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Abstract. Accurately characterizing groundwater level dy-
namics in seasonal frozen soil regions is of great signifi-
cance for water resource management and ecosystem pro-
tection. To this end, this study proposes a new interpretable
deep learning method to reveal the underlying causes of
groundwater level dynamics on the basis of groundwater
level simulation. Using the Songnen Plain in China as the
study area and daily data from 138 monitoring wells, ground-
water levels are simulated with an Long Short-Term Memory
(LSTM) model, and the Expected Gradients (EG) method
is employed to quantitatively identify the dominant factors
and mechanisms of different groundwater level variation
types.The results show that the LSTM model performs well
on the test set, with the Nash-Sutcliffe Efficiency (NSE) ex-
ceeding 0.7 at 81.88 % of the monitoring sites, effectively
capturing the temporal dynamics of groundwater levels. At
the annual scale, three typical groundwater level variation
types are identified: precipitation infiltration–evaporation
type (29.0 %), precipitation infiltration–runoff type (18.1 %),
and extraction type (52.9 %). Corresponding to the seasonal
frozen-thaw period, groundwater level dynamics are classi-
fied into “V”-shaped (38.4 %), continuous decline (23.2 %),
and continuous rise (38.4 %) types. Quantitative analysis us-
ing the EG method indicates that air temperature, precipi-
tation, and snow thickness are the primary controlling fac-
tors of the “V”-shaped dynamics, reflecting the regulatory
role of the frozen-thaw process on groundwater levels.When
the initial groundwater level depth at the beginning of the
freezing period is shallower than the sum of the frozen-thaw

influence depth and the capillary rise height, a hydraulic
connection is established between soil water and groundwa-
ter, resulting in typical “V”-shaped fluctuations. Conversely,
when the depth exceeds this critical threshold, the frozen-
thaw process cannot significantly influence the aquifer, and
groundwater dynamics are mainly manifested as continuous
rise or continuous decline, driven respectively by groundwa-
ter extraction and water level recovery following precipita-
tion recharge. This study establishes an integrated framework
of “simulation–classification–interpretation,” which not only
improves the accuracy of groundwater level dynamic simu-
lation and prediction but also provides new methods and per-
spectives for revealing the underlying mechanisms. The find-
ings offer theoretical support and technical basis for regional
groundwater resource management in cold regions.

1 Introduction

Groundwater level is a crucial indicator reflecting the wa-
ter balance status of groundwater systems, and its dynamic
changes reveal the evolving trends of regional hydrological
processes. In terms of water resource management, moni-
toring groundwater level depth helps managers understand
changes in groundwater storage, optimize water extraction
schemes, and prevent resource depletion caused by overex-
ploitation (Hao et al., 2014; Yang, 2012). Regarding ecosys-
tem protection, fluctuations in groundwater level depth di-
rectly affect regional ecological patterns. Excessively low
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water levels may lead to wetland desiccation and biodiver-
sity loss, while rapid rises can cause soil salinization and
vegetation degradation (Singh et al., 2012). Relevant studies
have also practically validated the significance of groundwa-
ter level prediction. For example, Liu et al. (2022) demon-
strated in the lower Tarim River that machine learning–based
groundwater level prediction models can quantitatively re-
veal current and future groundwater changes, clarifying the
critical role of “ecological water conveyance” in regional
ecological restoration. Therefore, in-depth identification of
the controlling mechanisms behind groundwater level depth
variations and achieving high-precision spatiotemporal sim-
ulation are of great significance for promoting sustainable
groundwater resource utilization and ecological environment
protection (Yi et al., 2022).

Seasonally frozen soil areas are widely distributed glob-
ally. In China, they cover more than half of the total land area,
mainly in the northwest and northeast regions where water
scarcity is a prominent issue (Wang et al., 2019). Unlike
non-frozen soils, seasonally frozen soil is a unique water–
soil system that contains ice, and changes in the ice content
are accompanied by the dynamic storage of liquid water and
dynamic changes in heat (Wu et al., 2023). The movement
and storage behavior of groundwater in these regions differ
from those in warm, non-frozen areas (Ireson et al., 2013), as
the freeze–thaw process results in more frequent interactions
between soil water and groundwater (Daniel and Staricka,
2000; Lyu et al., 2022; Lyu et al., 2023; Miao et al., 2017).
This leads to significant differences in the causes of ground-
water level dynamics between the freeze–thaw and non-
freeze–thaw periods in seasonally frozen soil areas, making it
more challenging to accurately simulate the regional ground-
water levels.

Current models used for simulating groundwater level dy-
namics can generally be categorized into two groups: phys-
ical models and machine learning models (Ao et al., 2021).
Most physical models are based on hydrodynamic processes
and water balance principles, and are capable of accurately
representing the physical mechanisms of groundwater sys-
tems. Therefore, they possess irreplaceable advantages in
characterizing groundwater flow and uncovering hydrolog-
ical processes such as recharge, runoff, and discharge. How-
ever, in areas with complex geological structures or highly
heterogeneous aquifer systems, the construction, parameter
calibration, and validation of physical models typically re-
quire large amounts of high-resolution geological, hydrolog-
ical, and hydraulic data. These requirements make physi-
cal modeling challenging to implement and time-consuming
(Raghavendra and Deka, 2014). Hence, there are few simula-
tion studies on regional-scale groundwater level dynamics in
seasonally frozen soil areas. In comparison, machine learn-
ing models have demonstrated significant advantages in sim-
ulating groundwater levels. These models explore the non-
linear relationships between inputs (such as meteorological
and topographic data) and outputs (groundwater level) with-

out the need to consider internal physical mechanisms (Ra-
jaee et al., 2019), nor do they require predefined parameters
such as hydraulic characteristics or boundary conditions (Ao
et al., 2021). Despite this, machine learning models typically
outperform physical models in terms of simulation accuracy,
particularly in medium-to-long-term simulation studies (De-
missie et al., 2009; Ebrahimi and Rajaee, 2017; Fienen et
al., 2016; Rahman et al., 2020). One of the most successful
deep learning architectures for modeling dynamic hydrolog-
ical variables is the long short-term memory (LSTM) net-
work (Jing et al., 2023; Wu et al., 2021). The LSTM model,
which is an improved version of the recurrent neural network
(RNN), can more effectively capture long-term dependen-
cies in time-series data (Hochreiter and Schmidhuber, 1997).
In the seasonally frozen soil regions of Northwest China,
14 years of continuous groundwater level simulations have
shown that the LSTM model can effectively handle long-
term data and accurately simulate groundwater levels in sea-
sonally frozen soil areas (Zhang et al., 2018).

