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Abstract. The Lancang-Mekong River (LMR) Basin is
highly vulnerable to extreme hydrological events, including
Drought-Flood Abrupt Alternation (DFAA). The efficacy of
potential mitigation measures, such as reservoir operations,
on DFAA under climate change remains poorly understood.
This study investigates these dynamics using five Global Cli-
mate Models (GCMs) from the Coupled Model Intercompar-
ison Project Phase 6 (CMIP6). It employs the Revised Short-
cycle Drought-Flood Abrupt Alteration Index (R-SDFAI),
along with the Tsinghua Representative Elementary Water-
shed (THREW) model integrated with the developed reser-
voir module. The findings reveal that DFAA in the LMR
Basin is primarily dominated by DTF (drought to flood),
with probabilities of DTF exceeding those of FTD (flood to
drought) at mild, moderate, and severe intensity levels. The
increase in DTF probability for future periods is also signif-
icantly higher than that of FTD. Mild DTF and mild FTD
account for 58 % to 90 % and 75 % to 100 % of their total
probability in the future, making the mild-intensity events
the most frequent DFAA. Reservoirs play a significant role in
reducing DTF risks during both dry and wet seasons, though
their effectiveness in controlling FTD risks, particularly dur-
ing the dry season, is relatively weaker. Furthermore, there is
a positive correlation between the reservoir’s capacity to mit-
igate total DFAA risk and its total storage. Reservoirs display
a stronger ability to regulate high-intensity FTD and high-
frequency DTF events, and significantly reduce the monthly
duration of DFAA. These insights provide valuable guidance

for the effective management of water resources cooperatives
across the LMR Basin.

1 Introduction

Flood and drought are two of the most frequent natural dis-
asters in the world (Adikari and Yoshitani, 2009; ADREM
et al., 2024). Drought-Flood Abrupt Alternation (DFAA),
which is defined as the rapid transition between flood and
drought conditions within a region (Xiong and Yang, 2025),
has received growing attention in recent years (Chen et al.,
2025; Wu et al., 2006; Zhang et al., 2012; Shan et al., 2018;
Song et al., 2023). DFAA specifically consists of two types
of rapid transition events: (1) drought to flood (DTF), where
conditions shift quickly from drought to flood, and (2) flood
to drought (FTD), where conditions rapidly change from
flood to drought. Hazards arising from DFAA are more sig-
nificant than those from floods and droughts. DFAA not only
alters soil conditions and increases the potential for exceed-
ing water quality standards (Bai et al., 2023; Yang et al.,
2019) but also challenges food security and seriously affects
agricultural production. Furthermore, DFAA events, partic-
ularly DTF events, are prone to triggering severe secondary
natural hazards, primarily including flash floods, landslides,
and mudslides (Wang et al., 2023).

It has been observed that the intensity and frequency of
DFAA events demonstrate a global increasing trend (Yang
et al., 2022; Chen et al., 2025). However, notable regional
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differences exist. Shan et al. (2018) observed that the scope
of DFAA events in the Yangtze River mid-lower reaches has
expanded since the 1960s, with both frequency and intensity
increasing annually. Zhang et al. (2012) found that although
droughts and floods have increased in the Huai River Basin,
DFAA events have become less frequent. Looking ahead,
Zhao et al. (2022) projected that the Han River Basin will
experience an upward trend in both DFAA frequency and in-
tensity, whereas Yang et al. (2019) reported a projected de-
cline in the frequency of DFAA events in the Hetao region.

The Lancang-Mekong River (LMR), as a significant inter-
national river in Southeast Asia, profoundly affects key sec-
tors such as hydropower, agriculture, fisheries, and transport
(Morovati et al., 2024). At the same time, the LMR Basin
is a high-incidence area for floods and droughts (Liu et al.,
2020; MRC, 2020). Notably, wet-season droughts account
for about 40 % of annual droughts (Tian et al., 2020), while
the region is also prone to large floods during the dry season
(e.g., May 2006, May 2007, December 2016) (Tellman et al.,
2021). The existence of these wet-season droughts and dry-
season floods establishes the necessary conditions for DFAA
in the LMR Basin.

Continued global warming is expected to further inten-
sify both extreme wet and dry climate patterns (IPCC, 2023),
contributing to increased vulnerability to DFAA in the fu-
ture (Yang et al., 2022; Wang et al., 2023; Chen et al., 2025).
There is a strong tendency toward more intense floods and
droughts in Southeast Asia (IPCC Working Group I, 2021)
and specifically in the LMR Basin (Wang et al., 2021; Li et
al., 2021; Dong et al., 2022; Hoang et al., 2016). This height-
ens concerns about DFAA patterns in the LMR Basin, em-
phasizing the need for improved water security, sustainable
management, and early disaster forecasting and prevention
systems.

The hydrological regime of the LMR Basin is shaped
mainly by climate change and human activities (LMC and
MRC, 2023). Despite the severe impacts of climate change,
human activities such as reservoir operation can help adapt
the hydrological regime to these changes (Zhang et al., 2023;
Khadka et al., 2023; Sridhar et al., 2019; Lu et al., 2014;
Gunawardana et al., 2021). Researches highlight that reser-
voirs play a crucial role in reducing flood damage during the
wet season and in minimizing low-flow occurrences (Arias et
al., 2014; Räsänen et al., 2012; Dang and Pokhrel, 2024). To
evaluate reservoir impacts under the changing climate, inte-
gration of a reservoir module within hydrological models is
a widely adopted practice. For example, Wang et al. (2017b)
demonstrated that reservoir operation can reduce flood in-
tensity and frequency, while Yun et al. (2021a, b) showed
that careful reservoir management can relieve both extreme
drought and wet events, though with some trade-offs in hy-
droelectric benefits. Collectively, these studies indicate that
reservoirs offer practical adaptation solutions to address cli-
mate change impacts.

It is essential to consider how human activities, especially
reservoir operations, can help manage DFAA under climate
change. This consideration supports effective water resource
management and the sustainable development of the basin
system. However, little research to date has focused on this
aspect for the LMR Basin. The statistics, reports, and studies
on DFAA in the LMR Basin remain scarce, particularly con-
cerning the mitigating role of reservoirs under the changing
climate. In response, this study develops a reservoir mod-
ule for hydrological modeling, examines the trends of DFAA
in the LMR Basin under climate change, and assesses how
reservoirs can help basin states adapt to changing conditions.
This work aims to advance knowledge on DFAA and support
regional water resources management and sustainability.

2 Methodology

2.1 Study area

The LMR originates from the Tibetan Plateau in China and
flows through China, Myanmar, Laos, Thailand, Cambodia,
and Vietnam before entering the South China Sea at the
Mekong Delta. The LMR is approximately 4900 km long
with a basin area of 812 400 km2 (He, 1995). Its annual
runoff is about 446 billion m3 (MRC, 2023). The LMR Basin
is characterized by steep slopes and rapid flows in the up-
stream. The downstream features shallow slopes and slow,
mixed flows. The wet and dry seasons in the LMR Basin ex-
tend from June to November and from December to May,
respectively (LMC and MRC, 2023). These are mainly influ-
enced by the southwestern and northeastern monsoons. The
distribution of the hydrology system and mainstream hydro-
logical stations in the LMR Basin is detailed in Fig. 1a.

