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Abstract. Estimating runoff components, including surface
flow, baseflow and total runoff is essential for understanding
precipitation partition and runoff generation and facilitating
water resource management. However, a general framework
to quantify and attribute runoff components is still lacking.
Here, we propose a general formulation through observa-
tional data analysis and theoretical derivation based on the
two-stage Ponce-Shetty model (named as the MPS model).
The MPS model characterizes mean annual runoff compo-
nents as a function of available water with one parameter.
The model is applied over 662 catchments across China and
the contiguous United States. Results demonstrate that the
model well depicts the spatial variability of runoff compo-
nents with R2 exceeding 0.81, 0.44 and 0.80 for fitting sur-
face flow, baseflow and total runoff, respectively. The model
effectively simulates multi-year runoff components with R2

exceeding 0.97, and the proportion of runoff components rel-
ative to precipitation with R2 exceeding 0.94. By using this
conceptual model, we elucidate the responses of surface flow
and baseflow to available water and environmental factors
for the first time. The surface flow is jointly controlled by
precipitation and environmental factors, while baseflow is
mainly influenced by environmental factors in most catch-
ments. The universal and concise MPS model offers a new
perspective on the long-term catchment water balance, fa-
cilitating broader application in large-sample investigations
without complex parameterizations and providing an effi-
cient tool to explore future runoff variations and responses
under changing climate.

Key points.

– A general and concise formulation is proposed to quantify, and
attribute mean annual surface flow, baseflow and total runoff.

– The formulation characterizes runoff components as a function
of available water without additional and complicated parame-
ter calculation.

– The formulation performs well in quantifying and attributing
runoff components in 662 catchments.

1 Introduction

Runoff is the primary freshwater resource accessible for hu-
man life and plays an essential role in the water cycle (He et
al., 2022; Wang et al., 2024). Based on the propagation time
and hydraulic response of a catchment, total runoff (Q) can
be divided into baseflow (Qb) and surface flow (Qs) (Gnann
et al., 2019; Singh et al., 2019). Baseflow, also referred to as
slow flow, is defined as the flow that originates from ground-
water and other delayed sources (such as wetlands, lakes,
snow and ice), and generally sustains streamflow during dry
periods (Gnann, 2021; Hall, 1968). Baseflow is the relatively
stable component of runoff, playing a vital role in aquatic
ecosystems (de Graaf et al., 2019; Price et al., 2011), wa-
ter quality (Ficklin et al., 2016) and sustained water supplies
(Fan et al., 2013). Surface flow, also referred to as fast flow,
results from rapid processes like the saturation or infiltration
of excess overland flow and swift subsurface flow (Beven and
Kirkby, 1979), leading to immediate water movement. Sur-
face flow occurs more rapidly and with more drastic changes
than baseflow, which is primarily responsible for flood gener-
ation (Yin et al., 2018) and soil erosion (Morgan and Nearing,
2011).
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Most current studies focus on total runoff variability and
attribution, and the relevant researches are fairly mature
(Berghuijs et al., 2017; Han et al., 2023; Liu et al., 2021).
However, few studies pay attention to comprehensive re-
search on the different runoff components (Li et al., 2020;
Liu et al., 2019), and the attributions of Qs and Qb changes
are still unclear (Hellwig and Stahl, 2018). Baseflow and
surface flow represent different hydrological processes, and
their implications for watershed management are also not
identical (Zheng and Sun, 2014). For example, the research
conducted by Ficklin et al. (2016) in the United States points
out apparent spatial differences between Qb and Qs in dif-
ferent seasons. Therefore, it is necessary to quantify runoff
components and distinguish their controlling factors to better
understand the runoff dynamics and facilitate water resources
management in the context of intensified climate change and
anthropogenic disturbance.

Unlike Q, which is ascertainable through direct observa-
tion at hydrological gauges,Qb andQs can only be estimated
through indirect methods, including baseflow separation (Wu
et al., 2019; Zhang et al., 2017), isotope tracing (Hale et al.,
2022; Wallace et al., 2021) and hydrological modeling (Al-
Ghobari et al., 2020; Cheng et al., 2020; Huang et al., 2007;
Kaleris and Langousis, 2017). The first two methods esti-
mate Qb initially, and Qs is then derived as the difference
between the Q and the estimated Qb, limiting their ability
to examine the dynamic variations of each runoff compo-
nent independently, and the isotope tracing method is chal-
lenging to conduct on a large and long-term scale. The hy-
drological modeling enables to simulate Qb and Qs sepa-
rately, typically reflected in different modules and empirical
formulations. In hydrological models, Qb is encoded using
linear or non-linear storage-discharge functions (Chen and
Ruan, 2023; Cheng et al., 2020). Qs is closely related to
rainfall, but the models for estimating it are usually event-
based (such as the Soil Conservation Service Curve Num-
ber method (Al-Ghobari et al., 2020; SCS, 1972; Shi et al.,
2017) and very few studies explored the controls on the
mean annual Qs (Neto et al., 2020). Among various models,
the Budyko framework (Budyko, 1974) in conjunction with
water-energy balance method (Choudhury, 1999; Yang et al.,
2008) (see the second row in Table 1), has been widely used
in the analysis of mean annual Q due to its simple, universal
and transparent characteristics (He et al., 2022; Roderick and
Farquhar, 2011).

Recently, utilizing the extended Budyko framework to es-
timate Qb and Qs has attracted attention. Wang and Wu
(2013) and Neto et al. (2020) established the regression re-
lationship between baseflow fraction (BFC, the ratio of Qb
to precipitation (P )) and aridity index (φ, the ratio of mean
annual potential evapotranspiration (E0) to P ) using ana-
lytical formulation. However, Gnann et al. (2019) reported
that using only the φ struggles to delineate baseflow vari-
ability in humid catchments, where the impact of soil wa-
ter storage capacity (Sp) is as critical as that of the φ. Thus,

Cheng et al. (2021) proposed an analytical curve for describ-
ing mean annual Qb by introducing Sp as another theoretical
boundary. Results show that the developed curve agrees well
with the observed BFC (R2

= 0.75, RMSE= 0.058) and Qb
(R2
= 0.86, RMSE= 0.19 mm), outperforming the original

Budyko framework. Analogously, Yao et al. (2021) derived
similar functions incorporated the φ, Sp and a shape parame-
ter to model BFC and baseflow index (BFI, the ratio ofQb to
Q). These extended Budyko frameworks accounting for Sp
have advantages in simulating Qb. However, Sp is challeng-
ing to obtain through observations and often requires calibra-
tion (Cheng et al., 2021) or computation (Yao et al., 2021),
adding certain uncertainties to the model. Notably, the cali-
bration performance ofQs in Eq. (1) to obtainWp (the proxy
of Sp) in the catchments of China are not always satisfactory,
especially in the northern catchments. Moreover, the compli-
cated forms can bring inherent uncertainties and these stud-
ies have not validated the formulations of Qs, which are de-
rived by subtracting Qb from Q or fitting curves (Cheng et
al., 2021; Neto et al., 2020), implying that they may over-
look the physical processes represented by surface flow. In
the subsequent discussion, the Budyko framework and ex-
tended Budyko equations are collectively referred to as the
“Budyko-type formulations” (Table 1).