Although numerous studies have demonstrated the accu-
racy and predictive power of data-driven models in hydrolog-
ical fields, these models are essentially black boxes and can-
not explicitly explain the underlying physical processes and
mechanisms (Zhou and Zhang, 2023). To address this limita-
tion, researchers have proposed various methods to interpret
deep learning models. Two widely used methods in ground-
water research are the expected gradient (EG) method (Jiang
et al., 2022) and the Shapley additive explanations (SHAP)
algorithm (Lundberg and Lee, 2017). The broad application
of the SHAP method is mainly attributed to its ability to re-
veal, from a local perspective, the contribution of each input
variable to the corresponding model output at each time step
(Wang et al., 2022) and, from a global perspective, the over-
all influence of input variables on the model output over the
entire simulation period (Liu et al., 2022; Niu et al., 2023).
However, the limitation of the SHAP method is that its inter-
pretation of input factors is static and independent, making
it ineffective in capturing the complex interactions between
groundwater levels and long-term recharge and discharge dy-
namics. In contrast, the EG method (Jiang et al., 2022) cal-
culates the EG values of the input variables over a specified
time range, allowing for a better quantification of the impact
of dynamic input variables on output variables at a particu-
lar time. This capability theoretically makes the EG method
advantageous in groundwater level simulations with dynamic
characteristics, particularly in explaining the temporal effects
of meteorological changes on groundwater level across dif-
ferent periods. Nevertheless, there are currently no dedicated
studies on the use of the EG method to explain the causes of
groundwater level dynamics, and its effectiveness in under-
standing the relatively complex mechanisms of groundwater
level dynamics in seasonally frozen soil areas requires fur-
ther validation.

In this study, the seasonally frozen soil area of the Song-
nen Plain in Northeastern China was taken as an example.
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Through an in-depth analysis of three years of continuous
monitoring data from phreatic wells in this region, combined
with meteorological, hydrological, and soil texture data, the
LSTM model was used to simulate the groundwater level
dynamics. The reverse interpretation technique, i.e., the EG
method, was applied to explore the decision principles of the
deep learning model in simulating water levels during the
non-freeze–thaw and freeze–thaw periods, thus revealing the
mechanisms behind groundwater level dynamics across dif-
ferent periods in seasonally frozen soil areas. The research
findings can demonstrate and extend the application of inter-
pretable deep learning models in the groundwater field, pro-
viding essential support for groundwater resource assessment
and ecological environment protection in seasonally frozen
soil areas.

2 Data and methodology

Figure 1 shows the workflow of this study, including three
main steps. First, the LSTM model is used to establish a non-
linear relationship between meteorological factors, human
activities, and groundwater level depths (Fig. 1a). The daily
air temperature, precipitation, extraction volume, and snow
depth were used as input variables to predict the groundwa-
ter level depths. Subsequently, the EG method (Jiang et al.,
2022) was applied to the trained LSTM model to obtain the
EG scores of the input factors at different time steps. The EG
scores quantify the influence of the meteorological inputs (air
temperature, precipitation, and snow depth) and human ac-
tivities (extraction volume) on the groundwater level depths
during the simulation process (Fig. 1b). Finally, the causes
of groundwater level dynamics during the non-freeze–thaw
and freeze–thaw periods in seasonally frozen soil areas were
identified.

2.1 Study area

The Songnen Plain is one of the three major plains in North-
east China. It is higher on the periphery and lower at the cen-
ter, with a total area of 182 800 km2 (Fig. 2a). The study area
is surrounded by hills and mountains in the west, north, and
east of the Greater and Lesser Xingan, Zhangguangcai, and
Changbai Mountains, respectively, and is connected to the
West Liaohe Plain by the micro-uplifted Songliao watershed
in the south. The Songnen Plain primarily comprises the east-
ern high plain, western piedmont sloping plain, western low
plain, and valley plain (Fig. 2a). The soil texture in the region
mainly includes sandy loam, sandy clay loam, clay loam, and
loamy clay (Fig. 2b). The climate in the area can be mainly
characterized by two main types: first, it features a typical
East Asian continental monsoon climate with hot, rainy sum-
mers and cold, dry winters; second, although the distribution
of the climatic factors in the Songnen Plain is significantly in-
fluenced by latitude, there is a distinct east–west difference,

with arid conditions in the west and humid conditions in the
east (Li et al., 2022). The long-term average temperature of
the Songnen Plain is 3.8 °C, the long-term average precipita-
tion is 484.57 mm, and the long-term average evaporation is
1498.1 mm. The frost-free period ranges from 115 to 160 d.
Freezing starts in mid-October from north to south, and thaw-
ing begins in April from south to north. The freezing depth
ranges from 1.5 to 2.4 m (Zhao et al., 2009). The area is criss-
crossed by rivers, with the Songhua River, Nenjiang River,
and their tributaries forming a centripetal drainage system.
The lower reaches of the Nenjiang River and Taoer River,
as well as the Second Songhua River, flow through the cen-
tral plain from the north, west, and southeast, respectively.
The aquifer system in the Songnen Plain, China, consists of
multiple aquifers ranging from the Cretaceous, Paleogene,
and Neogene to the Quaternary. Among them, the Quater-
nary aquifer, whose distribution range is slightly smaller than
that of the Cretaceous aquifer, is the main groundwater ex-
ploitation layer in the region and the aquifer in which the
groundwater studied in this paper is located (Fig. 2c).

2.2 Dataset and selection of representative
groundwater level values

To simulate the dynamic changes in the groundwater level
in seasonally frozen soil areas and to analyze the driving
mechanisms of groundwater level dynamics during freez-
ing and non-freezing periods, this study primarily used dy-
namic observational data from 2018 to 2021, including pre-
cipitation, air temperature, snow depth, groundwater extrac-
tion volume, and groundwater levels, as well as static data
such as ground surface elevation and soil texture. The pre-
cipitation and air temperature data were obtained from the
“ERA5 hourly data on single levels from 1979 to present”
dataset, provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF). ERA5 is the fifth-generation
re-analysis of the global climate and weather data with a spa-
tial resolution of 0.25°× 0.25° and an hourly temporal reso-
lution. Daily snow depth data were sourced from the National
Tibetan Plateau Data Center (https://data.tpdc.ac.cn/zh-hans/
data/df40346a-0202-4ed2-bb07-b65dfcda9368, last access:
22 January 2026), with a spatial resolution of 25 km. The
temporal and spatial resolution of the groundwater extraction
volume data was enhanced based on the spatial distribution
and water demand of major crops in the Songnen Plain, along
with the precipitation data. Groundwater level data from 138
phreatic wells were provided by the China Geological Envi-
ronment Monitoring Institute, while surface elevation data
with a spatial resolution of 30 m were obtained from the
Geospatial Data Cloud (https://www.gscloud.cn/search, last
access: 22 January 2026). Soil texture data were sourced
from the Resource and Environment Science and Data Cen-
ter, compiled from a 1 : 1000000 soil type map and soil pro-
file data collected during the second national soil survey of
China.
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Figure 1. Workflow of this study: (a) Model structure of the LSTM model, (b) EG scores of input factors during the non-freeze–thaw and
freeze–thaw periods.

