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Abstract. Merging physics-based with data-driven ap-
proaches in hybrid hydrological modeling offers new op-
portunities to enhance predictive accuracy while address-
ing challenges of model interpretability and fidelity. Tradi-
tional hydrological models, developed using physical princi-
ples, are easily interpretable but often limited by their rigid-
ity and assumptions. In contrast, machine learning methods,
such as Long Short-Term Memory (LSTM) networks, offer
exceptional predictive performance but are often criticized
for their black-box nature. Hybrid models aim to reconcile
these approaches by imposing physics to constrain and un-
derstand what the ML part of the model does. This study
introduces a quantitative metric based on Information The-
ory to evaluate the relative contributions of physics-based
and data-driven components in hybrid models. Through syn-
thetic examples and a large-sample case study, we examine
the role of physics-based conceptual constraints: can we ac-
tually call the hybrid model “physics-constrained”, or does
the data-driven component overwrite these constraints for
the sake of performance? We test this on the arguably most
constrained form of hybrid models, i.e., we prescribe struc-
tures of typical conceptual hydrological models and allow
an LSTM to modify only its parameters over time, as learned
during training against observed discharge data. Our findings
indicate that performance predominantly relies on the data-
driven component, with the physics-constraint often adding
minimal value or even making the prediction problem harder.
This observation challenges the assumption that integrating
physics should enhance model performance by informing the
LSTM. Even more alarming, the data-driven component is
able to avoid (parts of) the conceptual constraint by driv-
ing certain parameters to insensitive constants or value se-

quences that effectively cancel out certain storage behavior.
Our proposed approach helps to analyse such conditions in-
depth, which provides valuable insights into model function-
ing, case study specifics, and the power or problems of prior
knowledge prescribed in the form of conceptual constraints.
Notably, our results also show that hybrid modeling may of-
fer hints towards parsimonious model representations that
capture dominant physical processes, but avoid illegitimate
constraints. Overall, our framework can (1) uncover the true
role of constraints in presumably “physics-constrained”” ma-
chine learning, and (2) guide the development of more accu-
rate representations of hydrological systems through careful
evaluation of the utility of expert knowledge to tackle the
prediction problem at hand.

1 Introduction

Hydrological models are essential tools for the management
of water resources as well as scientific research. Due to their
wide range of applications, the motivations and reasons be-
hind the choices that lead to the specific usage of a model
over another are not clear and the issue of adequacy in the
choice of a model is not typically addressed (Horton et al.,
2022). Worryingly, the choice of a model is often relegated to
past experience and not adequacy (Addor and Melsen, 2019).

Some authors have argued for the creation of a Commu-
nity Hydrology Model which could be able to represent dif-
ferent processes at different scales, making it suitable for a
wide range of applications, but there are open challenges
that need to be addressed before such a model can be de-
veloped (Weiler and Beven, 2015). In contrast, other authors
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support the concept of flexible modeling frameworks that en-
able users to combine different representations of processes
and model constructs (Fenicia et al., 2011; Clark et al., 2008).
Using this approach, a unique model can be developed for a
specific application, and the issue of model adequacy is ad-
dressed by testing multiple models as different working hy-
potheses (Clark et al., 2011).

1.1 Conceptual rainfall-runoff models

So far, the traditional modeling approach has been that of
simplified physical concepts in which different compart-
ments in the hydrological cycle are represented by intercon-
nected storage units and these models obey physical princi-
ples. Thus, understanding of the physical system is translated
into the model and vice-versa, making the models easily in-
terpretable.

Typically, catchment scale processes in a rainfall-runoff
model are represented by a reservoir element that can be de-
scribed by ordinary differential equations (ODEs):
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where S(¢) represents the conceptual storage of a reservoir
element at time 7, u(¢) is time-dependent forcing data, Q(¢) is
the response of the reservoir element to the forcing and 6 are
the model parameters. Furthermore, f and g are functions
that describe the evolution of storage and output with time
(Fenicia et al., 2011). These types of models are physically-
based because the main driving principle of a model is con-
servation of mass through Eq. (1).

These very simple principles for conceptual rainfall-runoff
models have been adapted into modular modeling frame-
works such as FUSE (Clark et al., 2008), Superflex (Feni-
cia et al., 2011; Dal Molin et al., 2021) and RAVEN (Craig
et al., 2020). These frameworks enable researchers to de-
velop an unlimited range of modular structures for rainfall-
runoff models. In practice, researchers apply these frame-
works in model comparison studies using one of typically
two approaches: top-down or bottom-up development. The
top-down approach begins with a complex model and re-
duces its components, while the bottom-up approach starts
with a simple model and gradually increases its complexity
(Hrachowitz and Clark, 2017).

Other studies evaluate an existing set of standard model
structures within these frameworks. Although the choice of
components is often arbitrary and informed by prior expe-
rience, a paradigm for automatic model structure identifica-
tion has been proposed which systematically tests and iden-
tifies the most adequate model structures for a rainfall-runoff
model while acknowledging the challenge of equifinality
(Spieler et al., 2020).
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1.2 LSTMs

Unlike the previous approach, machine learning (ML) and
other purely data-driven approaches assume no prior knowl-
edge and learn the required relationships between variables
from the provided data alone. In particular, Long Short-Term
Memory (LSTM) networks have been shown to provide very
accurate predictions of streamflow establishing a number
of benchmarks across different data sets (Kratzert et al.,
2018, 2019b, c; Lees et al., 2021; Loritz et al., 2024). The
performance of these models can be partly attributed to the
flexibility of LSTM networks (LSTMs hereafter) which do
not have the constraints that physically-based models have.

LSTMs (Hochreiter and Schmidhuber, 1997) are a type
of recurrent neural network (RNN) which has been widely
adapted in hydrology for rainfall-runoff modeling and/or pre-
dicting streamflow (Kratzert et al., 2024). More generally,
RNNs and LSTMs have found applications in modeling dy-
namical systems (Gajamannage et al., 2023). Indeed, the rea-
son they have been successful is that this type of neural net-
work adds both memory (that is, states) and feedback to
allow for the current output values to depend on past out-
put values and states (Goodfellow et al., 2016). As men-
tioned previously, because a catchment can be represented
as a set of ODEs which make it a dynamical system (Kirch-
ner, 2009), the usage of LSTMs for rainfall-runoff modeling
arises naturally. Ultimately, both approaches: conceptual and
data-driven models are complementary, and direct mappings
between one another have been identified (Wang and Gupta,
2024).

The issue of lacking mass conservation in LSTMs has been
addressed by models which include an additional term that
accounts for unobserved sinks, pointing towards deficiencies
in data products (Frame et al., 2023) and this issue of clo-
sure is often a point of discussion and controversy (Beven,
2020; Nearing et al., 2021). Nevertheless, the main criticism
of these models comes from their “black-box’ nature, which
makes their internal processes difficult to understand. Cur-
rent methods for interpreting neural networks typically re-
quire the use of a secondary model to analyze the primary
one (Montavon et al., 2018). For example, while researchers
have proposed techniques to correlate LSTM hidden states
with real-world variables (Lees et al., 2022), this interpre-
tation process remains complex and requires the implemen-
tation of an additional model, known as a probe. In some
cases, even the LSTM cell states themselves have shown suc-
cessful correlation with the main drivers of the hydrological
cycle (Kratzert et al., 2019a). Although interpreting LSTM
states is feasible, researchers also address this challenge by
selecting model architectures that are inherently more inter-
pretable, although these approaches still often require sup-
plementary models for comprehensive explainability (De la
Fuente et al., 2024).
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1.3 Hybrid models

Recently, hybrid modeling approaches (Reichstein et al.,
2019) have been proposed as end-to-end modeling sys-
tems that combine data-driven approaches with traditional
physics-based models. Differentiable models (Shen et al.,
2023) represent a particular subset of hybrid models that
leverage deep neural networks and differentiable program-
ming paradigms (Ansel et al., 2019; Bradbury et al., 2018)
to calculate gradients with respect to model variables or pa-
rameters, enabling the discovery of unknown relationships.
In the broader context of scientific machine learning, these
models also belong to the framework of Universal Differen-
tial Equations (UDEs), which combine differential equations
with neural networks to represent system dynamics (Rack-
auckas et al., 2021). The process of solving UDEs allows re-
searchers to identify unknown functions and system dynam-
ics from data while preserving the underlying mathematical
structure of the equations.

One of the first successful applications of the differen-
tiable framework in hydrology was the work of Tsai et al.
(2021), who used an early differentiable modeling approach
named deep-parameter learning to regionally calibrate the
HBV model (Bergstrom and Forsman, 1973) and identify
spatial patterns in the calibrated model parameters within a
large-scale case study. Their work demonstrated how large
datasets could advance the understanding of hydrological
processes through differentiable models by finding contin-
uous spatial patterns for the parameters of a hydrological
model. In terms of interpretability, this represents a major
shift, as models calibrated using local optimization tech-
niques often yield parameter estimates that vary greatly in
space.

This was followed by Feng et al. (2022), who used dif-
ferentiable models to achieve state-of-the-art performance in
streamflow prediction on the CAMELS-US dataset (Addor
et al., 2017). Beyond prediction, the proposed models ob-
tained accurate correlations with independent data products
for evapotranspiration and baseflow index (BFI). This opens
up opportunities for increased interpretability, by possibly
constraining the hybrid model further with non-target vari-
ables and achieving “a process granularity that enables pro-
viding a narrative to stakeholders” (Feng et al., 2022). Sim-
ilar to the attempts of making LSTMs interpretable, com-
prehensive explainablity is arguably not reached yet, and it
seems to come at the price of reduced accuracy.

Subsequent work showed their suitability in ungauged set-
tings (Feng et al., 2023) and on a global scale (Feng et al.,
2024a). The pattern of correlation with external data contin-
ued at the global scale where the calculated evapotranspira-
tion from differentiable models, an untrained variable, corre-
lated with Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite observations. Differentiable models have
also been used to address the numerical challenges of time-
stepping models (Song et al., 2024). Beyond streamflow pre-
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diction, differentiable models have been successfully applied
to stream temperature modeling (Rahmani et al., 2023) and
photosynthesis simulations (Aboelyazeed et al., 2023).

Other approaches to hybrid modeling include using dense
neural networks embedded directly into hydrological mod-
els to improve process descriptions within the model itself
(Li et al., 2023). Furthermore, the suggested deep parame-
ter learning approach has been successfully applied and ex-
tended independently using the EXP-HYDRO model (Zhang
et al., 2025), with the final hybrid model also obtaining
good correlations with unobserved variables from the exter-
nal ERAS5-Land dataset (Mufoz-Sabater et al., 2021).

Importantly, current hybrid model applications primarily
take advantage of the ability of their data-driven components
to exploit information from large datasets, leaving their ef-
fectiveness with smaller datasets as an open question. The
data requirements for different hydrological modeling meth-
ods remain an active area of research (Kratzert et al., 2024,
Staudinger et al., 2025).

1.4 Key idea

Recent developments show an increasing integration of
physics-based and data-driven approaches in hydrological
modeling. This trend is evident in streamflow prediction,
where researchers have successfully implemented both neu-
ral operator-based methods, such as NeuralODEs (Hoge
et al., 2022), and traditional statistical approaches (Chlum-
sky et al., 2023). These hybrid solutions increasingly blur the
distinction between purely physics-based and purely data-
driven modeling paradigms.