Many researchers have observed similar behavior ofQb to
Q (Cheng et al., 2021; Gnann et al., 2019; Wang and Wu,
2013). Is there a similar behavior for Qs? In a two-stage par-
titioning theory (L’vovich, 1979), runoff components are de-
lineated based on the available water at each stage. There-
fore, is there a general framework to unify different runoff
components? Although various functional forms have been
proposed for estimating runoff components in the literature,
a universal method that reveals the mechanisms of mean an-
nual runoff components generation and subsequent quantifi-
cation and attribution is still in need.

Note that P is the mean annual precipitation, E0 is the
mean annual potential evapotranspiration, fS (φ) and fB (φ)

are the surface flow and baseflow function, respectively and
Sp is the catchment storage capacity.

To address these questions, we derived a modified two-
stage partitioning framework through observational data
analysis and theoretical derivation based on the Ponce-Shetty
model (Ponce and Shetty, 1995; Sivapalan et al., 2011)
(namely the modified Ponce-Shetty model, MPS model) at
mean annual time scale. The Ponce-Shetty model is a con-
ceptual model with physical constraint developed at annual
scale to depict how precipitation is partitioned, stored and
released in the catchment (Gnann et al., 2019). It posits that
annual precipitation is partitioned into Qs and soil wetting
(W ) and, subsequently, the resulting W is partitioned into
Qb and vaporization (V ) (Sivapalan et al., 2011). The MPS
model enables large-sample catchments research, which may
lead to new understanding of mean annual water balance and
allocation.
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Table 1. The Budyko-type formulations for estimating mean annual runoff components.

References Formulations Parameters

Choudhury (1999);
Yang et al. (2008)

Q= P −
P×E0(

P n+En0
)1/n n

calibrated

Wang and Wu (2013) Qb
P
= 1−

[
1+

(
E0
P

)−v]−1/v
v

fitted

Neto et al. (2020) fS (φ)= exp
(
−φa + δS

)b
fB (φ)= exp

(
−φc + δB

)d a, b, c, d

δS = ln
([

QS
P

]
max

)1/b

δB = ln
(

1−
[
QS
P

]
max

)1/d

fitted

Cheng et al. (2021) Qs
P
=−

E0+Sp
P
+

[
1+

(
E0+Sp
P

)α1
]1/α1

Qb
P
=
Sp
P
+

[
1+

(
E0
P

)α2
]1/α2

−

[
1+

(
E0+Sp
P

)α2
]1/α2

Sp, α1, α2
calibrated

Yao et al. (2021) Qb =
P+Sb−

√
(P+Sb)

2
−2aSbP

a

1−
1+E0

P
P
Sb
−

√(
1+E0

P
P
Sb

)2
−2a E0

P
P
Sb

a


Q= P −

P
Sb
+1−

√(
P
Sb
+1
)2
−2a P

Sb

a ·
E0+Sb−

√
(E0+Sb)

2
−2aE0Sb

a

Sb (estimated from cumulative
distribution function), a (cali-
brated)

In general, the objectives of this study are to (1) develop
a general and concise formulation to describe runoff com-
ponents variability at mean annual time scale; (2) validate
and compare the performance of the developed formulation
against Budyko-type formulations; (3) attribute the varia-
tions of runoff components induced by the changes of pre-
cipitation and other factors. Here, we modify the Ponce-
Shetty model according to some conditions and hypothesize
a general runoff components model (the MPS model), that
describes Qs, Qb and Q as a function of respective avail-
able water with one parameter. The MPS model is then val-
idated over 662 catchments across China and the contigu-
ous United States (the CONUS) over a wide range of hydro-
meteorological circumstances. The performance of the MPS
model is also compared with the Budyko-type formulations.
Section 2 introduces the derivation of the MPS model. Sec-
tion 3 provides the study catchments, data and the parameter
estimation technique. Section 4 shows the results followed
by a discussion in Sect. 5. The conclusions are summarized
in Sect. 6.

2 Derivation of the Modified Ponce-Shetty Model

L’vovich (1979) proposed a conceptual theory for the two-
stage catchment water balance partition at the annual time
scale according to Horton’s approach (Horton, 1933). Firstly,
precipitation is partitioned into surface flow (Qs) and catch-

ment wetting (W , stored water), and then, the catchment wet-
ting is partitioned into baseflow (Qb) and vaporization (V ,
including interception loss, evaporation and transpiration).
Ponce and Shetty (1995) conceptualized the partition of each
step as the form of a competition, and derived the formu-
lations of runoff components based on the proportionality
hypothesis. Sivapalan et al. (2011) reintroduced the Ponce-
Shetty equations as follows:

In the first stage, P =Qs+W :

Qs =

{
0, if P ≤ λsWp
(P−λsWp)

2

P+(1−2λs)Wp
, if P > λsWp

(1)

W =

{
P, if P ≤ λsWp

P −
(P−λsWp)

2

P+(1−2λs)Wp
, if P > λsWp

(2)

P →∞,Qs→ P −Wp,W →Wp (3)

In the second stage, W =Qb+V :

Qb =

{
0, if W ≤ λbVp
(W−λbVp)

2

W+(1−2λb)Vp
, if W > λbVp

(4)

V =

{
W, if W ≤ λbVp

W −
(W−λbVp)

2

W+(1−2λb)Vp
, ifW > λbVp

(5)

W →∞,Qb→W −Vp,V → Vp (6)
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where λs and λb are the surface flow and baseflow initial ab-
straction coefficients, respectively, which range from 0 to 1.
The larger value of λ, the more difficult it is to generate flow.
Wp and Vp are catchment wetting potential and vaporization
potential, respectively, which are greater than 0. The terms
relative λsWp and λbVp are the surface flow and baseflow
generation thresholds, respectively.

Note that the interannual water storage change is supposed
to be negligible (Ponce and Shetty, 1995). In a companion
paper of Sivapalan et al. (2011), Harman et al. (2011) em-
ployed the annual Ponce-Shetty model at mean annual time
scale and validated its applicability. Using the first phase as
an example, Qs can be considered a function of λs, denoted
as f (λs):

f (λs)=

{
0, if λs ≥ P/Wp
(P−λsWp)

2

P+(1−2λs)Wp
, if λs < P/Wp

(7)

When λs < P/Wp, the Taylor expansion of f (λs) at λs = 0
is:

f (λs)= f (0)+ f ′ (0)∗λs+
f ′′ (0)

2!
∗λ2
s + . . .

