
likely underestimated. For more details, see Appendix A2.

Instantaneous manual discharge measurements provide
additional context (Figs. 10 and 11). There are several in-
stances in which modeled discharge peaks correspond to
PEC stage peaks (April 2018; Fig. 10). In contrast, mod-
eled discharge is zero while the observed stage is greater
than 10 cm for a total of 459 times (1.8 % of the times
that modeled discharge and PEC stage overlap temporally);
at these times, the mean observed stage is 19.8 cm, with a
standard deviation of 5.1 cm. Observations of stage that ex-
ceed 10 cm while modeled discharge is zero, and for which
we have image classifications, occur 83 times (5.2 % of the
times where modeled discharge, PEC stage, and image clas-
sifications overlap temporally; Fig. 11). For example, from
18 January 2018 through 6 February 2018, image classifi-
cations show primarily “high water” and manual discharge
measurements estimate flows of 0.167 and 0.368 m3 s−1,
while the modeled discharge estimates 0 and 0.011 m3 s−1,
respectively (Fig. 10). In contrast, during 19-21 March 2018,
modeled discharge values were within 0.031 m3 s−1 of three
contemporaneous manual discharge measurements (Fig. 10).
There are also 3758 times (14.4 % of the times that mod-
eled discharge and PEC stage overlap temporally) when the
observed stage is zero while the modeled discharge is greater
than zero; at these times, the mean discharge is 0.014 m3 s−1,
with a standard deviation of 0.007 m3 s−1.

Finally, while we do not have a sufficient number of man-
ual discharge measurements to translate PEC stage to dis-

charge across the full range of flow, the manual discharge
measurements nevertheless provide some understanding of
possible observation-based discharge values at PEC. The
minimum observed discharge during periods with non-zero
stage and discharge was 0.014 m3 s−1 on 19 April 2023, and
the maximum observed discharge was 0.614 m3 s−1 on 6
March 2024. Photos and image classifications suggest that
discharge can exceed this, but high flows remain unmea-
sured due to the site being unsafe to access during flows
much higher than the 0.614 m3 s−1 measured on 6 March
2024. We gain some additional understanding of high dis-
charge values at PEC by comparing modeled discharge and
concurrent manual discharge measurements. This compari-
son (Fig. A9) indicates some agreement between measured
and modeled discharge at moderate flows (< 0.283 m3 s−1),
but poor agreement at higher flows (> 0.283 m3 s−1). Addi-
tionally, the longer time period modeled by the NWM (2000–
2020, Fig. A10) suggests that our study period (2017–2020)
does not capture the full range of peak flows at PEC.

3.4 Environmental conditions

In order to understand the hydrologic context of the image
classifications and stage data, we evaluated temporal cor-
respondence between stage and concurrent surface meteo-
rology and soil moisture data (Figs. 12 and A8). In gen-
eral, “high water” stage has a positive relationship with daily
rolling sum precipitation (slope= 0.21, R2

= 0.41), 30 d
rolling sum precipitation (slope= 0.16, R2

= 0.41), and 5 cm
daily rolling mean soil VWC (slope= 126.36, R2

= 0.37).
Similarly, “low water” stage is also positively related to these
meteorological variables; the relationship is similar to that
of “high water” for daily precipitation (slope= 0.47, R2

=

0.15) and less robust for 30 d precipitation (slope= 0.07,
R2
= 0.2) and 5 cm soil VWC (slope= 29.74, R2

= 0.08).
Notably, the R2 value for “high water” and 30 d precipita-
tion indicates a stronger fit compared to the R2 value for
“high water” and daily precipitation. There is also a slight
positive relationship between “high water” stage and 100 cm
daily soil VWC (slope= 22.65, R2

= 0.04).
Stage does not have a clearly identifiable relationship with

the other evaluated meteorological variables, although differ-
ent stage values appear to occur within identifiable ranges of
all the variables. All three image classification categories –
“high water”, “low water”, and “no water” – occur for a wide
range of temperatures, but there are no instances of water oc-
currence at temperatures greater than 30 °C (Fig. 12a). For
relative humidity (RH) below 24 % there are only “no water”
or “low water” classifications; for RH greater than 24 %, all
three classifications are present but with an increasing num-
ber of “high water” classifications as RH approaches 100 %
(Fig. 12b). Overall, maximum stage increases as RH in-
creases, although stage was at times zero across the full range
of RH values. Stage is only greater than zero when daily
and 30 d rolling sum precipitation exceeds 45 and 160 mm,
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Figure 9. Barometrically compensated and quality controlled stage from the Perry Creek (PEC) site from August 2017–November 2023.
The time series shows PEC stage (vertical axis) across the full study period (horizontal axis) colored by concurrent high-confidence image
classifications (colored points). Four example field camera images are shown. Field camera images were not available from 2019–2021.