Although this integration is gaining widespread adoption
in hydrology, recent work by Acufia Espinoza et al. (2024)
raises important questions that need to be addressed. They
demonstrate that incorporating physics-based components or
prior knowledge doesn’t yield an improvement in model per-
formance over a purely data-driven approach. Furthermore,
hybrid models can perform well even when the incorporated
physical principles oversimplify or misrepresent the under-
lying system, primarily because their data-driven compo-
nents can compensate for these imposed limitations. More-
over, their results question the validity of using correlation
with unobserved variables to justify this approach, as even
models where the physics-based component misrepresents
the hydrological system can achieve good correlations with
unobserved variables from external data products.

This observation raises fundamental questions about the
value and meaning of incorporating physics-based compo-
nents into data-driven hydrological models. While purely
data-driven methods often achieve high performance, we
lack systematic ways to evaluate when and how the addi-
tion of physical principles genuinely enhances model perfor-
mance and improves the representation of underlying phys-
ical processes. This study addresses this knowledge gap
through the following contributions:
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1. We introduce a quantitative metric to assess whether a
hybrid model’s performance is dominated by its data-
driven or physics-based components in comparison to a
purely data-driven benchmark;

2. We demonstrate the characteristics of this metric under
synthetic conditions, i.e. we guide the modeler’s intu-
ition about what to expect if the prescribed constraint is
physically meaningful or not;

3. We suggest a diagnostic evaluation routine to better un-
derstand the effective hybrid model’s structure, not its
(presumably) prescribed one based on the imposed con-
ceptual model;

4. We derive insights about the relative contribution of
physics-based and data-driven components from apply-
ing this metric to a large-sample case study, illustrating
how “physics may get in the way” under imperfectly
known model settings.

In particular, we measure the entropy of both the LSTM-
predicted time-variable parameters and the LSTM hidden
states to quantify how much the data-driven component of
our hybrid model counteracts the conceptual model’s pre-
scribed constraints. Our hypothesis is that low entropy indi-
cates the LSTM needs minimal parameter variation, suggest-
ing the conceptual constraints accurately describe the natu-
ral system. Conversely, high entropy suggests inappropriate
constraints (e.g., oversimplified or enforcing mass balance
despite imperfect inputs). High entropy points to an imbal-
ance where the data-driven component compensates for in-
adequacies in the conceptual model by manipulating its pa-
rameters. Subsequent evaluation of LSTM-learned parame-
ters helps determine whether this is actually the case. If so,
we hope to still identify physical principles within the hy-
brid model; otherwise, the term “physics-informed” would
be proven misleading and attempts of interpretation lack
foundation. Our proposed approach helps analyze such con-
ditions in-depth, which provides valuable insights into model
functioning, case study specifics, and the strength or limita-
tions of prior knowledge prescribed in the form of conceptual
constraints.

Note that we focus on a typical single-task prediction
(here: streamflow) to evaluate the value of adding prior pro-
cess knowledge (here: rainfall-runoff) in the form of concep-
tual models to an LSTM network. Yet, we recognize the po-
tential of hybrid models for multi-task learning, where mod-
els are evaluated on multiple objectives including multiple
target variables, and anticipate that our proposed method can
be readily extended to such evaluations in future work.

We demonstrate our approach through two case studies.
The first uses synthetic data with a known “true” model that
accurately represents the system, allowing us to test our hy-
pothesis and develop practical insights about our proposed
metric. This example builds initial intuition for evaluating
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hybrid models by measuring entropy in both the concep-
tual model parameter space and LSTM hidden state space,
demonstrating how performance can be attributed to either
the data-driven or physics-based components.

Our second case study applies these insights to a real-
world dataset where no “true” model is known, further
demonstrating the practical application of our metric. For this
case study, we also examine LSTM models that receive the
states and fluxes of a previously calibrated conceptual model
as inputs. We analyze the entropy of the LSTM hidden states
to explore how our proposed metric can help understand how
a conceptual model may inform predictions made in a purely
data-driven approach. Through these two real-world appli-
cations, we show that entropy can be used to analyze both
data-driven models attempting to incorporate physical prin-
ciples and physics-based conceptual models incorporating
data-driven components.

The remainder of the manuscript is structured as follows.
Section 2 details the types of models employed in this study,
data for the case study and specific aspects of calculating
differential entropy in higher dimensions. Sections 3 and 4
cover the described case studies. Finally, Sect. 5 summarizes
our main findings and discusses avenues for future research.

2 Data and methods

In this section, we outline the basic elements of our study,
including the dataset employed across both case studies,
models used, and the general methodological framework for
training and evaluation. While this section provides a high-
level overview of our methods, the subsequent case-specific
sections will discuss more in-depth details, including hyper-
parameter configurations, architectural adaptations, data se-
lection criteria, and other specific considerations unique to
each experimental scenario.

2.1 CAMELS-GB

CAMELS-GB is a large sample catchment hydrology dataset
for Great Britain (Coxon et al., 2020a). As with similar large-
sample datasets (Addor et al., 2017; Loritz et al., 2024), it
collects data for streamflow, catchment attributes, and mete-
orological time-series data for 671 river basins across Eng-
land, Scotland and Wales.

As in Acufia Espinoza et al. (2024), we based our experi-
mental setup on the approach of Lees et al. (2021). We pro-
vide a brief description here and refer readers to these studies
as well as Appendix A in this article for further details.

As forcing data, we used the time-series of catchment
average values of precipitation, potential evapotranspiration
and temperature in the dataset. In addition, as input for the
LSTMs, we used 23 of the static attributes that describe the
catchments in the dataset. Of these, 3 were related to topog-
raphy, 6 to soil, 4 to land cover, 1 to human influence and
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8 to climate characteristics. These are detailed in Table A3.
As part of the experimental setup, the data was divided into
training, validation, and testing sets. The training set spans
from 1 October 1980 to 31 December 1997; the validation
set from 1 October 1975 to 30 September 1980; and the test-
ing set from 1 January 1998 to 31 December 2008.

2.2 Models
2.2.1 LSTMs

An LSTM is a type of recurrent neural network that effec-
tively addresses the vanishing gradient problem through spe-
cialized memory cells with input, forget, and output gates.
This architecture enables LSTMs to capture long-term de-
pendencies in sequential data, making them valuable for time
series prediction. Their capacity to learn temporal patterns
without explicit physical parameterizations has proven par-
ticularly effective for modeling streamflow. For a more in-
depth description of the applications of LSTMs in hydrology,
we refer to the work of Kratzert et al. (2018).

2.2.2 Hybrid models

The hybrid models used in our study follow the paradigm
of Shen et al. (2023) and combine an LSTM network with a
conceptual physics-based representation of the hydrological
system. More specifically, our models resemble the proposed
SHBYV model (Feng et al., 2022).

Figure 1a shows a “pure” LSTM network that serves as our
baseline. Then, for each model in Fig. 1b through 1d, there is
a coupling between an LSTM and a conceptual hydrological
model. The model in Fig. 1d uses the Simple Hydrological
Model or SHM (Ehret et al., 2020) as the conceptual compo-
nent, which is a simplified version of the HBV model. As an
alternative, the model in Fig. 1b uses a “Bucket” model i.e. a
simple conceptual model that represents the catchment water
balance using a single storage. Finally, the model in Fig. 1c
uses a “Nonsense” model, a conceptual model that deliber-
ately represents processes counter to common intuition: rain-
fall is immediately captured and stored as baseflow storage,
then moves up a soil column to the unsaturated zone before
being transformed into output streamflow.

While SHM represents a model typically used in hydro-
logical practice, the Bucket and Nonsense models serve as
alternative hypotheses to test the limits of the hybrid mod-
eling approach. These models were built using principles
from modular frameworks that still find applications in hy-
brid modeling (Clark et al., 2008; Fenicia et al., 2011).

In simple terms, the approach to hybrid modeling used
here can be conceptualized as a hydrological model with
dynamic parameters. In rainfall-runoff modeling, the use of
dynamic parameters originated with data-based mechanis-
tic modeling (Young and Beven, 1994), which established
methods for identifying time-invariant parameters in relation
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to their time-variant counterparts. More recent approaches
generate time-dependent parameters by introducing stochas-
tic processes that represent deviations from calibrated static
parameters (Reichert and Mieleitner, 2009). In these meth-
ods, both static parameters and their variable components
are jointly calibrated via Bayesian updating using Markov
chain Monte Carlo. While theoretically convincing, the prac-
tical application of stochastic, time-dependent parameters
has been very limited due to identifiability problems and
the computational burden of propagating time-dependent pa-
rameters in a rigorous Bayesian framework (Reichert et al.,
2021). With the recent gain in popularity of differentiable
models, the idea of dynamic parameters (albeit in a deter-
ministic setting) has experienced a significant revival in hy-
drological modeling.

At runtime, the LSTM runs for the entire length of a se-
quence of inputs and predicts the conceptual model’s pa-
rameters at every time step. These predictions are made in
“sequence-to-sequence” mode. After this initial run, the op-
eration of the model resembles a traditional hydrological
model with the distinction being that the model reads a new
set of parameters at every time step along with it’s inputs,
therefore the parameters of the model vary in time. Due to
the initial run of the LSTM and the warm-up period of the
hydrological model, all hybrid models in this paper use a se-
quence length of 730d (2 years) with only the second half
of the predictions (™) evaluated in the loss function. Fur-
thermore, instead of evaluating the model at each unique se-
lection of 365 time steps, we limit the number of evaluations
to 450 chosen randomly, meaning that the loss function is
calculated using 365 - 450 = 164250 values of y*™ and y°®s,
For more details of the evaluation process, please refer to
Acuiia Espinoza et al. (2024).

2.2.3 Performance evaluation

Hybrid models are typically trained to make deterministic
predictions. Therefore, depending on the case, we use either
the mean-squared error (MSE) or the basin average Nash-
Sutcliffe efficiency (NSE*) (Kratzert et al., 2019¢) as loss
functions to evaluate the simulations of our model yg, with
the observed data yops.

MSE = — Z(y"bs 2 (3)
bs sim
(yobs — ysim)?
NSE* = i i 4
Z Z] (sp+€)? @

In Eq. (3), i identifies the predictions and observations on
a specific day and N the number of days over which to calcu-
late the loss function. In the case of NSE*, B is the number of
mini-batches in a training batch (typically 256) and the addi-
tional term s in Eq. (4) represents the standard deviation of
the streamflow time-series of the basin b and € is a numerical
stabilizer added for cases where s, is low.
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Figure 1. Sketch of the hybrid models used in this study. The parameters in each model are encircled and highlighted in green. (a) LSTM,

(b) Hybrid Bucket, (¢) Hybrid Nonsense, (d) Hybrid SHM.

2.3 Entropy-based measure of LSTM-induced
parameter variability

For our evaluation, we aim to measure how much the LSTM
makes the conceptual model’s parameters vary over time to
achieve an optimized performance during training. The un-
derlying premise is that, when using a perfect model, con-
stant true parameter values can be found during optimization,
and the “LSTM-induced variability” will be zero. If the con-
ceptual constraint is sufficiently honored by the LSTM, we
expect a mild or null variability in the predicted timeseries
of parameter values. In contrast, if a severely wrong repre-
sentation of the true system is used as conceptual model, the
LSTM will compensate through highly time-dependent pa-
rameter values, and the variability in parameters will be high.