In the Songnen Plain, approximately 70 % of groundwater
extraction is used for agricultural irrigation; therefore, in this
study, groundwater extraction was approximated based on
crop water deficits. Using spatial distribution data of the re-
gion’s major crops, 10 d period crop water requirements, and
precipitation data, we estimated groundwater extraction at a
fine resolution, ultimately generating 10 d period groundwa-
ter extraction data with a spatial resolution of 25 km× 25 km.
Specifically, based on the water requirements of the main
crops (rice, soybean, and maize), we calculated the total crop
water demand for each 10 d period within each grid cell.
These values were then weighted according to the crop plant-
ing area to obtain the total water demand per grid. By com-
paring precipitation with crop water demand, we determined
whether precipitation could meet the crop water needs. When
precipitation was sufficient, crops relied entirely on natural
rainfall, and the effective precipitation equaled the water de-
mand. When precipitation was insufficient, effective precipi-
tation was limited by actual rainfall, and the remaining crop

water deficit was assumed to be supplemented by other wa-
ter sources. Finally, the difference between crop water de-
mand and effective precipitation was calculated as the crop
water deficit, which was assumed to be primarily supplied
by groundwater. This allowed us to approximate 10 d period
groundwater extraction. To ensure consistency with the tem-
poral resolution of other variables used for model training,
the 10 d period data were converted to daily averages by di-
viding by the number of days in each period.

To identify the causes of groundwater level dynamics dur-
ing freezing and non-freezing periods, representative ground-
water levels were selected for analysis using the EG method
at different time periods. Based on the annual pattern of
the groundwater level dynamics, groundwater levels dur-
ing the non-freezing period are influenced by human activ-
ities, flood-season precipitation, and other factors, leading
to greater fluctuations compared with that observed in the
freezing period. Therefore, selecting extreme values (either
maximum or minimum) as representative groundwater levels
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Figure 2. Spatial distribution of the ground surface elevation (a), topography (b) and aquifer system (c) in the Songnen Plain, China.

can effectively capture the peak or trough of the groundwa-
ter level, reflecting the most significant state of groundwater
recharge or discharge during this period. Based on this, the
trends in the groundwater level were analyzed to identify the
different dynamic characteristics during the non-freezing pe-
riod. If the groundwater level shows an overall uptrend, the
maximum value represents the peak of the recharge process;

if it shows a downtrend, the minimum value reflects the max-
imum extent of discharge.

However, during the freezing period, groundwater level
fluctuations are relatively small, and extreme values do not
respond significantly to external factors. During this pe-
riod, groundwater levels may be influenced by soil freezing
and thawing processes. Therefore, the groundwater levels at
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critical moments of soil freezing and thawing were chosen
as representative values to more accurately reflect the re-
sponse of groundwater level to environmental changes. Dur-
ing the freezing period, after the “Beginning of Winter” so-
lar term (7–8 November), the average temperature continu-
ously dropped to below 0 °C, and a thin ice layer gradually
formed on the surface; after the “Rain Water” solar term (18–
20 February), temperatures increased, and the frozen soil be-
gan to thaw in both directions; finally, the frozen soil fully
thawed around the “Grain Rain” solar term (19–21 April) in
spring (Lyu et al., 2023). Based on this climatic pattern, we
uniformly defined the freezing and thawing periods for all
monitoring wells in the study area. Specifically, the freezing
period is defined as the interval from “Beginning of Win-
ter” to “Rain Water,” and the thawing period as from “Rain
Water” to “Grain Rain.” Therefore, the groundwater level at
the “Rain Water” solar term was chosen as the representa-
tive groundwater level during the freezing period to capture
the rapid response of the groundwater level to rising temper-
atures and thawing of the frozen soil.

2.3 Research methods

2.3.1 LSTM model

The LSTM neural network (Hochreiter and Schmidhuber,
1997) is an advanced RNN widely applied in deep learning.
It can store and associate previous information, effectively
addressing the issues of vanishing and exploding gradients
that occur during the training of long sequence data. The
deep learning model used in this study comprises a single
LSTM layer and a dense layer. The LSTM layer is composed
of recurrent cells arranged in a chain-like structure, allow-
ing information to be passed from the current time step to
the next. The model uses daily precipitation, air tempera-
ture, groundwater extraction volume, and snow depth from
the previous 150 d as input sequences to predict groundwa-
ter level depths. Each cell in the LSTM layer includes four
components: the input gate (it ), the forget gate (ft ), the out-
put gate (ot ), and the cell state (ct ) (as shown in the LSTM
layer in Fig. 1a). The input gate determines how much input
information is transferred to the cell state. The forget gate
primarily controls how much information from the previous
cell state is discarded and how much is carried forward to the
current moment. The output gate calculates the output based
on the updated cell state from the forget and input gates.
The cell state is used to record the current input, the pre-
vious cell state, and the information from the gate structures.
In this study, we adopted the LSTM equations proposed by
Graves et al. (2013), which are represented by the following
key equations:

it = σ (Wxixt +Whiht−1+ bt ) (1)
ft = σ

(
Wxf xt +Whf ht−1+ bf

)
(2)

ct = ft � ct−1+ it � tanh(Wxcxt +Whcht−1+ bc) (3)

ot = σ (Wxoxt +Whoht−1+ bo) (4)
ht = ot � tanh(ct ) (5)

where the input and output vectors of the implicit layer of the
LSTM at time step t are xt and ht , respectively, the memory
cell is ct , and the values of the input, forget, and output gates
are it , ft , and ot , respectively. W and b represent the learn-
able weight and bias terms to be estimated during the training
period, respectively, σ(·) denotes the logistic sigmoid func-
tion, tanh(·) is the hyperbolic tangent function, and � repre-
sents elementwise multiplication.

Before training the model, the air temperature, precipita-
tion, groundwater extraction volume, and snow depth were
normalized by mapping their values to a range between 0
and 1. The adaptive moment estimation (Adam) algorithm
(Kingma and Ba, 2015) was employed during training, with
an initial learning rate set to 0.03. The maximum training
epoch number was configured to 100, and an early stopping
strategy was applied to prevent overfitting. For each individ-
ual groundwater monitoring well, 70 % of the input–output
data pairs were randomly sampled for training the LSTM
model, and they were split into training and validation sam-
ples at a ratio of 7 : 3. The training samples were repeatedly
used to update the model parameters until the loss function
for the validation samples ceased to decrease. The remain-
ing 30 % of the data were used for an independent evaluation
of the model performance. Random sampling allows for cap-
turing the overall hydrometeorological variations observed
across different time periods.