+
f n (0)
n!
· λns + . . . (8)

Hence, we have the zeroth-order approximation:

f (λs)≈
P 2

P +Wp
(9)

When the remainder term is relatively small, an approxi-
mation equation can be used to estimate the multi-year Qs
as:

Qs =
P 2

P +Wp
(10)

In addition, the zeroth-order approximation of Qb can be
similarly obtained as:

Qb =
W 2

W +Vp
(11)

To evaluate the impact of the remainder term, we calcu-
late the relative bias (δ) of runoff components for 312 catch-
ments in China and 350 catchments in the United States us-
ing the approximate equations (Eqs. 10 and 11) and the orig-
inal Ponce-Shetty equations (Eqs. 1 and 4) (data sources in
Sect. 3.1). The parameters in the original Ponce-Shetty equa-
tions are calibrated using the nonlinear least squares method.
The δ is calculated as:

δ =

∣∣∣Q̃y −Qy

∣∣∣
Qy

(12)

where Qy represents runoff components estimated by the
Ponce-Shetty equations, and Q̃y represents runoff compo-
nents estimated by the sapproximate equations (Eqs. 10 and
11).

The spatial distribution of δ and the cumulative distribu-
tion functions (CDFs) of δ are shown in Figs. 1 and 2, respec-
tively. As shown in Fig. 1, 77 % of the catchments have an δ
of less than 5 %. The average δ for estimating Qs is 6.5 %
in China and 4.8 % in the United States, while the average δ
for estimating Qb is 7.9 % in China and 6.6 % in the United
States, with larger deviations observed in arid catchments.
Figure 2 indicate that the δ values for the approximate model
are within acceptable limits across both China and CONUS.
The relatively low 95 % threshold values, particularly for the
USA datasets, suggest that the majority of predictions fall
within a narrow error range, indicating robust model perfor-
mance. This acceptability of δ across regions and variables
highlights the approximate equations’ capability to maintain
prediction accuracy under varying geographical and hydro-
logical conditions, indicating that the zeroth-order approxi-
mation is representative for the original Ponce-Shetty model.

Therefore, we can approximately consider that on a multi-
year scale, Qs and Qb can be estimated using the zeroth-
order approximation in Eqs. (10) and (11). We subsequently
assume a similar formulation of mean annual Q:

Q=
P 2

P +Up
(13)

where Up is the parameter representing the upper limit of the
portion remaining after precipitation is allocated to runoff,
hereafter we refer to Up as evapotranspiration potential.

Integrating Eqs. (10), (11) and (13), we conclude a general
formulation to depict multi-year variability of runoff com-
ponents and their quantification, hereafter referred to as the
modified Ponce-Shetty model (the MPS model):

Qy =
X2

X+M
(14)

whereQy represents runoff components (i.e.,Q,Qs,Qb), X
corresponds to the available water of each runoff component,
i.e., P is the available water of Q and Qs, and W the avail-
able water of Qb. M is an integrated parameter, representing
the comprehensive effects of catchment characteristics and
atmospheric water and energy demand.

The MPS model encodes runoff components as a func-
tion of available water with only one parameter, which not
only considers processes of runoff generation with physical
constraints, but also, compared to the Budyko-type formula-
tions and the original Ponce-Shetty model, is more concise
in form and requires fewer parameters. Therefore, it is possi-
ble to estimate the long-term runoff components when only
long-term variables are known.
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Figure 1. The distribution of relative bias (δ) between the results by the approximate equations (Eqs. 10 and 11) versus the original Ponce-
Shetty equations (Eqs. 1 and 4). The first row shows the results for 312 catchments in China, and the second row shows the results for 350
catchments in CONUS. The first column corresponds to surface flow (Qs), and the second column corresponds to baseflow (Qb).

3 Data and Methodology

3.1 Data

To validate the reliability of the MPS model, daily hydrolog-
ical and meteorological data from 312 catchments in China
(Li et al., 2024) and 350 catchments in the CONUS are col-
lected. The criteria for catchments screening can refer to He
et al. (2025). The location of all the catchments hydrological
stations is shown in Fig. 3.

In China, precipitation data at 0.25° spatial resolution are
obtained from the China Gauge-based Daily Precipitation
Analysis (CGDPA) (Shen and Xiong, 2016). Other meteo-
rological data, including wind speed, sunshine hours, rela-
tive humidity, and air temperature, are from about 736 sta-
tions of the China Meteorological Data Service Center (http:
//data.cma.cn/en, last access: 11 November 2023). The in-
site meteorological data are interpolated into a 10 km grid us-
ing the inverse-distance weighted method (Yang et al., 2014).
We use the Penman equation (Penman, 1948) to estimate E0
of each grid using standard meteorological inputs (e.g., ra-
diation, humidity, wind, temperature). The Penman equation
is widely recommended to estimate E0 at catchment scale
due to its physical basis (Pimentel et al., 2023; Wang et al.,
2025), and it provides a consistent reference for our annual,
large-sample analyses. The aridity index φ is subsequently
calculated as E0/P . All grid data are aggregated and lumped
for individual catchments. The discharge data are collected

from the Hydrological Bureau of the Ministry of Water Re-
sources of China (http://www.mwr.gov.cn/english/, last ac-
cess: 20 December 2023) and are selected based on the length
of records exceeding 35 years with less than 5 % missing
data. The time range for all data is 1960–2000.

In the CONUS, we use data set from CAMELS (Addor
et al., 2017; Newman et al., 2015). The CAMELS data set
provides 662 catchments with daily time series of precipita-
tion and observed runoff along with aridity index, and most
catchments contain 35 years of continuous runoff from 1980
to 2014. The criteria for excluding catchments are referred to
Gnann et al. (2019), and finally 350 catchments remained.

We use the one-parameter Lyne-Hollick digital filter (Lyne
and Hollick, 1979) to separate daily Qs and Qb from daily
Q. The Lyne-Hollick method is applied forward, backward,
and forward again with a filter parameter of 0.925 and has
manifested to be reliable to obtain runoff components (Lee
and Ajami, 2023). We use the separated Qs and Qb as the
reference. Although there are other baseflow separation algo-
rithms, according to Troch et al. (2009), the choice of base-
flow separation algorithm is not a significant determinant of
the water balance at the annual scale.

All the hydrological and meteorological data are aggre-
gated to the annual and mean annual time scales for further
analysis.

https://doi.org/10.5194/hess-30-553-2026 Hydrol. Earth Syst. Sci., 30, 553–572, 2026
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Figure 2. Cumulative distribution functions (CDFs) of the relative bias (δ) for each dataset, represented by four subplots corresponding
to different regions and variables: (a) China_Qs, (b) China_Qb, (c) USA_Qs, and (d) USA_Qb. Each subplot includes a red dashed line
indicating the 95 % δ threshold.

Figure 3. Location of hydrological stations for the (a) 312 catchments in China and (b) 350 catchments in the CONUS, colored by the value
of aridity index (φ, namely E0/P ).

3.2 Calibration and Validation

Spatially, to verify the MPS model’s ability to characterize
the variability of runoff components between catchments, we
utilize the least squares fitting algorithm to estimate parame-
ters, i.e., Wp, Vp and Up. The three parameters are restricted

to being between 0 and 50 000 mm, which is considered high
enough to not affect the parameter estimation (Gnann et al.,
2019).