The LMR Basin nourishes approximately 65 million peo-
ple (Sabo et al., 2017; Luo et al., 2023). The basin states rely
on the river system to develop economic industries, includ-
ing capture fisheries, irrigation agriculture, and hydropower.
The LMR Basin has the largest freshwater capture fishery
in the world (MRC, 2010; MRC, 2019). Its irrigation area
is estimated at around 4.3 million ha (Do et al., 2020), with
the Mekong Delta regarded as Southeast Asia’s food basket.
The LMR Basin is one of the most active regions for hy-
dropower in the world (MRC, 2019; Williams, 2019). It har-
bors about 235 000 GWh yr−1 of hydroelectric potential in
its mainstream and tributaries (Do et al., 2020; Schmitt et al.,
2018). The LMR Basin is also heavily impacted by floods
and droughts. During the past two decades, the LMR Basin
has experienced several severe droughts (2004–2005, 2009–
2010, 2015–2016, and 2019–2020) and floods (Liu et al.,
2020; Tian et al., 2020; MRC, 2020). These disasters affect
crop cultivation and fisheries harvesting, leading to the loss
of property and lives in riparian countries. In 2013 and 2018,
floods heavily affected the lower basin, specifically Cam-
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Figure 1. Hydrology of the LMR Basin. (a) Map of rivers and reservoirs, (b) Information on four main hydrological stations, and (c) distri-
bution of reservoir storage. Here, JH, NK, PA, and KT denote JingHong, Nong Khai, Pakse, and Kratie stations, respectively.

bodia, Vietnam, Laos, and Thailand. These floods covered
22 300 and 6470 km2, respectively (Tellman et al., 2021).

2.2 Data collection

This study utilizes CMIP6 (Sixth Phase of Coupled Model
Inter-comparison Project) data as the meteorological input
to analyze DFAA. Three SSP (Shared Socioeconomic Path-
ways) scenarios, namely SSP1-2.6, SSP2-4.5, and SSP5-
8.5, are considered to characterize the low-, medium-, and
high-emission scenarios, respectively. Five GCMs (Global
Climate Models) with wide utilization and proven perfor-
mance in the LMR Basin are applied in this study (Li et
al., 2021; Yun et al., 2021a; Yun et al., 2021b), i.e., GFDL-
ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0,
and UKESM1-0-LL. The detailed information for these five
GCMs is shown in Table 1 (Eyring et al., 2016; Gidden et al.,
2019; Cui et al., 2023). CMIP6 data span from 1980 to 2100.
This study accordingly considers three research periods: the
history period from 1980 to 2014 (consistent with CMIP6),

the near future period from 2021 to 2060, and the far future
period from 2061 to 2100.

In this study, the daily observed runoff data at four ma-
jor mainstream hydrological stations from 1980 to 2020 are
used to calibrate and validate the hydrological model. These
data are derived from the China Meteorological Administra-
tion (CMA) and the Mekong River Commission (MRC). The
hydrological stations from upstream to downstream are se-
quentially JingHong, Nong Khai, Pakse, and Kratie, whose
locations and basic information are shown in Fig. 1a and b.
This study uses the ERA5_Land data as the meteorological
input for calibrating and validating the hydrological model,
and as the correction dataset for correcting the raw CMIP6
data. ERA5_Land data cover the period from 1980 to 2020,
with a spatial resolution of 0.1°, and contain precipitation,
temperature, and potential evapotranspiration. Soil data are
obtained from the Global Soil Database (GSD) provided by
the Food and Agriculture Organization of the United Na-
tions (FAO) with a spatial resolution of 10 km× 10 km. Nor-
malized Vegetation Index (NDVI), Leaf Area Index (LAI),
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and Snow Cover data are obtained from MODIS (Moderate-
resolution Imaging Spectroradiometer) with a spatial resolu-
tion of 500 m× 500 m and a temporal resolution of 16 d.

Reservoir data are sourced from MRC and Mekong Re-
gion Futures Institute (MERFI) (MERFI, 2024). This study
utilizes 122 reservoirs, which simultaneously contain infor-
mation on location, storage, and operation years, including
24 reservoirs in the Lancang Basin and 98 reservoirs in the
Mekong Basin. The earliest and latest operation years for
them are 1965 and 2035. The location and storage distribu-
tion of these reservoirs are shown in Fig. 1a and c.

2.3 Bias correction method for CMIP6 data

The raw CMIP6 data require correction for more accurate
modelling (Hoang et al., 2016; Mishra et al., 2020; Sun et
al., 2023). The uncorrected raw CMIP6 data misestimate the
temperature and precipitation in the LMR Basin, especially
overestimating the precipitation (Cui et al., 2023; Lange,
2019; Lange, 2021). ERA5_Land data are used as correction
data in this study to address bias in raw CMIP6 data.

This study interpolates the data from the five GCMs of
CMIP6, which have different spatial resolutions, to 0.1°
(consistent with ERA5_Land) using the bilinear interpo-
lation spatial resolution method. The interpolated CMIP6
data are bias-corrected for each GCM according to an N-
dimensional probability density function transform of the
multivariate bias correction approach (abbreviated as MBCn)
(Cannon, 2016, 2018). The MBCn method is trained based
on the difference between precipitation and temperature data
from ERA5_Land and CMIP6 over the history period (1980–
2014), and then applied to the future period (i.e., 2021–2100)
to correct the CMIP6 data for each GCM.

The MBCn method considers the multivariate dependency
structure of meteorological data and enables the simultane-
ous correction of temperature and precipitation data. Ran-
dom orthogonal rotation and quantile delta mapping are the
two most critical formulas of the MBCn method (Cannon,
2018), as illustrated in Eqs. (1) and (2).
X̃
[l]
T = X[l]T R[l]

X̃
[l]
S = X[l]S R[l]

X̃
[l]
P = X[l]P R[l]

(1)

Equation (1) displays the process of random orthogonal rota-
tion. It outlines the process of transforming historical obser-
vations X[l]T , historical climate model simulations X[l]S , and
climate model projections X[l]P using a random orthogonal
rotation matrix R[l] during the lth iteration. The rotated data
are represented as X̃[l]T , X̃[l]S , and X̃[l]P . This procedure is piv-
otal for MBCn’s multivariate joint distribution correction, as
it transforms the original variable space into new random ori-
entations. In contrast to conventional univariate correction
approaches, MBCn employs a random orthogonal matrix to

mix variables, thereby breaking their independence.{
1(n)[l](i)= x̃

(n)[l]
P (i)−F

(n)[l]−1

S (F
(n)[l]
P (x̃

(n)[l]
P (i)))

x̂
(n)[l]
P (i)= F

(n)[l]−1

T (F
(n)[l]
P (x̃

(n)[l]
P (i)))+1(n)[l](i)

(2)

Equation (2) exhibits the quantile delta mapping, which de-
fines how quantile delta mapping is applied to the nth dimen-
sion of the rotated climate model projection data x̃(n)[l]P (i)

within the rotated space of the lth iteration. Here, 1(n)[l](i)
represents the quantile difference between the historical cli-
mate model simulations and climate model projections in the
lth iteration and the nth dimension. F (n)[l]P denotes the em-
pirical cumulative distribution function for the rotated cli-
mate model projection data in the nth dimension. F (n)[l]

−1

T

and F (n)[l]
−1

S denote inverse Functions of the empirical cu-
mulative distribution functions for the rotated historical ob-
servation data and historical climate model simulation data
in the nth dimension. This step preserves the trend of the
climate model projection data throughout the correction pro-
cess. The number of iterations is typically set to 10–30.

The MBCn algorithm performs multivariate joint distribu-
tion bias correction by iteratively applying random orthog-
onal rotation and quantile delta mapping, while preserving
the projected signals in the climate model. The rotation op-
eration breaks dependencies between variables, enabling the
quantile delta mapping of a single variable to indirectly ad-
just multivariate correlations. The quantile delta mapping en-
sures the transmission of absolute or relative trends by com-
puting quantile differences between the historical and pro-
jected periods of the climate model. The MBCn method has
been reported to increase correction precision and accuracy
compared to univariate and other multivariate bias correction
algorithms (Cannon, 2018).

In addition, this study utilized the method proposed by
van Pelt et al. (2009) to compute daily potential evapotranspi-
ration data for five GCMs under three SSP scenarios, based
on daily temperature. The computational approach is out-
lined in Eq. (3).

PET= [1+α0(T − T0)]PET0 (3)

Where, T0 and PET0 correspond to the daily air temperature
(°C) and daily potential evapotranspiration (mm d−1) in the
history period sourced from ERA5_Land dataset. T signifies
the corrected daily air temperature (°C) from CMIP6 dataset.
The parameter α0 is determined by the relationship between
daily potential evapotranspiration and daily temperature in
ERA5_Land data during the history period.