This analysis can also be extended to the hidden states
of the LSTM network itself. As examples, in Sects. 3.3 and
4.3, we examine cases where this extension is necessary to
compare models with different numbers of parameters. In
Sect. 4.5 we also look at models with different numbers of
inputs.

Although there are several measures of variability, we
choose to measure this variability through entropy, as it does
not require any assumptions about the type or shape of the
statistical distribution of the analyzed data. For analyzing the
entropy of timeseries data, we have to evaluate continuous
(differential) entropy (Cover and Thomas, 2006; MacKay,
2003) as shown in Eq. (5) with p denoting probability den-
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sity functions (PDFs) of a random variable X with support
X.

H(X) = — / p(x)log p(x)dx, 5)
X

Beirlant et al. (1997) provide a comprehensive overview of
different common approaches to estimating differential en-
tropy from data. In this study, we will use the method pro-
posed by Kozachenko and Leonenko (KL) based on near-
est neighbor distances (Kozachenko and Leonenko, 1987)
shown in Eq. (6):

. d
H(X) =w(N)—W(k)+log(61(d))+ﬁZIOg(p,‘f(i)), (6)
i=l1

where ¥ is the digamma function g—z log(I"(z)), N is the num-
ber of points in a sample, k is a hyperparameter specifying
the number of nearest neighbors used in the estimate, c(d)
is the volume of a d-dimensional unit ball, d is the number
of dimensions of the data and ,0,‘{1 (i) is the distance between
x; and its kth nearest neighbor. The KL estimator for entropy
has been shown to be accurate even for data in higher dimen-
sions (Alvarez Chaves et al., 2024) and was implemented as
part of the https://github.com/manuel-alvarez-chaves/unite_
toolbox (last access: 20 January 2026), a suite of tools we
have developed for practical applications of information the-
ory in model evaluation, which can be found in the code
availability section of this article.
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2.4 Diagnostic routine to evaluate hybrid model
structure

Analyzing the variability in parameter or hidden-state space
highlights cases where the prescribed conceptual constraint
fails to accurately reflect the underlying system dynamics.
Such discrepancies fall into two categories: cases where the
physics are appropriate but other reasons make the model
struggle (e.g., biased or highly uncertain input data), and
cases where the physics constraint itself is problematic (e.g.,
due to neglected or misrepresented processes). To distinguish
between these cases and gain insights into system under-
standing and model development, we propose a tailored di-
agnostic evaluation routine that scrutinizes the joint behavior
of the LSTM-learned parameters. We demonstrate the effec-
tiveness and diagnostic capabilities of this approach through
didactic examples in Sect. 3.

3 Didactic examples illustrating the proposed workflow
3.1 Motivation

Synthetic examples here serve to create intuition about the
role of the data-driven component in hybrid hydrological
models. Specifically, we will demonstrate the role of LSTMs
predicting time-variant parameters of conceptual hydrologi-
cal models. We aim to answer the following questions:

1. How does the data-driven component behave in pres-
ence of a perfect conceptual constraint (i.e., the physics
of the data-generating process are fully reflected in the
conceptual model)?

2. How much variability in the LSTM-predicted parame-
ter values will be detectable if the conceptual constraint
is reasonable, but not a complete representation of the
data-generating process?

3. How will the data-driven component react if the con-
ceptual constraint is not reflecting the data-generating
process at all?

Specific details for the experimental set up of these didac-
tic examples are described in Appendix Al. The main point
to highlight here is that all models were trained using mean-
squared error (MSE) as the loss function (Eq. 3). The reason
is that the data used for yops Was created synthetically by run-
ning an initial “true” model; therefore, there was no need to
account for differences in the magnitude of the streamflow
signals between basins.

As stated in Sect. 1.1, the main principle driving con-
ceptual hydrological models is the conservation of mass in
different reservoirs or storages within a model. Following
Eqg. (1), in a simple case of one storage, conservation of mass
can be written as ‘(il—f = P — Q —ET, with P being the input
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(precipitation) and ET and Q being two outputs (evapotran-
spiration and output streamflow, respectively). Let us assume
amodel that represents a typical power reservoir in which the
storage-outflow relationship is described by the power func-
tion Q = %, where B and k are model parameters with an
additional parameter « being used as a correction factor for
the output flux of ET. This model and its governing equa-
tions are shown in Fig. 2a. Using the precipitation and evap-
otranspiration time-series of a subset of basins in CAMELS-
GB (cf. Sect. 2.1) and parameter values « = 0.8, 8 =1.2,
k = 24.0, we create a synthetic “observed” streamflow time-
series that is shown across all plots in Fig. 2 (subplots b, d,
f, i, | and o). This initial model is considered our “synthetic
truth” because it was used to generate the target data (“ob-
served” streamflow) for the competing formulations of hy-
brid models described in Sect. 3.2.

We will analyze the resulting time-varying parameter val-
ues of the alternative hybrid models, as predicted by their re-
spective LSTM-component, and interpret these results given
our knowledge of the true model structure in Sect. 3.3.1.
Then, we will explain how we measure variability as the en-
tropy of the resulting parameter distributions in Sect. 3.3.2,
and why we move to measuring the “activity” of the LSTM
in its hidden state space in Sect. 3.3.3. We summarize the
key points of our proposed approach, as illustrated on these
didactic examples, in Sect. 3.4.

3.2 Hybrid models

To investigate the three research questions posed above, we
setup an LSTM model as our data-driven benchmark and four
alternative hybrid models to predict the time-series of ob-
served discharge, illustrated in the left column of Fig. 2:

1. We use an LSTM to directly predict streamflow from the
inputs of precipitation and evapotranspiration (Model
0);

2. We couple the “true” model defined above with an
LSTM network to predict its parameters «, 8 and k, as
described in Sect. 2.2.2 (Model 1);

3. We substitute the power-reservoir with a linear reservoir
that follows the storage-outflow relationship Q = %,
and add a threshold parameter Spyax such that any excess
storage directly becomes streamflow Q = (S — Spax) if
S > Smax (Model 2);

4. We add an additional reservoir to Model 1 which re-
ceives the outflow of the previous reservoir % =01 —
Q> and both reservoirs have a linear storage-outflow re-
lationship (Model 3);

5. We extend the storage-outflow relationship of Model 1
with an additional threshold parameter Sp that reflects
the minimum storage required to generate streamflow
(Model 4).
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Figure 2. Didactic examples, demonstrating the evaluation of hybrid hydrological models by measuring the entropy of the model parameters
and the LSTM hidden-state space. Left column: Schematic illustration of hybrid model structures, with Model 1 representing the “true”
conceptual physically constrained model coupled with the LSTM as a reference. Center column: Segment of observed/predicted discharge
time-series. Right column: Time-series of LSTM-predicted parameters and their univariate distributions.

Hydrol. Earth Syst. Sci., 30, 629-658, 2026 https://doi.org/10.5194/hess-30-629-2026



M. Alvarez Chaves et al.: An entropy-based evaluation of conceptual constraints in hybrid hydrological models 637

In Fig. 2: Model O represents a case where we only have
an LSTM which predicts streamflow, i.e. a purely data-driven
model. Then, based on the distinction between structures and
processes, we have categorized each hybrid model according
to its architectural design and process representation. Model
2 maintains the correct one-reservoir architecture of the true
model but implements an incorrect process representation by
substituting the true exponential outflow relationship with a
simple linear relationship. Model 3 deviates from the true
model in both aspects: it uses the same incorrect linear out-
flow relationship while also incorporating an additional stor-
age reservoir that doesn’t exist in the true model. Model 4
preserves the correct architecture of the true model but be-
comes overparameterized in its process representation by in-
troducing an extra parameter, Sp. Interestingly, when Sy is
set to zero, Model 4’s process representation perfectly aligns
with the outflow relationship in the true model. We explore
these relationships further in Sect. 3.3.1. Additional exem-
plary model architectures are presented in Appendix B.

The LSTM architecture of the baseline model and the hy-
brid models consists of ten hidden states. For our entropy
analysis of the hidden states to be meaningful and fair, it
is important to compare models with the same architecture.
The choice of ten hidden states was determined by the min-
imum required for both the baseline model and hybrid mod-
els to achieve equal performance. To aid in this process, the
models were trained on a subset of five randomly selected
basins (76005, 83004, 46008, 50008, and 96001) from the
CAMELS-GB dataset. In general, using multiple basins im-
proved the training process for all models, particularly for the
pure LSTM (Model 0), validating current standard practices
(Kratzert et al., 2024). However, the purpose of this anal-
ysis was not to achieve maximum performance for a given
task but to compare hybrid approaches on equal grounds. We
base our entropy analysis on equal performance to ensure fair
statements about the role of the conceptual component in hy-
brid models. Additionally, to allow for extensive repetitions
and alterations, we deliberately kept the training effort low
(unlike the real-world case study; see Sect. 4).

The selection of these specific basins for this example
is not critical. In our true model, we have defined a data-
generating process that does not consider basin-specific char-
acteristics, meaning that the models could be trained on any
set of basins. The only requirement is that basins have suf-
ficiently long time series of precipitation and evapotranspi-
ration data, which is satisfied by all CAMELS-GB basins.
We used only the precipitation and pet time series from each
basin and created our own synthetic “observed” streamflow
as described in Sect. 3.1 for model training. The train/test
split followed the approach detailed in Sect. 2.1. Parameter
variation ranges for the conceptual model components are
shown in Table A1. Since the target is the product of a model,
there was no need to adjust the loss function for specific data
characteristics; therefore, we chose MSE (Eq. 3) as the loss
function. Each model was trained for a specific number of
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epochs using model-specific learning rates. We refer readers
to the synthetic example logs for detailed specifications of
each model. The reported testing metrics are averaged over
five realizations of each model obtained from random initial-
izations using different seeds.

3.3 Analysis and discussion of results
3.3.1 Visualization of time-varying parameters

For illustration purposes, we show a short five-month period
(November 2004 to April 2005, Cumbria and Carlisle floods
of 2005 in the UK (Harper, 2015)) in Fig. 2 to demonstrate
the ability of all models to perfectly fit the data both dur-
ing high and low flow conditions. The center column shows
the predicted streamflow by an exemplary run of the hybrid
model, and the right column shows the corresponding param-
eter trajectories. The reported numerical values of NSE and
entropy are for the whole testing period of 1 January 1998 to
31 December 2008, and averaged over the five runs based on
different random seeds for initialization. The density plots in
the right column of Fig. 2 were created using a kernel-based
estimate for density (Waskom, 2021), but the reported indi-
vidual entropies of each parameter and the joint entropy of
the model parameters were calculated using the KL estima-
tor described in Sect. 2.3.

Pure LSTM (Model 0). For this case we see that the pure
LSTM is able to make accurate predictions, perfectly fitting
the observed data. As such, this model serves as our baseline
and any additional knowledge should make prediction easier
(reduce entropy) or more difficult (increase entropy).

