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Abstract. Hydrological data sets have vast potential for wa-
ter resource management applications; however, they are
subject to uncertainties. In this paper, we develop and ap-
ply a monthly probabilistic water balance data fusion ap-
proach for automatic bias correction and noise filtering of
multi-scale hydrological data. The approach first calibrates
the independent data sets by linking them through the wa-
ter balance, resulting in hydrologically consistent estimates
of precipitation (P ), evaporation (E), storage (S), irriga-
tion canal water imports (C), and river discharge (Q) that
jointly close the basin-scale water balance. Next, the basin-
scale results are downscaled to the pixel-scale, to gener-
ate calibrated ensembles of gridded Precipitation (P ) and
Evaporation (E) that reflect the basin-wide water balance
closure constraints. An application to the irrigated Hindon
River basin in India illustrates that the approach generates
physically reasonable estimates of all basin-scale variables,
with average standard errors decreasing in the following or-
der: 21 mm month−1 for storage, 10 mm month−1 for evap-
oration, 7 mm month−1 for precipitation, 4 mm month−1 for
irrigation canal water imports, and 2 mm month−1 for river
discharge. Results show that updating the original indepen-
dent data with water balance constraint information reduces
uncertainties by inducing cross-correlations between all in-
dependent variables linked through the water balance. In
addition, the introduced approach yields (i) hydrologically
consistent gridded P and E estimates that fuse information
from prior (original) data across different land use elements

and (ii) statistically consistent random errors that reflect the
model’s confidence about P and E estimates at each grid
cell. The analysis also shows a long-term decreasing trend
in groundwater, which is better captured by the more se-
vere decline from GRACE JPL mascon than GRACE Spher-
ical Harmonic data. This finding points towards the possible
sustainability issues for irrigation in the basin and requires
further validation using piezometer groundwater-level mea-
surements. Future opportunities exist to further constrain the
generated water balance variables and their associated errors
within process-based models and with additional data.

1 Introduction

Under a changing climate and anthropogenic activities
(Wada et al., 2010), it becomes urgent to accurately estimate
the water balance components. Although distant from the
Earth’s surface, remote sensing (RS) satellites can uniquely
provide information that translates into such estimates. For
example, microwave and infrared techniques are used to
estimate precipitation (Sun et al., 2018), evaporation can
be computed using optical and thermal imagery (Zhang et
al., 2016a), while changes in total water storage are ob-
tained from the Gravity Recovery and Climate Experiment
(GRACE) satellites (Wahr et al., 2004; Rodell et al., 2009).
These advancements have emerged as powerful decision-
support tools, pushing hydrology in new directions by pro-
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viding valuable information on the spatial distribution of wa-
ter availability, use, and consumption (Hessels et al., 2022;
Sheffield et al., 2018; Karimi et al., 2013). Such information
is often challenging to obtain through traditional in situ data
collection. With the rapid increase in RS data availability,
it is now theoretically possible to close the water balance.
However, two challenges prevent this from being achieved,
including the inconsistencies among various RS products for
the same variable and the imbalances resulting from inte-
grating the unique combinations of different water balance
variables. These incoherences arise from the inherent data
errors. Discrepancies in RS data, for example, come from
different sources, such as errors in the retrieval algorithms
(Maggioni et al., 2022), input data and parameters (Crosetto
et al., 2001), or scale mismatch (Foken, 2008). While in situ
data are known for their greatest reliability, they also come
with their own errors. Uncertainties in river discharge, for
example, could be related to flow conditions (Mcmillan et
al., 2012), velocity sensors (e.g., calibration) (Horner et al.,
2018), or estimation methods such as the rating curve (Kucz-
era, 1996). Benefiting from the complementary strengths of
in situ and RS data and embracing their errors requires a
three-pronged methodology. This methodology should max-
imize the prior information content of the data available from
multiple RS sources for the same variable, quantify both sys-
tematic and random errors in each water balance term, and
reduce these errors by exploiting all available information
to generate calibrated estimates of spatially distributed wa-
ter balance data. The following paragraphs review existing
approaches in the literature used to handle these aspects.

Studies addressing the uncertainties in RS water balance
data often rely on in situ data (treated as “ground-truth”) to
evaluate and converge on the different data products. How-
ever, in situ data (e.g., evaporation) is sparsely measured, and
even when these data exist, accessibility may be challenging.
Under such conditions, alternative indirect approaches such
as triple collocation (Tian and Peters-Lidard, 2010; Long et
al., 2014; Massari et al., 2017; Yin and Park, 2021), uncer-
tainty propagation (Hong et al., 2006; Cawse-Nicholson et
al., 2020), and sensitivity analyses (Sobol, 2001) can be uti-
lized. Other methods involve using the deviation from the
ensemble mean, and the variability between the data sets as a
proxy for uncertainty (Tian and Peters-Lidard, 2010; Sahoo
et al., 2011; Munier et al., 2014; Zhang et al., 2018). Each of
the previously summarized error estimation techniques has
its inherent merits and shortcomings. In an attempt to capi-
talize on these strengths, Mourad et al. (2024) recently inte-
grated limited in situ data and multiple error metrics, along
with expert judgment, to quantify and partially reduce water
balance data errors. However, the resulting water balance es-
timates require further conditioning on in situ data using ad-
ditional constraining steps, which is a subject of the method-
ology section of the current study.

Several other studies went beyond quantifying uncertain-
ties in RS data and sought to fully reduce them using the

water balance as a constraint (Aires, 2014; Hobeichi et al.,
2020; Luo et al., 2023; Munier et al., 2014; Pan et al., 2012;
Pan and Wood, 2006; Rodell et al., 2015; Sahoo et al., 2011;
Zhang et al., 2018, 2016b). The core idea of the existing clo-
sure methods is to either select a preferred single data set of
each water balance variable based on prior knowledge about
their quality, or merge multiple data for each water balance
variable using fixed pre-quantified error estimates. This step
is followed by a water balance correction method such as
variational data assimilation (L’ecuyer and Stephens, 2002),
constrained Kalman filter (Pan and Wood, 2006), or propor-
tional redistribution (Abolafia-Rosenzweig et al., 2021). In
this process, the values of the (un)merged water balance es-
timates are adjusted proportionally to their relative uncer-
tainties or magnitudes, depending on the correction method
used. Contrary to the previously summarized water balance
closure approaches, which fixed data errors a priori, Schoups
and Nasseri (2021) proposed improving data error estimation
by treating them along with the water balance variables as
unknown random variables. Instead of enforcing the closure
sequentially, the authors demonstrate that the water balance
variables can be calibrated simultaneously in a single proba-
bilistic data fusion methodology. The underlying premise is
that all variables are interconnected through the water bal-
ance. For instance, to calibrate precipitation data, the pro-
posed approach uses statistical inference techniques to auto-
matically fuse and adjust two information sources available
on this variable, one coming from multiple estimates of pre-
cipitation RS data (original prior data), and the other sourced
from other water balance data (predicted from the water bal-
ance). These techniques include an iterative smoother that
involves multiple forward-backward passes over the time-
series. In the forward pass, the estimated precipitation carries
information from previous and current months, while in the
backward pass it holds information from the future months.
A similar process happens when estimating the other water
balance variables, yielding refined posterior estimates that
combine information from all other months.

Further to the above literature, previous attempts have
been made to extend the basin-wide water balance closure
constraints to a finer scale of up to 0.25° pixel resolution
(Barkhordari et al., 2025; Heberger et al., 2023; Pellet et al.,
2019; Munier et al., 2014). Building on these previous ef-
forts, our emphasis here is on generating detailed calibrated
precipitation (0.05° resolution) and evaporation (250 m reso-
lution) estimates that align with the basin-scale closure con-
straints. To that end, we intend to contribute to the literature
by extending the existing basin-scale water balance data fu-
sion method first introduced by Schoups and Nasseri (2021).
The extended methodology presented here retains the origi-
nal model’s key advantages, namely: the ability to simulta-
neously calibrate the basin-wide water balance variables by
exploiting data from the entire timeseries. An integral part of
this new version is using the basin-wide posteriors to gener-
ate calibrated ensembles of spatially distributed precipitation
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and evaporation. This is achieved in a stepwise procedure,
with the first step involving the formulation of ensemble-
driven grid-scale error models, contrary to the models in
Schoups and Nasseri (2021), which were formulated at the
basin-scale and relied on an ensemble of two data sets. The
second step is a constraint step carried out by the water bal-
ance data fusion at the basin scale, yielding basin-scale poste-
riors for all water balance variables, and a Kalman smoothing
algorithm, yielding grid-scale posteriors for precipitation and
evaporation. This approach ensures consistency across the
two scales: when back-calculating the basin-scale estimates
from the grid-scale posteriors via spatial averaging, we re-
cover the inferred basin-scale posteriors from the water bal-
ance data fusion. Lastly, the new version of the methodology
incorporates the following additional features: (i) account-
ing for surface water imports from irrigation canals, which
might significantly affect the overall water budget in irrigated
basins, and (ii) quantifying posterior cross-correlations be-
tween water balance variables, which is important for gen-
erating joint posterior samples. We apply the extended ap-
proach to an irrigated monsoon-influenced Hindon Basin,
which suffers from unsustainable water use.

The remainder of this paper is structured as follows:
Sect. 2 introduces the case study and describes the data sets
used as input for the probabilistic water balance model pre-
sented in Sect. 3. Section 4 details how all unknowns in the
water balance model are solved at the basin scale, yielding
a closed water balance, and how these water balance con-
straints are transferred to the grid scale. The basin and grid-
scale results are then presented in Sect. 5. The sensitivity of
the water balance data fusion approach to the modeling deci-
sions is then discussed in Sect. 6. Throughout the paper, we
use the terms “priors” and “posteriors” to refer to the vari-
ables (i.e., water balance terms and error parameters) before
and after calibration, respectively (i.e., before and after intro-
ducing the monthly water balance constraints).

2 Case Study: Hindon Basin in Northern India

The study focuses on the Hindon Basin in the northwestern
Uttar Pradesh State of India (see Fig. 1). The Hindon basin
covers a total area of about 4780 km2 and drains to the Galeta
outlet, where a river discharge station is located. The rain-
fed Hindon River originates from the Shivalik Hills at the
foothills of the Himalayas. It flows towards the south on the
flat and alluvial surfaces of the basin. The river eventually
drains into the Yamuna River (near Noida, downstream of
Delhi), which, in turn, joins the Ganga River before it reaches
the Bay of Bengal. The basin features a large-scale supply-
based irrigation system with two major irrigation canals: the
Eastern Yamuna Canal (EYC) and the Upper Ganga Canal
(UGC). These canals are fed by two external reservoirs lo-
cated outside the basin, namely the Bhimgoda Barrage con-
structed on the Ganga River and Hathni Kund Headwork on

Figure 1. Location of the Hindon basin in the Uttar Pradesh state
of India (inset map); with a detailed view of the basin featuring its
boundaries, topographic profile, location of the Galeta outlet, where
a river discharge station that belongs to the Central Water Com-
mission (CWC) network of India is located. The main map shows
the irrigation scheme with reservoirs and canal system. Topographic
basemap sources: Esri, USGS, FAO, NPS, GIS user community, and
others | Powered by Esri.

the Yamuna River. The share of the external canal water im-
ports in the water balance is significant for this heavily irri-
gated basin, representing about 30 %–40 % of the annual pre-
cipitation (Fig. A1). In addition to supplying surface irriga-
tion water to the study area, the canals contribute to ground-
water recharge through seepage, forming several groundwa-
ter mounds near their vicinity. Hence, the canals approxi-
mately coincide with groundwater divides, limiting lateral
groundwater flow across the eastern and western boundaries
of the Hindon basin (Umar et al., 2008).