2.3.2 Model interpretations

In 2017, Sundararajan et al. (2017) developed the inte-
grated gradients (IG) method, which uses the gradient of the
model’s output to the input factors to infer the specific con-
tribution of the input variables to the output variable. The IG
score for an input factor x (e.g., the precipitation at the ith
time step), representing the degree of contribution of the in-
put variable to the output variable, is expressed as follows:

∅IG
i

(
f,x,x′

)
=
(
xi − x

′

i

) 1∫
α=0

∂f
(
x′+α

(
x− x′

))
∂xi

dα (6)

where ∂f (x′+α(x−x′))
∂xi

denotes the local gradient of the net-
work f at the interpolation point from the baseline input (x′,
when α = 0) to the target input (x, when α = 1).

However, the baseline input x′ in the above formula is a
hyperparameter that must be chosen carefully. In groundwa-
ter level studies, if the target input (e.g., a particular ground-
water level observation) is close to the chosen baseline input
(e.g., long-term average groundwater level), i.e., xi ≈ x′i , the
IG method may fail to capture the importance of current in-
put factors, such as precipitation or evaporation, on ground-
water level changes (Sturmfels et al., 2020). To address this
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issue, Jiang et al. (2022) developed the EG method, which is
based on the IG method but assumes that the baseline inputs
follow the basic distribution D sampled from a background
dataset (such as the training dataset), thus avoiding the need
to specify a fixed baseline input. Given the baseline distribu-
tion D, the EG score ∅EG

i for the ith input factor can be cal-
culated by integrating the gradients over all possible baseline
inputs x′ ∈D, weighted by the probability density function
pD . The EG score represents the influence of input factors
on the model output, with a higher absolute EG score indi-
cating a greater impact of the corresponding input factor on
the model output, while an EG score close to zero suggests
that the input factor has little effect on the output. The EG
score can be expressed as follows:

∅EG
i (f,x)=

′∫
x

(
∅IG
i

(
f,x,x′

)
×pD

(
x′
)

dx′
)

(7)

The above expression involves two integrals, which, accord-
ing to Erion et al. (2021), can both be considered expecta-
tions. Thus, the equation can be reformulated as:

∅EG
i (f,x)= Ex′∼D,α∼U(0,1)

·

(xi − x′i) 1∫
α=0

∂f
(
x′+α

(
x− x′

))
∂x′i

 (8)

2.3.3 Evaluation metrics

The evaluation metrics used in this study include the Nash–
Sutcliffe efficiency (NSE) coefficient and the root-mean-
square error (RMSE). The NSE is used to assess the degree
of fit of the regression model. The RMSE quantifies how well
the predicted values match the observed values. If the NSE
is close to 1 and the RMSE is close to 0, the model is more
reliable.

NSE= 1−
∑n
i=1(xi − yi)

2∑n
i=1(xi − x̄i)

2 (9)

RMSE=

√∑n
i=1(xi − yi)

2

n
(10)

where xi is the depth of the observed groundwater level, and
x̄i is the average value of xi ; yi is the groundwater level depth
simulated by the LSTM model; and i denotes the specific
sample ordinal number, from 1 to n.

3 Results

3.1 Simulation Accuracy of Deep Learning Model for
Groundwater Level

A data-driven model (LSTM model) was used to simulate
the daily groundwater level depth of 138 aquifer monitor-
ing wells in the Songnen Plain, China, from 2019 to 2021.

Overall, the simulation accuracy of the groundwater level
depth was relatively high across the western piedmont slop-
ing plain, the eastern high plain, and the valley plain regions.
In these areas, the NSE values at the monitoring points in
the test set ranged from 0.53 to 0.96 (Fig. 3a), with 87.14 %
of the monitoring points showing NSE values greater than
0.7. Over the entire simulation period (including the train-
ing and test sets), the maximum error between the simulated
and observed values at each monitoring point mainly ranged
from 0.5 to 2.5 m (Fig. 3b, d, and e), with 94.29 % of the
monitoring points having an average error of less than 0.5 m.
The annual groundwater level fluctuation at the monitoring
points in this region was relatively small, ranging from 0.41
to 6.54 m.

Only 18.11 % of the monitoring wells in the study area
had a Nash-Sutcliffe Efficiency (NSE) below 0.7 on the
test dataset, and these wells were primarily located in the
southern part of the western low plain (Fig. 3a). In this
region, the average absolute error between simulated and
observed daily groundwater level depth ranged from 0.04
to 2.93 m, although the maximum error reached as high as
11.56 m (Fig. 3c), indicating that the model exhibited certain
instability in localized areas. Figure 4 compares the simu-
lated and observed groundwater level depth series at several
poorly performing wells in this region. As shown in the fig-
ure, significant discrepancies occurred during certain peri-
ods, and the fitting performance was unsatisfactory. The pri-
mary reason for this discrepancy is the large annual fluctua-
tion in groundwater level depth at many wells in this region:
21.43 % of the monitoring wells had a fluctuation range ex-
ceeding 10 m. These extreme fluctuations posed challenges
for the LSTM model’s simulation accuracy. In the training
data used for the LSTM model, samples with extreme val-
ues of groundwater level depth were relatively scarce, while
samples with moderate values were more abundant. Conse-
quently, the model tended to fit the data in the moderate range
more accurately, resulting in limited predictive ability for the
extreme ends of the groundwater level series. Despite the
reduced accuracy at certain wells, the LSTM model is ca-
pable of accurately capturing the variation trend of ground-
water levels, and no significant lag is observed between the
simulated and observed values (Fig. 4). The Pearson correla-
tion coefficients between the simulated water levels and the
measured water levels at the four representative monitoring
points shown in the figure are 0.86, 0.81, 0.87, and 0.85, re-
spectively. Moreover, the correlation coefficients reach their
maximum values without applying any time lag, indicating
that the simulated values can effectively and promptly reflect
the actual variation trend of groundwater levels.

Overall, most of the groundwater monitoring points in the
Songnen Plain, China, showed NSE values greater than 0.7
on the test set, indicating a relatively high simulation ac-
curacy of the groundwater level depth based on the LSTM
model. This suggests that the network structure of the LSTM
model could accurately capture the dynamic relationships be-
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Figure 3. (a) Spatial distribution of the NSE values on the test set for 138 groundwater level monitoring points in the Songnen Plain,
China. (b–e) Maximum, minimum, and mean errors between simulated and observed groundwater levels at monitoring points in the western
piedmont sloping plain, western low plain, eastern high plain, and valley plain during the simulation period.

tween the air temperature, precipitation, extraction volume,
snow depth, and groundwater level.