Perfect physics constraint (Model 1). In the case of Model
1, where the LSTM is coupled to the true conceptual model,
we hope to see that the data-driven component does nothing,
i.e., it doesn’t interfere with the perfect representation of the
natural system that is provided by the conceptual constraint.
Indeed, we find that the network predicts practically static
parameters as shown in Fig. 2g, with almost negligible devi-
ations only resulting from the effect of the sequential nature
of the LSTM. Reassuringly, the LSTM is able to recover the
true parameter values of « = 0.8, § = 1.2, and k = 24.0. As
a logical consequence, this hybrid model is able to perfectly
mimic the observations with an NSE of 1.0, as they were cre-
ated with the same conceptual model and parameter values.

Imperfect physics constraint (Models 2 and 3). The behav-
ior of the time-varying parameters is expected to differ when
the LSTM is coupled to a conceptual model that does not
adequately represent truth. Subplots (j) and (m) of Fig. 2 il-
lustrate the behavior of the parameters when the conceptual
component of the hybrid model has been incorrectly spec-
ified. In these cases, we can see how the LSTM varies the
parameters in order to achieve good predictions despite an
imperfect conceptual model (i.e., the LSTM compensates for
model structural error). This behavior is apparent in the vari-
ation of the recession constants for Model 2 (k) and Model 3

Hydrol. Earth Syst. Sci., 30, 629-658, 2026



638 M. Alvarez Chaves et al.: An entropy-based evaluation of conceptual constraints in hybrid hydrological models

(k1 and kp). In situations of low flow, the recession constants
increase, whereas for situations of high flow, the reverse is
true.

Over-parameterized constraint (Model 4). In the case of
an over-parameterized conceptual model, the role of the data-
driven component is somewhat unclear. All parameters might
be tweaked simultaneously in a manner that changes over
time, to achieve a best-possible fit with the observed data.
Such a case would presumably spoil any attempts to interpret
the inner functioning of the hybrid model. However, in this
case, we observe that the parameters of Model 4 (Fig. 2p) are
optimized to have almost constant values. In fact, the LSTM
is able to correctly identify that the threshold parameter Sy
is not meaningful in predicting the output variable, so it is
efficiently driven to a value of 0.0. By doing so, the LSTM
transforms the prescribed constraint in the form of the over-
parameterized conceptual model into an architecture that is
equivalent with the true one. This allows the LSTM to iden-
tify the true values of the other three parameters.

In Appendix B, we present four additional hybrid model
versions that cover one under-parameterized case (Model
5 lacks the parameter B), and three over-parameterized
cases of different types (concerning model structure and pa-
rameters). The insights from these scenarios match what
we have reported for the three broad classes above: the
under-parameterized model struggles with the effect that
parameters are heavily varied, while the LSTM in over-
parameterized models produces almost static parameters in a
combination that counteracts the over-parameterization best.

3.3.2 Measuring entropy of conceptual model
parameter space

To quantify the variability of LSTM-predicted parameter val-
ues over time, we aggregate all individual values into a sam-
ple. These samples are shown as distributions in subplots (g),
(j), (m) and (p) of Fig. 2. Wide distributions result for cases
where parameters vary significantly over time, and very nar-
row distributions for cases of almost static behavior. We can
quantify the entropy of the joint distribution of the parame-
ters by using Eq. (6) as described in Sect. 2.3, with entropy
being larger for wide distributions and lower for narrow dis-
tributions. Let it be noted that we are calculating the entropy
of the parameters predicted by the neural network which oc-
cupy arange of values from O to 1 as shown in the right-hand
side of the right-most subplots in Fig. 2, such that the mea-
surements of entropy are not affected by the scale of the pa-
rameters. Hence, these values occupy a range of values of 1,
and considering that the maximum entropy (of a uniform dis-
tribution) over this value range is 0.0, the calculated entropies
are negative (with more negative meaning smaller entropy
which equals smaller variability).

Perfect physics constraint. Comparing the entropies ob-
tained for Models 1, 2 and 3, we can confirm that Model
1 (LSTM coupled to the true conceptual model) shows the
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lowest entropy. In a theoretical ideal case, the LSTM would
have been able to perfectly recover the true values of «,
and k without any variation in time at all, and that would
lead to a theoretical entropy of —oo (but this is an unrealis-
tic expectation given the difficult task required of the LSTM,
and numerical imprecisions). Nevertheless, the variations of
the parameters are very small and thus also the calculated
entropy is significantly smaller than for Models 2 and 3.

Imperfect physics constraint. We find that Model 2 gener-
ates less entropy than Model 3, which means that the con-
ceptual model in Model 2 better represents the true model
underlying the observed data (while definitely being further
from the truth than Model 1). In this sense, the proposed en-
tropy measure can be considered to represent “closeness” of
a model’s representation of the true system.

Over-parameterized constraint. Measuring the entropy of
the parameters for Model 4 distorts this result. As Model
4 permits a parameter configuration that makes the model
equal to Model 1, the predicted parameters of the LSTM
are again almost constant, and the calculated joint entropy is
even lower than for Model 1. Note that this is a special case of
an over-parametrized model. In Appendix B, and particularly
in Fig. Blg we show an example of an over-parametrized
model in which the true model is not findable.

Comparing Conceptual Constraints on the Entropy Axis.
To gain more intuition about how our hybrid models are
ranked based on entropy, we place them all (including the
ones presented in Appendix B) on the same entropy axis
(Fig. 3).

We would expect to find Model 1 furthest to the left in
Fig. 3, because the LSTM has nothing to adjust, so parame-
ters are practically constant over time and their joint entropy
is minimal. However, we see that is not the case and, among
the models discussed in this section, it is Model 4 which cre-
ates the lowest entropy.

This is an artifact of comparing entropies in different di-
mensions. As an example, consider X to be a random vari-
able that follows a multivariate Gaussian distribution, i.e.
X ~N(u,X) with u € R? and ¥ € R¥*?. The entropy of
X is then given as:

1
H(X) = glog 2me) + 3 log (det (X)) @)

We can see that the entropy of X is directly proportional
to the determinant of X. If we add a single dimension to X
with a very low value on the main diagonal (a timeseries of
almost-constant values will have close-to-zero variance) and
all off-diagonal entries being practically zero, the value of
entropy tends to decrease because the decrease of the second
term through multiplication of the original determinant with
a value smaller than one tends to outweigh the increase of the
first term.

There are two additional cases which show lower entropy
due to the number of parameters in their conceptual models
(Models 6 and 8) and one further example which has entropy
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Figure 3. Benchmarking axis based on the entropy of the time-varying parameters in the different hybrid models (didactic examples).

close to Model 4 because it shares a similar inflow-outflow
relationship (Model 7). The issues with these results are ex-
plained further in Appendix B. While explainable through
theory, this ranking is counter-intuitive and does not meet
our expectations for a metric that unifies the evaluation of ar-
bitrary hybrid models. We have illustrated these results here
to allow the reader to follow our argument and move with us
deeper into the hybrid models, i.e., into the LSTM hidden-
state space.

3.3.3 Measuring entropy of LSTM hidden state space

To overcome the challenge of appropriately comparing the
“activity” of the LSTM for models with differing numbers
of parameters, we propose that the entropy of the coupled
system should not be measured in the space of the parameters
but in the space of the hidden states of the LSTM instead.
Because all of the networks in this example have the same
number of hidden states (10) which move in the same range
of values (—1 to 1 due to the tanh function in the operations
in the network), the calculated entropies will be comparable
between themselves.

The entropy values obtained for the hidden state spaces of
all four models are reported in the left column of Fig. 2. The
hidden states of the LSTM in Model 1 have smaller varia-
tions than in the rest of the models, and thus the entropy of
this network is the lowest among all candidates. This mea-
sure of variability has an even more intuitive interpretation
as how much the LSTM has to compensate for a misspeci-
fied conceptual constraint.

Comparing Conceptual Constraints on the Entropy Axis.
When placing the models on our universal entropy axis in
Fig. 4, Model 1 now appears furthest to the left, which meets
our expectation that the true constraint should coincide with
minimal “activity” of the LSTM. We also see the same rank-
ing between Model 2 and Model 3, which again makes in-
tuitive sense, as using a one-reservoir-model better matches
the true system. Finally, rearranging by the entropies of the
LSTMs, Model 4 is now to the right of Model 1, which iden-
tifies it as a misspecified conceptual model, but honors that
the resulting hybrid configuration is very close to the true
system, as opposed to the proposed configurations in Models
2 and 3. Hence, measuring the entropy of the LSTM hidden
states prevents us from disingenuous conclusions obtained
by making unfair comparisons between models with differ-
ent number of parameters.
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Pure LSTM as a Reference. One more advantage of mea-
suring the entropy directly in the hidden states of the LSTM
is that any hybrid model can now be compared to a single
“pure” LSTM, i.e., an LSTM with a simple linear head layer
instead of the conceptual model. The addition of a concep-
tual head layer should make the prediction task of the LSTM
easier — at least this is the prevailing idea when promoting
“physics-informed” ML. In our setting, adding useful infor-
mation through the conceptual constraint should reduce the
required activity of the LSTM, and hence, entropy. If, by con-
trast, the conceptual constraint made the task even more diffi-
cult, it would add entropy. Marking the pure LSTM as Model
0, we can create a divide on our axis between models that add
“good” (helpful) physics (here: Models 1 and 4), and models
which add “bad” (misleading) physics (here: Models 2 and
3). In addition, Models 5, 6, 7 and 8 are discussed in Ap-
pendix B, where it is shown that they also fall consistently in
these categories of “good” and “bad”.

On the Complexity of the Prediction Task. The LSTM by
itself can be seen as a baseline of the required complexity for
accomplishing the prediction task. The proposed measure of
entropy can be related to the overall complexity of the net-
work as the entropy of the trajectories of the states in dynami-
cal systems has been related to their Kolgomorov complexity
(Galatolo et al., 2010). In theory, if the true model is speci-
fied as the conceptual head layer, the entropy of the LSTM is
reduced to the theoretical minimum (—o0) and the required
entropy or complexity to accomplish the specific modeling
task is completely contributed by the conceptual head layer.
Hence, the entropy of the conceptual head layer in Model 1
should be exactly the same as the entropy of the pure LSTM
(Model 0), but measuring the entropy of the conceptual head
layer by itself is not straight-forward and remains an open
challenge.

3.4 Summary of the proposed approach

Let us distill our proposed approach as a diagnostic frame-
work that discerns the adequacy of conceptual constraints in
hybrid models. When the prescribed conceptual model accu-
rately represents the natural system, the LSTM will exhibit
minimal intervention, effectively endorsing the conceptual
model. Conversely, when the conceptual constraint funda-
mentally misrepresents the system dynamics, the LSTM will
demonstrate high activity, working extensively to overcome
the inherent limitations of the prescribed conceptual model.
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Figure 4. Benchmarking axis based on the entropy of the trajectories of the LSTM hidden states in the different hybrid models and the pure
LSTM (didactic examples). The division of the green and red backgrounds serves to identify the addition of “good” and “bad” constraints,

respectively.

This difference in LSTM activity serves as a clear signal for
assessing the fidelity of our initial conceptual model.

These situations can be detected by the following proposed
workflow:

1. Visualize the time-sequence of LSTM-predicted param-
eters to gain insight about how heavily the data-driven
component acts against the physics constraint; draw
conclusions about compensation mechanisms and judge
whether the physics constraint is sufficiently honored or
massively altered in the hybrid model.

2. Quantify the joint entropy of the LSTM hidden state
space trajectories; compare against a pure LSTM for the
prediction task for reference, and, ideally, against alter-
native formulations of conceptual constraints by placing
all resulting entropies on the universal model evaluation
axis.