The canal system is operated in two irrigation seasons: the
Kharif and Rabi seasons. Kharif season extends from March
to September, in which the main irrigated crops are sugar-
cane and rice, and the Rabi season spans from October to
March of the following year, where the principal crops are
wheat and mustard. The irrigated croplands represent more
than 85 % of the basin, while only about 10 % of the basin’s
area is covered by non-croplands (Fig. A2). Irrigation wa-
ter is diverted from the canals to supply the basin through
off-takes that serve fixed command areas with crops rotated
between Rabi and Kharif crops (Fig. 1).

https://doi.org/10.5194/hess-30-525-2026 Hydrol. Earth Syst. Sci., 30, 525–551, 2026



528 R. Mourad et al.: Methodology and application to the irrigated Hindon River Basin, India

3 Probabilistic water balance model

Our goal is to estimate each term in the monthly water bal-
ance, written as:

St = St−1+P t −Et −Qt +Ct (1)

Equation (1) combines the different water balance terms to-
gether, where St−1 and St are the total water storage in the
basin at the start and end of month t (including surface stor-
age, soil moisture, and groundwater), P t and Et are the
basin-average precipitation and evaporation (including tran-
spiration), Qt is the river discharge at the basin outlet for
month t , and Ct is the total canal water import into the basin
(sum of all intakes, see Fig. 1) for month t . The net lateral
groundwater flows into or out of this basin are assumed to be
negligible due to their small magnitude relative to the other
water balance variables (Alam and Umar, 2013). All terms
in Eq. (1) are expressed in units of mm of equivalent water
depth. The following paragraphs describe the water balance
data for the case study.

Each water balance component in Eq. (1) is independently
derived, gathered, or measured either from satellite data,
ground-based measurements, or both (Table 1). In the prior
selection of the most reliable precipitation and evaporation
ensembles (see Mourad et al., 2024), we followed other wa-
ter balance closure studies that emphasize the use of earth ob-
servations over model outputs to minimize the effect of their
related assumptions, except for the Multi-source Weighted-
Ensemble Precipitation (MSWEP v2.8) product (Beck et al.,
2019). MSWEP is an “optimal merging” of gauge obser-
vations, satellite observations, and reanalysis model output.
Along with MSWEP, we use two other monthly gridded pre-
cipitation ensemble members: the Tropical Rainfall Measur-
ing Mission (TRMM) (Huffman et al., 2007) and the NASA/-
JAXA Global Precipitation Measurement (GPM-IMERG)
(Huffman et al., 2019). By combining precipitation radar,
passive microwave, and infrared satellites with ground-based
observations from the Global Precipitation Climatology Cen-
tre (GPCC), TRMM and GPM-IMERG provide a compre-
hensive precipitation estimate over a given area. Compared
to single-band radar on TRMM, GPM dual-frequency pre-
cipitation radar provides a broader range of measurable pre-
cipitation rates and a better estimate of precipitation parti-
cle size (Hou et al., 2014). Spatially interpolated rain-gauge
for the basin from Indian Meteorological Department (IMD)
data set (Pai et al., 2014) is included in this analysis for com-
parison but not used in the model.

For gridded evaporation ensembles, we incorporate five
members with diverse methodological approaches for esti-
mating evaporation from remote sensing. One ET data set
based on two-parallel Penman-Monteith (PM) models for
both canopy and soil: the pyWaPOR-ET v2.6 (Bastiaanssen
et al., 2012), two ET data sets that estimate ET from a
single-source surface energy balance (SEB) model represent-
ing vegetation and soil in a combined energy balance, namely

the Landsat Collection 2 Provisional Actual Evapotranspira-
tion Science Product (Landsat-based SSEBop ET) (Senay,
2018; Senay et al., 2023) and the Surface Energy Balance
Algorithm for Land (eeSEBAL product) (Bastiaanssen et al.,
1993), in addition to a two-source SEB ALEXI-ET data set
from the Atmosphere-Land Exchange Inverse model (Ander-
son et al., 2007, 2015). We also incorporate the CMRSET
ET product based on the CSIRO MODIS Reflectance-based
Scaling ET model (Guerschman et al., 2009) that uses vege-
tation indices and meteorological data for scaling the ET. All
data sets are resampled to the same spatial resolution using
bilinear interpolation. More details on the theoretical back-
ground and processing steps for the P and E data sets can be
found in the companion paper (Mourad et al., 2024).

The total water storage variable data were obtained from
the recent release of the monthly Jet Propulsion Laboratory
(JPL-RL06) mascon solution. Each monthly total water stor-
age estimate represents the surface mass anomaly relative to
the baseline average over 2004–2009. This version relies on
prior geophysical information to constrain the solution, elim-
inating the need for empirical de-striping filtering commonly
used for post-processing traditional spherical harmonic grav-
ity solutions. However, intrinsic to this product are biases,
that is, leakage errors, and spatial smoothing that damps
the “true” signal, especially in small-sized basins. A Coast-
line Resolution Improvement (CRI) filter has been applied in
this version to reduce signal leakage errors across coastlines
(Wiese et al., 2016). This data is also accompanied by scal-
ing factors for optionally restoring the damped signal. How-
ever, these were not applied to the data used herein; instead,
bias along with noise variance are modeled using all water
balance data incorporated in this study (see Sect. 3.3). An-
other storage input data set is also included: GRACE Spheri-
cal Harmonic (CSR) solution (Sect. 6.1) (Swenson and Wahr,
2006; Landerer and Swenson, 2012).

The in situ data used in this analysis are obtained from
governmental agencies, including the Central Water Com-
mission (CWC) of India for streamflow data and the irri-
gation department of Uttar Pradesh for external canal water
imports data. While river discharge data has no gaps, canal
delivery data are constrained by their spatial and temporal
coverage. The latter comes in two forms: irrigation sched-
ules and actual flow measurements. We apply an extrapola-
tion approach that combines both data sources to generate
complete monthly estimates for all intakes (for more details
on the adopted gap-filling technique, refer to Appendix A2).

As can be seen in Table 1, the native resolution of the in-
dividual data sets and between the water balance variables
varies widely, posing a challenge in their merging process. In
principle, the probabilistic water balance data model can be
performed at any spatial resolution; however, for this study
design, we try to preserve the native information as much as
possible by choosing to resample all precipitation data sets to
a common resolution of 0.05° and all evaporation data sets to
a common resolution of 250 m. An alternative design would

Hydrol. Earth Syst. Sci., 30, 525–551, 2026 https://doi.org/10.5194/hess-30-525-2026



R. Mourad et al.: Methodology and application to the irrigated Hindon River Basin, India 529

Table 1. Monthly Water Balance Data. The data type column distinguishes between Remote Sensing (RS) and ground-based Measurements
(GBM).

Variable Data Type Data Source Original
(Resampled)
resolution

Study period

Precipitation RS and GBM TRMM TMBA (TRMM3B43 v7) 0.25° (0.05°) 2003–2019

(P obs) RS and GBM GPM (IMERG) 3IMERGDF (v06) 0.1° (0.05°) 2003–2022

Merged MSWEP v2.8 0.1° (0.05°) 2003–2022

Evaporation RS pyWaPOR v2.6 250 m (250 m) 2003–2022

(Eobs) RS Landsat C2 Provisional ET
(Landsat-SSEBop)

30 m (250 m) 2003–2022

RS eeSEBAL 30 m (250 m) 2003–2022

RS CMRSET 5 km (250 m) 2003–2012

RS ALEXI 5 km (250 m) 2003–2015

Storage RS GRACE JPL mascon (RL06 v1.0) 3° (basin-wide) 2003–2022

(Sobs) RS GRACE Spherical Harmonic (CSR) 1° (basin-wide) 2003–2022

River discharge
(Qobs)

GBM Stream gauge (Central Water Commission,
2024)

point 2003–2022

Canal Water
Imports (Cobs)

GBM Canal gauges and irrigation schedules
(Irrigation & Water Resources Department,
2024)

distributary-based 2003–2022

be to resample all water balance variables to the same res-
olution (e.g., 250 m), but this might introduce artefacts, for
example, when up-sampling from coarse to high resolution.

Despite the variety of the above-explored data sources, two
barriers hinder their potential use in hydrological applica-
tions. One occurs when integrating the unique data combina-
tions describing each water balance variable into the basin-
scale water balance. In any particular month, we end up with
significant errors, i.e., either too much or too little water, re-
sulting in a non-zero net balance (Fig. B1 in Appendix B).
This non-closure or imbalance problem highlights the inco-
herences between the water balance data sets and the incon-
sistencies in the individual data sets, caused by various data
errors. Another well-known challenge is the inconsistencies
between the various data products for the same variable. For
example, for the studied basin, grid-scale inter-product un-
certainty is moderate for P , while E exhibits significant spa-
tial variability across the whole basin (Mourad et al., 2024).
These challenges motivate the distinction between the “cali-
brated” value of each water balance variable that satisfies the
water balance closure at the basin scale and represents the
error-corrected estimate at the grid level, and the “observed”
values, which deviate from these values. In the probabilistic
form of the water balance, each term is assigned a proba-
bilistic data error model to quantify systematic and random
differences between observed and modelled water balance

variables. Parameters in these data error models are treated
as unknown random variables with predefined prior distribu-
tions. In this regard, the overall probabilistic water balance
takes the form of a Bayesian hierarchical model with two
levels of uncertainty: one related to the error parameters and
another linked to the water balance variables (Schoups and
Nasseri, 2021). Figure 2 gives an overview of our approach,
and the following subsections describe the parametric proba-
bilistic relations used for each water balance variable (P , E,
Q, C, and S).

3.1 Precipitation and Evaporation error models

Contrary to Schoups and Nasseri (2021), we define prior er-
ror models for P andE at the grid scale instead of at the basin
scale, followed by spatial averaging to derive corresponding
priors at the basin scale. The latter are then used with wa-
ter balance data fusion for estimating basin-scale posteriors
(Sect. 4.1). The resulting basin-scale posteriors are finally
transferred back to the grid scale (Sect. 4.2).

The first step in setting up a prior error model for the
gridded P and E variables is to probabilistically character-
ize them with prior distributions. For these two independent
spatial processes, we can write their grid-scale joint prior dis-
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Figure 2. A factor graph showing random variables in circles
and constraints between variables as squares for a single month.
Three constraints are incorporated in the water balance data fu-
sion method, including: a prior Gaussian distribution assigned to
each water balance variable (squares attached to each variable), the
basin-scale water balance (BWB) constraint that links all water bal-
ance variables together, and the spatial averaging constraint that
links grid-scale precipitation (P ) and evaporation (E) to basin-scale
precipitation (P ) and evaporation (E). Computation of posteriors of
individual variables proceeds in two steps. The first step is basin-
scale water balance data fusion (BWB fusion, see Sect. 4.1). This
step involves multiple forward (blue arrows along the edges) and
backward (dotted blue arrows) passes over the data using the entire
timeseries to compute the posteriors of all water balance variables
that jointly close the water balance (Schoups and Nasseri, 2021).
The second step computes grid-scale posteriors for precipitation
and evaporation from their basin-scale posteriors using a Kalman
smoothing algorithm (green arrow, see Sect. 4.2).

tribution for each month t as:

N
([

P t

Et

]
|

[
mPt

mEt

]
,

[
VPt 0
0 VEt

])
(2)

where P t and Et are vectors containing unknown precipi-
tation and evaporation values for all grid cells in the corre-
sponding spatial field for each month t . The Gaussian distri-
bution (Eq. 2) is specified with a mean vector and a block
diagonal covariance matrix with zero cross-covariance to re-
flect that these two processes are assumed to be independent
a priori. The mean vector consists of the prior means of P

(mPt ) and E (mEt ), for all spatial locations within the corre-
sponding spatial domain of each month t , while the autoco-
variance of each variable P (VPt ) and E (VEt ) is the block-
diagonal element of the covariance matrix. The decomposed
form of the joint distribution for each individual variable is
described in the following subsections.