2.4 Hydrological model coupled with reservoir module

The THREW (Tsinghua Representative Elementary Water-
shed) hydrological model is applied in this study for runoff
simulation. It utilizes the Representative Elementary Water-
shed (REW) approach for spatial division, and further subdi-
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Table 1. Details of 5 GCMs applied in this study.

Model Name Modeling Center Realization Resolution (Lon×Lat)

GFDL-ESM4 National Oceanic and Atmospheric
Administration Geophysical Fluid
Dynamics Laboratory, United States

r1i1p1f1 1.25°× 1°

IPSL-CM6A-LR Institute Pierre Simon Laplace, France r1i1p1f1 2.5°× 1.25874°

MPI-ESM1-2-HR Max Planck Institute for Meteorology,
Germany

r1i1p1f1 0.9375°× 0.9375°

MRI-ESM2-0 Meteorological Research Institute,
Japan

r1i1p1f1 1.125°× 1.125°

UKESM1-0-LL Met Office Hadley Centre, UK r1i1p1f2 1.875°× 1.25°

vides the REW into eight distinct hydrological zones: vege-
tated zone, bare soil zone, glacier covered zone, snow cov-
ered zone, sub-stream-network zone, main channel reach,
saturated zone, and unsaturated zone (Tian et al., 2006; Mou
et al., 2008).

The model is built upon scale-coordinated equilibrium
equations, geometrical relationships, and constitutive rela-
tionships, and enables comprehensive simulation of complex
hydrological processes from mountain to ocean. The funda-
mental balance equations in the THREW model are listed in
Eqs. (4) to (6).

d
dt
(ρ
j
αε
j
αy

jωj )=
∑
P

ejPα +
∑
β 6=α

e
j
αβ (4)

Equation (4) demonstrates the general form of the mass con-
servation equation at the REW scale. d

dt denotes the time

derivative. ρjα refers to the time-averaged density of phase α
in sub-region j , in kg m−3. εjα means the volume fraction of
phase α within sub-region j . yj indicates the time-averaged
thickness of sub-region j , in m. ωj means the time-averaged
fraction of REW horizontal area occupied by sub-region j .
e
jP
α denotes the net mass exchange flux of phase α in sub-

region j through interface P (e.g., with atmosphere, ground-
water, neighboring REWs), in kg m−2 s−1, where a positive
value indicates the inflow to sub-region j . ejαβ refers to the
phase transition rate between phase α and phase β within
sub-region j , in kg m−2 s−1, where a positive value indicates
phase α gains mass from phase β. Sub-region here refers to
the eight zones within each REW.

(ρ
j
αε
j
αy

jωj )
dvjα
dt
= g

j
αρ

j
αε
j
αy

jωj +
∑
P

T jPα +
∑
β 6=α

T
j
αβ (5)

Equation (5) presents the general form of the momentum

conservation equation at the REW scale. vjα indicates the
time-averaged velocity vector of phase α in sub-region j , in

m s−1. gjα denotes the time-averaged gravity vector of phase

α in sub-region j , in m s−2. T jPα means the force vector
(pressure, friction, seepage) exerted on phase α in sub-region
j by interface P , in N s−2, representing the momentum ex-
change. T jαβ refers to the interfacial force vector between
phase α and phase β within sub-region j , in N s−2, including
drag and capillarity.

(εjαy
jωj cjα)

dθ jα
dt
= h

j
αρ

j
αε
j
αy

jωj +
∑
P

QjP
α +

∑
β 6=α

Q
j
αβ (6)

Equation (6) exhibits the general form of the heat conserva-
tion equation at the REW scale. cjα means the specific heat
capacity (constant volume) of phase α in sub-region j , in
J kg−1 K−1. θ jα refers to the time-averaged temperature of

phase α in sub-region j , in K. hjα denotes the heat generation
rate per unit mass within phase α in sub-region j , in W kg−1

(e.g., radioactive decay, negligible usually). QjP
α indicates

the heat exchange rate between phase α in sub-region j and
its environment via interface P , in W m−2, with the positive
value representing the heat gained by phase α in sub-basin
j . Qj

αβ refers to the heat exchange rate between phase α and
phase β within sub-region j , in W m−2, with a positive value
indicating that heat is gained by phase α.

The THREW model employs an automatic calibration pro-
cedure to calibrate hydrological parameters through parallel
computation (Nan et al., 2021). The calibration period of the
THREW model in the LMR Basin is from 2000 to 2009, and
the validation period is from 2010 to 2020. The calibration
process involves nine hydrological parameters. A compila-
tion of their explanations and permissible value ranges is
given in Table 2. The Nash-Sutcliffe efficiency coefficient
(NSE) indicator is adopted to calibrate the objective func-
tion and evaluate simulation effectiveness at the daily scale,
which is calculated according to Eq. (6). The THREW model
has been successfully applied to a number of basins with var-
ious climate characteristics worldwide (Tian et al., 2012; Lu
et al., 2021; Morovati et al., 2023; Cui et al., 2023; Zhang et

https://doi.org/10.5194/hess-30-671-2026 Hydrol. Earth Syst. Sci., 30, 671–691, 2026



676 K. Zhang et al.: Mitigating the impact of increased drought-flood abrupt alternation events

al., 2023).

NSE= 1−
∑N

num=1(Q
num
obs −Q

num
sim )

2∑N
num=1(Q

num
obs −Qobs)2

(7)

Where, Qnum
obs is the daily observed runoff, Qnum

sim is the daily
simulated runoff,Qobs is the average of observed runoff, and
N is the total number of days.

This study extends the THREW model by developing and
integrating a reservoir management module. This integration
allows the expanded THREW model to use detailed informa-
tion on 122 reservoirs in the LMR Basin, with operational
years ranging from 1965 to 2035. By specifying whether
the module is active, the model can simulate either natu-
ral runoff (without considering reservoirs) or dammed runoff
(with reservoirs included). This setup ensures a seamless in-
teraction between the core model and the reservoir operations
framework.

Reservoir operation follows consistent rules across time
and space, with each reservoir starting operation according
to its operational year. Strategies are adapted in response to
inflow fluctuations and administered on a daily scale. Each
reservoir is assigned based on location. Cumulative multi-
year sub-basin storage is calculated as input for the reser-
voir module, which operates in two phases: initial and nor-
mal. The normal phase is divided into general and emer-
gency cases, both using the same operation rules but differing
constraints; the emergency case allows more flexibility. The
module’s flowchart is illustrated in Fig. 2.

If a REW’s cumulative multi-year storage changes within
a year, it signals the start of a new reservoir’s operation,
which follows initial phase rules. During the initial phase,
the outlet flow matches the inlet if it is below the minimum
discharge constraint; otherwise, it meets the minimum dis-
charge constraint. The rules for the initial phase are described
as Eqs. (8) to (9). Storage and discharge constraints are de-
fined in Eqs. (10) to (11) (Tennant, 1976; Yun et al., 2020).
The initial phase ends when reservoir storage exceeds the
minimum constraint (Eq. 12), then transitions to the normal
phase.

Qout =

{
Qin, Qin <Qmin
Qmin, Qin ≥Qmin

(8)

St = St−1+Qin−Qout (9)
Smin = 0.2× Stotal (10)
Qmin = 0.6×Qave (11)
St ≥ Smin (12)

Where Qout is the outlet flow, Qin is the inlet flow, Qmin is
the minimum discharge constraint, St is the storage for time
t , Smin is the minimum storage constraint, Stotal is the total
storage, and Qave is the average multi-year runoff during the
calibration period (i.e., 2000–2009).