3. Interpret the results: are the conceptual components of
the hybrid models an advantage or a burden in solv-
ing the prediction task? Which configurations are more
helpful than others? Try to understand why from step 1.
Over-parameterization will tend to be helpful but with
some parameters driven to “unphysical” values; under-
parameterization will make the task unnecessarily diffi-
cult.

From the analysis of the didactic examples, we specifi-
cally want to highlight that the constraint-morphing capabil-
ity of the data-driven component is both an opportunity and
a risk: it is very promising to see that the flexibility of the
LSTM is not abused, but rather it points us towards parsimo-
nious model structures (as in Model 4). At the same time, this
constraint-morphing happens under the hood (e.g., resulting
NSE is practically the same for all our analyzed model ver-
sions!) —it is not safe to say that a hybrid model naturally sat-
isfies the constraint we have prescribed. As such, we should
be careful with stating that a model is “physics-constrained”
before investigating in detail what the final version of the
LSTM is doing. This is where our proposed diagnostic rou-
tine helps.

Even though in this section we focused on cases of equal
performance, in Sect. 4 and more specifically Sect. 4.3.3 we
analyze a case study with real data where no true model ex-
ists and our proposed hypotheses for hybrid models yield dif-
ferent results in terms of both predictive performance and
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entropy. It is also important to note that the issue of uncer-
tainty is not addressed by these synthetic examples because
the output of the true model, and therefore our observed data,
were unaffected by noise. Our measurement of entropy could
certainly be part of a larger and more comprehensive frame-
work that includes both epistemic and aleatory uncertainty
(Gong et al., 2013) and probabilistic model representations,
but such a framework is beyond the scope of this article. Nev-
ertheless, any measurement of entropy will always contain
a fraction attributable to the intrinsic chaos of data, which
becomes particularly relevant when transitioning from syn-
thetic to real-world applications. Interestingly, equifinality
did not pose an issue with synthetic data in our experiments,
as all models achieved perfect predictive performance and
the model was always identifiable under the right conditions.
This matches the experience of Spieler et al. (2020). How-
ever, in real-world applications, equifinality is likely to be
more pronounced due to measurement errors, incomplete ob-
servations of the system under study, and other sources of
uncertainty. This issue is discussed further in Sect. 4.3.2.

4 Case study: CAMELS-GB

Following the intuition developed by the didactic examples,
we apply our developed metric to a case study in large sample
hydrology using the CAMELS-GB dataset.

Both the pure LSTM and the LSTMs coupled with the
conceptual models have 64 hidden states each, which makes
them directly comparable between themselves. All models
were trained using the Adam optimizer (Kingma and Ba,
2017) with a learning rate of 1 x 10~ and a different num-
ber of epochs depending on the model, with the number of
epochs always ranging between 28 and 32. The ranges al-
lowed for the parameters of the conceptual models are listed
in Table A2, the static attributes used as input to the LSTM
in all models are listed in Table A3.

Further details about the study setup are presented in
Appendix A2 but this analysis follows the results from
Acufia Espinoza et al. (2024), so we first summarize their
main findings to put these new results into context. The
meticulous reader will notice some differences in the results
between the previous study and these current results. These
differences are discussed in Appendix C and do not impact
the main findings in either study.
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4.1 Motivation or: why do we want hybrid models?

Hybrid models have demonstrated significant improvements
in hydrological predictions across multiple applications.
These include enhanced accuracy in daily streamflow pre-
diction (Jiang et al., 2020; Feng et al., 2022), better predic-
tions in large basins (Bindas et al., 2024), and more pre-
cise estimates of variables like volumetric water content
(Bandai et al., 2024) and stream water temperature (Rah-
mani et al., 2023), as some examples. In each case, the hy-
brid approach outperformed traditional physics-based con-
ceptual models, including the EXP-Hydro and HBV models,
the Muskingum-Cunge river routing method, and a partial-
differential-equation-based description of the physical pro-
cess, respectively. However, while these improvements are of
note and leaving aside aspects of lacking interpretability, the
central question of “to bucket or not to bucket” was: given the
remarkable success of purely data-driven approaches, is the
additional effort of combining them with conceptual models
actually worth it?

Acuiia Espinoza et al. (2024) conducted a model compar-
ison study that evaluated four different approaches: a purely
data-driven LSTM and three conceptual hydrological mod-
els, each later transformed into hybrids through the process
described in Sect. 2.2.2. The three conceptual models: SHM,
adapted from Ehret et al. (2020), Bucket, and Nonsense
represent different hypotheses of the hydrological system.
Among these, SHM is a conventional hydrological model
suitable for practical applications, while Bucket and Non-
sense serve as contrasting cases: Bucket being an oversim-
plified representation and Nonsense incorporating physically
implausible assumptions.

We evaluate the streamflow prediction performance of
these seven models using the Cumulative Density Function
(CDF) to aggregate model performance across all 671 basins
in the dataset. Figure 5 presents these results, while Table 1
provides key metrics derived from the CDF analysis. The two
considered metrics are the median NSE, which corresponds
to the CDF’s middle quantile (the higher the better), and the
“area under the curve” (AUC). The AUC serves as a sum-
mary metric where lower values indicate better performance,
because the AUC becomes minimal if NSE only takes on
maximum values (Gauch et al., 2021).

Figure 5 demonstrates the effect of combining conceptual
models with LSTM networks. The effect is visible as a dras-
tic shift to the right from the dashed lines (purely conceptual
models) to the solid lines (their hybrid counterparts). This
improvement is further quantified in Table 1, where the met-
rics consistently show improved performance for hybrid ver-
sions compared to their original counterparts.

Despite these improvements, our results show that incor-
porating conceptual models did not exceed the performance
of a pure LSTM approach (in Fig. 5, the LSTM appears
farthest to the right). Interestingly, performance improves
most when hybridizing the oversimplified Bucket model,
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Figure 5. Comparison of model performance between concep-
tual models with static parameters (dashed lines), hybrid models
with dynamic parameters (solid lines), and the pure LSTM for all
CAMELS-GB basins.

Table 1. Comparison of model performance quantified by area un-
der the NSE curve (AUC) and median NSE.

Model AUC Median NSE
LSTM 0.123 0.865
SHM 0.267 0.747
Hybrid SHM 0.216 0.839
Bucket 0.395 0.582
Hybrid Bucket 0.147 0.852
Nonsense 0.477 0.511
Hybrid Nonsense ~ 0.265 0.801

and this hybrid model matches the LSTM performance most
closely. Intuitively, one might have expected the LSTM’s
flexibility to help the Nonsense model most, followed by
the Bucket model, and finally the SHM model. Furthermore,
one might have expected that after hybridization, the Hybrid
SHM would perform best and exceed the pure LSTM. In-
stead, what we observe suggest that the SHM constraint ac-
tually limits hybrid performance, adding a Bucket-type con-
straint is more successful, and that none of these constraints
improve prediction skill over the LSTM baseline.
These findings raise several urgent questions:

— Why do apparently “bad” physics allow for better hy-
brid performance than “good” physics?

— What can we conclude from hybrid performance after
all if it does not reflect process fidelity?

— Do physics get in the way of successful data-driven
modeling?

We note that one untouched advantage of the hybrid ap-
proach lies in its ability to directly derive unobserved vari-
ables, such as soil water equivalent (SWE), without requiring
secondary models. Hence, we wish to provide modelers with
tools to obtain satisfying answers to these questions and to
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Figure 6. Comparison of model performance between conceptual
models with static parameters, hybrid models with dynamic param-
eters, and the pure LSTM for individual CAMELS-GB basins.

better inform and justify hybrid modeling in future research
and practice.

4.2 Performance on individual basins

To better understand the mechanisms of these hybrid models
and their impact on model performance, we will investigate
the prediction task for five individual basins in detail. These
five basins were carefully chosen to facilitate discussion in
this section, as they demonstrate cases in which all hybrid
models achieve similar performance (as in Sect. 3) while hav-
ing different rankings based on our proposed entropy metric.
In Sect. 4.3.3 we draw statistical conclusions about the pre-
vailing behaviors for all basins.

Figure 6 exemplarily shows five basins where the perfor-
mance gap between hybrid and non-hybrid versions is again
very clear. However, these basins all share the characteris-
tic that all models, including the deliberately implausible
Nonsense model, reach very similar performance when hy-
bridized. This seems counterintuitive in several aspects and
again supports the research questions we have formulated
above, as we would have expected to see differences in per-
formance among the hybrid models depending on the con-
straints imposed. Does the LSTM truly not care what the
conceptual constraint is as it can effectively transform any
constraint into the same end product?

Furthermore, we would have expected (hoped?) that at
least the physics-plausible constraint of SHM would have
helped solve the prediction task, yet this is only marginally
true for basins 5003 and 41025, which show slightly higher
performance for the Hybrid SHM model. Confusingly, in the
specific case of basin 5003, all constraints (physics-plausible
or not) seem to help. Overall, Fig. 6 highlights the urgent
need for diagnostic analysis tools that help us understand
what it actually means to constrain a data-driven model with
a conceptual hydrological model and how much physics re-
main inside.
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Figure 7. Entropy of the trajectories of the LSTM hidden states
in the different hybrid models and the pure LSTM for individual
CAMELS-GB basins. The division of green and red backgrounds
matches that of Fig. 4.

Since we are in a real-data setup now, there is no “true”
model or constraint that we could use as a reference for min-
imal entropy on our evaluation axis. We will therefore seek
the LSTM component that produces the least entropy. Our
main anchor will be the performance of the pure LSTM, di-
viding between meaningful added knowledge and misguided
assumptions that require compensation by the LSTM.

4.3 Analysis and interpretation of entropy diagnostics
4.3.1 Measuring entropy of LSTM hidden state space

Following the intuition developed in Sect. 3, we address the
questions in the previous section through an entropy analysis
of the LSTM’s hidden states for the prediction of the five
individual basins introduced above.

Figure 7 shows the calculated entropy during the testing
period for both the pure LSTM and the hybrid models. This
is equivalent to the entropy axis we had introduced in our
didactic examples, with the pure LSTM marking the divide
between “good” and “bad” constraints. Overall, we find that
the ranking varies per basin: in some cases (basins 23008,
18014, 41025), the pure LSTM shows by far the lowest en-
tropy and hence none of the constraints can be considered
useful for predicting streamflow at these basins; for the other
basins, at least some conceptual constraints proved helpful,
in basin 5003 even all of them.

Focusing on basin 5003, the observed ranking aligns with
our expectation that SHM is the only plausible and hence
most useful constraint. This suggests that SHM’s imposed
structure reasonably reflects the natural system, effectively
transferring part of the entropy to the physics-based compo-
nent. However, any conceptual hydrological model reduces
the network’s entropy compared to the pure LSTM, even the
Nonsense model, which opposes our expectation that this
constraint should not be useful. Notably, Hybrid Nonsense
shows even lower entropy than Hybrid Bucket, indicating
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that some complexity is necessary and a too simple concep-
tual model offers little benefit.

Basin 73014 presents a counterexample where Hybrid
Nonsense performs best (produces the least entropy) and Hy-
brid SHM is located to the right of the LSTM, suggesting
that a plausible hydrological model can even make predic-
tions more difficult. This finding highlights the unpredictabil-
ity of hybrid models and the need for deeper investigations
to achieve interpretability; simply imposing a constraint does
not do the job.