3.1.1 Precipitation

For each month t , we typically have multiple gridded precip-
itation products, with unknown bias and random errors. We
use the spread across different precipitation products to de-
fine a grid-scale precipitation error model for the prior means

mPt (mean vector in Eq. 2) and the prior standard deviations
sPt (vector of the square root of all diagonal entries of the
autocovariance matrix VPt in Eq. 2):

mPt = (1−wP )P
obs,min
t +wPP

obs,max
t (3)

sP t = rP 1/4
(
P

obs,max
t −P

obs,min
t

)
(4)

Equation (3) models the systematic bias in grid-scale precip-
itation for each month t by describing the grid-scale precip-
itation prior means mPt as a weighted average of the min-
imum (P obs,min

t ) and maximum (P obs,max
t ) precipitation for

each grid cell. The weight or bias parameter wP takes on an
unknown value between 0 and 1, and is estimated from the
data (see Sect. 4.1).

Random errors in grid-scale precipitation are modeled us-
ing Eq. (4). This model expresses the grid-scale prior stan-
dard deviations sPt for each month t as a function of the dif-
ference between the maximum and minimum precipitation
in each grid cell. A noise parameter (rP ), taking a value be-
tween 0 and 1, is used to scale the standard deviations. This
parameter is also estimated from the data.

To account for the effect of spatial correlation of the ran-
dom error component (Eq. 4), we write the precipitation prior
covariance matrix VPt in terms of the grid-scale standard de-
viations and a grid-scale auto-correlation matrix:

VPt = SPtRPSPt (5)

where SPt is a diagonal matrix containing the grid-scale sPt
values for all locations of the spatial field (Eq. 4), and RP is
the correlation matrix that captures the spatial dependence
structure. RP ∈ RnP×nP , where nP × nP is the matrix di-
mension, and nP equals 176, representing the total num-
ber of grid cell locations of the precipitation spatial domain.
RP is jointly estimated from all precipitation data using an
isotropic parametric correlation function with the following
form (Handcock and Stein, 1993):

CM (d|ls,v)=
1

2v−10(v)

(
d

ls

)v
Kv

(
d

ls

)
(6)

where CM is the Matérn correlation function for variables
separated by distance d . This correlation model is flexible
and widely used, with two functions: gamma function 0(.)
and the modified Bessel function Kv(.) (Abramowitz and
Stegun, 1968). CM also consists of two unknown nonnega-
tive parameters, namely the spatial correlation length scale ls
and a spatial smoothness parameter ν. A value of ν approach-
ing 0 indicates a rough spatial process, while the process is
smoother when ν approaches infinity. Since the smoothness
parameter is usually small in many applications (Chen et al.,
2022), while it increases as the aggregation time increases
(Sun et al., 2015), we choose a balanced value between a
rough and smooth random field, i.e., ν, fixed at 1.5. On the
other hand, the correlation length scale (ls) defines an aver-
age length scale on which grid cells are correlated with each
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other. In principle, ls ranges from 0 (the case of uncorrelated
grid cells) and extends to a scale larger than the spatial do-
main length (the case of maximally correlated pixels). With
no prior information on the ls parameter, we fix it at 50 km
(∼ 1/2 the basin’s length from North to South). The sensitiv-
ity of the results to the fixed ls will be evaluated in Sect. 6.2.

Since water balance data fusion (Schoups and Nasseri,
2021) uses basin-scale error models, we derive these from
the above-described grid-scale models by spatial averaging.
Specifically, the basin-scale prior meanmP t and variance vP t
in month t follow from Eqs. (3), (4), and (5):

mP t = φ
′

PmPt = φ
′

P

[
(1−wP )P

obs,min
t +wPP

obs,max
t

]
(7)

vP t = φ
′

PV PtφP = φ
′

PSPtRPSPtφP

= φ
′

P

(
rPDPt

)
RP

(
rPDPt

)
φP (8)

Pt ∼N
(
mP t ,vP t

)
(9)

Pt ≥ 0 (10)

where φP is the spatial averaging operator used to derive
basin-scale mean and variance from grid-scale means and
variances (i.e., nP × 1 vector with each element equal to
1/nP , where nP is the number of spatial locations in the pre-
cipitation spatial field). φ

′

P is the transpose of φP . We also
used SPt = rPDPt , where DP is a diagonal matrix containing

the 1/4
(
P

obs,max
t −P

obs,min
t

)
values (from Eq. 4) for all grid

cells within the precipitation spatial field. All basin-averaged
input quantities to Eqs. (7)–(8) are precomputed from the
precipitation data sets, and the constant but unknown param-
eters wP and rP are estimated as part of the water balance
data fusion (see Sect. 4.1).

Finally, the last two equations in the precipitation error
model treat the basin-scale calibrated precipitation Pt for
each month t as a random draw from a truncated normal dis-
tribution. The truncation at zero ensures physical consistency
(nonnegative precipitation).

3.1.2 Evaporation

As with precipitation, an evaporation error model with the
following form is adopted:

mEt = fE[(1−wE)E
obs,min
t +wEE

obs,max
t ] (11)

sEt = rE1/4
(
E

obs,max
t −E

obs,min
t

)
(12)

The systematic bias in grid-scale evaporation is modeled
with two spatial and time-invariant calibration parameters,
namely: wE and fE . The parameter wE is a bias parameter
or weight that interpolates between the monthly grid-scale
evaporation extrema Eobs,min

t and Eobs,max
t . wE takes on a

value between 0 and 1, and is estimated from the data (see
Sect. 4.1). An additional scaling factor (fE) is incorporated
to account for potential bias outside the observed grid-scale
evaporation range, and is given a lognormal prior with mode
at 1 (no bias) and a coefficient of variation CV of 50 %.

On the other hand, Eq. (12) quantifies the random errors
in grid-scale evaporation, as the difference between the max-
imum and minimum evaporation in each grid cell. A noise
parameter (rE), taking a value between 0 and 1, is used to
scale the random errors. All parameters are solved as part of
the water balance data fusion (Sect. 4).

The basin-scale error models are derived from the grid-
based models defined above, using the same spatial averag-
ing process applied to precipitation (Eqs. 7–8). The averag-
ing formulas are then obtained as follows:

mEt = φ
′

EmEt = fE φ
′

E

[
(1−wE)E

obs,min
t +wEE

obs,max
t

]
(13)

vEt = φ
′

EVEtφE = φ
′

ESEtRESEtφE

= φ
′

E(rEDEt )RE(rEDEt )φE (14)

Et ∼ N (mEt ,vEt ) (15)

Et ≥ 0 (16)

where DE is a diagonal matrix whose diagonal entries
contain the 1/4

(
E

obs,max
t −E

obs,min
t

)
values for all grid

cells within the evaporation spatial domain. All inputs of
Eqs. (13)–(14) are precomputed from the evaporation data
sets. φE is the spatial averaging operator, and the RE term
stands for the correlation matrix, which captures the spa-
tial dependencies between the evaporation grid cells RE ∈

RnE×nE , where nE × nE is the matrix dimension, and nE
equals 71059, representing the total number of grid cell lo-
cations of the evaporation spatial domain. For the large-sized
evaporation data sets considered here, we parameterize the
evaporation correlation matrix using a Matérn Gaussian Pro-
cess kernel (Hensman et al., 2015) with fixed parameters ls
at 50 km and ν at 1.5.

Similar to precipitation, the basin-scale calibrated evapo-
ration Et for month t is treated as a random draw from a
truncated normal distribution Eqs. (15)–(16). The truncation
at zero ensures physical consistency (nonnegative evapora-
tion).

3.2 River discharge and canal water import error
models

We assume that data on river discharge (Qobs) and canal wa-
ter imports (Cobs) are both unbiased with proportional ran-
dom errors (Eq. 18). Both variables are modelled as truncated
Gaussian variables (non-negative), with mean mxt , standard
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deviation sxt , and variance vxt in month t given by:

mxt = x
obs
t (17)

sxt = axx
obs
t (18)

vxt = s
2
xt

(19)
xt ∼N (mxt ,vxt ) (20)
xt ≥ 0 (21)

where xobs
t represents the observed value for each month

t (Qobs
t for discharge and Cobs

t for canal water imports). sxt
quantifies the random errors in Qobs or Cobs, and is assumed
proportional to the observed value, with a proportionality
constant (or relative error) ax . We assume a 10 % relative
error for monthly river discharge, i.e., aQ = 0.1, and a 25 %
relative error for canal water imports, i.e., aC = 0.25.

3.3 Water Storage Error Model

The water storage error model relates the storage observa-
tions from the GRACE satellite (Sobs

t ) to the modeled stor-
age (St ). Due to the coarse resolution of GRACE data, the
monthly basin-scale total water storage derived from these
observations can be polluted by the water storage dynamics
occurring outside the basin, that is, “leakage”. To account for
the temporal and spatial mismatch between GRACE basin-
scale water storage and the modeled storage caused by leak-
age errors, we employ the following noisy sine wave error
model (Schoups and Nasseri, 2021):

mSt = St +A sin
(
ω

(
t

12
− δ

))
(22)

vSt = σ
2
S (23)

Sobs
t ∼ N (mSt ,vSt ) (24)

The first equation models the systematic errors associated
with GRACE observations. It captures cyclic patterns and
seasonality in the data within the basin via time-invariant er-
ror parameters. These parameters describe the magnitude and
the timing of the seasonal error: the amplitude A (mm) and
phase δ (years), respectively.

The magnitude of random errors is modeled as an un-
known time-invariant parameter (σS), which reflects errors
that can arise from (a) any limitations caused by the sine
wave models in capturing the calibrated water storage dy-
namics within the basin and (b) noise in GRACE solutions. In
the above equations, ω is fixed at 2π radians per year, yield-
ing a one-year sine wave and thus capturing the annual sea-
sonal cycle. Other parameters are assigned vague prior dis-
tributions, where A follows a lognormal prior with mode at
30 mm and a CV of 200 %, σS a lognormal prior with mode
equal to 10 mm and a CV of 200 %, and δ follows a flat logit-
normal prior between 0 and 1 year with a location parame-
ter µ= 0 and scale parameter σ = 1.4.

While the above prior error model relies on a single stor-
age data set, we assess a posteriori (Sect. 6.1) the sensitivity

of the P and E posterior distributions to the use of different
storage inputs, including Mascon (JPL) and Spherical Har-
monic (CSR) GRACE solutions, which for the basin studied
here, exhibit different long-term trends.

4 Inference methods

The following subsections detail the two-step statistical in-
ference framework used to solve the basin-scale probabilis-
tic water balance model (Sect. 4.1) and then propagate the
resulting basin-wide constraints to the grid level (Sect. 4.2).