The scheduling rule for the normal phase is the improved
Standard Operation Policy hedging model (SOP) (Wang et

Figure 2. Flowchart of the constructed reservoir module.

al., 2017a; Morris and Fan, 1998), as depicted in Eq. (9) and
Eqs. (13) to (16). The SOP operating policy is proven to ef-
fectively capture floods and droughts under reservoir regu-
lation (Wang et al., 2017a; Yun et al., 2020, 2021a, 2021b).
Under the premise of water balance (Eq. 9), constraints for
annual storage (Eq. 13), outlet flow (Eq. 14), wet season stor-
age (Eq. 15), and dry season storage (Eq. 16) are considered
separately, where priority is given to the annual storage con-
straint (Eq. 13).

Smin ≤ St ≤ Smax (13)
Qmin ≤Qout ≤Qmax (14)
min |Sc− St | , month= 6,7,8,9,10,11 (15)
min |Sn− St | , month= 12,1,2,3,4,5 (16)

Where Qmax is the maximum discharge constraint, Smax is
the maximum storage constraint, Sc is the storage corre-
sponding to the flood control level, and Sn is the storage cor-
responding to the normal water level.

When in the normal phase, the reservoir first applies gen-
eral case constraints (Eqs. 17 to 22). If outlet flow is not
fully satisfied (Eq. 14), constraints switch to the emergency
case, and the reservoir is rescheduled. Equation (23) signals
an emergency case start, which provides more flexible flow
limits to avoid extremes. Emergency case constraints are in
Eqs. (24) to (25).

Qmax = 2×Qave (17)
Qmin = 0.6×Qave (18)
Sc = Smin× 1.2 (19)
Sn = Smax× 0.8 (20)
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Table 2. Calibrated hydrological parameters and their ranges.

Parameter Explanation Range

kv Fraction of potential transpiration rate over potential evaporation 0–10
nt Roughness of slope 0–2
KKA Exponential coefficient in subsurface runoff calculations 0–100
nr Roughness of river channel 0–1
KKD Linear coefficient in subsurface runoff calculation 0–1
B Shape coefficient 0–1
WM Average water storage capacity (m) 0–5
K Storage factor in Muskingum Method 0–1
X Flow ratio factor in Muskingum Method 0–0.5

Smin = 0.2× Stotal (21)

Smax =

{
0.8× Stotal, month= 6,7,8,9,10,11
1× Stotal, month= 12,1,2,3,4,5 (22)

Qmin ≤Q
′
out ≤Qmax (23)

Qmin = 0.3×Qave (24)
Smax = 0.8× Stotal (25)

WhereQ′out is the outlet flow after the scheduling in the gen-
eral case.

2.5 Indicator for DFAA

It is common practice to quantify DFAA incidents via in-
dices. Long-cycle droughts-floods abrupt alternation index
(LDFAI), proposed by Wu et al. (2006), quantitatively char-
acterizes long-term DFAA during the wet season and has
been widely adopted (Ren et al., 2023; Shi et al., 2021; Yang
et al., 2022; Yang et al., 2019). Building on this, Zhang et
al. (2012) introduced the one-month interval SDFAI (short-
cycle droughts-floods abrupt alternation index), extending
its application from precipitation to runoff and character-
izing short-term DFAA. SDFAI has since been applied in
fields such as hydrology, meteorology, ecology, and agricul-
ture (Zhao et al., 2022; Lei et al., 2022; Yang et al., 2019;
Zhang et al., 2019).

Song et al. (2023) proposed the Revised Short-cycle
Drought-Flood Abrupt Alteration Index (R-SDFAI), which
extends the LDFAI and SDFAI time frame from only
the flood season to the entire year, facilitating multi-year
DFAA analysis. R-SDFAI also addresses issues of over-
identification, under-identification, and misrepresentation of
DFAA severity found in SDFAI. Therefore, this study uses
R-SDFAI for DFAA analysis, with the formulas outlined in
Eqs. (26) to (31) (Song et al., 2023).

F1 = Si+1− Si (26)
F2 = |Si+1| + |Si | (27)

F =

∣∣∣∣F1

F2

∣∣∣∣|Si+1+Si |

(28)

I = F ×min(|Si+1| |Si |) (29)

I ′ =

(
I

0.5

)max(|Si+1|,|Si |)
2

|F1|+F2

×
I

max(|Si+1|,|Si |)
|F1|+F2 + I

min(|Si+1|,|Si |)
|F1|+F2

2
(30)

R-SDFAI= sign(F1)

×

(
I ′

I ′0.5
×

I

0.5

)[ max(|Si+1|,|Si |)
|F1|+F2

][1−
max(|Si+1|,|Si |)
|F1|+F2

]

(31)

Where, Si refers to the SRI in month i, F1 denotes the inten-
sity of DFAA, F2 denotes the absolute intensity of drought
and flood, and F is a weighting factor between 0 and 1. I ′0.5
refers to I ′ when I = 0.5.

The calculation process of the SRI indicator utilized in this
work is elucidated in Eqs. (32) to (37). The runoff simulated
by the THREW model for the LMR Basin conforms to a
Gamma distribution, as detailed in the Sect. S1 in the Sup-
plement. Hence, the Gamma distribution is adopted to derive
the SRI index. Equation (32) gives the probability density
function that satisfies the Gamma distribution for runoff x at
a given time period.

g(x)=
1

βα0(α)
xα−1e

−
x
β x > 0 (32)

Where, α > 0 and β > 0 are respectively the shape and scale
parameters. α̂ and β̂ are the optimal values of α and β,
obtained according to the maximum likelihood estimation
method, as illustrated in Eqs. (33) to (35). 0(α) is the gamma
function, as given in Eq. (36).

α̂ =
1

4A

(
1+

√
1+

4A
3

)
(33)

β̂ =
x

α̂
(34)

A= ln(x)−
∑

ln(xi)
num

(35)

0(α)=

∞∫
0

yα−1eydy (36)
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Table 3. The evaluation criteria and intensity classification for
DFAA events.

Event Intensity Classification

DTF Mild 1≤R-SDFAI< 1.44
Moderate 1.44≤R-SDFAI< 1.88
Severe R-SDFAI≥ 1.88

FTD Mild −1.44<R-SDFAI≤−1
Moderate −1.88<R-SDFAI≤−1.44
Severe R-SDFAI≤−1.88

Where, xi is the sample of runoff sequence, x is the average
runoff, and “num” is the length of the runoff sequence.

Then the cumulative probability of runoff x is illustrated
in Eq. (37).

G(x)=

x∫
0

g(x)dx =
1

β̂ α̂0(α̂)

x∫
0

xα̂−1e
−
x

β̂ dxx > 0 (37)

The R-SDFAI index identifies DFAA events with a thresh-
old of ±1 (Song et al., 2023), and further categorizes DFAA
events into three intensity levels – mild, moderate, and severe
– using thresholds of±1,±1.44, and±1.88, as demonstrated
in Table 3. This classification follows the criteria proposed by
Song et al. (2023). The underlying rationale involves using
±0.5, ±1, and ±1.5 as thresholds for the SRI index to cate-
gorize extreme hydrological events into mild, moderate, and
severe droughts and floods (positive values indicate flood,
while negative values indicate drought). The R-SDFAI index
values of ±1, ±1.44, and ±1.88 are calculated through the
transitions between mild drought and mild flood, moderate
drought and moderate flood, and severe drought and severe
flood. These thresholds serve as the classification criteria for
mild, moderate, and severe DFAA events. For a more de-
tailed explanation of this classification standard, please refer
to Song et al. (2023). In this study, the frequency of DFAA
events is represented by their occurrence probabilities during
history, near future, and far future periods, while the inten-
sity of DFAA is assessed through the probability of different
intensity events.

2.6 Scenario Setting

This study examines two scenarios: dammed (with reser-
voir operations) and natural (without reservoir operations).
Meteorological data from five GCMs under three SSPs are
downscaled to the REW scale and used as input for the
THREW model. The model, with the reservoir module, sim-
ulates runoff at key hydrological stations for the history pe-
riod (1980–2014), the near future (2021–2060), and the far
future (2061–2100). Both scenarios – with and without reser-
voir management – are examined. The R-SDFAI indicator
evaluates DFAA event probabilities for each period and for

each scenario, using runoff simulated by 5 GCMs and 3
SSPs.