Figure 10. Perry Creek (PEC) observed stage, instantaneous manual discharge measurements, and modeled discharge for January 2018
through April 2018. The PEC stage is colored by the high-confidence image classifications: “high water”, “low water”, or “no water”.

respectively (Fig. 12c–d), and stage is always zero when
30 d precipitation is at or near zero (Fig. 12d). The daily
soil VWC regularly exceeds 0.7 at a soil depth of 100 cm
(Fig. 12f), but rarely exceeds 0.5 at the shallower soil depth
of 5 cm (Fig. 12e). While “high water” stage increases on
average with increasing VWC at both 5 cm (slope= 126.36)
and 100 cm (slope= 22.65) depths, stage measurements and

their water level classification vary substantially across much
of the range of VWC values. Even so, for 5 cm VWC, stage
is zero when soil VWC is less than 0.15; only “low wa-
ter” or “no water” classifications occur at soil VWC between
0.15–0.27; all classifications are present for soil water con-
tents between 0.27–0.39; and stage is greater than zero when
soil VWC is greater than 0.39. In summary, meteorological
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Figure 11. Comparison between modeled discharge, manual discharge measurements, and observed stage at Perry Creek (PEC). Points show
observations of stage (cm, vertical axis) and corresponding modeled discharge (m3 s−1, horizontal axis), according to the corresponding
high-confidence image classification (color). The value of available manual discharge measurements (unfilled diamonds) corresponding to
the observed stage and modeled discharge points are shown according to their magnitude (m3 s−1, diamond size).

and soil moisture patterns are consistent with expected an-
tecedent and coincident hydrology (stage) at this site, and
also reflect expected patterns in the associated image classi-
fications.

4 Discussion

4.1 Image classification performance

We directly address the need to develop methods to observe
stream conditions in IRES (Gupta et al., 2022; Noto et al.,
2022) through the training and application of a simple lo-
gistic regression model for the classification of field camera
imagery. While more complex machine learning model al-
gorithms can sometimes provide more accurate image clas-
sifications, initial testing demonstrated that the logistic re-
gression model performed better than standard implementa-
tions of other models, including image segmentation, clus-
tering, and random forests. Our implementation prioritizes
a simple, accurate, site-specific model that requires mini-
mal manually-labeled training data. Even so, our overarch-
ing modeling workflow is transferable to other stream sites
that have imagery with a consistent view of the streambed
and only requires labeling a subset of site images as demon-
strated in this study. Our method is optimal for detecting wa-
ter presence in IRES, but is not intended to provide quanti-
tative discharge estimates. For relative discharge estimates,
a more complex model architecture may be helpful (Gupta
et al., 2022; Goodling et al., 2025).

While our image classification method performed well,
the method could be improved by further considering the
time-dependence of flow states, especially in cases where
stage data is either missing or not available. Since individ-
ual streamflow observations are related to each other at the
30 min or hourly time scale of the field camera images (i.e.
if one image is classified as “no water”, the next image is
more likely to also be classified as “no water”), this temporal
correlation of flow states might be used to flag unlikely clas-
sifications and set them to a “low” confidence level. Precip-
itation and soil moisture data, in conjunction with the image
classifications, could also provide additional quality control
information even in the absence of stage or discharge mea-
surements.

Furthermore, the present application includes only three
categorical flow states which loosely correspond to quick-
flow (“high water”), baseflow or pooling (“low water”), and
a dry streambed with no flow (“no water”). This is fitting
for IRES as this classification approach prioritizes the pres-
ence or absence of water. Future work could expand the num-
ber of classified categories to include more water levels as in
Seibert et al. (2019), Gupta et al. (2022), and Goodling et al.
(2025). Specifically, our method could be expanded to de-
tect IRES-relevant states including wet streambeds, isolated
pools, standing water, trickling water, snow, or ice. Alterna-
tively, models might be designed to estimate stage for im-
ages classified as “low water” or “high water” by building
on methods for estimating stage on perennial streams, as in
Leduc et al. (2018), but would need to address the problem
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Figure 12. Correspondence between Perry Creek (PEC) stage and concurrent surface meteorology and soil moisture data. PEC stage (cm,
vertical axis) and its concurrent medium or high-confidence image classification (point color) compared to (horizontal axes): (a) 2 min mean
air temperature, (b) 2 min mean relative humidity, (c) daily rolling sum precipitation, (d) 30 d rolling sum precipitation, and daily rolling mean
soil volumetric water content at (e) 5 cm depth and (f) 100 cm depth. Linear regression estimates (lines, insets) summarize the relationship
between stage and environmental data (a–f) for “low water” (dotted lines) and “high water” (solid lines) image classifications.
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of adverse lighting and turbulent flow conditions common to
IRES.

One strength of the categorical image classification is that
“low water” conditions include times of water presence in
connected or disconnected pools, a distinct phase of IRES
that supports aquatic life (Magand et al., 2020). Specifically,
even well-adapted aquatic invertebrates living in IRES expe-
rience a steep decline in taxa richness with increasing flow
intermittence (Stubbington et al., 2017). At PEC, the stage
sensor is generally not exposed to water during pooling, so
the stage is measured as 0 cm even when there may be wa-
ter in nearby pools, meaning that the observed stage may not
fully illustrate water presence. Thus, when cropping the im-
ages prior to classification, it was important to include most
of the width of the streambed so that pooling in the streambed
was visible. Further work could expand the “low water” cate-
gory to separate low flow from pooling conditions. Discharge
time series also do not capture the pooling phase of IRES be-
cause discharge is also zero at these times. Therefore, field
camera images and image classification offer a way to ob-
serve the ecologically important “pooling” phase of IRES.