4.1 Basin-scale

Following the description of the prior probabilistic rela-
tions (Sect. 3), the posteriors of water balance variables
and error parameters are computed using a basin-scale in-
ference technique. This technique consists of a double-loop
method that combines two algorithms: a single-chain dif-
ferential evolution variant of Markov Chain Monte Carlo
(DE-MCMC) for computing the unknown parameters and
Expectation Propagation (EP) for solving the unknown wa-
ter balance variables. A brief overview of these algorithms
is described in Appendix B, while a detailed explanation
can be found in the original paper (Schoups and Nasseri,
2021). The computed posteriors provide hydrologically con-
sistent water balance variables that jointly close the water
balance. In the water balance data fusion process, the inde-
pendent prior data (Sect. 3) are updated with the monthly
water balance constraints. These constraints link all indepen-
dent variables through the water balance, thereby inducing
cross-correlation between them. For example, the term S in
the water balance constraint (dropping the time index t for
simplicity: S = S0+P −E−Q+C) linearly links all other
terms. To maintain the water balance closure, the terms with
opposite signs must covary together, and vice versa. In this
paper, an additional post-processing step is applied to rep-
resent this interdependence structure between the water bal-
ance variables, i.e., compute their covariances. For a vector
of posterior variables x (including the initial storage state S0
or St−1, P , E, Q, and C), a joint distribution can be writ-
ten for each month t as: p(xt )∼ N

(
m∗x,t ,V∗t

)
with a mean

vector (m∗x,t ) holding the marginal posterior means of each
variable (Eq. B2) and a 5× 5 covariance matrix V∗t that en-
codes the relation between these variables. The diagonal ele-
ment of this matrix contains each variable’s marginal poste-
rior variance, while the unknown covariances between each
variable pair are the off-diagonal entries. To quantify these
covariances, a message-passing algorithm that combines the
water balance constraint and the probabilistic constraints in
the form of marginal Gaussian distributions is applied (see
Sect. B2 in Appendix B).
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4.2 Grid-scale

Having computed the joint basin-scale P and E posteriors
(Sect. 4.1), the goal is to translate these posteriors back to the
grid-scale. When spatially averaged, the generated grid-scale
posteriors (P and E) should recover the basin-scale posteri-
ors. Such a relation between the two scales can be established
for each month t as follows (Eq. 25):[
P t
Et

]
= A

[
P t

Et

]
(25)

where A=
[
φ′P 0
0 φ′E

]
represents the spatial averaging op-

erator mapping the grid-scale to the basin-scale P and E
variables, φP and φE are defined earlier in Eqs. (7, 13).

For the above relation to hold (Eq. 25), we implement a
Kalman smoothing algorithm. A key aspect of this algorithm
is that it ties together all sources of information on P and E
variables, detailed in previous sections, including: the basin
and grid-scale joint priors (Sect. 3), along with basin-scale
joint posteriors (Sect. 4.1), to generate their corresponding
spatially distributed joint posteriors. Distinctly, the grid-scale
prior moments (Eq. 2) are updated to reflect the difference
between the basin-scale joint posterior and prior moments
via the Kalman gain. In what follows, we start by describing
the basin-scale joint prior and posterior distributions and then
show how the grid-scale joint distributions are computed.

Before constraining the basin-scale spatially averaged Pt
and Et priors, their joint distribution for each month tcan be
written with zero-cross covariances to reflect the independent
structure between both variables:

N
([

Pt
Et

]
|

[
mP t
mEt

]
,

[
vP t 0
0 vEt

])
(26)

where mP t and mEt are prior means, vP t and vEt are prior
variances of Pt and Et , respectively.

Once the water balance constraint is imposed within the
basin-scale data fusion: P−E−Q+C+S0−S = 0 (omitting
t for simplicity), positive correlations between P and E pos-
teriors emerge. This occurs because the water balance acts as
a constraint on the priors (independent P and E) linearly
linking them in their posteriors (correlated P and E). To
maintain this linear constraint, that is, P −E remains equal
to Q−C−S0+S, an adjustment that increases P should be
balanced by an adjustment that increases E , and vice versa.
This yields a basin-scale joint posterior distribution on the
posterior variables Pt and Et , with induced correlations, that
is, non-zero cross covariances:

N
([

Pt
Et

]
|

[
m∗
P t

m∗
Et

]
,

[
v∗
P t

v∗
PEt

v∗
PEt

v∗
Et

])
(27)

where m∗
P t

and m∗
Et

are the marginal posterior means, v∗
P t

and m∗
Et

are the marginal posterior variances of Pt and Et ,

respectively, and v∗
PEt

is the posterior cross-covariance be-

tween Pt and Et .
Kalman smoothing can then be used to calculate the joint

posterior moments Eqs. (28)–(29) at the grid-scale from the
above basin-scale prior moments Eqs. (26)–(27) and grid-
scale prior moments (Eq. 2). These posterior moments are
thus rendered as a weighted combination of grid and basin-
scale moments:[

m∗Pt
m∗Et

]
=

[
mPt

mEt

]
+K

([
m∗
P t

m∗
Et

]
−

[
mP t
mEt

])
(28)

[
V∗Pt V∗PEt
V∗
′

PEt
V∗Et

]
=

[
VPt 0
0 VEt

]

+K

([
v∗
P t

v∗
PEt

v∗
PEt

v∗
Et

]
−

[
vP t 0
0 vEt

])
K
′

(29)

where m∗Pt and m∗Et are the grid-scale means, while V∗Pt
and V∗Et are autocovariances of P t and Et posteriors, re-

spectively. V∗PEt and V∗
′

PEt
stand for the posterior cross-

covariance between both variables and its transpose, respec-
tively.

A noteworthy feature of the Kalman smoothing gain (K) in
the above equations is that it acts as a weighting matrix prop-
agating basin-scale information to each individual P and E
grid cell. It is computed using the following equation com-
posed of three components:

K=
[

VPt 0
0 VEt

]
A
′

[
vP t 0
0 vEt

]−1

(30)

The first component depicts the block diagonal covariance
matrix of the grid-scale Pt and Et priors, the second is the
transpose of the spatial averaging operator A, whereas the
inverse of the diagonal matrix consisting of the basin-wide
variances of Pt and Et priors is the third component.

5 Results

Here, we present the results of the two-step inference frame-
work described in Sect. 4, starting with the basin-scale pos-
teriors of all water balance variables (Sect. 5.1) and followed
by the grid-scale posteriors of P andE (Sect. 5.2). These rep-
resent the baseline results that are based on specific choices
of GRACE data (i.e., JPL mascon data) and spatial correla-
tion lengths. The sensitivity of the results to these choices
will be addressed in Sect. 6.

5.1 Basin-scale posteriors

Basin-scale posteriors for P (precipitation), E (evaporation),
and C (canal water imports) are shown in Fig. 3 and dis-
cussed first. The data shows significant prior uncertainty with
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a wide range of precipitation and evaporation estimates. This
is especially evident in the monsoon (June to September) for
precipitation and across the whole seasonal cycle for evap-
oration (Fig. 3). Along with the prior observations, Fig. 3
also depicts the basin-scale posteriors for each water balance
term, while Fig. 4 shows the corresponding error parameter
posteriors. The results for Q are not included in Fig. 3 since
the posterior for Q closely follows the river discharge data,
and this data is tied to a non-disclosure agreement with the
CWC of India.

The results in Fig. 3 show that the precipitation posterior
mean lies between the P

obs,min
t and P

obs,max
t data bounds.

This balanced position within the precipitation space is also
translated into the inferred parameter wP , with a posterior
distribution around values of ∼ 0.5 (Fig. 4). The noise pa-
rameter rP has a posterior distribution around 1, suggesting
a minimal reduction in the prior uncertainty range for pre-
cipitation. An independent evaluation of these posterior esti-
mates can be done by comparing them to the Indian Meteo-
rological Department (IMD) data set (Pai et al., 2014), which
is routinely used to evaluate precipitation products in India.
Despite being treated as the “ground truth” in literature, the
rain-gauge interpolated IMD product is not error-free, and
therefore, a perfect match between the IMD data and the gen-
erated posterior mean is not anticipated. Figure C1 in Ap-
pendix C compares the seasonal and annual timeseries of the
IMD to the posterior precipitation mean. Unlike the precip-
itation posterior mean, which tends to sit between observed
data bounds, the IMD data set closely follows the baseline
precipitation estimate (TRMM). The larger posterior esti-
mates for P found here align with a recent study (Goteti and
Famiglietti, 2024) that found systematic underestimation of
precipitation by the IMD data product. Moving to evapora-
tion, the computed posteriors in Fig. 3 only slightly differ
from the priors, with posterior values of noise parameter rE
centered at ∼ 0.95 (Fig. 3), implying that the modeled ran-
dom error in this variable is as large as one-fourth of the abso-
lute difference between E

obs,min
t and E

obs,max
t . This posterior

uncertainty, however, reduces with a tighter data range corre-
sponding to prior ensembles generated from only three data
sets: eeSEBAL, pyWaPOR, and Landsat-SSEBop (specifi-
cally, from 2015 onwards). As for the estimated evaporation,
it takes more or less a balanced weight between E

obs,min
t and

E
obs,max
t , with an estimated wE posterior of ∼ 0.48 and a

scaling parameter fE around 1 (no additional bias). While
no direct evaporation measurements are available, the pos-
terior estimates can be evaluated by comparing them with
reference evapotranspiration and expected seasonal dynam-
ics based on known cropping and irrigation practices. For
example, the evaporation is expected to be lower than ET 0
but equal to or higher than the ET 0 for only a short pe-
riod, either in June–July or August–October, when the (dom-
inant) sugarcane crop coefficient (Kc) exceeds 1. In Fig. 3,
the inferred posterior evaporation (green band) aligns with

Figure 3. Monthly water balance posteriors (90 % credible intervals
in green) for: (a) P (precipitation), (b) E (actual evapotranspira-
tion), and (c) C (canal water imports), and their corresponding ob-
servations (dots). Reference evapotranspiration computed here us-
ing ERA5 meteorological input variables is shown as (ET0). The
overbars of the labels in P and E plots indicate that these values are
obtained through spatial averaging of the gridded data sets for each
month t . Each year’s label indicates the start of the year (January).

this expectation where it is consistently below ET 0, but is
also around ET 0 for the previously mentioned period (e.g.,
in 2006, 2012, 2019, and 2022). Besides sugarcane, rice is
the second most important crop, commonly transplanted at
the end of April or mid-May (Joseph and Ghosh, 2023). For
this shallow-rooted crop, more frequent irrigation is required
during its early stages (the first 30 d), coinciding with the pe-
riod when the canal water supplies form a peak (at the on-
set of the monsoon) (Fig. C3 in Appendix C). The evapora-
tion timeseries of rice is, thus, expected to form a peak, most
likely in June, when its Kc value is higher than 1. Consider-
ing these two elements, the evaporation is expected to peak in
June, as captured by the posterior evaporation mean (Fig. C2
in Appendix C).