In terms of time, we split all data into two periods for pa-
rameter calibration and validation of Eq. (14) for individual
catchments. In China, the data ranges from 1960 to 2000,

Hydrol. Earth Syst. Sci., 30, 553–572, 2026 https://doi.org/10.5194/hess-30-553-2026
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so we use the first 31 years (1960–1990) as the calibration
period and the remaining 5–10 years (1991–2000) as the val-
idation period. In the CONUS, the calibration period is cho-
sen as 1980–2000, and the validation period is from 2001 to
2014. When we know mean annual Qs, Qb, Q, P and W of
the first period, the parameters, i.e., Wp, Vp and Up, can be
derived from Eq. (14). Postulating the parameters remain un-
changed during two periods, we consequently can estimate
the mean annual Qs, Qb and Q of the second period using
Eq. (14). Note that the catchment wetting W is calculated as
the difference of the P and estimated Qs.

The surface flow fraction (SFC, the ratio of surface flow to
precipitation) and baseflow fraction (BFC, the ratio of base-
flow to precipitation) represent the proportion of rainfall be-
coming different runoff components, which are commonly
used to quantity surface flow and baseflow (Wang and Wu,
2013). Therefore, we evaluate the simulation of SFC and
BFC as well as the volume of runoff components.

The performance of the MPS model is evaluated by the
coefficient of determination (R2) and the root mean square
error (RMSE):

R2
=

 ∑N
i=1

(
Xsim,i −Xsim

)(
Xobs,i −Xobs

)√∑N
i=1
(
Xsim,i −Xsim

)2∑N
i=1
(
Xobs,i −Xobs

)2
2

(15)

RMSE=

√
1
N

∑N

i=1

(
Xsim,i −Xobs,i

)2 (16)

where X represents the evaluated variable, i.e., mean annual
Q, Qs and Qb, SFC and BFC in this study. The subscript
obs and sim represent the observed and simulated value, re-
spectively. Higher R2 and lower RMSE indicate good model
performance.

3.3 Attribution Analysis

We split the data into the first period (1960–1990 in China
and 1980–2000 in the CONUS) and the second period
(1991–2000 in China and 2001–2014 in the CONUS) to
attribute runoff components variation between two periods.
Note that the attribution of 1Q is only conducted in China
because the E0 in CAMELS dataset is a constant in each
catchment. In the MPS model, we consider that the runoff
changes between two long-term periods are caused by avail-
able water and other environmental and anthropogenic fac-
tors (such as land cover/use change and evapotranspiration
variation) encoded by parameters. For the changes of sur-
face flow (1Qs) and total runoff (1Q), postulating that each
variable is independent in the MPS model, the first-order ap-
proximation of the 1Qs and 1Q from the second period to
the first period can be expressed as (Milly and Dunne, 2002):

1Qs =
∂Qs

∂P
1P +

∂Qs

∂Wp
1Wp (17a)

1Q=
∂Q

∂P
1P +

∂Q

∂Up
1Up (17b)

where the two terms on the right side of Eq. (17a) respec-
tively represent changes in Qs caused by changes in P

(1Qs−P ) and other factors (1Qs−Wp ), and the two terms on
the right side of Eq. (17b) respectively represent changes in
Q caused by changes in P (1QP ) and other factors (1QWp ).
For convenience, we refer partial derivative coefficient ∂Qs

∂P
,

∂Qs
∂Wp

, ∂Q
∂P

and ∂Q
∂Up

in Eq. (17) as ζQs−P , ζQs−Wp , ζQ−P and
ζQ−Wp , which can be calculated as:

ζQs−P =
P 2
+ 2PWp(

P +Wp
)2 (18a)

ζQs−Wp =
−P 2(

P +Wp
)2 (18b)

ζQ−P =
P 2
+ 2PUp(

P +Up
)2 (18c)

ζQ−Wp =
−P 2(

P +Up
)2 (18d)

The changes of baseflow (1Qb) is induced by the varia-
tions of the W and Vp. However, we focus more on the im-
pact of P in application. Therefore, we combine Eqs. (10),
(11) and W = P −Qs, so the Qb can be calculated as :

Qb =
P 2W 2

p(
P +Wp

)(
PWp+PVp+WpVp

) (19)

The 1Qb can be attributed as the variations of P , Wp and
Vp:

1Qb =
∂Qb

∂P
1P +

∂Qb

∂Wp
1Wp+

∂Qb

∂Vp
1Vp (20)

where the three terms on the right side of Eq. (20) respec-
tively represent changes in Qb caused by changes in P

(1Qb−P ), Wp (1Qb−Wp ) and Vp (1Qb−Vp ). The partial
derivative coefficient ∂Qb

∂P
(ζQb−P ), ∂Qb

∂Wp
(ζQb−Wp ) and ∂Qb

∂Vp

(ζQb−Vp ) can be calculated as:

ζQb−P =
2P 2W 3

PVp+P
2W 4

P + 2PW 4
PVp(

P +Wp
)2(
PWp+PVp+WpVp

)2 (21a)

ζQb−Wp =
P 4W 2

P + 2P 4WpVp+ 2P 3W 2
PVp(

P +Wp
)2(
PWp+PVp+WpVp

)2 (21b)

ζQb−Vp =
−P 2W 2

P(
P +Wp

)2(
PWp+PVp+WpVp

)2 (21c)
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To verify the applicability of the MPS model for runoff
components attribution, we compare the calculated 1Qs,
1Qb and 1Q using Eqs. (17) and (20) with the observed
1Qs, 1Qb and 1Q between two periods. The evaluation
metrics are R2 and RMSE.

The relative contribution ratios of P and other factors to
runoff components change are calculated as:

ηP =
1Qy−P

|1Qy−P | + |1Qy−Wp | + |1Qy−Vp |
× 100% (22a)

ηWp =
1Qy−Wp

|1Qy−P | + |1Qy−Wp | + |1Qy−Vp |
× 100% (22b)

ηVp =
1Qy−Vp

|1Qy−P | + |1Qy−Wp | + |1Qy−Vp |
× 100% (22c)

where ηP , ηWp and ηVp are the relative contribution ratios of
P , Wp and Vp to runoff components, respectively. We subse-
quently use the absolute values of η to identify the dominant
factor impacting runoff components.

4 Results

4.1 Inter-Catchment Variability of Runoff Components

We employ the MPS model to fit the relationship between
mean annual available water and runoff components. In
China, as shown in Fig. 4a–c, the MPS model performs well
in describing runoff components variability between catch-
ments, with R2 values of 0.86, 0.69 and 0.91 for fitting Qs,
Qb and Q, respectively. The solid lines are the best-fitted
MPS curves derived using the least squares fitting algorithm,
implying the median values of different parameters. We also
give the potential upper and lower limits of Wp, Vp and Up
across catchments. Similarly, Fig. 4d–f illustrates that the
MPS model achieves good fitting in the CONUS, with R2

of 0.81, 0.44 and 0.80 for fittingQs,Qb andQ, respectively.
The fitted parameters in the CONUS are smaller than those
in China, while they have more comprehensive ranges be-
tween catchments, meaning a more significant heterogeneity
in climate and underlying surface.