Regardless of the potential uses of field camera imagery,
image quality and the reliability of field cameras will always
be a challenge due to factors including inclement weather,
shadows, and changes to IRES sites (i.e., high flows leading
to debris accumulating in the channel). Pre-processing im-
ages helped to decrease the effect of variable lighting, and
assigning classification confidence levels helped flag lower
confidence classifications that may have been affected by im-
age quality issues. Other studies have tackled this issue by
pre-processing images with low image quality prior to clas-
sification. For example, Leduc et al. (2018) pre-processed
images to account for image quality issues by removing im-
ages or adjusting identification methods in situations of in-
clement weather, shadows, or when rocks emerged from the
streambed. Another issue is the difficulty of taking high qual-
ity images at night, even with a flash. Zhang et al. (2019)
solved this problem by using an infrared camera, but regular
cameras are often a better fit for remotely monitored sites.
Finally, field cameras can often malfunction due to environ-
mental exposure including extreme precipitation, humidity,
and temperatures, making field cameras difficult to maintain.

For stream imaging generally, it is advantageous to choose
a protected, stable, and fixed position for the field cam-
era such that images are all taken with a full view of the
streambed and from the same angle, which saves time dur-
ing image pre-processing and classification. In this study,
our method was complicated by four slightly different cam-
era viewing angles. We minimized the effect of these chang-
ing viewing angles by cropping all images to focus on the
staff plate and streambed. For locations with a time series of
images with the same viewing angle, pre-processing would
be less burdensome, and classification would likely improve
because differences in images would only come from event
evolution and not camera location.

4.2 National Water Model discharge at Perry Creek

We used NWM discharge estimates at the study site to
demonstrate the use of image classifications to augment mod-
eled discharge from a highly generalized streamflow predic-
tion model, which the NWM represents. The observed dif-
ferences between modeled discharge and stage are expected,
particularly for small basins like that of PEC, since uncer-
tainty in hydrologic models generally increases log-linearly
as watershed area decreases (Carpenter and Georgakakos,
2004). In our case, modeled discharge values are for a stream
segment that overlaps the PEC site (Fig. A5), so there is a dif-
ference in the spatial scales corresponding to stage and dis-
charge measurements that may affect the comparison (Cos-
grove et al., 2024; NOAA, 2024a). Specifically, the NWM’s
representation of the PEC stream segment may have some
overlap with Lake Mendocino during high lake levels, which
could result in the representation of backflow from the lake
as increased (observed) stage but with no corresponding in-
crease in discharge. Additionally, much of the NWM’s PEC
segment overlaps an area underlain by well-indurated Fran-
ciscan sandstone (Delattre and Rubin, 2020), which could in-
duce higher discharge values along much of the Perry Creek
segment relative to the location of the PEC site (see Ap-
pendix A3). Because the NWM is unable to resolve the de-
tailed geology, steep slope, and groundwater-surface water
interactions of this reach of Perry Creek, we would not ex-
pect the NWM to accurately reproduce flows at this particular
site. While the NWM is generally relied upon to model dis-
charge at larger scales (basin areas > 1000 km2), the modeled
discharge estimates are nevertheless useful for representing
the type of limited hydrologic information often available at
less well-studied sites.

According to our comparisons, the NWM discharge
misses or underestimates some short-duration, moderately-
sized quickflow events (Fig. 10). Many “high-water” im-
age classifications occur during January–February 2018,
when the NWM shows little discharge. This is illustrated
by two manual discharge measurements from January 2018
(Fig. 10), which record substantially higher flows at PEC
than those simulated by the NWM. We hypothesize that the
NWM struggles to represent early wet season flow processes
in the steep slopes and low-infiltration soils of the PEC wa-
tershed. Later in the season, when soils in the PEC watershed
are likely more saturated, the NWM discharge aligns more
closely with PEC stage data and manual discharge measure-
ments, suggesting that the NWM performs better under satu-
rated conditions.

Additionally, at low stage and discharge levels, manual
measurements of PEC discharge can be greater than those
of modeled discharge (Fig. A9), and modeled low discharge
appears stratified (Fig. 11). This is not surprising, as the
NWM’s physical process representation of low flow is not
tailored to this site nor IRES systems in general. Low flows
have been shown to be sensitive to the spatial scale of analy-
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sis and site-specific catchment characteristics, especially ge-
ology and soils (Chagas et al., 2024), which are not well rep-
resented in generalized models like the NWM. Conversely,
at high stage levels, the few available manual measurements
of discharge are less than corresponding modeled discharge
(Fig. 11). Overall, our comparison makes clear that image
classification in IRES benefits not only the quality of the
in-stream observational record, but also stands to improve
hydrologic model representations of IRES. Given the rela-
tively uncertain but important contribution of IRES systems
to downstream watershed flow regimes, better quantification
of low flow components of inflows to heavily managed sys-
tems, like the Lake Mendocino watershed, would support
water storage and delivery planning efforts (e.g., Jasperse
et al., 2020).

4.3 Environmental conditions

DRW surface meteorology and soil moisture observations
help establish the hydrologic context for the image classi-
fications. These observations show the expected seasonal cy-
cle of a Mediterranean climate with cool, wet winters and
warm, dry summers, along with significant interannual vari-
ability in precipitation (Fig. A8). The ranges of meteorolog-
ical and soil VWC values observed for different flow states
(e.g., there only being “no water” classifications for temper-
atures > 30 °C) may provide helpful upper and lower bounds
within which different flow conditions can be expected to oc-
cur in IRES. Nevertheless, a longer-term record of these data
would be required to understand those bounds.