3.2 Dynamic Characteristics of Regional Groundwater
Level and their Distribution Laws

3.2.1 Annual Dynamics Variations and Spatial
Distribution

Based on the characteristics of the annual groundwater level
dynamic curves in the Songnen Plain, China, the annual
groundwater level dynamics can be categorized into three
types (Fig. 5).

The monitoring wells located in areas with a shallow
groundwater level (less than 7 m) in the northern part of the
western low plain and valley plain (Fig. 5a) exhibited an-
nual groundwater level fluctuations of less than 4 m. Typi-
cally, the dynamic change in the groundwater level is as fol-
lows: during the dry season from January to April, precipi-
tation is almost zero, and the groundwater level depth is sig-
nificantly greater compared with those in the other months;
with the onset of the rainy season (May to August), precip-
itation increases, causing the groundwater level to rise; after
the rainy season ends (September to December), the ground-
water level depth gradually increases with decreasing precip-
itation (Fig. 5b). This dynamic type of the groundwater level
is the first annual dynamic type in the Songnen Plain, with its

corresponding monitoring wells accounting for 29.0 % of all
wells in the study area.

The monitoring wells located on Tableland, the Lasong
Block between rivers, and the eastern high plain (Fig. 5a)
have relatively greater groundwater level depths, ranging
from approximately 5 to 11 m. From January to May each
year, groundwater levels show a continuous decline; with
the increase in precipitation, the groundwater level begins to
gradually rise, reaching their annual peak in early October
(Fig. 5c). The timing of the groundwater peak is delayed by
1 to 2 months compared with the first dynamic type, indicat-
ing that the response of the groundwater level to precipitation
is slower (Fig. 5b and c). The annual groundwater level fluc-
tuation is within 5 m. This dynamic type is the second annual
dynamic type in the Songnen Plain, with its corresponding
monitoring wells accounting for only 18.1 % of all wells in
the study area.

In agricultural irrigation areas, such as the southern part
of the western low plain and the western piedmont sloping
plain (Fig. 5a), the groundwater level depth typically ranges
from 5 to 20 m. The dynamic curves of the groundwater level
in the aquifer monitoring wells in these areas exhibit distinct
periodicity, showing a funnel-like and sawtooth pattern. The
lowest groundwater levels typically occur in May or August,
while the highest level typically occurs in November or later
(Fig. 5d). During the irrigation season, groundwater levels
drop significantly, with annual fluctuations being generally
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Figure 4. Comparison of the simulated and observed groundwater level depths at typical points in the western low plain (NSE values on the
test set < 0.7).

within 15 m. This dynamic groundwater type is widely dis-
tributed in the study area, with its corresponding monitor-
ing wells accounting for 52.9 % of all wells, representing the
third annual dynamic type in the Songnen Plain.

3.2.2 Freeze–Thaw Period Dynamics Variations and
Spatial Distribution

Freeze–thaw processes increase the frequency of interactions
between soil water and groundwater (Daniel and Staricka,
2000; Lyu et al., 2022; Miao et al., 2017). As a typical sea-
sonally frozen soil region, the Songnen Plain, China, exhibits
three main forms of the dynamic curves of the groundwater
level during the freeze–thaw period: “decline during freez-
ing, rise during thawing,” “continuous decline,” and “con-

tinuous rise” (Fig. 6). The monitoring points of the differ-
ent dynamic types during the freeze–thaw period accounted
for 38.4 % (V-shaped), 23.2 % (continuous decline type) and
38.4 % (continuous rise type), respectively.

At monitoring points with a “V-shaped” groundwater level
dynamic curve, characterized by “decline during freezing,
rise during thawing” (Fig. 6a), the groundwater level fluc-
tuated by approximately 0.2–0.9 m during the freeze–thaw
period. The time when the groundwater level reached its
maximum depth roughly coincided with the time when the
soil reached its maximum frozen thickness. These monitor-
ing wells are primarily distributed in areas with a shallow
groundwater level in the northern part of the western low
plain and the valley plain, with a few located in the south-
ern part of the western low plain. At the beginning of the
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Figure 5. (a) Spatial distribution of different annual groundwater level dynamic types in the Songnen Plain, China; (b–d) Dynamic curves
of different annual groundwater types and their corresponding precipitation variations. (b) The first annual dynamic type is represented by
an unconfined aquifer monitoring well, numbered 230204210070, located in the western low plain; (c) The second annual dynamic type is
represented by an unconfined aquifer monitoring well, numbered 220182210411, located in the Lasong Block between rivers; (d) The third
annual dynamic type is represented by an unconfined aquifer monitoring well, numbered 220802210145, located in the western piedmont
sloping plain.

freezing period, groundwater level depths at these wells were
typically within 5 m (Fig. 6d).

For the continuous decline and continuous rise types, the
dynamic curves of the groundwater level during the freeze–
thaw period exhibited either a “continuous decline” or “con-
tinuous rise” (Fig. 6b and c), with the rate of change re-
maining consistent throughout both the freezing and thaw-
ing periods. Monitoring points with the continuous decline
in the groundwater level were mainly distributed in areas,
such as the eastern high plain and the Lasong Block between
rivers, where the groundwater level depth ranged from 4.52
to 11.51 m at the start of the freezing period (Fig. 6d). In con-
trast, monitoring wells with a continuous rise in the ground-
water level during the freeze–thaw period were mainly found
in agricultural irrigation areas such as the southern part of the
western low plain and the western piedmont sloping plain,
where the groundwater level depth at the beginning of the
freezing period ranged from 4.71 to 19.91 m (Fig. 6d).

3.3 Main Controlling Factors and Identification of
Causes for Various Groundwater Level Dynamic
Types

After the application of the EG method to the trained mod-
els for the 138 groundwater level simulations, the EG scores
(φEG
i ) were obtained for precipitation, air temperature, ex-

traction volume, and snow depth within 150 d prior to the
representative groundwater level values for each annual and
freeze–thaw period groundwater level dynamic type (Figs. 7
and 8).

3.3.1 Annual Dynamics: Influencing Factors and
Dynamics Mechanisms

Within 90 d before the representative groundwater level val-
ues, the average EG scores for the precipitation and air tem-
perature in the first annual dynamic type ranged from 0 to
0.04 and from 0 to 0.07, respectively, while the average EG
score for the extraction volume did not exceed 0.01 (Fig. 7a).
This indicates that the groundwater level depth in this dy-
namic type was significantly influenced by precipitation and
air temperature, while the effect of extraction was negligible.