Figure 4 demonstrates that the MPS model can effectively
reproduce the spatial variability of different runoff compo-
nents along with the aridity index (E0/P ), which are pri-
marily controlled by the available water of the corresponding
partition stage. The performance of MPS model to fitQs and
Q is better than that of Qb, indicating that the factors con-
trolling Qb are more complicated and not fully reflected in
the model. With catchment properties and other factors (in-
tegrated by the parameters in the MPS model) remaining un-
changed, the more the available water, the higher the runoff
generated. Conversely, smaller parameter values are associ-
ated with greater runoff for a given amount of available wa-
ter.

4.2 Validation of Runoff Components Estimation

Figure 5 shows the estimated mean annual Qs, Qb and Q
in validation periods using the MPS model with inverted pa-
rameters in Eq. (14) in China and the CONUS. The simulated
runoff components match very well with the observed, with
R2 greater than 0.97 and RMSE less than 66 mm. There is no
significant difference in the performance in simulating Qs,
Qb, and Q, except for a slight underestimation in simulating
Qb of catchments in China and some in the CONUS.

In panels (a), (b), and (c), we observe that the scatter points
for both China (red circles) and the CONUS (blue circles)
are closely aligned with the 1 : 1 line, further underscoring
the strong correlation between modeled and observed val-
ues. Specifically, the results show that the MPS model ef-
fectively captures surface flow (Qs), baseflow (Qb), and to-
tal runoff (Q) for both regions. Despite the generally good
performance, a slight underestimation of Qb is evident in a
subset of catchments in China and, to a lesser extent, in the
CONUS. However, these discrepancies are minimal and do
not significantly detract from the model’s overall accuracy.

Figure 6 presents the estimation of SFC and BFC in valida-
tion periods using the MPS model. Similar to the simulation
of Qs, the two methods also show highly consistent estima-
tion of SFC (panel (a)), with R2 of 0.94 and RMSE of 0.03.
This demonstrates the MPS model’s robust capability to es-
timate the surface flow fraction in China and the CONUS,
closely aligning with the observed data. Panel (b) presents
the estimation of BFC, where the MPS model achieves sig-
nificant accuracy, reflected by the sameR2 and RMSE values
(0.94 and 0.03, respectively). This strong performance indi-
cates that the MPS model is highly effective in simulating
SFC and BFC across various catchments.

Figures 5 and 6 document that the MPS model can effec-
tively estimate the multi-year average of all runoff compo-
nents and the proportions of precipitation allocated to runoff.

The good validation performance of the MPS model ver-
ified our hypothesis that the parameters in the general for-
mulations remain stable at the mean annual time scale. The
parameters reflect the comprehensive impact of climate and
catchment characteristics, i.e., catchment wetting potential
(Wp), vaporization potential (Vp) and the upper limit of the
portion remaining after precipitation is allocated to runoff
(Up). As shown in Fig. 7a–c, the spatial distribution of the
parameters across China exhibits pronounced divergence be-
tween the northern and southern catchments, as well as the
eastern and the western. The Wp, Vp and Up exhibit similar
spatial patterns, which can be approximately divided into two
tiers from north to south. In the catchments of the Songliao
River Basin in the northeast, the Yangtze River Basin and
Pearl River Basins in the south, the parameters are relatively
small, with Wp and Up ranging from 0 to 2000 mm, and Vp
from 0 to 4000 mm, resulting large flow. In the catchments
of the Yellow River Basin, Huaihe River Basin and Haihe
River Basin in the north, the parameters are quite large and
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Figure 4. The MPS model relating (a) P versus Qs, (b) W versus Qb and (c) P versus Q in China and (d) P versus Qs, (e) W versus Qb
and (f) P versus Q in the CONUS. The lines are the fitted MPS curves with best fitting (solid line) and potential upper limit and lower limit
(dashed lines) parameters.

Figure 5. The observed and simulated mean annual (a) surface flow, (b) baseflow and (c) total runoff by the MPS model in China (red circles)
and the CONUS (blue circles).

usually more than 5000 mm and even 8000 mm, leading to
small flow. From west to east, Wp exhibits higher values in
the Yangtze and Yellow Rivers Basin sources, whereas Vp
and Up are smaller in the source regions. This disparity may
reflect variations in the two-stage partition of precipitation,
contributing to spatial differences in total runoff. Accord-
ing to Fig. 7c, we can deduce that the spatial distribution of
higher total runoff in south and lower in north across China,
aligning with previous observational studies (He et al., 2021;
He et al., 2022; Yang et al., 2019).

Figure 7d–f shows an evident west-east discrepancy of the
three parameters across the CONUS. Typically, Wp, Vp and
Up of the catchments in the west coast and eastern regions
are less than 5000 mm, while parameters in the central United

States are extensive with values more than 8000 mm. This in-
dicates relatively low flow in the central regions. Notably, the
parameters upper limits in the catchments of the CONUS are
significantly higher than those in China. The extremely large
values may be associated with significant parameter uncer-
tainty (Gnann et al., 2019). Figure 7 demonstrates that the
values of the three parameters are larger in arid catchments
and their spatial patterns are similar to that of climate zoning,
which provides insights for parameterization.

Figure 8 shows the violin plots of the parameters in the
catchments of China and the CONUS. The median values
of Wp, Vp, and Up in China are 3659, 2220 and 1453 mm,
respectively. The median values of Wp, Vp, and Up in the
CONUS are 4531, 3424 and 2385 mm, respectively. Over-
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Figure 6. The observed and simulated (a) surface flow fraction (Qs/P ) and (b) baseflow fraction (Qb/P ) by the MPS model in China (red
circles) and the CONUS (blue circles).

Figure 7. The (a) wetting potential (Wp), (b) vaporization potential (Vp) and (c) evapotranspiration potential (Up) of the catchments in China
and (d) wetting potential (Wp), (e) vaporization potential (Vp) and (f) evapotranspiration potential (Up) of the catchments in the CONUS.

all parameters in China are smaller and denser than those in
the CONUS, implying a smaller variability of runoff compo-
nents in China. Furthermore, the Cv value of Vp (1.6 in China
and 6.8 in the CONUS) is the largest, followed by Up (0.9 in
China and 1.6 in the CONUS), and the smallest for Wp (0.6
in China and 1.5 in the CONUS). This indicates that the pa-
rameter dispersion controlling the second partition stage of
rainfall is the greatest, which could partly account for the
challenges in accurately estimating Qb.