The comparison of soil VWC at 5 and 100 cm shows that
high shallow soil moisture is a stronger predictor of water
presence at PEC compared to deep soil moisture (Fig. 12e–
f). The existence of “no water” image classifications across
the full range of values for 100 cm VWC shows that deep
soil moisture can be decoupled from the presence of water
at PEC (Fig. 12f). In contrast, the shallow 5 cm VWC pro-
vides insight into the soil moisture conditions present during
high water levels; “high water” image classifications are pre-
dominant when 5 cm VWC is greater than 0.39 (Fig. 12e).
This, combined with our understanding of the geology of
the PEC watershed, suggests that runoff generation at PEC is
primarily driven by shallow subsurface flow and saturation-
or infiltration-excess overland flow. With respect to low soil
moisture conditions, stage was zero when 5 cm VWC was
less than 0.15 (Fig. 12e), indicating that there may be a soil
moisture threshold at which flow cannot occur at PEC.

Notably, there is considerable spatial variation in soil
moisture observations, and the soil type at DRW is differ-
ent from PEC ( Soil Survey Staff at the Natural Resources
Conservation Service at the US Department of Agriculture,
2024). Specifically, the soil hydrologic group at DRW is
Group B, which indicates moderate infiltration rates, while
the PEC watershed contains Groups C and D, which indicate
slow or very slow infiltration rates, respectively ( Soil Sur-

vey Staff at the Natural Resources Conservation Service at
the US Department of Agriculture, 2024). This suggests that
if soil moisture observations existed in the PEC watershed,
the relationship between such observations and PEC stage
could be different than our findings for DRW soil moisture
and PEC stage. Based on the soil hydrologic group ( Soil
Survey Staff at the Natural Resources Conservation Service
at the US Department of Agriculture, 2024), we hypothesize
that for a given amount of precipitation, there would likely
be more runoff generation in the PEC watershed compared to
the area surrounding DRW. The different soil type at DRW
is likely related to the different geology at DRW – the Ukiah
Formation, an early Quaternary to Late Neogene continental
basin deposit including conglomerate, silty sandstone, and
clayey siltstone (Delattre and Rubin, 2020). In contrast, the
PEC watershed’s steep slopes, landslide deposits, and frac-
tured Franciscan Formation likely results in shallower and
more unstable soils compared to soil in the rolling hills sur-
rounding DRW. Confirmation of our understanding of the
role of soils and geology in modulating the stage at PEC
would require additional research that is beyond the scope of
this work. Unique characteristics of the PEC site are further
explored in Appendix A3.

4.4 Extensibility and potential applications

The classification model (see Data and Code Availability
statement) is structured to ingest identically-sized images
(with the streambed in the field of view) from any individ-
ual site’s field camera imagery collection, as long as a subset
of images are labeled and sorted into folders that are named
for each classification category. Due to there being multiple
field camera angles at PEC, we cropped the images to fo-
cus on the stream channel and staff plate. However, images
do not necessarily need to be cropped, and bank vegetation
could potentially help the model predict flow states. For sites
with consistent camera types and viewing angles, a useful
exercise could be to find the optimal image resolution and
cropping extent for feature recognition. In such an exercise,
the cost of increased computing power for higher resolution
images should be balanced with model performance.

Currently, the classification portion of the model code
will work to classify any number of categories specified by
the user, but the classification confidence portion is written
specifically for the four categories from this work (“no wa-
ter”, “low water”, “high water”, and “obstructed”). The code
could be expanded to provide classification confidence val-
ues for additional and/or alternative categories by any user
familiar with the Python programming language. In addition,
a more objective strategy for evaluating classification confi-
dence for other sites could be developed. Thus, the method
as currently structured allows a user to create a time series
of categorical flow states, sorted by confidence level, for any
IRES site with similar timelapse field camera imagery (e.g.,
images from USGS Flow Photo Explorer; USGS, 2024) with
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or without stage sensors (see example application in Ap-
pendix A4 and Fig. A12). For sites without stage sensors,
this method can estimate categorical flow states in IRES at
low cost (Appendix A5). For sites with a stage sensor, im-
age classification can support validation and quality control
of stage data.

5 Conclusion

This work demonstrates that a simple machine learning algo-
rithm can classify timelapse field camera images to identify
no, low, or high water levels in IRES, providing a low-cost,
transferable method for monitoring water occurrence in these
sparsely observed systems. Given the prevalence of ungaged
IRES, field cameras and image classification offer a practical
approach to improving understanding of their role in climate-
impacted freshwater systems. For example, the FIRO pro-
gram at Lake Mendocino (Fig. A1) currently uses streamflow
observations from EFR to inform reservoir inflow models. As
climate change is expected to increase drying in IRES, un-
monitored contributions from tributaries such as Perry Creek
(Appendix A3) could affect reservoir storage. Thus, as the
FIRO program expands, field cameras and image classifica-
tion may offer a cost-effective approach to integrating in-
formation on the presence and magnitude of IRES contribu-
tions.

This approach can also support monitoring of critical habi-
tats, including tributaries where salmon passage depends on
streamflow connectivity threatened by drought and water di-
versions (see e.g., Scott River Watershed Council, 2025). In-
stalling cameras at tributary confluences could inform tar-
geted habitat restoration. More broadly, formally recognizing
IRES as integral to river systems can incentivize monitoring
and protect them from degradation due to climate change,
mining, and urban development (Acuña et al., 2014). The
2023 exclusion of ephemeral streams from US Clean Wa-
ter Act protections highlights the vulnerability of IRES and
the importance of cost-effective monitoring approaches like
ours for understanding the impacts and effectiveness of water
management efforts.