Hydrol. Earth Syst. Sci., 30, 503–523, 2026 https://doi.org/10.5194/hess-30-503-2026



H. Li et al.: Revealing the causes of groundwater level dynamics in seasonally frozen soil zones 513

Figure 6. (a–c) Dynamic curves of different groundwater types during the freeze–thaw period and corresponding changes in air temperature;
(d) Spatial distribution of different groundwater level dynamic types during the freeze–thaw period in the Songnen Plain, China. The dynamic
curves of the groundwater level exhibiting patterns of (a) V-shaped, (b) continuous decline, and (c) continuous rise correspond to the
unconfined aquifer monitoring wells numbered 230204210070, 220182210411, and 220802210145, respectively.

Figure 7. EG scores (φEG
i

) of the precipitation, air temperature, and extraction volume for different annual groundwater level dynamic types
in the study area at different time steps.
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Figure 8. EG scores (φEG
i

) of the precipitation, air temperature, and snow depth for different groundwater level dynamic types during the
freeze–thaw period in the study area at different time steps.

Thus, the changes in the groundwater level depth may be
related to the precipitation infiltration–evaporation process.
When a pronounced precipitation peak occurred (Fig. 9b),
the EG score increased significantly (exceeding 0.15), cor-
responding to a rise in groundwater level (Fig. 9e), indicat-
ing that precipitation infiltration made a substantial contribu-
tion to the groundwater level increase. Within the 90 d when
precipitation influenced the representative groundwater level
value, a total precipitation of 408.09 mm led to an overall rise
in the groundwater level by 1.12 m (Fig. 9b and e). During
periods without precipitation, the air temperature continued
to rise (Fig. 9a), reflecting higher soil evaporation. At this
time, the EG score for the air temperature was also relatively
high (ranging from 0.10 to 0.20), and the groundwater level
showed a slight decline (Fig. 9e). This suggests that evap-
oration was the primary discharge mechanism for ground-
water in this dynamic type. Therefore, based on the ground-
water recharge and discharge mechanisms, the first annual
groundwater dynamic type is summarized as the precipita-
tion infiltration–evaporation type.

In contrast, in the second annual dynamic type, only the
precipitation had a significant impact on the groundwater
level depth within 90 d before the representative groundwater
level value (with the EG scores ranging from 0 to 0.03), while
the average EG scores for the air temperature and extraction
volume remained between 0 and 0.01 (Fig. 7b). Precipita-
tion almost consistently recharged the groundwater during
the 90 d before the representative groundwater level values
(with an average EG score of approximately 0.012), caus-
ing a gradual rise in the groundwater level (Fig. 9j). How-

ever, the rate of groundwater rise was relatively slow, with an
average value of approximately 0.02 m d−1. The air temper-
ature fluctuated significantly over the 90 d period (Fig. 9f),
ranging from 4.41 to 28.57 °C, but had no significant impact
on the groundwater level (Fig. 9j). The EG score during peri-
ods of high temperatures was also below 0.01, indicating that
evaporation had little effect on the groundwater level. There
was some groundwater extraction in local areas around July
and October (Fig. 9h); however, it had a minimal impact on
the groundwater level, with the EG scores remaining below
0.01. The relatively deep groundwater level (nearly 13 m)
suggests that this groundwater type was primarily discharged
through runoff. Therefore, the second annual groundwater
dynamic type was classified as the precipitation infiltration–
runoff type.

In the third annual dynamic type, the precipitation, air tem-
perature, and extraction volume had a significant impact on
groundwater level within a shorter period before the repre-
sentative groundwater level values (within 60 d), with the
average EG scores in the ranges of 0–0.08, 0–0.02, and 0–
0.02, respectively (Fig. 7c). This dynamic type is mainly dis-
tributed in agricultural irrigation areas, such as the southern
part of the western low plain and the western piedmont slop-
ing plain (Fig. 5a). The main crops in these areas are rice,
soybeans, and corn (You et al., 2021), and their water demand
is concentrated in the summer, particularly between June and
August (Xing et al., 2022). During this period, the air tem-
perature shows a fluctuating uptrend (Fig. 9k), with the EG
scores reaching a maximum of 0.02, indicating that high tem-
peratures increase soil evaporation and crop transpiration.
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This leads to a higher water demand from the crops; however,
the low rainfall was insufficient to meet this demand during
these periods (Fig. 9l, with a daily maximum precipitation
of only 33.80 mm), necessitating additional groundwater ex-
traction for irrigation to maintain crop growth (Fig. 9m). As
a result, the EG score for the extraction volume reached ap-
proximately 0.20 during this period, and groundwater level
decreased accordingly (Fig. 9o). This dynamic type indicates
that groundwater recharge comes from precipitation infiltra-
tion, and groundwater extraction is the main discharge mech-
anism. Thus, the third annual groundwater dynamic type was
classified as the extraction type.

3.3.2 Freeze–Thaw Dynamics: Influencing Factors and
Dynamics Mechanisms

A further analysis focused on the groundwater dynamic types
during the freeze–thaw period. In the V-shaped dynamic
type, the average EG scores for precipitation and snow depth
within 60 d before the representative groundwater level val-
ues ranged from 0 to 0.05, while the average EG score for the
air temperature within 30 d before the representative ground-
water level values ranged from 0 to 0.02 (Fig. 8a). This sug-
gests that the air temperature, precipitation, and snow depth
had a combined effect on the groundwater level depth of
the V-shaped dynamic type during the freeze–thaw period.
Within 30 d before the representative groundwater level val-
ues, the air temperature ranged from −21.10 to 4.40 °C,
with the overall temperature being below 0 °C (Fig. 10b).
As the air and soil temperatures dropped below 0 °C, the
effective soil porosity decreased significantly due to water
freezing, and the low-temperature suction related to the soil
water potential between ice and water in the frozen soil in-
creased gradually (Lyu et al., 2022). Under the combined
effect of the capillary force and low-temperature suction,
groundwater migrated upward continuously, thereby increas-
ing the groundwater level depth (Fig. 10e). During this pe-
riod, the snow depth increased with the decrease in temper-
ature, reaching a maximum value of 13.22 cm on 9 Febru-
ary 2020 (Fig. 10d). The maximum EG score for the snow
depth reached 0.03, indicating that snow had an impact on
the groundwater level depth during the freeze–thaw period.
When the air temperature exceeded 0 °C, the snow thawed
rapidly (Fig. 10d), and the snow and frozen soil thaw water
infiltrated to recharge the groundwater, causing the ground-
water level to rise for the first time (Fig. 10e).

For the continuously declining and continuously rising
dynamic types, only precipitation and snow depth affected
the groundwater level depth during the freeze–thaw period.
In the continuously declining groundwater dynamic type,
the precipitation and snow depth influenced the groundwa-
ter level depth over a longer period before the representative
groundwater level values (within 60 d), with the average EG
scores below 0.07 and 0.04, respectively (Fig. 8b). In the con-
tinuously rising groundwater dynamic type, the average EG

scores for the precipitation and snow depth within 30 d before
the representative groundwater level values ranged from 0 to
0.05 and from 0 to 0.07, respectively, indicating that precip-
itation and snow depth affected the groundwater level depth
in this dynamic type during the freeze–thaw period (Fig. 8c).
Compared with precipitation and snow depth, the impact of
the air temperature on the groundwater level in both dynamic
types was negligible (Fig. 8b and c), with the average EG
scores ranging from 0 to 0.01.