This study adopts the difference in DFAA’s probability be-
tween the natural scenario (without reservoir operations) and
the dammed scenario (with reservoir operations) to capture
the reservoir’s impact, as shown in Eq. (38).

PImpact of Reservoirs,i,e = PDammed,i,e−PNatural,i,e (38)

Where PImpact of Reservoirs,i,e represents the impact of reser-
voirs on the probability of event e in period i. PNatural,i,e de-
notes the probability of event e under the natural scenario in
period i, while PDammed,i,e denotes the probability of event e
under the dammed scenario in period i. Period i refers to near
future or far future. Event e indicates DTF, FTD, or DFAA.

Equations (39) and (40) give the definitions of PNatural,i,e
and PDammed,i,e described above.

PNatural,i,e =
MNatura,i,e

TMi

(39)

PDammed,i,e =
MDammed,i,e

TMi

(40)

Where MNatura,i,e denotes the number of months in which
event e occurs in period i under the natural scenario.
MDammed,i,e denotes the number of months occurred event
e in period i under the dammed scenario. TMi refers to the
total number of months in period i. Period i refers to near fu-
ture or far future. Event e indicates the DTF, FTD, or DFAA.

As each GCM possesses a unique structure and assump-
tions, projections of climate change by a single GCM inher-
ently possess uncertainties, which in turn introduce uncer-
tainties in the simulation of hydrological outcomes (Kingston
et al., 2011; Thompson et al., 2014). Thus, averaging across
multiple GCMs is a crucial approach, as it minimizes model
biases, eliminates outliers, reduces uncertainties, and ensures
more robust and universally applicable outcomes (Lauri et
al., 2012; Hoang et al., 2016; Hecht et al., 2019; Wang et
al., 2024; Yun et al., 2021b). This method has been exten-
sively employed in prior studies (Dong et al., 2022; Li et al.,
2021; Wang et al., 2022; Yun et al., 2021a). Therefore, this
research determines the average DFAA probability from five
GCMs to lessen the uncertainty in their predictions and as-
sesses the fluctuation in these probabilities across the models
to demonstrate their variability.

3 Results

3.1 CMIP6 data bias correction performance

From both regional and seasonal perspectives, the uncor-
rected raw CMIP6 data show significant discrepancies with
ERA5_Land data during the history period (1980–2014).
When compared with ERA5_Land data, the uncorrected raw
CMIP6 data reveal an average annual precipitation bias of
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around ±1800 mm and an average daily temperature bias of
approximately ±12 °C (Fig. 3b and e). These notable incon-
sistencies highlight that using uncorrected CMIP6 data for
hydrological modeling would incur considerable inaccura-
cies. However, CMIP6 data corrected by the MBCn method
deviate from ERA5_Land data by less than ±120 mm of av-
erage annual precipitation and±0.2 °C of average daily tem-
perature (Fig. 3c and f). The bias correction greatly improves
CMIP6 data accuracy in the LMR Basin. The corrected
CMIP6 data also match the seasonal cycle of ERA5_Land
well for both precipitation and temperature (Fig. 3g). Com-
pared to the raw data, the corrected CMIP6 shows much im-
proved spatial and temporal accuracy, leading to more accu-
rate and reasonable analyses for DFAA.

3.2 Calibration and validation for the hydrological
model

The daily observed runoff and daily simulated runoff from
the THREW model for the calibration period (2000–2009)
and validation period (2010–2020) are illustrated in Fig. 4,
demonstrating the model’s strong performance. Importantly,
since there was no massive reservoir construction in the LMR
Basin before and during the calibration period (Zhang et al.,
2023), the THREW model without the reservoir module is
applied for calibration. Meanwhile, the addition of large-
scale reservoirs during the validation period allows valida-
tion of the THREW model configuration with the reservoir
module, Notably, the THREW model captures runoff fluc-
tuations between wet and dry seasons with high accuracy,
achieving an NSE of at least 0.8 during both periods. This ex-
cellent simulation performance extends across both upstream
and downstream regions, emphasizing the robustness of the
model under observed conditions.

3.3 DFAA under the changing climate

Under the natural scenario (without reservoir operations),
DFAA in the LMR Basin is dominated by DTF, that is, the
risk of DTF is more critical than that of FTD (Table 4). The
probability of FTD ranges from 0.7 % to 2.1 % in the history
period, 0.6 % to 2.0 % in the near future, and 0.5 % to 2.0 %
in the far future. Conversely, DTF probabilities are higher,
ranging from 1.6 % to 2.3 %, 1.2 % to 3.2 %, and 1.2 % to
3.0 % respectively in these three periods.

DFAA risk is substantially elevated during the wet season
compared to the dry season (Table S1). For the average of
five GCMs, the probability of FTD in the wet season is 2
to 5.5 times higher than that in the dry season in the history
period. In the near and far future periods, this ratio ranges
from 1.1 to 36 times and 3.3 to 41 times, respectively. As
for DTF, the probability in the wet season is correspondingly
1.7 to 5.7 times, 1.3 to 3.9 times, and 0.9 to 6.3 times higher
than that in the dry season for history, near future, and far
future. Only JingHong station experiences a slightly higher

probability of DTF in the dry season (1.25 %) than in the wet
season (1.17 %) for the far future.

DFAA risks show marked spatial variation, with annual
probability consistently higher downstream than upstream
(Table 4). The annual probability of FTD ranges from 0.6 %
to 1.3 % at JingHong station and 0.7 % to 1.4 % at Nong Khai
station. These probabilities rise to 1.2 % to 2.1 % and 1.4 %
to 2.1 % at Pakse and Kratie stations, respectively. Similarly,
the annual probability of DTF at JingHong and Nong Khai
stations is 1.2 % to 2.1 % and 1.2 % to 2.3 %. The probabil-
ities at Pakse and Kratie stations range from 1.4 % to 3.2 %
and 3.1 % to 3.2 %, respectively. The DTF risk in the wet
season and the FTD risk in both dry and wet seasons are
also higher downstream than upstream. Since the probabil-
ity of FTD in the dry season at Nong Khai, Pakse, and Kratie
stations is limited, especially under the SSP5-8.5 scenario
(< 0.2 %), the risk of FTD in the dry season appears more
notable upstream than downstream.

The annual DFAA probability increases under SSP1-2.6
and SSP2-4.5 scenarios (except for FTD at Pakse station) and
decreases under the SSP5-8.5 scenario (Fig. 5a). Such a pat-
tern is attributable to the enhanced tendency for flood and
drought events in the LMR Basin to cluster rather than alter-
nate under the SSP5-8.5 scenario (Dong et al., 2022). Under
the SSP5-8.5 scenario, the average probability of FTD across
five GCMs is 0.6 % to 1.8 %, while the probability of DTF
ranges from 1.2 % to 2.6 %. Conversely, the average proba-
bilities of FTD and DTF under the SSP2-4.5 scenario range
from 0.7 % to 2.1 % and 1.7 % to 3.2 %, respectively.

The future growth in DTF is significantly greater than that
in FTD. For the average probabilities across five GCMs, rel-
ative to the history period, the future change in DTF proba-
bility at JingHong station is −0.5 % to 0.4 %, at Nong Khai
station is −0.4 % to 0.7 %, and at Pakse and Kratie stations,
respectively, is −0.5 % to 0.9 % and −0.2 % to 0.8 %. The
future FTD probability change for JingHong is −0.2 % to
0.5 %, while for Nong Khai, Pakse, and Kratie, the changes
are −0.4 % to 0.3 %, −1 % to −0.1 %, and −0.6 % to 0.2 %,
respectively. The maximum values from the five GCMs show
a consistent trend, with increases in DTF probability being
significantly greater than those in FTD probability.