The third row of Fig. 3 compares the prior and posterior
estimates of the canal water imports (C). The prior estimates
represented here are extrapolated from scarce data. Never-
theless, the extrapolation approach mostly relied on ground-
based measurements whenever available. For periods with
missing data, these were filled with the design discharge ca-
pacity multiplied by the operation time or the data average of
years with similar conditions, depending on data availability
per distributary. For this purpose, independent information
from the Palmer Drought Severity Index (PDSI) index of the
Terra Climate data set (Abatzoglou et al., 2018) is used as a
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Figure 4. Prior and posterior distributions of error parameters for: (a) evaporation, (b) storage, (c) precipitation, canal water import, and river
discharge when using different GRACE storage data sets: CSR Spherical Harmonic (SH) and JPL Mascon (MAS) solutions.

proxy to classify the years between wet and dry, allowing for
annual variations in the canal water supply. For example, in
dry years, such as 2008, and 2016 to 2018, the surface wa-
ter supplies are smaller in magnitude compared to all other
years. Note also the increase in the water supplies from 2009
onwards, which aligns with the construction of the Deoband
Parallel Canal that connects the Upper Ganga Canal (UGC)
to the Eastern Yamuna Canal (EYC) (Fig. 1). Using other
approaches to generate and extrapolate the prior canal wa-
ter estimates does not significantly affect the posteriors of
the other terms, as explored in Sect. 6.3. The posterior re-
sults, on the other hand, reflect the wide prior uncertainty
(relative error of 25 %) we place around this extrapolated
data. Generally, the posterior estimates follow both their pri-
ors and the seasonality of the precipitation term. Specifi-
cally, the supplies peak at the onset of the monsoon (June)
due to increased water availability from precipitation, while
smaller peaks are formed during the dry season (December
and April) when water stored in the reservoirs is diverted for
irrigation. As canal supplies are mainly driven by precipita-
tion, it is reasonable to conclude that the canal water imports
are smaller in magnitude compared to precipitation during
the rainy months (July–September), representing about 5 %
to 15 % of the monthly precipitation. It follows that the fixed
prior uncertainty on this term is a justifiable approximation
that does not strongly affect the other water balance esti-
mates.

Finally, we note the interplay between all variables: wa-
ter balance (P , E, C, and Q), weather, and crop variables.
Despite relying on external water supplies, the basin has
been experiencing a decreasing trend in the river discharge

(Dwivedi and Yadav, 2025), coupled with increased evapora-
tion from 2010 to 2022 (see the annual timeseries of the pos-
terior mean in Fig. C2). The increase in posterior mean evap-
oration mirrors the increasing trend in the sugarcane yield
and the leaf area index from 2011 (Fig. C4). This aligns with
a period of increasing temperatures (see Fig. C4) and with
the period when farmers started adopting new high-yielding
sugarcane varieties in the basin, as reported by Indian Coun-
cil of Agricultural Research (2022). The accelerating rate of
evaporation in our estimates follows a similar trend in the
Landsat-based SSEBop evaporation data set (Fig. C2). This
shows, on the one hand, the usefulness of the water balance
constraints in evaluating the data products, and on the other
hand, that simplified ET models like SSEBop can sufficiently
reproduce the evaporation dynamics.

The interplay is also pronounced in dry years such as 2009
and 2016, showing a decline in the posterior mean precip-
itation, together with the canal water imports. The limited
availability of rainfall and surface water for irrigation dur-
ing droughts, along with rising temperatures in recent years
(Fig. C4), does not, however, depress the evaporation rates
because crop water demand is met by increased groundwater
pumping. The effect of unsustainable groundwater pumping
is particularly notable in the dynamics and trend of basin wa-
ter storage, which we discuss next.

Figure 5 compares prior (GRACE data) and posterior es-
timates of the basin’s water storage S. The prior estimates in
the top panel are obtained by predicting water storage from
the water balance using the original, uncalibrated data sets
for P , E, C, and Q. The different permutations in which
these data can be combined results in 15 predicted water
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Figure 5. Monthly timeseries of GRACE-JPL Mascon observations
and storage anomalies predicted from the water balance: (a) using
15 unique uncalibrated combinations of the input variables (S0, P ,
E,Q, C), and (b) using posterior (calibrated) estimates of the input
variables (S0, P , E, Q, C) with (green band) and without (gray
lines) accounting for posterior cross-correlation between the input
variables.

storage time series in Fig. 5a. We see that the GRACE data
closely follow the seasonal dynamics of the prior predicted
storages from water balance data. This conveys that both
timeseries are approximately in phase but markedly differ-
ent in magnitude and trend, due to bias and noise in each
data set. As shown next, water balance data fusion combines
all the data and corrects data errors to yield a closing water
balance in each month.

The second panel of Fig. 5 depicts the calibrated storages,
i.e., posteriors shown in green, after fusing all sources of in-
formation available on this variable. These posteriors com-
bine three noisy and biased sources of information for stor-
age S in a given month: the GRACE observation (if available
for that month), the water balance constraint for the current
month, and the water balance constraint for the next month
(since S is the initial storage for the next month). Fusing all
information together results in a narrower storage posterior
(with less uncertainty) compared to the individual sources.

In this process, the introduced water balance constraints
can themselves significantly contribute to reducing the pos-
terior uncertainty of the inferred storage by inducing corre-
lations between variables. This occurs because (noisily) ob-
serving S in this constraint linearly links all the a priori in-
dependent variables together. Such a relation is encoded in
the coefficients of the variables in the water balance equa-
tion. For example, to maintain this physical relation, that is,
S remains equal to S0+ P − E−Q+ C, the water balance
variables with opposite signs must covary together, and vice
versa. Accounting for positive correlations between the vari-
ables of opposite signs and negative correlations between the
variables with the same signs in the water balance can sig-

nificantly reduce the variance of S. The effect of these pos-
terior cross-correlations between water balance variables is
shown in Fig. 5b. Note the smaller uncertainty in the final
posterior estimates (green band), which account for posterior
cross-correlations between the variables, compared to poste-
rior samples (in grey) that do not account for these posterior
cross-correlations (i.e., by independently sampling from the
marginal posteriors of P , E, Q, and C).

5.2 Grid-scale posteriors

While grid-scale posteriors of P and E are obtained in each
month, we present here detailed results for two months,
which were chosen based on previous analysis (Mourad et
al., 2024), namely (a) May 2009, representing a dry month
before the monsoon with the highest air temperature and
with significant differences between evaporation data prod-
ucts, and (b) July 2009, representing the peak rainy month
with large differences between precipitation data products.
To guide the interpretation of the spatially distributed poste-
riors, we appended the land use map (see Fig. A1).

The evaporation maps in Fig. 6 show that the poste-
rior mean (m∗E) follows the evaporation estimates available
from the diverse range of the original gridded data prod-
ucts. For example, in May, the smallest spatial difference
between the posterior evaporation mean and the observed
evaporation over the irrigated croplands can be seen by SSE-
Bop, with spatial locations for these land use elements hav-
ing values higher or lower than the posterior mean by ±
25 mm month−1 (Fig. C5 in Appendix C). Over non-crop
lands (urban areas and water bodies), the posterior mean has
a better agreement with ALEXI and CMRSET, with differ-
ences ranging between −25 and 25 mm month−1. In July,
SSEBop displayed the closest agreement with the posterior
mean over almost all land use elements. The posterior mean
also follows eeSEBAL observed evaporation estimates over
irrigated croplands in the lower parts of the basin for this par-
ticular month. It is reassuring to see that the generated grid-
scale posterior ensemble mean preserves the spatial patterns
inherent in the data while combining evaporation informa-
tion from all products across the different land use elements.
This makes sense since the posterior mean is modeled as a
weighted average of the minimum and maximum estimates
at each grid cell, so that spatial patterns in the original data
are maintained. In parallel, the Kalman gain in Eq. (30) dis-
tributes the basin-wide constraints to the individual E pix-
els by explicitly accounting for spatial autocorrelations en-
coded in the grid-scale covariance matrix (VEt ). The results
in Fig. 6 also indicate that the posterior uncertainty (s∗E) is
smaller in the monsoon month (July) than in the dry month
(May). This is expected as the data are in better agreement
in the peak rainy month than in the dry month. Generally,
posterior uncertainty is larger in areas with higher evapo-
ration values (irrigated crop-lands), while non-cropland has
both lower evaporation and smaller posterior uncertainty. As
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such, it can be safely concluded that the spatially distributed
calibrated evaporation provides reasonable estimates with ac-
ceptable uncertainties that vary with the evaporation magni-
tude estimated at each pixel.

In Fig. 7, we see that the precipitation posterior mean falls
between the gridded precipitation data products. The spatial
difference maps between the grid-scale observations and the
posterior mean show that TRMM observes lower precipita-
tion (by −60 to −35 mm month−1), while MSWEP observes
higher precipitation (by 25 to 48 mm month−1) than the pos-
terior mean. On the other hand, GPM deviates by −21 to
60 mm month−1 from the posterior mean (Fig. C6 in Ap-
pendix C). As we have seen with the evaporation standard
errors, the grid-scale posterior standard errors of precipita-
tion are the highest at spatial locations where the difference
across the products is the largest (upper part of the basin),
and vice versa.

Via Eq. (29), the posterior cross-correlation between wa-
ter variables at the basin scale is propagated to the grid scale,
and thus results in posterior cross-correlation between grid-
scale P and E as well. The effect of this can be illustrated by
computing derived variables that involve both P and E. An
example is given in Fig. 8, which shows maps of the poste-
rior mean and standard deviation of P −E for July 2009, the
latter with and without posterior cross-correlation between P
and E. Due to positive posterior cross-correlation between P
and E (since they have opposite signs in the water balance),
the posterior standard deviation of P −E decreases when ac-
counting for this correlation, but the effect in Fig. 8 is rela-
tively small, and is observed at some localized spots with the
highest reduction in errors of up to 2.5 mm month−1. These
spots correspond to the locations at which both P and E co-
vary the most, with the cross-covariance subtracted during
the computation of the P −E posterior variance. The reason
for this relatively small effect is that the water balance con-
straints introduce other posterior cross-correlations as well,
both at the basin scale (Table 2) and at the grid scale via non-
local posterior cross-correlations between P and E induced
by Eq. (29) (i.e., in the posterior, P in a grid cell becomes
correlated with E in all other grid cells).

To evaluate the effect of ignoring the posterior correla-
tion between P and E, we calculated the distribution of Q
from the water balance given the posterior of all other vari-
ables for three cases: (i) ignoring all posterior correlation, (ii)
ignoring only correlation between P and E, (iii) account-
ing for all correlation. We compare these distributions to
a fourth scenario (iv) in which Q is obtained from uncali-
brated water balance data. Writing the water balance (Eq. 1)
in terms of Q results in 15 uncalibrated Q estimates gen-
erated from the unique combinations of the water balance
data. The distribution for this case is characterized in terms
of mean (average across the 15 uncalibrated values) and un-
certainty (set as the spread across these values). The results in
Fig. 9 indicate that neglecting the posterior cross-correlation
between P and E and between all water balance variables,

Table 2. Basin-scale posterior covariance matrix of all water bal-
ance variables for July 2009, the diagonal elements represent the
posterior variances (mm month−1) (shown in bold), while the off-
diagonal entries represent the posterior covariances between the
variables (mm2 month−2) (underlined values).

St−1 P E Q C

St−1 562 −255 62 5 −9
P −255 499 49 4 −7
E 62 49 158 −1 2
Q 5 4 −1 14 0.1
C −9 −7 2 0.1 23

can substantially lead to higher uncertainties (wider distri-
butions), compared to when cross-correlations between all
variables are accounted for (narrow distribution). At the ex-
treme end, the Q predicted from the uncalibrated water bal-
ance data demonstrated the highest level of uncertainty com-
pared to all other cases, with physically inconsistent values
(negative) and a mean value greatly deviating from the ob-
served Q value. We repeat this experiment for all months
and report the performance of the estimated Q from the dif-
ferent approaches compared to the observed Q estimates.
We obtain a low RMSE value of the calibrated Q poste-
rior mean (0.7 mm month−1) compared to Qwb from uncal-
ibrated water balance data (74 mm month−1), which under-
scores the importance of (i) water balance data fusion for
bias-correcting the original data products and (ii) accounting
for posterior correlation, when water balance variables (P ,
E, C, S) are to be used for computing Q.