In both the freeze–thaw dynamic types, the air temperature
fluctuated significantly over the past 150 d (Fig. 10f and k),
whereas the EG scores remained below 0.01, indicating that
the freeze–thaw effects had no significant impact on ground-
water levels. Snow depth continued to increase during the
winter when the air temperature was below 0 °C (Fig. 10i
and n). When the air temperature rose above 0 °C, the snow
gradually thawed, and the meltwater had some recharging ef-
fect on groundwater levels (with maximum EG scores reach-
ing 0.04). However, due to the limited amount of snow and
the high groundwater levels, the impact of snowmelt on the
groundwater level was gradual and limited, failing to signif-
icantly alter the original trends in the continuously declining
or continuously rising groundwater levels (Fig. 10j and o).
Therefore, the causes of the continuously declining and con-
tinuously rising groundwater level dynamic types were re-
lated to the recovery process of the annual groundwater lev-
els.

3.4 Regional Distribution Characteristics of the
Dynamic Causes of Groundwater Level in the
Songnen Plain, China

Based on the dynamic variations and spatial distribution
characteristics of the groundwater levels in the study area,
groundwater monitoring points where the groundwater lev-
els dropped in the freezing period and rose in the thaw-
ing period, driven by soil freeze–thaw processes, typically
showed a precipitation infiltration-evaporation dynamic in
terms of the groundwater level dynamics during the year
(Figs. 5b and 6a). These points were mainly distributed in ar-
eas with shallow groundwater level depths, such as the north-
ern part of the western low plain and valley plain (Figs. 11a
and 12a). Groundwater level dynamics unaffected by soil
freeze–thaw processes generally showed two trends: contin-
uous decline or continuous rise (Fig. 6b and c). Monitoring
points with a continuous decline trend were mainly located
in areas with a significant groundwater level depth, such as
the eastern high plain and the Lasong Block between the
rivers, where the annual groundwater level dynamics showed
typical dynamic characteristics of precipitation infiltration–
runoff type (Fig. 5c). The monitoring points in agricultural
irrigation areas in the southern part of the western low plain
and the western piedmont sloping plain showed a continuous
rise in the groundwater level during the freeze–thaw period
(Fig. 12a), and the dynamic type of the groundwater level in
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Figure 9. Observed values and EG scores (φEG
i

) of the precipitation, air temperature, extraction volume, and snow depth within 150 d
before the representative groundwater level values for various annual groundwater level dynamic types, as well as the corresponding annual
groundwater level depth dynamic curves. The precipitation infiltration–evaporation type, precipitation infiltration–runoff type, and extraction
type are represented by monitoring wells 230204210072, 220183210399, and 220821210024, with representative groundwater level values
corresponding to 27 August 2019, 9 October 2019, and 2 August 2019, respectively.

Figure 10. Observed values and EG scores (φEG
i

) of the precipitation, air temperature, extraction volume, and snow depth within 150 d
before the representative groundwater level values for various groundwater level dynamic types during the freeze–thaw period, as well as the
corresponding annual groundwater level depth dynamic curves. The V-shaped, continuous decline, and continuous rise types are represented
by monitoring wells 220106210371, 220182210410, and 220821210024, respectively. The representative groundwater level corresponds to
19 February 2020.
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the year was mainly the extraction type (Fig. 5d). Therefore,
the “continuous decline” groundwater dynamic during the
freeze–thaw period was the recession phase of the ground-
water level after the flood season peak in the precipitation
infiltration–runoff-type groundwater, while the “continuous
rise” groundwater dynamic was the recovery phase of the
groundwater level after the extraction in the extraction-type
groundwater.

However, under the classification based on the freeze–
thaw period, the proportions of the V-shaped, continuous
decline, and continuous rise types accounted for 38.4 %,
23.2 %, and 38.4 % of all monitoring points, respectively.
These proportions did not completely align with the annual
classification of the precipitation infiltration–evaporation
(29.0 %), precipitation infiltration–runoff (18.1 %), and ex-
traction (52.9 %) types. This discrepancy can be partly at-
tributed to differences in the groundwater level depth. In
some extraction monitoring points, although the annual
groundwater level dynamics showed typical extraction char-
acteristics, because the groundwater level at these monitoring
points was shallow, the soil freezing and thawing processes
still had a significant impact on it, resulting in a V-shape wa-
ter level change at these points during the freeze–thaw pe-
riod. The presence of such monitoring points increased the
proportion of the V-shape type during the freeze–thaw pe-
riod, while reducing the proportion of the continuous-rise
type. Thus, the proportions of the freeze–thaw and annual
classifications were not entirely consistent, particularly in ar-
eas with a shallow groundwater level depth, where soil freez-
ing and thawing caused groundwater levels at some points of
the extraction type to exhibit V-shaped variations during the
freeze–thaw period.

In the northern part of the western low plain, where
groundwater level was shallow (less than 5 m), the pre-
dominant annual groundwater dynamic was the precipitation
infiltration-evaporation type (Fig. 11a). Due to the proximity
of the groundwater level to the surface, the groundwater lev-
els in these areas are more sensitive to meteorological factors.
The dynamic curves of the groundwater level show a charac-
teristic in that the high water level period corresponds to the
rainy season. Specifically, in the Songnen Plain, peak pre-
cipitation and groundwater level in this dynamic type occur
simultaneously, typically between July and August (Fig. 11d
and f). The annual variation in the groundwater level was
small, generally less than 4 m (Fig. 11c). During the freeze–
thaw period, the groundwater level dynamics in this type ex-
hibited a V-shaped pattern, with the groundwater level de-
clining during the freezing period and rising during the thaw-
ing period, with a fluctuation range of 0.2–0.9 m. However,
this V-shaped variation in the groundwater level is not ac-
cidental. At monitoring points with V-shaped dynamics, the
initial groundwater level depth and soil freezing depth at the
beginning of the freezing period were in the ranges of 0–5 m
(Fig. 12d) and 1.6–2.1 m (Fig. 12c), respectively. The soil
was predominantly silty clay, with a maximum capillary rise

height of up to 5 m (Rui, 2004). Therefore, the initial ground-
water level depth at these points was generally less than the
sum of the soil freezing depth and the maximum capillary
rise height (Fig. 12a). This means that during the freezing
period, the low-temperature suction caused by soil freezing
and the pre-existing capillary forces in the soil form a com-
plete hydraulic connection between the frozen layer and the
groundwater, causing the groundwater to continuously mi-
grate toward the freezing front during the freezing period.