Upstream and downstream regions experience contrasting
future risk increases, with FTD risks rising more upstream
and DTF risks rising more downstream (Fig. 5a). Under three
climate scenarios, JingHong Station experiences the maxi-
mum increase of 0.37 % and 0.08 % in DTF risks, respec-
tively, in the near and far future. Meanwhile, FTD risks at this
station rise by 0.45 % and 0.53 %, respectively. Conversely,
Kratie Station exhibits the highest increase of 0.83 % and
0.71 % in DTF risks, alongside 0.06 % and 0.02 % increases
in FTD risks. The opposite trends of DFAA risk in upstream
and downstream pose enhanced challenges to the integrated
management of the LMR Basin.

Future seasonal DFAA risks follow scenario-dependent
trends: wet-season risks for both DTF and FTD rise under
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Figure 3. Averaged meteorological data of 5 GCMs for the history period (1980–2014). Here, 5 GCMs are corrected separately. The red
and blue star symbols respectively indicate the locations of the maximum and minimum values in (a) to (f). (a) to (c) present the spatial
distribution of precipitation based on respectively ERA5_Land, raw CMIP6 (raw CMIP6 minus ERA5_Land) and bias-corrected CMIP6
(bias-corrected CMIP6 minus ERA5_Land). (d) to (f) illustrate the spatial distribution of temperature based on ERA5_Land, raw CMIP6
(raw CMIP6 minus ERA5_Land) and bias-corrected CMIP6 (bias-corrected CMIP6 minus ERA5_Land). (g) shows seasonal cycles of
temperature and precipitation from ERA5_Land, raw and bias-corrected CMIP6, as well as their corresponding range.
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Figure 4. Performance of the THREW model in calibration (2000–2009) and validation (2010–2020) periods. Here, JH, NK, PA, and KT
denote JingHong, Nong Khai, Pakse, and Kratie stations, respectively.

Table 4. The year-round DFAA probability averaged across five GCMs during each period under the natural scenario.

Natural Station History Near Future Far Future

SSP1-2.6 SSP2-4.5 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP5-8.5

DTF JingHong 1.67 % 2.04 % 1.71 % 1.63 % 1.67 % 1.75 % 1.21 %
Nong Khai 1.52 % 1.71 % 2.08 % 1.17 % 1.96 % 2.25 % 1.71 %
Pakse 2.24 % 2.38 % 3.13 % 1.83 % 2.67 % 2.75 % 2.04 %
Kratie 2.33 % 3.17 % 2.83 % 2.08 % 3.04 % 2.92 % 2.54 %

FTD JingHong 0.72 % 0.83 % 1.17 % 0.63 % 0.79 % 1.25 % 0.54 %
Nong Khai 1.10 % 1.25 % 1.42 % 0.71 % 1.13 % 1.12 % 0.67 %
Pakse 2.10 % 1.33 % 2.04 % 1.54 % 1.58 % 1.71 % 1.17 %
Kratie 1.86 % 1.71 % 1.92 % 1.33 % 2.04 % 1.87 % 1.75 %

SSP1-2.6 and SSP2-4.5 scenarios, and fall under the SSP5-
8.5 scenario (Fig. 5b). This is similar to the annual DFAA
risk. The risk of FTD during the dry season decreases, with
an upward trend emerging only in the near future under the
SSP2-4.5 scenario (average across five GCMs< 0.4 %, max-
imum < 1.3 %). The risk of DTF during the dry season rises
in most situations, except at Nong Khai station in the near fu-
ture under the SSP5-8.5 scenario, where it shows an average
decrease of 0.46 % across five GCMs. The largest increase

of dry-season risk of DTF is found at Pakse station under the
SSP2-4.5 scenario, with an average increase of 1.08 % across
five GCMs and a maximum increase of 2.08 %.

Mild-intensity DFAA events constitute the majority of all
DFAA occurrences (Fig. 6). The probability of mild DTF
varies across scenarios, with values ranging from 0.7 % to
2.4 %, which corresponds to 58 % to 90 % of the total DTF
probability. Likewise, mild FTD probabilities range from
0.6 % to 1.8 % (Fig. 6), comprising a larger share of the to-
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Figure 5. DFAA under the natural scenario. (a) The annual change in DFAA probability averaged across five GCMs and their ranges in the
near and far future periods with respect to the history period under three SSPs. (b) The seasonal change in DFAA probability averaged across
five GCMs and their ranges in the near and far future periods with respect to the history period during wet and dry seasons under three SSPs.
Here, JH, NK, PA, and KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations. NF and FF represent the near future period
and the far future period. 1–2.6, 2–4.5 and 5–8.5 respectively denote SSP1-2.6, SSP2-4.5, and SSP 5-8.5 scenarios. Please note that this
figure illustrates variations in DFAA events under climate change. The annual and seasonal probabilities of DFAA under the natural scenario
are presented in Tables 4 and S1, respectively.

tal FTD probability, specifically 75 % to 100 %. Mild DTF
events account for 2 to 13 times the possibility of moderate
DTF events. This ratio escalates to 3 to 31 times for FTD
events. Notably, severe FTD events are extremely rare, often
occurring at 0 % probability. However, severe DTF events are
notable, with probabilities ranging from 0 % to 0.38 %, and
in some instances, accounting for up to 13 % of total DTF
probability.

The total probabilities of DTF events exceed that of FTD
events (Fig. 5a), and this holds true for mild, moderate,
and severe intensity events (Fig. 6). The disparity between
DTF and FTD events is not as pronounced in mild inten-
sity events, but it becomes significant in moderate inten-
sity events. The probabilities of moderate DTF range from
0.08 % to 0.75 %, whereas the probabilities of moderate FTD
range from 0.04 % to 0.42 % (Fig. 6). The marked disparity
in severe intensity events is even more pronounced by the
extremely low probability of severe FTD.

Mild DTF probabilities are projected to increase in the far
future, while moderate and severe DTF probabilities are pro-

jected to decrease. Specifically, the probability of mild DTF
rises to 1.1 % to 2.4 % in the far future, compared to 0.7 %
to 2.3 % in the near future. The probabilities of moderate and
severe DTF drop from an average of 0.42 % and 0.19 % in
the near future to 0.38 % and 0.12 %, respectively, in the far
future. However, the probabilities of FTD events across all
three intensity levels remain relatively consistent between the
near and far future.

3.4 Reservoirs’ impacts on DFAA

Reservoirs exhibit extraordinary mitigation effects on DTF
risk under the changing climate while showing weaker ef-
fects in FTD risk (Fig. 7a). Nonetheless, the higher proba-
bility of DTF compared to FTD (Fig. 5a) demonstrates that
reservoirs contribute significantly to reducing overall DFAA
risk. The distinct controlling role of reservoirs on DTF risk
versus FTD risk is associated with the consistency between
these two types of DFAA events and the logic of reservoir
operation. Section 4.1 will delve into the mechanistic details.
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Figure 6. Annual probability of DFAA at different intensities under the natural scenario, averaged across five GCMs and their ranges in the
near future (2021–2060) and far future (2061–2100) periods under three SSPs. Here, JH, NK, PA, and KT respectively denote JingHong,
Nong Khai, Pakse, and Kratie stations. NF and FF represent the near future period and the far future period. The specific value shown in this
figure can be found in Table S2.

Reservoirs adequately reduce or only slightly increase the
future DTF probability (−0.13 % to 1 %, averaged across
five GCMs). Throughout this section, a negative value indi-
cates that reservoirs increase the probability of DFAA, while
positive values indicate a reduction. In most scenarios, the
reservoir plays a positive mitigating role across all GCMs
(Fig. 7a). Reservoirs are expected to have better mitigation
effects in the near future at JingHong station. As for Nong
Khai and Pakse stations, the reduction effect of reservoirs
on DTF is more pronounced in the far future under SSP1-
2.6 and SSP2-4.5 scenarios, while in the near future under
the SSP5-8.5 scenario. The effect conversely, exhibits greater
strength under SSP1-2.6 and SSP5-8.5 scenarios in the near
future, while it is stronger under the SSP2-4.5 scenario in
the far future at Kratie station. These findings are consistent
across both the average of the GCMs and their ranges.