6 Discussion

This section evaluates some of the modeling decisions and
their impact on the results, specifically the choice of GRACE
data set and the choice of spatial correlation lengths of P
and E.

6.1 Water balance data fusion with different GRACE
data

The Hindon basin studied here is experiencing groundwa-
ter depletion (Alam and Umar, 2013). Storage data from
GRACE satellite has been used to estimate human-driven
water storage changes, such as those caused by intensive ir-
rigation. This data is either based on spherical harmonic co-
efficients or mascon basis function, which entails testing the
sensitivity of the water balance closure to the chosen GRACE
input. The baseline results presented in Sect. 5 are based
on GRACE-JPL Mascon (MAS) solution. Here, we compare
these results to those obtained using the CSR spherical har-
monic (SH) solution.
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Figure 6. Prior observations and estimated posteriors of grid-scale evaporationE before the monsoon (May 2009) and for a peak rainy month
(July 2009); m∗

E
and s∗

E
denote the posterior mean and standard deviation of evaporation.

Figure 7. Prior observations and estimated posteriors of grid-scale precipitation P for the peak rainy month (July 2009); m∗
P

and s∗
P

denote
the posterior mean and standard deviation of precipitation.

Figure 10 compares the posterior distributions for storage
and error parameters from both data sets. The correspond-
ing error parameter posteriors are compared in Fig. 4. The
two products show negative depleting trends with widely
varying magnitudes of −43.3 mm year−1 from the SH and
−88.7 mm year−1 from MAS. Looking at their correspond-
ing posterior distributions, we can see that they both largely
follow the GRACE data, but with an increase in the seasonal
amplitude compared to the data. This is reflected in the in-
ferred A parameter (row 2 in Fig. 4), with an estimated value
of 90–100 mm for both cases. The storage posteriors, thus,
restore the seasonal signal amplitude, which tends to be more
severely attenuated in small-sized basins like the Hindon
basin. Additionally, the other storage error parameters (phase
δ and noise σS) distributions are well constrained compared
to their vague prior distributions. A relatively small phase er-
ror (time lag) is obtained using the two data sets. However,
the JPL-MAS data yields a smaller noise (53 mm) than the
CSR-SH (60 mm) data. The fact that these error parameters
are time-invariant and that the posteriors are computed using
data from all months via iterative smoothing allows the prob-
abilistic water balance model to fill in the data gaps present
in GRACE data sets from 2011 onwards.

Figure 4 also depicts the posterior distribution of the pre-
cipitation and evaporation error parameters for the two sce-
narios. The water balance data fusion run with the CSR
spherical harmonic (SH) solution gives more weight to the
lower precipitation and evaporation estimates. This is trans-
lated into the wP value of 0.15. Despite that, the posterior
evaporation mean lay between the data limits (wE = 0.5) for
this case, the bias scaling factor (fE) masked out its effect
(with estimated values smaller than 1), pushing the E pos-
terior towards the lower evaporation end (i.e., the baseline
evaporation limit). Figure C7 in Appendix C contains the de-
tailed posterior plots for the water balance variables using
the GRACE-SH data sets. Apparently, the GRACE-SH data
set’s storage dynamics don’t match the other water balance
variables in terms of water balance closure, at least with the
applied P and E error models. Due to the smaller decreas-
ing trend in the GRACE-SH storage data, the inferred evap-
oration estimates are, on average, about 15 % lower than the
estimates obtained with the GRACE-MAS data. To consis-
tently compare the data fit from both solutions, we normalize
the likelihood by the number of observations in each data set.
Consequently, the water balance model with GRACE-MAS
data has a slightly larger likelihood (−5.76) than that with
GRACE-SH (likelihood −6.0).
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Figure 8. Grid-scale posterior mean m∗
P -E and standard deviation s∗

P -E of P −E, and P and E covariance for July 2009. The posterior
standard deviations are computed for the two cases: with (cc+) and without (cc−) accounting for posterior cross-correlations (cc) between
P and E, while the difference cc−− cc+ between these two cases illustrates the impact of accounting for cross-correlations.

Figure 9. Distribution of Q in comparison to the observed Qobs
value (July 2009), for the following cases: (i) ignoring and account-
ing for posterior correlations between all water balance variables,
(ii) ignoring only the posterior correlation between P and E, and
(iii)Qwb obtained from uncalibrated water balance data. The labels
and tick marks are not shown due to data sharing restrictions.

Figure 10. Storage posteriors for two different GRACE data sets:
GRACE-JPL Mascon (MAS) and CSR spherical harmonic (SH) so-
lution.

This analysis suggests that long-term groundwater deple-
tion in the basin is possibly better captured by the (more
severely declining) mascon data, which has important ram-
ifications for the sustainability of irrigation practices in the
basin. This conclusion, however, requires further verification
with groundwater level trends from piezometer data.

6.2 Sensitivity to the assumed spatial correlation
length-scale parameters

The posterior results in the preceding section are obtained
by running the water balance data fusion with fixed Matérn

parameters for both the evaporation and precipitation pro-
cesses. Given the differences in spatial resolution of the an-
alyzed data, the smoothness and correlation length-scale ls
were specified with mid-range values of 1.5 and 50 km, re-
spectively. To evaluate the sensitivity of the results to the
chosen value for ls, we set the value of precipitation ls at
50 km and vary that of evaporation, and vice versa. Table 3
lists these prior conditions, along with the likelihood and
average posterior standard deviation for each water balance
variable. The results show stability of the posteriors and the
likelihood values under all prior settings, except for the cases
where precipitation and evaporation ls are low (e.g., 20 km).
In these cases, the probabilistic water balance exhibits the
poorest fit to the data (i.e., small likelihood values), and the
basin-scale posterior uncertainty of either evaporation or pre-
cipitation tends to be underestimated. On the other hand, us-
ing mid-range to larger spatial correlation length scale values
produces slightly different but substantively comparable pos-
teriors and likelihood values. The relative insensitivity to ls
suggests its value could potentially be chosen to a very large
value to speed up the computations: in the limit of perfect
spatial correlation, the formulas linking grid and basin scales
simplify, which can result in much faster computations for
large grids.

6.3 Sensitivity of the posteriors to the prior canal water
import estimates

The baseline results presented in Sect. 5.1 are based on the
canal water import data generated using a combination of
canal design capacities multiplied by their operational time,
and the data average of years with similar conditions (Ap-
pendix A, Sect. A2). Here, we evaluate the sensitivity of the
probabilistic water balance model to the different approaches
used to generate canal water estimates from little available
data, compared to the one adopted in the baseline run (we
refer to it here as scenario 1). To do so, we include two ad-
ditional scenarios, one in which the prior canal estimates are
computed using only the canal design capacities multiplied
by their operational time obtained from irrigation schedules
(scenario 2), and the other is based on the assumption that
the total flows into the basin are 20 % of the monthly flows
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Table 3. Average posterior standard deviation (mm month−1) for
each water balance variable and likelihood values under different
spatial correlation length-scale (ls) prior settings. The underlined
values represent the results of the baseline setup of the water bal-
ance data fusion model, with GRACE-JPL Mascon data set and
fixed correlation length scale at 50 km.

Spatial correlation
length-scale (ls) Average posterior standard
prior settings (km) Likelihood deviation (mm month−1)

E P S P E Q C

20 50 −1207.58 20.1 6.7 6.7 1.8 4.4
30 50 −1198.62 20.5 6.7 8.4 1.8 4.5
40 50 −1193.68 20.8 6.7 9.4 1.8 4.5
50 50 −1191.66 21.3 6.8 10.2 1.8 4.4
60 50 −1245.32 24.8 6.4 10.6 1.8 4.5
70 50 −1188.22 21.3 6.5 10.7 1.8 4.5
80 50 −1190.69 21.1 5.8 11.1 1.8 4.5
90 50 −1190.37 21.6 6.0 11.5 1.8 4.5

Table 4. Average posterior standard deviation (mm month−1) for
each water balance variable and likelihood values with different
canal water import prior estimates. The underlined values repre-
sent the results of the baseline setup of the water balance data fu-
sion model, with GRACE-JPL Mascon data set and fixed correlation
length scale at 50 km.

Average posterior standard
scenario Likelihood deviation (mm month−1)

S P E Q C

1 −1191.66 21.3 6.8 10.2 1.8 4.4
2 −1174.55 20.7 6.4 9.8 1.8 5.3
3 −1171.91 21.0 6.6 10.0 1.8 5.2

in the UGC main canal (scenario 3). For this evaluation, we
assess the model fit given the data (likelihood value) and the
average posterior standard deviation (mm month−1) for each
water balance variable. The resulting water balance variables
posteriors showed minimal variations with the different wa-
ter supplies prior estimates (Table 4). Although the fit is bet-
ter with scenarios 2 and 3, the posterior error for this term
is the lowest for scenario 1. Generally, this analysis shows
an insensitivity of water balance posteriors to the canal water
data used, and indicates that the prior estimates presented in
Sect. 5.1 are sufficient for the goal of constraining the other
water balance variables.

6.4 Extensions

The presented methodology is motivated by the availabil-
ity of diverse water balance remote sensing data, with very
few in situ data available for the Hindon basin, making in-
dependent validation of our estimates challenging. For this
reason, we evaluated our results using soft validation tech-

niques. For example, for evaporation, in the absence of in
situ data, we compared the trend in our estimated evaporation
with independent crop yield data, and the seasonal dynamics
with known cropping and irrigation patterns (see Sect. 5.1).
As for the precipitation posterior estimates, in Sect. 5.1 and
Appendix C, these were compared to the spatially interpo-
lated rain gauge dataset for the basin from the Indian Me-
teorological Department (IMD), keeping in mind the poten-
tial underestimation of precipitation by this dataset (Goteti
and Famiglietti, 2024). Evaluating the total water storage
estimates with independent data is more challenging. In a
follow-up study, we will introduce separate rootzone and
groundwater balance constraints, with the aim of estimating
their contributions to the total water balance. At that point,
it will become possible to use available remote sensing soil
moisture data, as well as in-situ groundwater level data, for
evaluation. Furthermore, adding these additional constraints
and data will allow for updating the posterior estimates in
this paper.