We conclude by offering practical recommendations for
implementing our method. Cameras should be installed
along IRES reaches that are important for monitoring wa-
ter management objectives (e.g., fish passage, drought con-
tingency planning). Installations should be in stable loca-
tions with clear views of the streambed and minimal vege-
tation interference. Consistent camera types and viewing an-
gles should be used, as they improve the robustness of time
series and the effectiveness of classification. For the classifi-
cation of categorical flow states, installation of a staff plate is
not necessary, and basic image classification can be achieved
with a limited number of labeled photos (on the order of 100
per site; see Appendix A4). Long-term maintenance budgets
are also recommended to support sustained monitoring. Fi-

nally, this approach can be integrated with complementary
methods (Gupta et al., 2022; Goodling et al., 2025) and de-
ployed through accessible platforms such as the USGS Flow
Photo Explorer (USGS, 2024) and the CrowdWater mobile
application (SPOTTERON GmbH, 2025).

Appendix A

A1 Barometrically compensating stage data

Prior to the installation of barometric loggers in late 2021 or
early 2022 at each CW3E stream site (Fig. A1), 2 min atmo-
spheric pressure from nearby surface meteorology stations
was used to barometrically compensate pressure measure-
ments from the stage sensors. Each stream site was matched
with a nearby surface meteorology site that was closest in el-
evation; thus, the Perry Creek stream site (PEC) was matched
with the Deerwood (DRW) surface meteorology site. After
the barometric loggers were installed at the stream sites, we
were able to account for the difference in atmospheric pres-
sure between the barometric logger location and the surface
meteorology location by calculating the mean pressure dif-
ference for April 2022 through March 2023 (Figs. A3, A4).

The mean annual atmospheric pressure difference between
DRW and PEC was 5.00 hPa. The minimum difference cal-
culated at 15 min intervals was 3.30 hPa and the maximum
difference was 7.10 hPa for April 2022 through March 2023.
This shows that the stage would have been on average
5.00 cm higher if it had been calculated with the atmospheric
pressure at DRW instead of the atmospheric pressure of the
barometric logger at PEC. Prior to installation of the baro-
metric logger at PEC, 5.00 hPa was subtracted from the sur-
face meteorology pressure values to account for the location
discrepancy such that the stage formula for PEC was:

PEC stage (cm)= PEC stage sensor (cm)

− (DRW atmospheric pressure (hPa)× 1.01972
cm
hPa

)

− (mean(PEC atmospheric pressure (hPa)

−DRW atmospheric pressure (hPa))× 1.01972
cm
hPa

) (A1)

In comparison, the stage for PEC after the installation of
the barometric logger at PEC is simply:

PEC stage (cm)= PEC stage sensor (cm)

− (PEC atmospheric pressure (hPa)× 1.01972
cm
hPa

) (A2)

A2 Quality control of stage data

In addition to barometric compensation of pressure trans-
ducer data, quality control was performed on these stage
data to remove anomalous negative stage values, account for
noise in these data, and remove values that disagreed with
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the field camera observations. We performed these correc-
tions by looking at the raw stage values in tandem with the
image classifications and field camera images (subset of time
series shown in Fig. A7). First, all values less than −8 cm
were set to null because these values were clearly more neg-
ative than the range of noise in the stage data. Then, the mean
(−2.79 cm) and standard deviation (0.92 cm) were calculated
for all negative values until October 12, 2023, when the base-
line stage returned to near zero following the installation of
the HOBO Water Level Data Logger. Water depth cannot be
negative and field camera images generally showed dry con-
ditions – zero level – when the stage was below zero. To ac-
count for this, an offset of 2.79 cm was added to all data prior
to October 12, 2023. In addition, since the field camera im-
ages showed that values below two standard deviations above
zero (or 1.84 cm) were generally dry conditions, all values
less than 1.84 cm were set to zero to remove noise. Note
that we assumed that zero water depth equaled zero stage
for this study. There are ongoing efforts to establish bench-
marks such that stage values reference a constant elevation
at CW3E sites, but this was not completed at the time of this
work.

Then, we looked at the rest of the time series in compari-
son to the image classifications to ensure that the rest of the
stage data were plausible. Data prior to 7 October 2017 ap-
peared to be higher amplitude noise oscillating near zero, so
these data were set to zero. For data prior to 1 March 2018,
the amplitude of the noise was greater than the rest of the
time series when the stream was dry as shown in the image
classifications, so all values less than three standard devia-
tions above zero were set to zero. We also removed a few
anomalous near-zero data points resulting from maintenance
visits where the pressure transducer was removed from the
stilling well during times of flow. From 5 January 2023 at
15:30 UTC until 4 February 2023, the image classifications
show high flow while the stage sensor data shows low or neg-
ative flow, so these data were removed. While the stage sen-
sor appears to start functioning on 4 February 2023, the qual-
ity of data following this malfunction is unclear as the field
camera was not functioning due to water damage from Febru-
ary through 7 October 2023. Some possible reasons for the
stage sensor malfunction are a buildup of sediment within the
stilling well and turbulent flow confounding the stage sensor
readings. From comparing PEC to other sites and precipita-
tion data, we find that it is possible that this malfunction oc-
curred during what may have been the highest stage values
of the PEC time series.