4.3 The Changes Attribution of Runoff Components

The metrics to evaluate the attribution results between the
changes of the observed and simulated runoff components
are shown in Table 2. We use the MPS model to estimate
the changes of Qs (1Qs), Qb (1Qb) and Q(1Q) from two
long-term periods by Eqs. (17) and (20), and for comparison,
we use the Budyko framework to estimate1Q, which is con-
sidered as the changes induced by P , E0, and parameter n
(the calculation formulations can refer Xu et al. (2014)). The
estimated and observed runoff components variations exhibit

Table 2. The metrics of the attribution validation.

Variables R2 RMSE
(mm)

1Qs 0.99 1.6
1Qb 0.90 16
1Q (the MPS model) 0.91 42
1Q (the Budyko framework) 0.89 41

high consistency (Fig. 9), with an R2 of 0.99 and RMSE of
1.6 mm of 1Qs attribution and R2 of 0.88 and RMSE of
18 mm of 1Qb attribution, respectively. As for 1Q, both
the MPS model and the Budyko framework can attain satis-
factory performance, while the MPS model has a higher R2

(0.91) than the Budyko framework (0.89). Table 2 demon-
strates that the MPS model can accurately quantify changes
in runoff components over two periods. Subsequently, we
quantify the contribution of precipitation and other factors
(encoded by parameter Wp and Vp) to 1Qs and 1Qb.
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Figure 8. Violin plots of the parameters in the catchments of China
and the CONUS. In each violin plot, the left side represents the
distribution, with the shaded area indicating the box plot, the dot
representing the mean, and the right side showing the histogram.The
length of the histogram represents the number of catchments (values
larger than 10 000 are not shown).

Figure 10 shows the 1Qs induced by P (1Qs−P ) and
other factors (1Qs−Wp ) along with the dominant factor in
the catchments of China and the CONUS. From 1960–1990
to 1991–2000 in China, the multi-year variation in P has re-
sulted in Qs change ranging from −105 to 344 mm, mainly
increasingQs in the catchments of the Songliao River Basin,
the middle and lower Yangtze River Basin, the Southeast
River Basin and Pearl River Basin, and decreasing Qs in the
catchments of the Yellow River Basin and the upper Yangtze
River Basin (Fig. 10a). The variations of other factors, such
as land use/cover change and human activities, have resulted
in Qs change ranging from −186 to 124 mm, primarily de-
creases Qs in 70 % catchments (Fig. 10b). P and other Wp
is the dominant factor altering Qs in southern and northern
China, respectively (Fig. 10c). From 1980–2000 to 2000–
2014 in the CONUS, variation in P has resulted inQs change
ranging from −469 to 149 mm, mainly increasing Qs in the
catchments of Interior Plains (except Great Plains), Coastal
Plain, Interior highlands and Appalachian Plain, and decreas-
ing Qs in the catchments of the Great Plains and Pacific
Mountains (the physiographic divisions are referred to Wu et
al. (2021)) (Fig. 10d). The variations of other factors have re-
sulted inQs change ranging from−230 to 467 mm, primarily
decreasesQs in 75 % catchments (Fig. 10e). The catchments
in the CONUS dominated by P andWp account for 43 % and
57 %, respectively (Fig. 10f).

Figure 11 shows the 1Qb induced by P (1Qb−P ), Wp
(1Qb−Wp ) and Vp (1Qb−Vp ) in the catchments of China and
the CONUS. The spatial pattern of the effect of P on Qb

is similar to that of the Qs, resulting in Qb change from
−38 to 79 mm in China (Fig. 11a) and −129 to 92 mm in
the CONUS (Fig. 11e), respectively. Catchment wetting po-
tential has a positive effect on Qb in 70 % and 75 % catch-
ments of China and the CONUS, respectively (Fig. 11b and
f), mainly in the northern China and the Interior Highlands,
Coastal Plain and Appalachian Highlands of the CONUS.
Vaporization potential has a negative effect on Qb in 56 %
and 77 % catchments of China and the CONUS, respectively,
mainly in the upper Yangze River Basin and northern China
and the central and southeastern CONUS (Fig. 11c and g).
Although Vp is the dominant factor controlling Qb variation
in most catchments in both China (62 %) and the CONUS
(71 %) (Fig. 11d and h), the contributions of the P , Wp and
Vp are not significantly discrepant in terms of magnitude.

Overall, Figs. 10 and 11 illustrate that the variation of Qs
is jointly controlled by P and other factors, while the vari-
ation of Qb is mainly influenced by Vp. This demonstrates
that Qs is closely related to rainfall and soil storage capac-
ity, while Qb is more affected by catchment attributes, at-
mospheric water and energy demand, etc. In regions where
runoff components are reduced, focus should be given to the
risks of drought and river discontinuity; conversely, in areas
experiencing runoff components increase, there is a need to
guard against the risk of flooding.

5 Discussion

5.1 Superiorities of the MPS Model

The researches about long-term runoff components quantifi-
cation and attribution are currently fragmented and region-
specific (Beck et al., 2013; Gnann, 2021). This study has de-
veloped a general formulation (the MPS model) through ob-
servational data analysis and theoretical derivation based on
the Ponce-Shetty model, unveiling the patterns of variabil-
ity in different runoff components at mean annual time scale.
Compared to the commonly used Budyko-type formulations,
it can not only estimate mean annual Q and Qb, but also can
depict the variability of Qs. Figure 12 shows the estimated
mean annual runoff components by the Budyko-type formu-
lations (equations in the second (Choudhury, 1999; Yang et
al., 2008) and fifth (Cheng et al., 2021) rows of Table 1 in
this paper). The Budyko-type formulations also achieve good
validation performance, withR2 greater than 0.95 and RMSE
less than 78 mm. Although the MPS model and the Budyko-
type formulations are comparable in terms of R2, especially
with almost equal simulation results of Qs, the MPS model
reduced the RMSE values by 10 and 12 mm for estimating
Qb, respectively.

Figure 13 presents the estimation of SFC and BFC in vali-
dation periods using the Budyko-type formulations. The two
methods also show highly consistent estimation of SFC, with
R2 of 0.94 and RMSE of 0.03. However, the Budyko-type
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Figure 9. The observed and modelled (a) surface flow variations and (b) baseflow variations by the MPS model.

Figure 10. The surface flow change induced by precipitation and wetting potential (Wp) along with the dominant controlling factor.

Hydrol. Earth Syst. Sci., 30, 553–572, 2026 https://doi.org/10.5194/hess-30-553-2026



Y. He et al.: The general formulation for mean annual runoff components estimation 565

Figure 11. The baseflow change induced by precipitation, wetting potential (Wp) and vaporization potential (Vp) along with the dominant
controlling factor.

formulations underestimate the BFC of most catchments in
China, while the MPS model greatly improves the simula-
tion accuracy of BFC.

In conclusion, the MPS model has comparable capability
in simulating Qs and SFC to that of Budyko-type formula-
tions. Moreover, it outperforms Budyko-type formulations
in estimating Qb and Q, and reveals superiority in estimat-
ing BFC. By characterizing runoff components as functions
of available water at corresponding stages with a compos-
ite parameter, the MPS model is more concise in form and
eliminates additional and complex parameter computations,
thereby facilitating broader application in large-sample in-
vestigations.