Additionally, the presented methodology is general and
can be applied to other gauged river basins. For example,
an application to multiple semi-arid basins was reported in
Schoups and Nasseri (2021). The method has several advan-
tages that allow this, including the straightforward and flexi-
ble implementation, as it consists of two separate parts: error
models specification for each water balance variable that can
be customized to fit specific settings, and the model solver
that automatically computes the posterior distributions. In
addition, the method is set up to rely on in situ and satel-
lite data that inherently capture the hydrological processes.
For example, the precipitation data sets estimate the precipi-
tation phase (snow and rain), while evaporation data sets can
be used to differentiate between the different land use classes.
However, in snow-dominant basins where precipitation data
sets might underrepresent this process, or in urban-dominant
settings where coarse-resolution evaporation data products
might overestimate evaporation, it may be valuable to tailor
the error models to local conditions in order to improve the
results. Perhaps, this could be achieved by complementing
the precipitation error models with other satellite data sets,
like the snow cover, snow depth, or temperature products, for
better snow detection and mapping. Moreover, evaporation
error models can be complemented with land use maps while
also considering the use of high-resolution evaporation prod-
ucts or other data sets with improved evaporation estimates
of heterogeneous urban surfaces. The major assumption here
is that formulating the error models by exploiting ancillary
information would allow it to solve for error parameters and
water balance variables under varying climatic zones and set-
tings. Alternatively, for this purpose, we could combine the
data error models with hydrological models that explicitly
account for detailed processes and differentiate between the
different hydrological responses.
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7 Conclusions

This paper presents a multi-scale monthly probabilistic water
balance data fusion model for calibrating estimates of each
component of the water balance. A key contribution of this
paper is the calibration of gridded precipitation and evapo-
ration estimates in an ensemble approach that fully exploits
the prior information content of the data. To achieve this, the
introduced methodology is applied at two scales: the basin
scale and the grid scale. First, we formulate prior grid-scale
and ensemble-based error models for precipitation and evap-
oration with unknown error parameters that describe the bias
and random errors in their spatial fields. The spatially av-
eraged inputs to the precipitation and evaporation error mod-
els, along with in situ data (river discharge and canal imports)
and storage data from GRACE, then drive a basin-scale prob-
abilistic water balance closure approach. In this approach,
the water balance is treated as a Bayesian model by assign-
ing prior distributions with unknown bias and noise param-
eters to each water balance variable. Combining these prior
distributions with monthly water balance constraints results
in posterior estimates of all parameters and variables that
jointly close the water balance at the basin scale. The result-
ing basin-scale precipitation and evaporation posteriors and
their cross-correlations are then used to update the prior grid-
scale data from the first step. This is attained using a Kalman
smoothing algorithm that ensures consistency between the
grid-scale and the basin-scale estimates; that is, spatially av-
eraging the calibrated gridded estimates yields monthly pre-
cipitation and evaporation values that jointly satisfy the wa-
ter balance at the basin scale together with the other variables
(C, Q, S).

We apply the introduced methodology to the Hindon
Basin, a tributary of the Yamuna River that suffers from un-
sustainable irrigation practices relying on the local ground-
water and imported surface water. The basin-scale results
demonstrate that introducing an independent set of in situ
data on surface water imports and river discharge, along with
monthly water balance constraints, updates the prior infor-
mation with new information, automatically adjusts different
information sources for each water balance variable, while
maintaining a closed water balance. The output of this study
highlights the potential of the monthly water balance con-
straints in substantially reducing uncertainties by accounting
for cross-correlations between all water balance variables. In
addition, the model yields basin-wide posterior estimates of:
(a) error parameters that are well constrained by all water
balance data, and (b) consistent basin-scale water balance
variables that jointly close the water balance. Transferring
these basin-scale constraints to the grid scale results in: (a)
posterior ensemble mean of precipitation and evaporation
that fuses the pixel-wise information from extreme prior data
bounds (min-max) and finds a balance between the two ac-
cording to their relative errors, and (b) posterior random er-

rors that reflect the model confidence about the location of
the posterior mean at each grid cell.

Explicit to the introduced approach are the assumptions
made about the data to characterize their associated errors in
a parametric form. For instance, a range-based error model is
used to quantify errors in the gridded precipitation and evap-
oration data. Here, the bias error is described as a weighted
average of the minimum and maximum estimates at each spa-
tial location. Whereas, the random error is quantified by scal-
ing the maximum potential error (i.e., scaling one-quarter of
the grid-scale full range). As an extension to this analysis, al-
ternative data error models might be worth considering. E.g.,
a possible alternative is to use Gaussian mixture models that
calibrate each data set individually, while still exploiting the
water balance as a constraint.

As for the errors in a single GRACE data set, these are
modeled using a noisy sine wave error model with unknown
phase and amplitude error parameters that are used to cor-
rect for the dominant biases in the GRACE data (i.e., leak-
ages). The sensitivity of the model results to the input data
is assessed using two GRACE data sets: spherical harmonic
(GRACE-CSR) and mascon solution (GRACE-JPL). This is
done quantitatively by comparing the values of the inferred
noise parameters (a smaller value is preferred) and that of
the likelihood, as a larger likelihood corresponds to a bet-
ter fit. While the GRACE-JPL demonstrated a better perfor-
mance than GRACE-CSR based on these evaluation criteria,
this could also be influenced by the assumptions surround-
ing the precipitation and evaporation error models. Ground-
based piezometer data may also help resolve the difference
between the downward trends in the two GRACE data sets
for the studied basin, which is important for evaluating the
sustainability of irrigation practices in the basin.

Finally, the random errors in the monthly river discharge
and canal water import data are more or less fixed to relative
errors. A larger prior uncertainty is assigned to the gap-filled
canal import data (25 %) than to the river discharge (10 %).
Regardless of the approach used to generate prior canal water
import estimates from little available data, these were suffi-
cient to constrain the other water balance terms. Addition-
ally, the generated water balance estimates are not strongly
affected by the assumed errors for the canal water and river
discharge data, as these two variables are relatively small
compared to the other monthly water balance variables (espe-
cially during rainy months when the two processes are driven
by precipitation). We also examined the impact of fixing the
spatial correlation length scale parameter on model fit and
the posterior standard errors. The posterior results showed ro-
bustness and model fit improvement across mid-to-large val-
ues of prior parameter sets. This suggests that this parameter
does not influence the model results in a large way.

A key aspect of the proposed methodology is that it is data-
driven, exploiting the water balance constraint as an inde-
pendent source of information. Therefore, the resulting cali-
brated data generated here can be used as baseline data sets
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for multiple applications, such as the validation or calibra-
tion of hydrological models, climate studies, and water ac-
counting assessments. Nonetheless, updating the calibrated
and spatially distributed estimates of precipitation and evap-
oration, and storage data generated herein with constraints
describing the physical relations between detailed water bal-
ance variables (e.g., vertical and horizontal flows), along with
additional in situ data (e.g., groundwater storage observa-
tions from piezometers), hold a great premise for synergetic
and complementary use of all information sources. This will
be the scope of a follow-up study for the investigated basin
that aims to constrain water balance stocks and flows and
their errors using grid-scale water balance constraints.

Appendix A: Additional data

The following subsections summarize the available informa-
tion on the Hindon basin land use elements (Fig. A1), share
of canal water imports in the water balance (Fig. A2), canal
network (Figs. A3 and A4), its operation, irrigation canal de-
livery data, and processing steps.

Figure A1. Share of the canal water imports in the water balance,
expressed as the percentage of the minimum and maximum remote
sensing-based precipitation observations.

A1 Description of the canal irrigation system and its
operation

Figures A3 and A4 provide an overview of the canal net-
work’s spatial distribution and design capacities. While these
main canals run continuously, their distributaries are oper-
ated in rotation (Ahmad, 1991; Chaube et al., 2023). The
canal distributaries in the Hindon basin are operated on an
“on-off” basis as shown in Table A1. The irrigation schedules
(also known as the rosters) are prepared for two irrigational
seasons:

1. Kharif season in which the main irrigated crops are sug-
arcane, rice, cotton, maize, vegetables, and fodder crops

2. Rabi season in which the principal crops are wheat, bar-
ley, mustard, and peas.

Figure A2. Land use elements distribution in the Hindon basin from
Gumma et al. (2022).

Figure A3. A schematic of the UGC main canal and its distribu-
taries with their respective discharge capacities (m3 s−1).
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Table A1. Example of seasonal operational schedule (the ON-OFF basis) for Eastern Yamuna Canal (EYC) and Upper Ganga Canal (UGC)
distributaries. Kharif spans from March to September 2021, while Rabi covers Oct 2021 to March 2022.

Main Canal Intake 3 weeks ON-1 week OFF 4 weeks ON 2 weeks ON-2 weeks OFF 1 week ON-3 weeks OFF

UGC
(Kharif)

Deoband Branch Apr, May, Jul Jun, Aug, Sep

Tanshipur Jul, Aug Jun, Sep Apr May
Mohammadpur Jul, Aug Jun, Sep Apr, May
Mansurpur Jul, Aug Jun, Sep Apr, May

UGC (Rabi) Deoband Branch Feb Nov, Dec, Jan Oct
Tanshipur Nov, Dec, Jan Feb, Oct
Mohammadpur Dec, Jan Feb, Oct, Nov
Mansurpur Dec Nov, Jan, Feb Oct

EYC (Kharif) Nagla Aug Jul Apr, May, Jun
Babail Aug Jul Apr, May, June
Sarakadi Aug Jul Apr, May, Jun, Sep
Megh Chappar Jun, Jul, Aug Apr, Sep
Chidbana Jun, Jul, Aug Apr, Sep
Nalhera Aug Jun Apr, Jul, Sep
Redi Aug Jun Apr, Jul, Sep
Rampuri Aug Jun Apr, May, Jul, Sep
Kallarpur Jul, Aug Apr, May, Jun, Sep

EYC (Rabi) Nagla Oct, Nov, Dec, Jan, Feb
Babail Oct, Nov, Dec, Feb
Sarakadi Oct, Nov, Dec, Mar
Megh Chappar Oct, Nov, Jan, Mar
Chidbana Oct, Nov, Jan, Mar
Nalhera Oct, Nov, Jan, Mar
Redi Oct, Nov, Jan, Mar
Rampuri Oct, Dec, Jan, Mar
Kallarpur Oct, Dec, Feb

A2 Description of irrigation canal delivery data and
processing steps

Constrained by the limited availability of data on water de-
liveries, we use an extrapolation approach to fill in the data
gaps. The approach integrates two data sources, the irriga-
tion schedules and the actual flow measurements from in-situ
data, to produce a complete monthly timeseries. Explicit in
this method is the assumption that the canal operations do
not vary widely between years in which the conditions are
similar. For instance, if years “A”, “B”, and “C” are classi-
fied as “dry years,” the canal operations don’t differ much
across these years. In other words, if year “A” has unknown
estimates, these can be estimated from year “B” or the mean
of the three years, depending on the number of years with
canal data. Therefore, each group of distributaries is filled
out based on two criteria: the data source and the number of
years with available data. For the canals, such as the Deoband
parallel, with actual flow measurements and≥ 5 years of data
availability, we solely rely on these data for extrapolation. To
this end, we distinguish the years into three conditions (wet,
dry, and normal years) using the Palmer Drought Severity
Index (PDSI) Terra climate data set as a proxy. Then, ev-

ery unknown year is filled with the long-term average of the
years falling under the same category. For example, when
a year such as 2015 is identified as “normal”, this year is
filled with the mean of the canal delivery observed across all
other “normal” years. A similar procedure was applied to the
EYC lower intakes with actual flows from 2018 to 2022 to fill
in missing data for similar years outside this period. For the
other intakes with only a few years of data, however, we filled
them differently. For instance, the lower intake points of the
UGC with flow measurements for only two years, 2021 (dry)
and 2022 (wet), we use these years as benchmarks for filling
similar wet or dry years. For “normal” years on these intakes,
we use the irrigation schedules instead. Explicitly, in cases
with only a single-year irrigation schedule, the flows are ob-
tained by multiplying the full design capacity by the oper-
ational time. This step produces conservative and monthly
variable flow estimates due to the operational time variation
of each distributary. Since the Deoband branch contributes
a significant share of the total canal water supplies into the
basin, we fill its missing data using the irrigation schedules
to avoid the impacts of assuming no variation in operation
across the years. In cases where single-year data is available
for distributaries such as Bijwara and Baoli, we use the ac-

https://doi.org/10.5194/hess-30-525-2026 Hydrol. Earth Syst. Sci., 30, 525–551, 2026



544 R. Mourad et al.: Methodology and application to the irrigated Hindon River Basin, India

Figure A4. A schematic of the EYC main canal and its distributaries
with their respective discharge capacities (m3 s−1).