At PEC in October 2023, the original Solinst pressure
transducer was demobilized and replaced with the HOBO
MicroRX datalogger and MX2001 pressure transducer. Dur-
ing the installation of the HOBO pressure transducer, an at-
tempt was made to prevent malfunctioning of the logger as
in winter 2023 by encasing the data cable in flexible plas-
tic conduit anchored to rock and removing sediment from
the stilling well. Specifically, 1.27 cm flexible plastic con-

duit was anchored to large boulders along the stream channel
to house the data cable connecting the pressure transducer
to the datalogger, which was installed on a bench above the
primary stream channel. Enclosing the data cable in conduit
(McMaster-Carr, 2024) anchored to rock prevents debris-
laden flows from catching on the data cable and exerting
forces which could pull the pressure transducer upwards in
the stilling well (which may have occurred in winter 2023).
In addition, compacted sediment was cleared from the still-
ing well and holes were drilled in the sides of the stilling
well to allow sediment to flow through the stilling well more
easily.

A3 Appendix A3: Unique features at Perry Creek
stream site

PEC is a unique site due to its proximity to the reservoir-
impounded Lake Mendocino and its location just down-
stream of a geologic contact. Its geologic features, in par-
ticular, may generate an observational setting that is distinct
from other, even nearby, locations. While the hydrograph at
PEC is often characterized by discrete quickflow events (e.g.
WY 2020 in Fig. 9), some wet seasons may also have base-
flow for part or all of the wet season (e.g. WY 2019 in Fig. 9).
Just upstream of PEC, mossy cliffs surround a gorgeous wa-
terfall that flows over dark gray, fine-grained, massive, well-
indurated Franciscan sandstone (Fig. A2; Delattre and Rubin,
2020). The streambed at PEC is composed primarily of an-
gular to subangular pebble to boulder-sized Franciscan sand-
stone (Fig. A11) and there is often woody debris that shows
evidence of high flows. The stream gradient of Perry Creek is
very high upstream of PEC with a series of pools and drops; it
then flattens just upstream of PEC, at the last visible outcrop
of sandstone bedrock. Due to these features, PEC is prone
to flashy, turbulent, sediment-laden flows, which field cam-
era images may capture but that may not be reliably repre-
sented in stream monitoring records due to noisy and/or bi-
ased stage measurements resulting from equipment malfunc-
tions at high flows (Appendix A2).

Another feature of the PEC site, which may influence sur-
face flow patterns, is subsurface flow. We hypothesize that
subsurface flows may at times bypass the PEC surface site
due to the Lake Mendocino and PEC water tables being con-
nected. Geologic maps and visible surface characteristics in-
dicate that the PEC site may be located in an area along Perry
Creek where surface flow transitions to subsurface flow. For
example, in January 2022, the waterfall upstream of the PEC
site was flowing (Fig. A2) and there was a small pool of wa-
ter in the sandstone outcrop just upstream of PEC; however,
there was no water in the streambed at PEC, though the rocky
streambed was damp. Subsequently, during a site visit in
June 2024, the waterfall upstream of PEC was again flowing,
and the PEC site was dry. In addition, gray, poorly indurated
shale, which likely has substantial water holding capacity,
was found in the steep slope just north of PEC. On the south
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side of PEC, there is a steep, mossy, poorly-consolidated
landslide deposit that contains a mix of sandstone boulders,
shale, and mud. This landslide deposit begins just upstream
of PEC and may partially overlay the shale. This, combined
with highly transmissive Holocene alluvial deposits along
Perry Creek’s outfall to Lake Mendocino (Delattre and Ru-
bin, 2020), may lead to groundwater recharge and subsurface
flow to Lake Mendocino from an area in the streambed just
upstream of PEC. This could cause decreased surface water
flow at PEC. Additionally, the pattern of groundwater flow
between PEC and Lake Mendocino may be further compli-
cated by preferential flow pathways through fractures in the
Franciscan Complex sandstone, analysis of which is beyond
the scope of the present study.

High lake levels at Lake Mendocino may also affect PEC
surface water dynamics. PEC borders an area designated as
“subject to flooding” due to its proximity to Lake Mendo-
cino (Fig. 1; Moore et al., 2019). Another reason to suspect
that lake levels influence stream state at PEC is the difficulty
of constructing a rating curve at PEC – a range of values
for discharge have been observed at almost identical stage
values. It is likely that there are several stage-discharge re-
lationships at this site based on a variety of factors includ-
ing channel geometry as stage increases, backwater influ-
ences, and instability of flow. Constraining these relation-
ships would require more manual discharge measurements at
the full range of flows, along with analysis of cross-sectional
surveys to understand how the channel geometry affects flow
as stage increases from low water levels to bankfull condi-
tions. These efforts are outside the scope of this work, and it
remains that estimating an accurate stage-discharge relation-
ship at extreme high flows utilizing conventional discharge
measurement techniques may be impossible due to site ac-
cess limitations.