Reservoirs are more effective in reducing FTD in the near
future than in the far future at JingHong, Pakse, and Kratie,
while the effect at Nong Khai is slightly less in the far fu-
ture (Fig. 7b). Reservoirs are most effective under high emis-
sions (SSP5-8.5), reducing FTD probability at all stations
(0.13 % to 0.42 %, GCM average). Under lower emissions
(SSP1-2.6 and SSP2-4.5), mitigation is weaker (−0.33 % to
0.38 %, GCM average) at Nong Khai and Pakse, but notable
at JingHong and Kratie, especially in certain future periods.
For example, under intermediate emissions (SSP2-4.5) in the

far future at JingHong, reservoirs lower the average probabil-
ity by over 0.9 % and maximum by nearly 1.8 %.

Reservoirs reduce FTD more in the wet season (−0.17 %
to 1.5 %, GCM average) than in the dry season (−1 %
to 0.67 %), especially at Nong Khai, Pakse, and Kratie
(Fig. 7b). Negative values mean a reservoir increases FTD
probability. In the wet season, reduction is notable (−0.17 %
to 0.92 %), but in the dry season, FTD probability increases
(−1 % to 0.33 %). Seasonal differences in DTF mitigation
are less pronounced. Reservoirs slightly better reduce DTF
in the dry season (−0.17 % to 1.25 %) than in the wet season
(−0.42 % to 0.83 %). Reservoirs mitigate DTF more effec-
tively than FTD in both seasons, aligning with the annual
DFAA.

Reservoirs effectively manage DFAA events, which are
predominantly characterized by mild intensity. They de-
crease the probability of mild DTF by −0.1 % to 0.9 %
(Fig. 8), whereas the probability of such events is 0.7 %
to 2.4 % under the natural scenario (Fig. 6), indicating that
reservoirs decrease their likelihood by −0.12 to 0.64 times.
Reservoir reduces the probability of mild FTD by −0.4 % to
0.8 % (Fig. 8). They increase the probability of mild FTD at
the Nong Khai station under the SSP1-2.6 scenario. Since the
probability of mild FTD is 0.6 % to 1.8 % under the natural
scenario (Fig. 6), reservoir operation reduces their probabil-
ity by −0.38 to 0.69 times.
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Figure 7. Reservoir impacts on DFAA during the near future (2021–2060) and the far future (2061–2100) under three SSPs. (a) The annual
reservoir impacts averaged across five GCMs and their ranges. (b) The seasonal reservoir impacts in wet and dry seasons averaged across
five GCMs and their ranges. Here, JH, NK, PA, and KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations. NF and FF
represent the near future period and the far future period. 1–2.6, 2–4.5 and 5–8.5 respectively denote SSP1-2.6, SSP2-4.5, and SSP 5-8.5
scenarios. Please note that this figure illustrates the impact of reservoir operations on DFAA events. The annual and seasonal probabilities of
DFAA under the dammed scenario are presented in Table S3.

While the reservoir’s mitigation effect on FTD events is
less pronounced than on DTF events (Fig. 7), it demonstrates
a commendable mitigation effect on moderate FTD, reducing
their probability by −0.08 % to 0.17 % (Fig. 8). This reduc-
tion represents −0.4 to 1 times the probability under the nat-
ural scenario. This ratio surpasses the reservoir’s mitigation
effect on moderate DTF, where the probability is reduced by
−0.3 % to 0.3 % (Fig. 8), accounting for−0.70 to 1 times the
natural probability. This highlights that the reservoir exerts
a more significant mitigating force on high-intensity FTD
events compared to high-frequency FTD events.

Reservoirs exhibit notable mitigating effects for DTF
events across all three intensity levels. However, their abil-
ity to alleviate moderate DTF is relatively weaker than that
for mild DTF (Fig. 8), which differs from the characteris-
tic of FTD events. This implies that reservoirs possess a
stronger capability to manage high-frequency DTF events
than higher-intensity events.

DFAA often shows several monthly peaks under the natu-
ral scenario. This means some months have a higher DFAA
probability than their neighbors. The multiple peaks are
clearer in DTF than in FTD (Fig. 9). When averaging
monthly DFAA over four mainstream hydrological stations,
DTF shows three peaks under near-term SSP2-4.5 and far-
term SSP5-8.5 scenarios, while FTD only shows two peaks

in both cases. Reservoirs help to regulate DFAA by lower-
ing and reducing peaks, with a stronger peak reduction ef-
fect anticipated in the near future for DTF (Fig. 9). In the far
future, for FTD, especially under SSP1-2.6 and SSP2-4.5,
reservoirs still alleviate peaks, though less so in terms of re-
ducing their number. Reservoirs also lower DFAA probabil-
ity during early and middle dry seasons (December to April)
for both near and far futures, often 1 % or less at most sta-
tions. Sometimes, such as the SSP2-4.5 scenario in the near
future, reservoirs actually increase the probability of DFAA
in May. This happens because helping during the dry season
before May reduces the capacity of reservoirs for water reg-
ulation in May, making it hard to control DFAA risks that
month. Reservoirs also shorten DFAA’s monthly span. In-
stead of occurring throughout the year under the natural sce-
nario, DFAA is to concentrated from May to October under
the dammed scenario (Fig. 9). This allows the LMR Basin
to focus DFAA policies and actions on those months. As a
result, riparian states can combine resources and coordinate
their efforts more efficiently to manage and respond to DFAA
and related hazards.
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Figure 8. Reservoir impacts on DFAA under different intensities, averaged across five GCMs and their ranges in the near future (2021–2060)
and far future (2061–2100) periods under three SSPs. Here, JH, NK, PA, and KT respectively denote JingHong, Nong Khai, Pakse, and
Kratie stations. NF and FF represent the near future period and the far future period. Please note that this figure shows how the reservoir
affects DFAA events at different intensities. The probabilities of DFAA events at each intensity under the dammed scenario are presented in
Table S4.

4 Discussion

4.1 Different characteristics of DTF and FTD events

The distinct characteristics of DTF and FTD events have
been identified by previous research. Shi et al. (2021) found
that FTD events predominate in the Wei River Basin. Wang et
al. (2023) projected that in the Poyang Lake Basin, the tem-
poral spread of DTF events will expand in the future, while
that of FTD events will constrict. Ren et al. (2023) found that
under SSP1-2.6 and SSP2-4.5 scenarios, the Huang-Huai-
Hai River Basin will experience more DTF events, whereas
under SSP3-7.0 and SSP5-8.5 scenarios, it will experience
more FTD events. This study identifies differences between
DTF and FTD events as well, and further highlights the
different characteristics of reservoirs’ mitigating effects on
these events.

The average probability of DTF across all periods is 2.1 %
under the natural scenario, which is significantly higher than
the 1.4 % average for FTD (Fig. 5a). The probability of DTF
consistently exceeds that of FTD under three different inten-
sities (Fig. 6). Additionally, DTF probabilities show a sig-
nificant increase in both the near and far future, averaging
0.23 %, which exceeds the increase in FTD probabilities, av-
eraging 0.13 % (Fig. 5a).

Compared with FTD events, reservoirs more effectively
control DTF probabilities, significantly lowering DTF risk
in both dry and wet seasons (Fig. 7). The reason is that the
timing of DTF’s water regulation matches the way reservoirs
operate. At the start of DTF, reservoirs typically hold wa-
ter at the storage corresponding to the normal water level,
which equates to 0.8 times the maximum storage (Eq. 20).
Hence, reservoirs possess sufficient storage capacity to mit-
igate the drought conditions. In parallel, the water release
during the initial phase of the DTF reduced the water level,
thereby meeting the storage needs for sudden floods that oc-
cur later in the DTF. As a result, even if DTF events are
frequent, reservoirs can manage them well. Reservoirs espe-
cially succeed in reducing mild DTF events (Fig. 8). How-
ever, they control moderate DTF events less effectively. In
intense DTF cases, the rules for operating reservoirs are not
enough. For example, if a severe drought at DTF’s beginning
exceeds reservoir storage, they cannot effectively relieve the
extreme drought and thus fail to control such DTF events.