4.3.2 Visualization of time-varying parameters

In this section, we demonstrate the power of visually analyz-
ing the time-series of the LSTM-predicted parameters on the
example of exploring why the Nonsense model creates the
least entropy for basin 73014. This analysis illustrates how
our entropy-based metric contributes to a broader evaluation
framework where models are assessed not only by quantita-
tive metrics but also by a qualitative evaluation of their be-
haviour (Gupta et al., 2008).

Figure 8 (top panel) compares the differences between ob-
served and simulated streamflow values for the non-hybrid
and hybrid versions of the Nonsense model in this basin. The
Hybrid Nonsense model shows drastically improved predic-
tions, represented by the solid line in the streamflow plot,
compared to its non-hybrid counterpart (dashed line). That
means that allowing the parameters to vary over time greatly
improves the ability of this model to make accurate predic-
tions.

To better understand the adjustments made by the LSTM,
let us first look at the original structure of the Nonsense
model, which is considered physically implausible due to the
arrangement of its hydrological storage units (see schematic
illustration in Fig. 1c). Counter-intuitively, water from direct
precipitation or snowmelt initially enters the model through
the baseflow storage, typically considered the unit with the
longest retention time. The model then routes water through
an unusual sequence: it moves next to the interflow storage
which once again has a longer residence time, then it passes
into the unsaturated zone, loses some mass through evap-
otranspiration, and is finally transformed into the stream-
flow output. Ignoring their physical interpretation for a mo-
ment, the Nonsense model basically consists of a series of
three storages connected sequentially, forming a cascade-like
arrangement that essentially transforms the storages into a
dampening function, which delays the input signal.

The adjustments made to this implausible model struc-
ture by the LSTM component of Hybrid Nonsense become
apparent when examining its states and parameters (bottom
left and right panel in Fig. 8). To simplify interpretation, all
plots have been normalized by the mean value of the corre-
sponding state or parameter over the analyzed period. This
normalization sets the mean value to 1.0 on the plot, with
the lines indicating deviations from the mean. However, that
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doesn’t mean that parameters for Nonsense and Hybrid Non-
sense have similar or even values that are close to each other.
For example, the value of s, max for Nonsense is 398.6 mm
while the mean value for Hybrid Nonsense is 83.5 mm. This
reflects a typical behaviour in these hybrid models were the
parameters for the non-hybrid and hybrid model can occupy
drastically different ranges.

Analyzing the static parameters in the Nonsense model,
the dampening behavior of the storages becomes evident:
the dashed lines for the baseflow storage sb and the inter-
fow storage si closely resemble the output hydrograph, but
are dampened too strongly in the unsaturated zone storage
su. However, this behaviour changes significantly when the
model becomes Hybrid Nonsense. Specifically, the line for
sb becomes horizontal, indicating that the parameter k;, is be-
ing used to effectively “skip” this storage. In fact, the Hybrid
Nonsense model modifies su and si to behave as time lags
for the input rainfall to become outflow which ultimately is
mostly managed by the interactions between sb and k. In
Fig. 8 we see that for the high flow peak that happens in
2005-01, kp is increased disproportionately just so that the
model can match the peak based on the volume available in
sb.

The solid lines for su and s, max reveal a distinct pat-
tern in which s, max closely tracks the value of su. This be-
havior is tied to the conditional property of the storage: if
Su > Sy max> any excess runoff added to su is immediately
outputted. Because s, max consistently mirrors su, any ad-
ditional runoff into this storage is immediately converted to
simulated streamflow, once again, effectively bypassing this
storage. In addition, the outflow of su is also managed by
B which appears to be anticorrelated with si/k; to match the
shape of the observed hydrograph. As a result, the Hybrid
Nonsense model essentially functions as a single-storage sys-
tem with added lagging behavior. This lag is introduced by
the sequential transfer of mass between the storages, which
occurs one at a time during each time step.

The imposed structure of the original Nonsense model was
effectively modified by the LSTM, transforming the over-
complicated but physically implausible model into some-
thing that more closely resembles the Bucket model, with
some additional flexibility guided by the characteristics of
the training data. Since we did not impose specific constraints
on the storage behavior, apart from limits to the parameters,
the LSTM discovered an optimized architecture that, in com-
bination with the data-driven component, works just as well
as any of the other constraints. It seems that the modified
Nonsense structure is significantly more suitable than the
oversimplified Bucket model, presumably because it allows
for just the right amount of additional freedom. Interestingly,
morphing the structure of the Nonsense constraint costs the
LSTM less effort (entropy) than fighting against (arguably)
more adequate but too rigid constraints such as the SHM or
the Bucket conceptual models — this is important to keep in
mind when interpreting the results of our entropy analysis.
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Figure 8. Differences between simulated streamflow, states and model parameters of the Nonsense and Hybrid Nonsense models for basin
73014. Both the states and model parameters are shown on a scale relative to their mean.

High entropy clearly indicates struggling caused by the im-
posed constraint; low entropy paired with unaffected parame-
ters means a plausible constraint, whereas low entropy paired
with suspicious time-varying patterns that alter the qualita-
tive behavior of the states means overwriting of constraints
in favor of something more efficient; something that can po-
tentially still be meaningful, as we have uncovered here, and
also from the over-parameterization cases in our didactic ex-
amples (so, there is hope).

Figure 9 presents the same analysis period for the SHM
and Hybrid SHM models in basin 73014. Due to its larger
structure, interpretation becomes more challenging, but we
observe some of the same behaviors identified in the anal-
ysis of Hybrid Nonsense. The LSTM determines that some
of the additional storage compartments in SHM are unnec-
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essary, as it does not utilize sb and instead regulates outflow
through the fast-flow (sf) and si storages. Furthermore, mini-
mal changes in si suggest that most of the outflow is directed
through sf.

The high variability in the LSTM-controlled parameters
for the remaining reservoirs may show a learned behavior
from other basins in the dataset. Such adaptation appears un-
necessary for this particular basin, as the predictions made
by the non-Hybrid SHM model were already sufficiently ac-
curate and modifications made by the LSTM improved per-
formance only slightly. Ultimately, this leads to the Hybrid
SHM model being penalized, placing it last in our ranking.
As a final note, that the “intervention” of the LSTM was not
obvious from comparing the hydrographs produced by SHM
and Hybrid SHM and without the analysis proposed here,
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Figure 9. Differences between simulated streamflow, states and model parameters of the SHM and Hybrid SHM models for basin 73014.
Both the states and model parameters are shown on a scale relative to their mean.

one would think that Hybrid SHM is a well-constrained hy-
brid model that respects the assumptions formulated in SHM
— which is not at all the case, as we have shown here.

To return to the point of equifinality made in Sect. 3.4, as
we have seen in this section, different hybrid model configu-
rations may achieve similar predictive performance while ex-
hibiting varying levels of entropy in the LSTM hidden state
space and modifications to their internal behavior. We argue
that high variability in parameter combinations represents an
undesirable condition in terms of model structure specifica-
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tion. High entropy aligns with this perspective and, in gen-
eral, entropy can be used to distinguish between equifinal
models.

4.3.3 Statistical analysis of results for all basins

In the previous section, we analyzed specific results from five
basins in the dataset because their results mirror those of our
controlled examples in Sect. 3. We can extend this analysis
to all basins in the dataset to comment on their results based
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Figure 10. Violin plots of the entropy of the trajectories of the
LSTM hidden states in the different hybrid models and the pure
LSTM across all CAMELS-GB basins.

solely on entropy, though we acknowledge that our constraint
of equal performance in the comparison does not hold, as is
clear from Fig. 5. Nevertheless, while acknowledging that
this constraint is not fulfilled, the insights derived in this sec-
tion are meaningful to the overall understanding of hybrid
models.

One could develop a model selection criterion that con-
siders both performance and entropy. In fact, there has been
previous research on model selection considering compu-
tational complexity and model performance (Azmi et al.,
2021). However, our purpose here is not to introduce a cri-
terion for model selection but to understand the role of con-
ceptual constraints in hybrid models using entropy as a diag-
nostic tool.

In Fig. 7, the most common pattern across basins is shown
by basins 23008, 18014, and 41025, where the LSTM consis-
tently has the lowest entropy while the other hybrid models
show non-consistent rankings. It appears that their ranking is
determined by the specific hydrological system being mod-
eled and the required model complexity. We therefore ana-
lyze here the overall statistics and rankings of entropy across
all basins.

The violin plots in Fig. 10 show the entropy distribu-
tions of each model, with median values of —151.2 nats for
the LSTM, —128.2 nats for Hybrid Nonsense, —113.1 nats
for Hybrid SHM, and —111.0 nats for Hybrid Bucket. The
LSTM’s wider dispersion highlights the varying complex-
ity required to model each individual basin. The fact that
the LSTM is the only model to cover much of the lower
entropy range demonstrates that, in most cases, introducing
a conceptual constraint substantially increases the modeling
challenge. This is apparent for Hybrid Bucket, which has the
highest entropy distribution, meaning that such a simple con-
ceptual constraint is not helpful in most cases and the LSTM
has to make the most effort to compensate for this overly
rigid constraint.
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Surprisingly, Hybrid Nonsense has the lowest median en-
tropy among the hybrid models. This goes against an initial
hypothesis that a researcher might have; yet, as our analy-
sis in Sect. 4.3.2 has shown, the Nonsense model lends itself
to being most easily transformed by the LSTM into a more
suitable structure that can predict streamflow well. Finally,
Hybrid SHM did not fulfill our expected result, as it seems
that this model is overly complex for this specific dataset and
the LSTM has more trouble using it to its advantage than the
Nonsense model.

To analyze this in more detail, we collected the individ-
ual rankings per basin for the whole dataset, identified the
unique rankings that appear, and determined their frequency
of occurrence. The counts of rankings are shown in Fig. 11.

The ranking suggested by the medians in Fig. 10 (entropy
of LSTM being lowest, followed by Hybrid Nonsense, Hy-
brid SHM, and Hybrid Bucket) reflects most frequent rank-
ing across all basins (67 %). Aggregating all those basins, for
which the pure LSTM obtains the lowest entropy, leads to
91 % of all basins. This tells us that, in general over this par-
ticular large-sample dataset, the conceptual representations
used in our hybrid models were not able to make the predic-
tion task easier for the LSTM and the prior knowledge that
we tried to enforce didn’t help. Ultimately we got a hybrid
model that predicted well not because of the physical con-
straints that we imposed, but because the LSTM was able to
compensate for these constraints through added effort (en-
tropy).

Although our previous statement is the main finding of
this study, we are still able to identify specific catchments for
which the added prior knowledge indeed helped. In Fig. 11
there are 11 basins (1.6 %) which show the LSTM at the top,
meaning that any of the conceptual models added informa-
tion that helped in prediction; in 8 out of 671 cases (1.2 %),
Hybrid SHM showed the lowest entropy, meaning that the
constraint that a hydrologist would perceive as the most plau-
sible and useful actually turned out to need the least com-
pensation by the data-driven component. And only in 1 out
of 671 cases, the physically least plausible Nonsense model
needed the most compensation.