The above unique site features indicate that Perry Creek
may at times have an outsized, yet unaccounted for, con-
tribution to Lake Mendocino inflows. The primary stream-
gage used for understanding inflows to Lake Mendocino is
USGS streamgage 11461500 located on the East Fork of the
Russian River (EFR in Fig. A1), which monitors flows from
a drainage network separate from that of Perry Creek. The
PEC and EFR watersheds account for about 3 % and 89 %
of the total area draining into Lake Mendocino, respectively.
Despite its smaller size, the relatively steep relief and un-
derlying geology of the Perry Creek watershed may result in
runoff ratios that are greater than those experienced by the
larger Lake Mendocino watershed for similarly-sized precip-
itation events. This could potentially result in Perry Creek in-
flows constituting a fraction of total Lake Mendocino inflow
that is larger than its watershed size would suggest, specif-
ically during more extreme storm events. While arrival at
this hypothesis was made possible through our comparison
of classified field camera imagery and site monitoring, con-
firmatory analysis is beyond the scope of the present study.
Nevertheless, investigation of this hypothesis would be valu-

able for understanding the relevance of IRES for decision
support (e.g., reservoir inflow model design) in managed sys-
tems like that of Lake Mendocino.

A4 Appendix A4: Transferability to other sites

Although the main goal of this work was to demonstrate
proof-of-concept at the PEC site, we also tested our model on
two additional US sites from the USGS Flow Photo Explorer:
Dry Brook Upper in Massachusetts and USGS streamgage
10247170 on Troy Creek in Nevada (USGS, 2024). We se-
lected these sites because they are both IRES with thousands
of photos available. After labeling only 105 and 111 pho-
tos, respectively, the model achieved 84.4 % accuracy at Dry
Brook Upper and 76.5 % at Troy Creek. The resulting time
series of categorical flow states from model predictions (for
all confidence levels) are shown in Fig. A12. This exercise
was performed with fewer labeled photos compared to the
PEC case, no photo cropping, and no changes to the model
code (aside from updating the formatting of dates).

Based on this preliminary transferability analysis, we find
that about 100 labeled images – with all categories repre-
sented in both training and testing sets – appear sufficient to
transfer this method to other sites with consistent imagery.
Notably, all photos used in this exercise were taken at noon,
which likely enhanced model performance due to minimal
variation in sun angle. While additional labeled photos would
likely improve performance at any site, those with unbal-
anced categories or dramatic changes in illumination would
benefit most.

Current deep learning models in the USGS Flow Photo
Explorer (USGS, 2024) estimate relative flow states but can-
not distinguish dry streambeds (Gupta et al., 2022; Goodling
et al., 2025), potentially due to the dynamic channel mor-
phology, shifting debris and vegetation, and ambiguous flow
states of IRES – all of which can make training deep learning
models challenging. Our method could complement the ex-
isting relative streamflow method, for example, by being in-
cluded in a conditional two-step approach: detect water pres-
ence first with our simple model; if present, estimate rela-
tive discharge using a CNN. This would preserve the sim-
plicity and high accuracy of our model while enabling con-
ditional estimation of streamflow when relevant. This ap-
proach would be well-suited to watersheds managed for both
water supply and fishery health since both streamflow vol-
ume and stream connectivity would affect watershed man-
agement. With hundreds of thousands of photos available on
the USGS Flow Photo Explorer (USGS, 2024) and the likeli-
hood of increased IRES prevalence with climate change, this
screening for IRES-specific states would be especially valu-
able. Instructions for applying our methodology to USGS
Flow Photo Explorer images are available on HydroShare
(see data and code availability statement).
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A5 Cost of field camera site

The (2025) cost of field cameras similar to those used in
this study range from EU 100–EU 300. The mounting acces-
sories and telemetry equipment add about EU 100, though
costs may vary depending on specific hardware choices. The
telemetry system enables near real-time image access but re-
quires an annual renewal fee of about EU 70. Total instal-
lation costs can vary considerably depending on site acces-
sibility and labor expenses. Sites typically require biannual
servicing to maintain a consistent power supply, clear vege-
tation that could obstruct the camera’s view of the streambed,
and to perform routine maintenance.

Figure A1. Location of the U.S. Geological Survey streamgage 11461500 (EFR) and Center for Western Weather and Water Extremes
(CW3E) stream, precipitation, and surface meteorology sites in the upper Russian River watershed, California. Image data sources: CW3E
and National Hydrography Dataset Plus (NHDPlus) High Resolution (Moore et al., 2019; Esri).
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Figure A2. Waterfall flowing over mossy Franciscan sandstone just upstream of the Perry Creek (PEC) stream site from January 2022.
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Figure A3. Perry Creek (PEC) barologger atmospheric pressure and Deerwood (DRW) surface meteorology site atmospheric pressure.

Figure A4. Difference between Perry Creek (PEC) barologger atmospheric pressure and Deerwood (DRW) atmospheric pressure from April
2022 through March 2023.
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Figure A5. The National Water Model segment of Perry Creek that overlaps with the Perry Creek (PEC) monitoring site. The stream segment
is highlighted in light yellow, and the PEC site (not shown) is located just upstream of Lake Mendocino along the stream segment in this
image. Image source: Esri, NOAA (2024b).

https://doi.org/10.5194/hess-30-709-2026 Hydrol. Earth Syst. Sci., 30, 709–742, 2026



734 S. E. Ogle et al.: Image classification of stream stage

Figure A6. A sample of labeled test set images and corresponding classification outputs from the final model run. The images are annotated
(text above images) with the classification (high water, low water, no water, or obstructed category labels) and the classification probabilities
for each category (%). The simple outcome (“True” for correct classifications and “False” for incorrect classifications) is to the left of each
image. A detailed explanation of the classification output is below each corresponding image.