In addition to precisely quantifying runoff components
and the allocation of precipitation, this model has innova-
tively attributed the contributions of different factors on the
changes of Qs and Qb. Our results show that the variation of
Qs is jointly controlled by P and other factors. P plays an
dominant role in the variation of Qs in the catchments of the
Yangtze River Basin, Southeast Basin and Pearl River Basin
of China and the west coast of the CONUS, where precipita-
tion has been reported to have undergone significant changes
(Li et al., 2021; Mallakpour and Villarini, 2017; Massoud et
al., 2020; Xu et al., 2022). This is possibly due to more ex-
treme precipitation events and summer rainfall in the middle-
lower Yangtze River Basin (Ye et al., 2018) and an increasing
trend in the frequency of heavy precipitation over large areas
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Figure 12. The observed and simulated mean annual (a) surface flow, (b) baseflow and (c) total runoff by the Budyko-type formulations in
China (red circles) and the CONUS (blue circles).

Figure 13. The observed and simulated (a) surface flow fraction (Qs/P ) and (b) baseflow fraction (Qb/P ) by the MPS model in China (red
circles) and the CONUS (blue circles).

of the CONUS (Mallakpour and Villarini, 2017). Previous
studies reported that the variation of Q in these regions are
dominated by P (He et al., 2022; Huang et al., 2016). Now
it seems that P mainly affects the first allocation stage (Qs)
and consequently change total runoff. The variation of Qb is
mainly influenced by Vp, indicating that we should pay more
attention to the changes of catchment attributes, atmospheric
water and energy demand in most catchments when investi-
gating Qb.

Overall, this conceptual model extracted from observed
rainfall-runoff data provides a concise, general and effective
tool for predicting runoff components, and evaluating their
responses to climate and environment under global change.

5.2 Parameter Interpretation

In the MPS model, each runoff component is associated with
a parameter that can be interpreted as the upper limit of the
remaining portion of available water after it has been par-
titioned into runoff at each stage. For instance, in the first
stage, precipitation is allocated to surface flow and catchment

wetting, with Wp representing the upper limit of catchment
wetting, which describes the catchment’s storage capacity
related to soil, topography and so on (Cheng et al., 2022).
Wp is influenced by soil properties and available storage ca-
pacity, determining the fraction of precipitation that rapidly
becomes surface runoff versus what is stored. For the sec-
ond stage, the available water comes from catchment wet-
ting, which is then allocated to baseflow and vaporization.
The parameter Vp is the upper limit of the fraction of wet-
ting returned to the atmosphere as water vapor (Ponce and
Shetty, 1995), and is likely responds to subsurface charac-
teristics such as aquifer permeability and geological layer-
ing. For instance, in highly heterogeneous aquifers with well-
developed preferential pathways (e.g., fractured rock or karst
systems), water is rapidly drained toward the stream, lead-
ing to a higher efficiency of baseflow production and thus
a lower Vp value (as less water is retained for evaporation).
Conversely, in catchments with more homogeneous, porous
media (e.g., sandy aquifers), water movement is slower and
more diffuse, potentially allowing for a greater fraction of
stored water to be evaporated, resulting in a higher Vp. For
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the total runoff, we consider precipitation as the available wa-
ter competing with evapotranspiration, whose upper limit is
represented by the parameter Up. Similar to Vp in the second
stage, Up can be regarded as a sort of atmospheric water and
energy limit (somewhat analogous to potential evapotranspi-
ration) and emerges from the interaction of the available en-
ergy, vegetation and other catchment characteristics. To some
extent, the MPS model links Qs and Qb with Q using P in
the first trade-off and Vp in the second trade-off, so that the
forms of different runoff components can be unified.

Additionally, we compared the distribution of the param-
eters in the MPS model with that in Gnann et al. (2019) and
Sivapalan et al. (2011), which did not omit the initial abstrac-
tion coefficients λs and λb. There is a very similar spatial pat-
tern of Wp and Vp in the CONUS. Specifically, high Wp can
be seen in the middle of the United States (Great Plains) and
the east (southern parts of the Appalachians) (Fig. 7d), and
high Vp can be seen in the middle of the United States (Great
Plains) and all southern regions (Fig. 7e). This, to some ex-
tent, illustrates the rationality of the simplification of the
original Ponce-Shetty model in describing the spatial vari-
ability of runoff components. According to Ponce and Shetty
(1995) and Sivapalan et al. (2011), the products λsWp and
λbVp are viewed as the initial abstraction to generate runoff.
This definition is reasonable for short-term scales, such as
event and annual scales. However, on the multi-annual scale,
the catchment maintains a state of water balance and water
losses can be disregarded (Han et al., 2020). Hence, simpli-
fying λ to zero is rational to quantify and attribute runoff
components and offer a new perspective on the long-term
catchment water balance.

5.3 Uncertainties and Future Improvements

It is important to acknowledge several uncertainties in this
study. First, the definition of “baseflow” itself introduces un-
certainty. Although widely used as a collective term for de-
layed streamflow components, baseflow encompasses contri-
butions from hydrologically distinct sources such as ground-
water drainage, hyporehic exchange, snowmelt, and deeper
subsurface leakage-each with distinct origins, timescales,
and sensitivities to environmental factors. For instance,
groundwater flow and deep leakage are strongly controlled
by geological heterogeneity, including the distribution of
rock types, porosity, permeability, faults, and fractures (Schi-
avo, 2023). In contrast, snowmelt baseflow, on the other
hand, is mainly driven by temperature variations within in-
terannual to decadal climate cycles.

The definition of baseflow directly influences the selection
of catchment areas. Guided by this macro-scale definition-
viewing baseflow as the relatively stable portion of total
runoff-we included large catchments in our analysis. While
this inclusion may be a source of error, it does not affect the
key finding that the MPS model effectively captures the vari-
ability of mean annual runoff components across catchments.

A sensitivity analysis of the model’s performance under dif-
ferent area thresholds is provided in Appendix Table A1. Fu-
ture studies could combine isotope tracing with hydrological
modeling to better quantify the contributions of these differ-
ent sources.

Second, methodological uncertainty arises from the digi-
tal filter method (i.e., the Lyne–Hollick algorithm) for base-
flow separation. While practical and widely applied, this ap-
proach is deterministic and does not explicitly account for
uncertainties related to aquifer heterogeneity, such as spatial
variability in hydraulic conductivity, preferential flow paths,
or geologic structures. Future work could adopt stochastic
frameworks such as Monte Carlo simulation by generating
multiple realistic realizations of aquifer heterogeneity to ob-
tain more robust and probabilistic baseflow estimates (Schi-
avo, 2023). Additionally, our study did not take into account
the spatial heterogeneity of groundwater flow, particularly
its preferential pathways through fractures, macropores, or
highly permeable sedimentary layers. Event-scale analyses
indicate that stormflow volumes and hysteresis patterns co-
vary with subsurface connectivity and its timing. For exam-
ple, Zuecco et al. (2019) used graph-theory metrics to quan-
tify connectivity in headwater catchments and linked max-
imum connectivity to stormflow. While our study operates
at mean-annual scales, these findings are consistent with our
interpretation that geological heterogeneity and preferential
pathways (fractures, karst, macropores) modulate the Vp dis-
persion and, in turn, the aggregate baseflow fraction. Fu-
ture work could employ numerical models or distributed hy-
drological models that explicitly represent geological struc-
tures to better capture the effects of preferential flow paths at
smaller scales.