4.4 What if only individual parameters are dynamic?

Although our experimental settings have been deliberately
kept consistent with Acufia Espinoza et al. (2024), it is not
necessary for every model parameter to be dynamic, as in
the cases examined so far, for our method to work. Rather, it
could be scientifically interesting to examine the role of in-
dividual parameters in “fighting” the imposed constraints. To
illustrate the diagnostic capability of the proposed entropy
analysis for this question, we examine a variant of the SHM
model in which only the parameter 8 in the unsaturated zone
reservoir is made dynamic, while the remaining seven param-
eters remain static.
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Figure 12a shows the NSE CDF curves for the LSTM,
SHM (fully static), Hybrid SHM (all parameters dynamic),
and this new SHM B-dynamic variant. The single-parameter
dynamic model shows a slight performance increase com-
pared to the fully static conceptual model, but does not match
the performance of the model with all dynamic parameters.

Figure 12b presents the entropy distributions for these
models. The fully static conceptual model has no entropy
and therefore is not shown. Notably, the single dynamic-
parameter variant exhibits significantly higher entropy than
even the Hybrid SHM model with all parameters dynamic.
This observation is consistent with our interpretation of en-
tropy as a measure of LSTM activity: when the LSTM must
compensate for model misspecification through only one de-
gree of freedom instead of eight, as in Hybrid SHM, its ac-
tivity (and thus entropy) increases substantially without pro-
portional performance gains. In the SHM gB-dynamic case,
the LSTM attempts to correct the entire conceptual model
through a single point of entry. By contrast, in the Hybrid
SHM case, the LSTM makes smaller adjustments across
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multiple model components, resulting in higher performance
and lower entropy.

This example demonstrates that entropy can serve as a di-
agnostic for identifying how the neural network component
compensates for structural inadequacies in the conceptual
model as represented by individual parameters. This suggests
the possibility of systematically diagnosing individual com-
ponents by selectively making parameters dynamic or static,
with entropy guiding the process toward a model representa-
tion that more realistically reflects the natural system.

4.5 What about other approaches to hybrid modeling?

Measuring the entropy of the data-driven component of a hy-
brid model works particularly well in our setup because of
the tight coupling between the LSTM and the conceptual hy-
drological model through the parameters of the latter. Nev-
ertheless, our suggested approach can be effectively applied
to other types of hybrid models or physics-informed machine
learning.
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Figure 13. Comparison of model performance between conceptual
models with static parameters (dashed lines), post-processing hy-
brid models with dynamic parameters (filled lines), and the pure
LSTM for all CAMELS-GB basins.

As one example of an alternative approach to physics-
informed machine learning, post-processing the results of a
hydrological model to improve its predictions has been sug-
gested (Nearing et al., 2020; Frame et al., 2021). For this
application, a traditional hydrological model with static pa-
rameters makes an initial run to predict streamflow, and the
predictions as well as the states of the hydrological model
are fed to an LSTM to make improved predictions of stream-
flow. The approach is successful in the sense that it im-
proves predictions of streamflow and manages to move all
performance CDF curves close, but not beyond, the LSTM
as shown in Fig. 13. Note that both the LSTM and post-
processing LSTMs use the same number of hidden nodes
(64), making our approach and comparison still applicable.

The violin plot of entropies for the LSTM hidden states
across all basins shown in Fig. 14 suggests a different conclu-
sion than for our previous hybrids. It seems that the LSTM
is largely “unimpressed” by the additional input, no matter
which model it was created by; only the Nonsense model (of
all things!) seems to be able to effectively reduce the effort
required for the prediction task, meaning that there is some
pre-processing that this particular model does that is actually
helpful. Figure 15 shows a much more mixed bag of results
where, for certain specific basins, any of the conceptual mod-
els might produce an output that reduces the entropy of the
LSTM. Considering that feeding the model “Nonsense” is
helpful in close to 80 % of all basins should again be an im-
pressive warning that feeding physics-based model output to
a data-driven model is not necessarily physically meaning-
ful (in that case, we would expect the LSTM to have a harder
time with nonsense outputs). This confirms previous findings
in literature which suggest that post-processing a conceptual
model is not a good method to make “physics-informed” ma-
chine learning (Nearing et al., 2020; Frame et al., 2021).

Since post-processing conceptual models do not allow for
scrutinizing conceptual states or parameters, as with hybrid
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Figure 14. Violin plots of the entropy of the trajectories of the
LSTM hidden states in the different post-processing hybrid mod-
els and the pure LSTM across all CAMELS-GB basins.

models, we cannot perform our detailed analysis as shown
above (Figs. 8 and 9). Hence, interpretation of the impact
of the physics-based input (hard to call this a constraint) re-
quires interpretation of the LSTM hidden states. This is a
current line of research in its own right (e.g., Feng et al.,
2024b; Blougouras et al., 2024), and goes beyond the scope
of this study. It will be interesting to explore what the contri-
bution of “Nonsense” is that seems to simplify the prediction
task for the LSTM, while physically-meaningful outputs as
LSTM inputs do not necessarily help.

4.6 Summary of findings from the case study

In this case study, we compared a pure LSTM model with
three hybrid hydrological models based on the CAMELS-GB
large-sample data set. Overall, we found that the LSTM out-
performed the hybrid models in predicting streamflow, and
our entropy analysis revealed that adding physics-based con-
straints generally did not simplify the prediction task.

Our analysis also showed that the LSTM effectively ad-
justs the constraints imposed by the conceptual model. For
instance, Hybrid Nonsense is very different from its original
Nonsense formulation with the LSTM identifying an opti-
mized architecture that, when combined with a data-driven
component, performs just as well as all other models. The
degree of effort required for the LSTM to modify these con-
straints provides insight into how accurately the conceptual
model represents the underlying system. This finding high-
lights a key opportunity for hybrid modeling: refining exist-
ing models to better suit specific sites based on training data
characteristics. In essence, hybrid models can guide us to-
ward more parsimonious model structures.

Notably, this process occurs entirely under the hood. If
we had evaluated performance using only NSE, we might
have mistakenly concluded that the Nonsense constraint was
just as valid as SHM or Bucket, since all three achieved
the same performance when paired with the LSTM. These
results overwhelmingly suggest that we need to reconsider
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Figure 15. Counts of the different entropy-based model ranking outcomes across all CAMELS-GB basins. To limit the length of the label,
the shorter conceptual names of the post-processing models were used but the counts are for the hybrid versions of these models.

our ways of building and evaluating hybrid models. Even if
“just” the parameters of conceptual hydrological models are
modified by the data-driven component, the resulting hybrid
models function differently than what we expect by imposing
mass balance equations.

While our findings might be specific to the particular
dataset and model candidates used in this study, we have pro-
vided an objective method to test our hypotheses in arbitrary
other scenarios. Future research should explore a wider range
of datasets and hybrid model architectures to validate and ex-
tend our conclusions.

Finally, we have provided an outlook of how to apply
our entropy-based analysis to only partially-dynamic hy-
brid models and even other types of hybrid construction.
While there are differences between approaches that should
be taken into consideration for an in-depth analysis of archi-
tectures, the evaluation of entropy in the LSTM hidden states
already provides an objective insight that would have been
obscured when only considering skill scores. Complemen-
tary analyses that target the specifics of other hybrid model
architectures are left for future work.

5 Conclusions

“Man is always prey to his truths. Once he has admitted them,
he cannot free himself from them” (Camus, 1991). The pur-
suit of a single, universal model to explain every hydrolog-
ical system is fundamentally absurd. This paper challenges
the hydrological community’s tendency to rely on a single
model, like SHM, as a comprehensive explanation for the
complex dynamics of all river basins. Our work shows that
SHM, or other conceptual models of its kind, is precisely the
kind of rigid “truth” Camus warned us about: a single model
that, now coupled with a component that learns from data,
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represents a seemingly straightforward explanation of every
and any complex natural system.

The recognition of these limitations extends to the process
of model selection itself. As observed by Kuhn and Hacking
(2012), “scientists work from models acquired through edu-
cation and subsequent exposure to the literature, often with-
out fully knowing what characteristics have elevated these
models to the status of community paradigms”. This implicit
acceptance of certain modeling approaches, while pragmatic,
further highlights the tension between using an interpretable
model and capturing the full complexity of real-world sys-
tems. Hybrid models acknowledge this tension by incor-
porating prior knowledge to achieve partial interpretability
while accepting the residual complexity that remains unmod-
eled. However, our study suggests that this balance is often
skewed in favor of the data-driven component. The use of a
conceptual model as a structural prior represents an attempt
to extract meaningful dynamics from a larger environmental
system (Young et al., 1996), but as we have shown, this at-
tempt is often forced. When the problem is relatively simple,
such as predicting streamflow in our case study, conceptual
prior knowledge is largely ignored in favor of a more flexi-
ble, data-driven structure, raising the question of whether it
was necessary in the first place if only predictive capacity is
considered.

Our primary contribution is a metric that quantifies how
much prior knowledge contributes compared to a purely
data-driven approach. In Sect. 3, we demonstrated how dif-
ferent conceptual models can be evaluated based on how
closely their prescribed equations align with those govern-
ing the “true” system. Our key finding was that the hybrid
model containing the “true” conceptual model required the
least assistance from the LSTM (lowest entropy), while mod-
els with architectures very different from the true underlying
process required the most assistance from the LSTM (highest
entropy). This demonstrates that our entropy metric can dis-
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tinguish between conceptual models that perform well for the
right reasons versus those that achieve good performance just
through compensation by a data-driven component, a distinc-
tion that traditional performance metrics cannot make.

Interestingly, measuring the “complexity” of the LSTM
in the sense of measuring its “compensation activity” when
coupled to a parsimonious but inadequate representation
yields larger entropy than when coupled to a more flexible in-
adequate representation. This means two things: low entropy
does not automatically mean that the constraint is honored
and that it is realistic; and the LSTM seems to have more
work to do to fight against something simple but wrong than
to fiddle around with an arbitrary, flexible enough structure
to make it work. We have seen this in the overparameteri-
zation cases in the didactic examples and with the nonsense
model in the case study. So, high entropy means the LSTM is
struggling because of a too rigid, inadequate constraint. Low
entropy means that the LSTM is seeing something in the con-
straint; however, deeper analysis in the form of inspecting
parameter and state trajectories are required to distinguish
whether the constraint is deemed reasonable to predict the
data (constant parameters), or whether it just lends itself well
to be transformed into something new, parsimonious, and ef-
fective, which might even be physics-explainable and guide
us towards a better representation of the true model. So, there
is hope in hybrids; just in a different way than the community
might have anticipated.

Additionally, we showed that a data-driven model can
serve as a reference point, distinguishing between concep-
tual models that better approximate reality and those that
do not. We propose that data-driven models should serve as
the baseline for evaluating hybrid models, which allows us
to determine whether incorporating prior knowledge, such
as physics-based constraints, genuinely enhances predictive
performance or simply adds unnecessary complexity.

Applying this metric to a large-scale case study revealed
that our attempts to improve predictive capacity through hy-
bridization were often unsuccessful. This was because the
added knowledge rarely captured the true system dynamics,
forcing the flexible component of our models to compensate
for incorrect assumptions (Sect. 4.3.2).