Although FTD is less likely than DTF, reservoirs control
FTD less effectively, especially in the dry season (Fig. 7).
The problem is that when the FTD event occurs, reservoirs
are generally maintained at their target storage for the wet
season. The storage corresponds to the flood control wa-
ter level, which is 1.2 times the minimum storage capacity
(Eq. 19). Consequently, reservoirs, while fully meeting flood
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Figure 9. Monthly DFAA probability averaged over four main-
stream hydrological stations (i.e., JingHong, Nong Khai, Pakse, and
Kratie stations) under natural and dammed scenarios for three SSPs
during the near future (2021–2060) and far future (2061–2100) pe-
riods. Please note that the probabilities shown in this figure are av-
eraged over 5 GCMs.

control requirements at the start of FTD, struggle to maintain
sufficient water storage to satisfy water supply demands for
the subsequent drought stage. If FTD occur frequently, reser-
voirs’ control decreases further. While reservoirs do little for
mild FTD, they noticeably reduce moderate FTD (Fig. 8).
This means that, for rare but strong FTD events, reservoirs
can help by storing water for later droughts. However, if FTD
is frequent, current reservoir operations do not help much.
This difficulty in regulation is what makes FTD a major chal-
lenge. It is encouraging, though, that FTD is expected to be-
come less common in most areas of the LMR Basin in the
future (Fig. 5).

4.2 The relationship between reservoirs’ mitigation
roles and their storage

The reservoir systems provide enhanced mitigation effi-
ciency against DFAA at JingHong and Kratie compared to
those at Nong Khai and Pakse (Fig. 7). Reservoir storage
in the region above JingHong and the Pakse to Kratie re-
gion is significantly larger than storage in the JingHong to
Nong Khai and Nong Khai to Pakse regions (Fig. 1c). Reser-
voirs’ capacity to reduce total DFAA risk closely relates to
the total storage of mainstream and tributary reservoirs, con-
sistently showing a positive correlation for DTF and FTD
events (Fig. 10a). These findings highlight reservoirs’ mul-

tifaceted role in managing flood prevention and drought re-
sistance (Hecht et al., 2019; Hoang et al., 2019; Ly et al.,
2023) while also addressing sudden DFAA challenges. These
results align with Feng et al.’ s (2024) discovery that large
reservoirs significantly reduce drought and flood risks and
corroborate Ehsani et al.’ s (2017) conclusion that increased
dam dimensions can mitigate water resource vulnerability to
climate uncertainties.

The positive correlation between total reservoir storage
and the reduction of total DFAA risk indicates that basins
with larger total storage are better equipped to resist DFAA
events. However, this study examines only hydroelectric
reservoirs in the LMR Basin and excludes other water stor-
age facilities such as irrigation reservoirs. In the LMR Basin,
total storage of irrigation reservoirs is considerable. Accord-
ing to the MRC, the Mekong Basin contains 1317 irrigation
reservoirs, with total storage of about 17 billion m3 (MRC,
2018; LMC and MRC, 2023). This storage exceeds the total
storage of reservoirs between JingHong and Nong Khai sta-
tions (around 9.7 billion m3). It is slightly lower than the stor-
age between Nong Khai and Pakse stations (approximately
22.1 billion m3) (Figs. 1c and 10). Since reservoirs mitigate
extreme hydrological events regardless of their primary func-
tion (Brunner, 2021; Ho and Ehret, 2025), even irrigation
reservoirs can play a beneficial role in addressing DFAA
events. Fully utilizing irrigation reservoirs and implementing
coordinated operation of all reservoir types across the LMR
Basin could effectively lower DFAA risks and enhance the
basin’s resistance to these events.

Both mild DTF and mild FTD show a positive cor-
relation with total reservoir storage, consistent with total
DFAA events (Fig. 10b). In contrast, moderate and severe
DFAA events do not strongly correlate with reservoir storage
(Fig. 10b). This implies that for moderate to severe DFAA
events, increasing reservoir storage capacity does not en-
hance the reservoirs’ control capabilities. Therefore, refining
reservoir operation rules presents a more appropriate strategy
to strengthen control of moderate and severe DFAA events in
the LMR Basin.

4.3 Limitations of reservoir regulation rules

The reservoir operation rule SOP adopted in this study is a
commonly used method. Previous studies have widely em-
ployed this method (Wang et al., 2017a; Yun et al., 2020).
The SOP rule is proven appropriate for hydrological model-
ing in large-scale basins such as the LMR Basin. It is also
effective for extended simulation periods in future hydrolog-
ical assessments (Wang et al., 2017b; Yun et al., 2021a, b).

This study further improved the standard SOP operation
rules by adding the general case and emergency case (Fig. 2).
This scheduling approach manages reservoir operations us-
ing real-time inflow data. It also considers the operational
year of each reservoir. As a result, the reservoir module de-
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Figure 10. The relationship between reservoirs’ mitigation effects and their total storage. Symbol points denote the average values for each
station under three SSP scenarios during the near future (2021–2060) and far future (2061–2100) periods, while error bars indicate the
maximum and minimum values. (a) The impact of reservoirs on the total probability of DFAA. (b) The impact of reservoirs on DFAA of
different intensities. Here, JH, NK, PA, and KT respectively denote JingHong, Nong Khai, Pakse, and Kratie stations. Please note that, as
JingHong and Nong Khai stations are not expected to experience severe FTD events in the future, the relevant information has not been
included in this figure.

veloped in this study is robust and adaptable. It reflects reser-
voir scheduling scenarios with high reliability.

Despite this, the study uses uniform operation rules for
reservoirs of different storage scales within the LMR Basin.
It implements daily regulation for all reservoirs. The study
does not use differentiated regulation scales (daily, annual,
or multi-annual) based on storage. It also does not consider
unique operation rules in different sub-basins. These simpli-
fications may cause uncertainties in how reservoirs mitigate
effects. This is a limitation of the study.

5 Conclusion

This study adopts CMIP6 meteorological data, applying
three SSP scenarios and five GCMs. It corrects these data
using the MBCn method. The study integrates the THREW
distributed hydrological model and the developed reservoir
module. It describes DFAA through R-SDFAI, assessing
mild, moderate, and severe intensities. The study explores
how reservoirs help reduce DFAA under the changing cli-
mate in the LMR Basin. It examines three periods: history
(1980–2014), near future (2021–2060), and far future (2061–
2100). The main findings are summarized below:

1. DFAA in the LMR Basin is dominated by DTF, with
a mean probability of 2.1 %. This is much higher than
the FTD probability of 1.4 %. DTF remains higher than
FTD at all intensity levels. The future increase in DTF

probability (average 0.23 %) is also greater than the in-
crease for FTD (average 0.13 %). Mild-intensity DFAA
events are most common. They account for 58 % to
90 % of future DTF probability and 75 % to 100 % of
FTD probability. Both DTF and FTD present higher
DFAA risk during the wet season than the dry season.

2. Reservoirs manage DTF probability well, cutting DTF
risks in both dry and wet seasons. However, they have
less influence over FTD risks, especially during dry-
season FTD events. Limited capacity to control FTD
risks is a challenge. Reservoirs do better at manag-
ing high-frequency DTF and high-intensity FTD events.
They also cut down multi-peak DFAA events and re-
duce their monthly duration.

3. Reservoirs’ ability to lower DFAA total risk is linked to
their combined storage. Using large irrigation reservoirs
within the LMR Basin can help withstand mild DFAA
risks and overall events. To better handle moderate and
severe DFAA events, reservoir operations need to be op-
timized.

This study gives new insights into how reservoirs help mit-
igate DFAA in the LMR Basin. It also aids water manage-
ment for riparian countries. DFAA remains a serious chal-
lenge. This shows the need for LMR Basin countries to work
together, build capacity against DFAA events, reduce climate
change effects, and support sustainable development.
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