The sensitivity of runoff to changes in climatic and en-
vironmental factors has always been highly anticipated.
Schaake (1990) first introduced the concept of climate elas-
ticity coefficients to quantify it, defined as the ratio of the
relative change in mean annual runoff to the relative change
in climatic factors. Various expressions have been widely ap-
plied in evaluating the hydrological response to multi-annual
average climate change (Sun et al., 2014; Xu et al., 2014).
The only climatic factor in the MPS model is P , so we pri-
marily focuses on the elasticity of runoff components to P
(ε), which can be expressed as εy−P =

∂Qy
∂P
/
Qy
P

, quantifying
the percentage of runoff components change caused by 1 %
change in P .

Figure 14 shows elasticities ofQ,Qs andQb to P derived
from the MPS model in the CONUS. We compare the elas-
ticity distribution of the work conducted by Harman et al.
(2011), who did not omit the initial abstraction coefficients
λ. In humid catchments with the aridity index of less than 1
(such as the west coast and eastern regions of the CONUS),
the results from both studies are very close, with elasticity
values from 1 to 2. However, the MPS model noticeably un-
derestimates the runoff sensitivity to P in semi-arid and arid
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Figure 14. The elasticity of (a) total runoff, (b) surface flow and (c) baseflow to precipitation derived the MPS model.

catchments (such as the Great Plains). This may be due to
the error caused by the assumption that λ is a constant when
deriving the MPS model.

Additionally, the secondary rainfall processes, such as ini-
tial abstraction to generate runoff, precipitation intensity and
seasonality should be considered in these regions, which
have been proven to have a significant impact in attribution
analysis (He et al., 2022; Ning et al., 2022; Zhang, 2015).
Moreover, the potential evapotranspiration (E0), which indi-
cates the impact of energy constraints (Huang et al., 2019;
Wu et al., 2020), is quite significant in arid and semi-arid
catchments and should be taken into account.

In this paper, we interpret the parameters (i.e., Wp, Vp and
Up) as a potential upper limit of each partition stage compet-
ing with corresponding runoff components following the an-
nual Ponce-Shetty model. It is intriguing to discuss whether
the connotation of the parameters has changed from annual
to mean annual time scale. On a long-term scale, the initial
abstraction coefficient (i.e., λP and λW ) can be simplified
as zero, indicating the loss for generating runoff is negli-
gible. However, to what extent the initial abstraction coef-
ficient affect precipitation partition at shorter time scales is
still under-determined. The physical and theoretical interpre-
tation of parameters and their impacts at different time scales
are temporarily outside the scope of this study. However, it
is valuable to further research in future work. In addition,
the seasonality of rainfall measures the concentration of pre-
cipitation within a year. The more concentrated the precip-
itation, the more likely it is to generate surface runoff, re-
sulting in greater intra-annual fluctuations in the BFI and a
lower annual BFI. In contrast, in catchments with evenly dis-
tributed precipitation, soil water and groundwater are replen-
ished consistently and gradually, leading to relatively stable
intra-annual BFI and a higher annual BFI.

The MPS model has only one parameter for controlling
each runoff component, which is arguably simplified but de-
pendent on calibration, and their physical meaning needs
further explanation. We still need to explain the parame-
ters in terms of regional patterns of climatic and/or catch-
ment attributes, meaning that currently this model can only
be applied to gauged catchments with runoff observations
and challenging to transfer to ungauged basins. Cheng et al.
(2022) proposed two machine learning methods to charac-

terize the parameter of the Budyko framework and further
employed them in estimating global runoff partition. Results
show that parameters related to vegetation (such as root zone
storage capacity, water use efficiency and vegetation cover-
age) and climate (such as precipitation depth and climate sea-
sonality) are the primary controlling factors of the parame-
ter. Similar work can be referred to Chen and Ruan (2023).
These investigations provide priori knowledge for quantita-
tively linking the parameters of the MPS model to climate
forcing and catchment attributes in future work.

6 Conclusion

We developed a general formulation (the MPS model) to es-
timate mean annual runoff components as a function of avail-
able water with a synthetic parameter based on a two-stage
partition theory, and validated it over 662 catchments across
China and the CONUS with further attribution analysis. The
concise MPS model provides more accurate runoff compo-
nents estimation and innovative attribution, offering new in-
sights to long-term water balance and giving additional supe-
riorities toward making predictions of runoff variation under
global change. The main conclusions are as follows:

1. The investigated catchments fit well with the MPS
model, with R2 of 0.86, 0.68 and 0.91 for fitting Qs,
Qb and Q in China and R2 of 0.81, 0.44 and 0.80 for
fittingQs,Qb andQ in the CONUS, implying the MPS
model can well reproduce the spatial variability of dif-
ferent runoff components.

2. The MPS model effectively simulates multi-year runoff
components with R2 exceeding 0.97, and the proportion
of runoff components relative to precipitation with R2

exceeding 0.94. The spatial distribution of the parame-
ters across China and the CONUS is related to that of
climate zoning.

3. The MPS model has proved effective in quantifying the
variations of runoff components induced by precipita-
tion and environmental factors. The estimated and ob-
served 1Qs, 1Qb and 1Q exhibit high consistency,
with an R2 of 0.99 and RMSE of 1.6 mm of 1Qs attri-
bution, R2 of 0.90 and RMSE of 16 mm of 1Qb attri-
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bution andR2 of 0.91 and RMSE of 42 mm of1Q attri-
bution, respectively. The variation of Qs is jointly con-
trolled by P and environmental factors, while the vari-
ation of Qb is mainly influenced by Vp in most catch-
ments.

In general, this study proposes a general formulation for
effectively estimating and attributing the mean annual runoff,
surface flow and baseflow. The structure is simple with few
parameters and clear physical significance. Its reliability has
been authenticated, providing new insights for analyzing wa-
tershed water resources in changing environments.

Appendix A

Table A1. The coefficient of determination (R2) and model param-
eters for the MPS curve fittings under different area thresholds for
selecting catchments in China.

Area thresholds Number of R2 Parameters (mm)

(km2) catchments Qs Qb Q Wp Vp Up

2000 67 0.85 0.62 0.89 3220 2794 1439
5000 135 0.84 0.63 0.89 3004 2651 1356
10 000 180 0.84 0.69 0.90 3098 2614 1375
20 000 219 0.85 0.68 0.90 3138 2585 1376
80 000 257 0.85 0.69 0.90 3207 2487 1364
500 000 295 0.85 0.69 0.91 3278 2428 1362
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