Beyond performance, there may be broader value of hy-
brid models with respect to interpretability and process fi-
delity. In that context, it is highly important to evaluate
the degree to which physical constraints actually constrain
model behavior: if the intended model structure that should
guarantee interpretability is overwritten, this argument is no
longer valid, or we might actually discover a better (in our
case: simpler) process representation that again allows for
scientific insight and learning. Additionally, correlation be-
tween a labeled storage component and external variables
should not be the sole standard for evaluating hybrid mod-
els because, as we have shown, the original constraint that
defined that label may no longer apply in the final model
structure.

Hydrol. Earth Syst. Sci., 30, 629-658, 2026

While we focus on entropy as our primary metric, we be-
lieve entropy complements, rather than replaces, other exist-
ing evaluation approaches focused on process representation
and physical understanding. Furthermore, the compensation
work of the LSTM should be related to aspects of achieved
performance to provide a comprehensive basis for model se-
lection, with the identification of appropriate ways to poten-
tially combine these aspects into a single informative metric
being left as an open research question.

In the future, hybrid models could become valuable tools
for refining our understanding of hydrological systems, but
only if we critically reassess traditional modeling practices.
The fact that even a “nonsense” conceptual model demon-
strated the highest potential for adding useful information in
post-processing hybrids raises new questions. We hypothe-
size that physics constraints in the form of strict sequential
processing may be too rigid and that guiding the LSTM to-
ward learning appropriate lag functions or the entire hydro-
logical model itself could be a more effective strategy.

Overall, our findings challenge the assumption that
physics-informed machine learning necessarily preserves the
physics as initially formulated. Instead, the data-driven com-
ponent may restructure the imposed constraints, uncovering
a more effective, potentially physics-explainable alternative.
We do not oppose hybrid modeling; rather, we propose a
quantitative tool to analyze how much the physics-based con-
straints are modified and suggest a workflow for diagnos-
ing these structural adaptations. In the end, hybrid modeling,
when paired with information-theoretic analyses, has the po-
tential to provide valuable physical insights. Without such
an approach, however, many so-called “physics-informed”
models may be better described as physics-ignored.

Appendix A: Study setup

We provide further details of our experimental setup in this
section, and point the interested reader towards a reposi-
tory in the data repository of the University of Stuttgart
(DaRUS) that contains all the code for this project in-
cluding: training scripts, logs and archived netCDF files
of the saved internal and hidden states, fluxes and predic-
tions made by each model. The repository can be found
at this link: https:/doi.org/10.18419/DARUS-4920 (Alvarez
Chaves, 2025).

Al Didactic examples

The ranges for the parameters of the conceptual models al-
lowed in the didactic examples are listed in Table A1l.
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Table Al. Ranges of the model parameters in the synthetic exam-

ples.

Model Parameter Limit

Lower  Upper

S

o 0.5 2.0
1 B 0.1 2.0
k 10.0 60.0
o 0.5 2.0
2 Smax 50.0 400.0
k 1.0 100.0
o 0.1 2.0
3 k1 30.0 300.0
ko 0.1 40.0
o 0.5 2.0
4 B 0.9 3.5
k) 0.0 50.0
k 1.0 60.0
5 o 0.5 2.0
k 0.1 300.0
o 0.5 2.0
6 B 0.9 3.5
y 0.5 2.0
k 1.0 60.0
o 0.1 2.0
51, max 1.0  200.0
7 k1 100.0  400.0
B 0.1 2.0
ko 1.0 60.0
o 0.5 2.0
8 Smax 1.0 250.0
B 0.9 3.5
k 1.0 100.0
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Table A2. Ranges of the model parameters for the CAMELS-GB
case study.

Model Parameter &
Lower  Upper
dd 0.0 10.0
f_thr 10.0 60.0
Su,max 20.0  700.0
B 1.0 6.0
SHM perc 0.0 1.0
k¢ 0.05 0.9
ki 0.01 0.5
kp 0.001 0.2
0.002 1.0
Bucket i ET 001 15
dd 0.0 10.0
Su,max 20.0 700.0
Nonsense 1.0 6.0
ki 0.01 0.5
kp 0.001 0.2

A2 CAMELS-GB

The parameter ranges for the conceptual models used in the
CAMELS-GB case are listed in Table A2. The parameter
ranges shown in both Tables Al and A2 were adapted from
typical ranges found in the literature for the HBV model
(Beck et al., 2016, 2020). For the synthetic examples, we
simplified the parameter ranges to better suit the proposed
examples. The static attributes used as input to the LSTM in
all models are listed in Table A3.

Hydrol. Earth Syst. Sci., 30, 629-658, 2026



652 M. Alvarez Chaves et al.: An entropy-based evaluation of conceptual constraints in hybrid hydrological models

Table A3. Catchment attributes from the CAMELS-GB dataset used to train all models.

Type Attribute Description

Topographic area catchment area (km?2)

Topographic elev_mean mean elevation (ma.s.l.)

Topographic dpsbar slope of the catchment mean drainage path (m km™1)

Soil sand_perc percent sand (%)

Soil silt_perc percent silt (%)

Soil clay_perc percent clay (%)

Soil porosity_hypres soil porosity calculate using the hypres pedotransfer function (-)

Soil conductivity_hypres  hydraulic conductiviyu calculated using the hypres pedotransfer function (-)
Soil soil_depth_pelletier ~ depth to bedrock (m)

Land cover dwood_perc fraction of precipitation falling as snow (for days colder than 0°C)

Land cover ewood_perc percent of catchment that is deciduous woodland (%)

Land cover crop_perc percent of catchment that is evergreen woodland (%)

Land cover urban_perc percent of catchment that is cropland (%)

Human influence  reservoir_cap percent of catchment that is urban area (%)

Climatic p_mean catchment reservoir capacity (ML)

Climatic pet_mean mean daily precipitation (mm d—1

Climatic p_seasonality mean daily PET (mm a1

Climatic frac_snow seasonality and timing of precipitation (estimated using sine curves)
Climatic high_prec_freq frequency of high-precipitation days (>5x mean daily precipitation)
Climatic low_prec_freq frequency of dry days (< 1 mm dh

Climatic high_prec_dur average duration of high-precipitation events (> 5x mean daily precipitation)
Climatic low_prec_dur average duration of dry periods (number of consecutive days <1 mmd™1)

Appendix B: Additional didactic examples

In Sect. 3 and specifically Fig. 2 we showed five key didactic
cases that can be used to understand the rankings in Figs. 3
and 4. To further our understanding of the behaviors that can
be quantified by measuring the entropy of the hidden states
of the LSTM, we show four additional examples in Fig. B1.
These additional examples also follow in the framework of
multiple working hypotheses (Clark et al., 2011), and in this
section we briefly describe what can be learned from them.

Model 5 represents a case in which the added knowledge
is lacking the degrees of freedom that the “true” model has.
Thus, the LSTM has to take over and compensate using its
internal hidden states, resulting in the high measurement of
entropy of the LSTM. Although this behavior is also apparent
in the variations of the parameters shown in Fig. Ble, mea-
suring entropy there can result in the wrong assumption that
a conceptual model with more reservoirs in Model 3 would
more closely resemble the “true” model, as shown in Fig. 3
but this is not true. The true picture is given by the entropy
of the LSTMs in Fig. 4.

Models 6 to 8 all serve as cases where the conceptual
model has a greater number of parameters than the “true”
model, making them overparametrized but cases such as 6
and 8 resemble the “true” model very closely. Model 7 also
has the “true” model embedded within, but the input relation-
ship is distorted by the extra reservoir in s7.
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Returning to the idea of how much a model closely matches
the “true” model, the ranking in Fig. 4 makes intuitive sense.
The “true” model is furthest to the left followed by Mod-
els 4, 6 and 8 which use the same number of reservoirs and
whose input-output relationships can match that of the “true”
model (all have an exponential term). This grouping is fol-
lowed by Model 7 which has the ability to match the output
relationship using the second exponential reservoir but the
input is not directly precipitation and evapotranspiration but
some dampened product coming from the first reservoir. Next
we have the divider between encoding “good” and “bad”
physics. All of the previous models have the “true” model
(in some sense) within their structure. This additional knowl-
edge makes the task required of the LSTM easier, thus re-
ducing its entropy. If, instead, we encode “bad” physics, we
fall in cases where the model is able to perfectly fit the ob-
served data but not because of the additional knowledge, but
because of a more complex LSTM which now, in addition to
prediction, has to overwrite our incorrect prior knowledge.

Model 3 is the worst offender as the usage of a two reser-
voirs system with none of the reservoirs having an exponen-
tial term in their output relationship is the case most dis-
similar to the “true” model. Models 2 and 5 improve upon
this condition, but still lack some semblance of the “true”
model in their structure making them to also fall in the “bad”
physics category.
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Figure B1. Additional examples on evaluating hybrid hydrological models by measuring the entropy of different model components.

Appendix C: Standardizing training pipelines
Then for the models with dynamic parameters, the differ-

The results in the case study presented in Sect. 4 follow the
results of the previous study of Acufia Espinoza et al. (2024).
However the data and metrics reported between studies re-
lated to model variables and performance are not the same.
Between studies we modified our training pipelines to adopt
current standard practices (Shen et al., 2023; Kratzert et al.,
2024), therefore there are differences between the metrics.

For the models with static parameters, these differences
are shown in Fig. C1 and Table C1. In our previous study,
the conceptual models were calibrated individually for each
basin using the DREAM algorithm (Vrugt, 2016). This pro-
cedure results in better performance at predicting streamflow
than in regional training as we did for this current study. The
drop in performance could be the due to the identification of
regional sets of parameters, as in Tsai et al. (2021), but we
did not pursue this finding further.
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ences are shown in Fig. C2 and Table C2.

As in all cases the differences in metrics between stud-
ies are small, we accept them while acknowledging that the
models analyzed in this study are different than those in
Acuia Espinoza et al. (2024). Moreover, the main objective
of the present study is not to set a “state-of-the-art” bench-
mark for a particular dataset and, accordingly, the overall
message that we wish to communicate is not affected by the
differences in performance between studies.
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Figure C1. Comparison of model performance for models with
static parameters between studies.
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Figure C2. Comparison of model performance for models with dy-
namic parameters between studies.

Table C1. Comparison of model performance for models with static
parameters quantified by area under the NSE curve (AUC) and me-
dian NSE.

Model Version AUC Median NSE
TBONTB 0.243 0.760
SHM New 0.267 0.747
Bucket TBONTB 0.381 0.590
New 0.395 0.582
Nonsense TBONTB 0.441 0.510
New 0.477 0.511
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Table C2. Comparison of model performance quantified by area
under the NSE curve (AUC) and median NSE.

Model Version AUC Median NSE
Lsy New 013 0865
Hybrid SHM ;1:\(3 NTB 8;12 gg;‘g
Hybrid Bucket ;E\?NTB 8 14615 822;
Hybrid Nonsense ;E\SNTB 8%2 8;(9)1

Code availability. An archived version of the codebase used for
this study is provided in the repository indicated in the data
availability section of this paper. We also used the Hy2DL
library (https://doi.org/10.5281/zenodo.17251944, Acuna et al.,
2025) and the UNITE toolbox, which is available at https://github.
com/manuel-alvarez-chaves/unite_toolbox (last access: 25 March
2025; https://doi.org/10.18419/DARUS-4188, Alvarez Chaves et
al., 2024).

Data availability. CAMELS-GB is available at
https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9
(Coxon et al., 2020b). All of the code for this project, model state
dictionaries, model configurations, training logs and netCDF files
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