Table A2. Available information on the distributaries and their cov-
erage. The data source column distinguishes between actual (mea-
sured) and planned (scheduled) irrigation canal delivery data.

Main data
Canal Distributaries data source availability

EYC Nagla weekly irrigation schedules 2021–2022
Babail weekly irrigation schedules 2021–2022
Sarkari weekly irrigation schedules 2021–2022
Landha not available not available
Meghchhapar weekly irrigation schedules 2021–2022
Chhidbana weekly irrigation schedules 2021–2022
Nalhera weekly irrigation schedules 2021–2022
Reri weekly irrigation schedules 2021–2022
Rampuri weekly irrigation schedules 2021–2022
Kallarpur Daily actual flows 2018–2023
Sijad not available not available
Olra Escape not available not available
Yarpur Daily actual flows 2018–2023
Gohari Daily actual flows 2018–2023
Malipur Daily actual flows 2018–2023
Fazalpur Daily actual flows 2018–2023
Bijwara Daily actual flows 2018
Baoli Daily actual flows 2018

UGC Deoband Branch Daily actual flows 2013–2014
–2016

Parallel Deoband Daily actual flows 2018 to
2022 and
2013–2014
–2016

Tanshipur weekly irrigation schedules 2021–2022
R. Mohammadpur weekly irrigation schedules 2021–2022
R.Jauli Daily actual flows 2021–2022
Mansurpur Daily actual flows 2021–2022
Khatauli Escape Daily actual flows 2021–2022
R. Salawa Daily actual flows 2021–2022

tual flows for this year (2018) as a reference to fill all other
years. As for distributaries without data from design or actual
flows, we assume these might not add much to the overall im-
ports into the Hindon basin. At this stage, the canal delivery
data is at the daily timestep. The last step is to aggregate to
a monthly timescale, sum all intakes, and normalize by the
basin area to obtain the gap-filled canal water imports ex-
pressed in water depth units (mm month−1).
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Appendix B: Additional methods

B1 A major challenge arising from the use of
uncalibrated remote sensing water balance data

The following figure shows that imbalance errors due to com-
bining uncalibrated remote sensing products for each water
balance variable can be significant (∼±200 (mm month−1)).
This is related to errors associated with the data. Therefore,
there is a need to quantify and reduce these uncertainties.

B2 Computing posteriors of individual variables,
parameters, and posterior cross-correlations
between water balance variables

This section briefly explains how all posteriors are com-
puted. For the probabilistic water balance model described
in Sect. 4.1 of the main text, we can represent its joint dis-
tribution as p(x,θ,Sobs). This distribution consists of two
parts: the monthly water balance variables x (comprising
5N + 1 variables including S0, P t , Et , Qt , Ct and St ),
where N is the number of months and is equal to 240 for
20 years of data considered in this paper, S0 is the initial
basin water storage at the start of the first month and Sobs
is the storage timeseries, and the parameter vector θ , includ-
ing wP , rP , wE , fE , rE , aQ, bQ, aC , bC , σS , A, and δ. Our
objective is to compute the full posterior distribution, which
integrates all available information sources (Gaussian distri-
butions) of θ and x.

The posterior of the parameter vector is expressed in the
following form:

p(θ |Sobs)∝ p(Sobs|θ)p(θ) (B1)

where p(θ) is the prior distribution for the parameters and
corresponds to the product of the individual parameter pri-
ors defined in the previous basin-wide error model section,
while the term p(Sobs|θ) refers to the parameter likelihood
function. This function scores each set of bias parameters
(e.g., wE , fE) and noise parameters (e.g., rE,σS). A large
likelihood for the parameters is one that shifts the storage
predicted from the water balance closer to the storage ob-
servations. As we show below, this likelihood also connects
the DE-MCMC for parameter sampling and EP for posterior
computations of water balance variables.

In the basin-wide inference setup, an outer MCMC loop
iteratively proposes sets of parameter candidates (sam-
ples) using a non-parametric proposal (jumping) mecha-
nism (Ter Braak and Vrugt, 2008). For each set of sam-
pled parameters by MCMC, the EP (message passing) al-
gorithm operates in an inner loop, computing the (a) un-
normalized posterior density of the parameters proposed by
MCMC (Eq. B1) and the conditional water balance poste-
riors p(x|Sobs,θ)=

p(x,Sobs|θ)
p(Sobs|θ)

. The normalizing constant of
the conditional water balance posterior (p(Sobs|θ)) is the
likelihood in Eq. (B1). EP evaluates the posterior odds of the

Figure B1. Monthly timeseries of the imbalances (water balance
errors) for each of the 15 unique uncalibrated combinations of the
variables.

model outputs p(x|Sobs,θ) given the sampled parameters,
guiding the DE-MCMC decisions in accepting or rejecting
new parameters. Compared to the standard single forward-
backward algorithm, EP approximates the exact posterior
distributions with Gaussian distributions sharing matching
moments (mean and variance). It involves multiple back-
and-forward passes over the data using the entire timeseries
until all posteriors stabilize. A key aspect of the EP algo-
rithm is its ability to efficiently handle non-Gaussian posteri-
ors, which arise from physical non-negativity constraints we
force on water balance variables (P , E, Q, C). Typically,
a small number of iterations are sufficient to achieve con-
vergence due to the mild non-Gaussianity induced by these
constraints. The EP algorithm yields conditional water bal-
ance posteriors (conditioned on the Sobs data and the param-
eter vector θ ). Instead of the conditional posterior distribu-
tion, we are interested in the marginal posterior distribution
p(x|Sobs) over the individual water balance variables (S0, P ,
E, Q, and C). Such distributions are obtained by integrating
(∼ averaging) p(x|Sobs,θ) over the parameter posterior dis-
tribution p(θ |Sobs), effectively accounting for the parameter
uncertainty in the final water balance estimates:

p(x |Sobs)=

∫
p(x|Sobs,θ)p(θ |Sobs)dθ (B2)

This paragraph explains how to compute posterior cross-
covariances between the different water balance variables
given the posterior marginal distributions of each variable (as
output by the water balance data fusion model). For this, we
will need two building blocks to construct the joint preci-
sion matrix (2) equal to the inverse of the covariance matrix
(V∗), namely: the variables’ linear relation through the wa-
ter balance coefficients ϕ = [1, 1,−1,−1,1] extracted from
the water balance constraint at each time step: S = S0+P −

E−Q+C and “uncorrelated priors” of each variable. The
term “priors” reflects uncertainty before considering the rela-
tion of each variable with other variables. With the marginal
distributions available at this point, we can back-calculate
these priors such that they satisfy the marginals through a
message-passing algorithm. This algorithm relies on decom-
posing the marginal precisions (τ ) for each variable into: (a)
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prior precisions (messages) for each variable and (b) preci-
sions (messages) sent to each variable from all other vari-
ables via the water balance. Specifically, in each month, we
have two conditions: the water balance constraint and the
probabilistic constraints in the form of marginal Gaussian
distributions written separately for individual variables x as
p(x)∼ N

(
m∗x,v

∗
x

)
, with posterior mean and variance ob-

tained from Eq. (27) in the main text. Expressed in terms of
precisions, we can write the decomposed posterior precision
of S (τS), for example, as: τS = τS→+τ→S where τS→ is the
prior precision from S, and τ→S is the precision to S from
the water balance. The latter can be obtained from all other
variables by propagating uncertainty through the linear wa-
ter balance equation. As such, the relationship between the
posterior and prior variances of S that fulfill the two defined
conditions becomes:

1
v∗S
=

1
vS→
+

1
vS0→ + vP→ + vE→ + vQ→+ vC→

(B3)

We can repeat the above step for all other variables to create
a linear system of six equations with six unknowns (prior
variances) that we need to solve for:



1
v∗S
−

1
vS→
−

1
vS0→+vP→+vE→+vQ→+vC→

= 0
1
v∗S0
−

1
vS0→
−

1
vS→+vP→

+vE→
+vQ→+vC→

= 0
1
v∗
P

−
1

vP→
−

1
vS0→+v→S+vE→+vQ→+vC→

= 0
1
v∗
E

−
1

vE→
−

1
vS0→+vP→+vS→+vQ→+vC→

= 0
1
v∗Q
−

1
vQ→
−

1
vS0→+vP→+vE→+vS→+vC→

= 0
1
v∗C
−

1
vC→
−

1
vS0→+vP→+vE→+vQ→+vS→

= 0

(B4)

Where v∗S,v
∗

S0
,v∗
P
,v∗
E
,v∗Q,v

∗

C are the posterior marginal
variances of the variables: Storage S, initial storage state
for the first month S0, P , E, Q, and C, respectively. While,
vS→,vS0→ ,vP → ,vE→ ,vQ→ and vC→ are their correspond-
ing prior variances.

The resulting priors are used to generate the joint precision
matrix 2 of S0, P , E,Q, and C, which combines two terms:

2=ϕϕ
′

τS→+ diag([
τS0 or τSt−1→ ,τP→ ,τE→ ,τQ→, τC→

])
(B5)

The first term represents a matrix that encodes how each vari-
able varies with every other variable in the water balance.
This term is scaled by the prior precision from S (τS→),
whereas the second term is a diagonal matrix of the other
individual water balance variables prior precisions. The in-
verse of the joint precision matrix gives the posterior covari-
ance matrix between all variables (in a given month), which
contains all posterior cross-correlations.

Appendix C: Additional results

C1 Water balance priors and posteriors

This section displays the results of the seasonal and annual
posterior means of the water balance variables compared to
their corresponding prior data.

Figure C1. Comparison of posterior mean (m∗
P

) to the prior data
sets describing the precipitation (P ) variable in the Hindon basin,
the top panel depicts (a) monthly mean P , and the bottom panel (b)
shows the annual P time series.

Figure C2. Comparison of the posterior mean (m∗
E

) to the prior data
sets describing the evaporation (E) variable in the Hindon basin,
the top panel depicts (a) monthly mean E, and the bottom panel (b)
shows the annual E time series.
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C2 Comparison of individual gridded products to the
posterior means

This section presents the spatial maps of the deviation of the
individual precipitation and evaporation products from their
posterior mean.

Figure C3. Comparison of the monthly mean posterior mean (mC*)
to the prior data describing the surface water imports (C) variable
in the Hindon basin.

Figure C4. Interplay between the annual: evaporation posterior
mean (m∗

E
), air temperature variable from GLDAS Noah Land Sur-

face Model v2.1 (Rodell et al., 2004), MODIS 15 Leaf Area Index
(LAI) (Myneni et al., 2021), and district-wise sugarcane crop yield
from International Crops Research Institute (2020) for the Semi-
Arid Tropics database.

Figure C5. Spatial deviation of the evaporation (E) observations
from the posterior mean (Eobs−m∗

E
) for May and July of 2009.

Figure C6. Spatial deviation of the precipitation (P ) observations
from the posterior mean (P obs−m∗

P
) for May and July of 2009.
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C3 The sensitivity of the posterior results to the
GRACE input data

Figure C7. Posterior and prior water balance plots correspond to
the case using the GRACE CSR spherical harmonic (SH) solution
as an input to the probabilistic water balance model.
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