Figure A7. Distribution of Perry Creek (PEC) stage and modeled discharge for medium- and high-confidence image classifications. The
boxplots show all values for stage (a) and modeled discharge (b) at PEC (vertical axis) corresponding to medium- and high-confidence
(only) classifications of images as high, low, and no water (horizontal axis). The boxplots show the interquartile range (IQR; box), median
(bold line), the upper/lower quartile ±1.5 · IQR (whiskers), and outliers (points).
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Figure A8. Perry Creek (PEC) stage and Deerwood (DRW) site meteorology and soil moisture, August 2017–November 2023. Time series
include: (a) 15 min barometrically compensated and quality controlled PEC stage colored by concurrent medium or high-confidence image
classifications; and daily DRW (b) mean air temperature, (c) mean relative humidity, (d) total precipitation, (e) mean soil volumetric water
content (at depths of 5, 10, and 15 cm), and (f) mean soil volumetric water content (at depths of 20, 50, and 100 cm).
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Figure A9. National Water Model (NWM) discharge and manual discharge measurements at Perry Creek. Points show available concurrent
observations of measured discharge (vertical axis) at the Perry Creek (PEC) site and modeled discharge (horizontal axis) at a stream segment
overlapping PEC, which are colored by observed PEC stage.

Figure A10. Time series of National Water Model (NWM) discharge and stage measurements at Perry Creek. Lines show partially-
overlapping observations of observed stage at the Perry Creek (PEC) site (left vertical axis, solid black line) between 2017–2020, and
modeled discharge (right vertical axis, dotted gray line) at a stream segment overlapping PEC between 2000–2020.
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Figure A11. Photo from a Perry Creek (PEC) site visit in January 2022. The photo shows a small pool of water upstream of the PEC site in
front of the last visible outcrop of Franciscan sandstone. The rocky, dry streambed is visible in the middle, with the white staff plate on the
right. The steep hillside on the left is a landslide deposit. This photo was taken looking downstream.
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Figure A12. Categorical flow state time series from model predic-
tions for two sites from the U.S. Geological Survey Flow Photo
Explorer (USGS, 2024): (a) Dry Brook Upper, Massachusetts, US,
and (b) USGS streamgage 10247170 on Troy Creek, Nevada, US.

Table A1. Percentages of images classified as no, low, and high water that correspond to stage or discharge greater than: percentiles of
observed stage at Perry Creek (PEC) from August, 2017 through November, 2023 (top); National Water Model (NWM) discharge at a stream
segment overlapping PEC from August, 2017 through August, 2020 (middle); and NWM discharge from January, 2000 through December,
2020 (bottom). All percentages were calculated using the same medium- and high-confidence image classifications from August, 2017
through November, 2023. For NWM data, only image classifications from 2017–2018 are used because there is no NWM data after 2020,
and there are no images available during 2019 and 2020.

PEC stage, August 2017 through November 2023

Stage percentile 60 % 65 % 70 % 75 % 80 % 85 % 90 % 95 % 99 % 100 %

PEC stage, cm 0.0 0.0 0.0 0.0 5.1 16.7 21.5 31.3 46.1 95.8
“No water” classifications > stage percentile 0.1 % 0.1 % 0.1 % 0.1 % 0.1 % 0.0 % 0.0 % 0.0 % 0.0 % –
“Low water” classifications > stage percentile 95.2 % 95.2 % 95.2 % 95.2 % 94.8 % 58.8 % 36.8 % 1.2 % 0.4 % –
“High water” classifications > stage percentile 93.8 % 93.8 % 93.8 % 93.8 % 93.8 % 86.7 % 75.1 % 32.3 % 5.6 % –

NWM discharge, August 2017 through August 2020

Discharge percentile 60 % 65 % 70 % 75 % 80 % 85 % 90 % 95 % 99 % 100 %

NWM discharge, m3 s−1 0.0 0.01 0.01 0.01 0.02 0.03 0.04 0.10 0.75 9.22
“No water” classifications > discharge percentile 23.0 % 18.2 % 18.2 % 18.2 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % –
“Low water” classifications > discharge percentile 91.6 % 71.4 % 71.4 % 71.4 % 36.3 % 25.3 % 9.8 % 0.0 % 0.0 % –
“High water” classifications > discharge percentile 86.4 % 73.5 % 73.5 % 73.5 % 69.3 % 69.0 % 67.9 % 30.0 % 3.5 % –

NWM discharge, January 2000 through December 2020

Discharge percentile 60 % 65 % 70 % 75 % 80 % 85 % 90 % 95 % 99 % 100 %

NWM discharge, m3 s−1 0.01 0.01 0.02 0.03 0.04 0.05 0.11 0.37 1.65 26.52
“No water” classifications > discharge percentile 18.2 % 18.2 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % –
“Low water” classifications > discharge percentile 71.4 % 71.4 % 36.3 % 25.3 % 9.8 % 0.2 % 0.0 % 0.0 % 0.0 % –
“High water” classifications > discharge percentile 73.5 % 73.5 % 69.3 % 69.0 % 67.9 % 47.4 % 29.3 % 4.2 % 0.7 % –
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Code and data availability. Code that implements the final model,
associated data from this study (images, PEC stage data, PEC man-
ual discharge data, DRW soil and surface meteorology data, and
NWM discharge data), and instructions for applying our methodol-
ogy to USGS Flow Photo Explorer images are publicly available
and citable on the CUAHSI HydroShare platform at: http://www.
hydroshare.org/resource/926f16b0d54242879777b19fa805ef79
(Ogle and Levy, 2025).
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