Groundwater monitoring points exhibiting the precipita-
tion infiltration-runoff type were mainly distributed in the
eastern high plain and the Lasong Block between rivers. In
these areas, the groundwater level is deeper, typically rang-
ing from 5 to 12 m (Fig. 11b), and runoff is the primary
mode of groundwater discharge. The deeper groundwater
level prolongs the infiltration time of precipitation, result-
ing in a delayed response of the groundwater level dynam-
ics to precipitation recharge. Groundwater level peaks typi-
cally occur between August and October (Fig. 11d), lagging
behind the precipitation peak by approximately one month
(Fig. 11f). Due to the low recharge rate, groundwater level
fluctuations are relatively moderate, with annual variations
generally within 4 m (Fig. 11c). During the freeze–thaw pe-
riod, groundwater monitoring points with continuously de-
clining trends have greater initial groundwater level depths,
ranging from 4.52 to 11.51 m at the beginning of the freez-
ing period (Fig. 12d). This feature is primarily caused by the
groundwater level rebound following the cessation of extrac-
tion after the irrigation period. With the cessation of agri-
cultural water withdrawal, the depression cone formed by
intensive extraction in the earlier stage begins to be replen-
ished, and the groundwater level subsequently rises slowly.
Due to the previously high extraction intensity and the rela-
tively deep groundwater table, the recovery process does not
occur instantaneously; instead, it is jointly constrained by the
delayed response of the groundwater system and the regional
recharge conditions. As a result, the groundwater level ex-
hibits a steady and sustained upward trend. In addition, the
soil freezing depth in this dynamic type was shallower (be-
tween 1.6 and 1.8 m), and the soil was still primarily silty
clay (Fig. 12b and c). The greater groundwater level depth
and shallower soil freezing depth prevented a complete hy-
draulic connection between the frozen soil and groundwa-
ter (Fig. 12a), resulting in the groundwater level being un-
affected by the soil freeze–thaw process. Therefore, under
conditions where no groundwater extraction occurs during
the freeze–thaw period and the groundwater level is not in-
fluenced by freeze–thaw processes, the groundwater system
continues the post-irrigation recovery process, presenting a
“sustained rising” groundwater level pattern.

In the agricultural irrigation areas of the southern part
of the western low plain and the western piedmont sloping
plain, the groundwater level depth corresponding to the ex-
traction types typically ranged from 5 to 20 m (Fig. 11b).
During the agricultural irrigation period, significant ground-
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water extraction led to a marked decline in the groundwa-
ter level (Fig. 11c). The low groundwater level period co-
incided with the peak extraction period, typically between
June and August (Fig. 11e and g). In areas with substantial
groundwater extraction, a groundwater depression cone had
already formed, with annual groundwater level fluctuations
reaching up to 15 m (Fig. 11c). During the freeze–thaw pe-
riod, the groundwater level dynamics exhibited a continuous
rising trend. In the southern part of the western low plain and
the western piedmont sloping plain, the initial groundwater
level depth at the beginning of the freezing period and the
soil freezing depth were in the ranges of 5–20 m (Fig. 12d)
and 1.6–1.8 m (Fig. 12c), respectively, with the soil primar-
ily comprising silty clay and sandy clay loam (with a maxi-
mum capillary rise height of 3 m) (Fig. 12b). In this region,
the initial groundwater level depth was generally greater than
the sum of the soil freezing depth and the maximum capil-
lary rise height, causing the hydraulic connection between
the vadose and saturated zones to be severed (Fig. 12a), and
the groundwater level was unaffected by the soil freeze–thaw
process.

4 Discussion

4.1 Implications of Groundwater Level Dynamics
Classification for Water Resources Management

This study identified three main types of annual ground-
water level dynamics in the Songnen Plain: the precipi-
tation infiltration–evaporation type (29.0 %), the precipita-
tion infiltration–runoff type (18.1 %), and the extraction type
(52.9 %). This classification helps to reveal in greater depth
the spatiotemporal distribution characteristics and response
patterns of regional groundwater dynamics. Xu et al. (2024)
demonstrated, based on random forest model analysis, that
precipitation is the primary source of recharge for shallow
groundwater in the Songnen Plain. This finding is consis-
tent with the identification of the precipitation infiltration–
type groundwater dynamics in this study, supporting the
regulatory role of natural processes in groundwater levels.
Meanwhile, Wu et al. (2025) reported that the significant
groundwater decline in Jilin Province is mainly due to over-
extraction for agricultural irrigation, particularly the large
water demand associated with extensive rice cultivation. This
observation echoes the finding that the extraction type ac-
counts for the largest proportion of groundwater dynamics
in this study, highlighting the substantial impact of human
pumping activities on groundwater resources. On this basis,
differentiated management strategies should be implemented
for different groundwater dynamics types: in areas domi-
nated by natural processes, ecological water requirements
should be safeguarded and precipitation resources should be
utilized comprehensively; in areas with significant human ex-
traction, pumping schemes should be optimized to prevent

ecological and social risks associated with excessive ground-
water level decline.

During the freezing–thawing period, groundwater level
dynamics are mainly divided into V-shaped type (38.4 %),
continuously declining type (23.2 %), and continuously ris-
ing type (38.4 %), reflecting different response patterns of
the groundwater system under the complex hydrological pro-
cesses in seasonally frozen soil areas. Previous studies have
indicated that soil freezing and thawing during the freezing–
thawing period have significant impacts on groundwater
recharge and discharge processes (e.g., Wang et al., 2023;
Xie et al., 2021). The classification method adopted in this
study, by identifying the overall dynamic characteristics dur-
ing the freezing–thawing period, provides a more compre-
hensive description of groundwater response patterns. This
classification not only facilitates accurate delineation of po-
tential recharge and deficit zones in spring but also pro-
vides a theoretical basis for formulating differentiated wa-
ter resources management strategies tailored to the freezing–
thawing cycle, thereby enhancing the capacity to regulate
groundwater dynamics in seasonally frozen soil areas.

4.2 A New Perspective on Identifying Groundwater
Level Dynamics Mechanisms

Previous studies on the causes of groundwater level dy-
namics have generally relied on two main approaches. The
first involves statistical methods such as trend analysis, cor-
relation regression, or principal component analysis com-
bined with the temporal variations of driving factors like
precipitation, temperature, and water usage to infer poten-
tial dominant controls (Sarkhel et al., 2024). The second
approach constructs numerical groundwater models or hy-
drogeological process-based models that quantify the in-
fluence of different drivers through parameter inversion,
based on known aquifer structures, boundary conditions, and
recharge-discharge processes (Petio et al., 2024). However,
these methods face significant limitations when applied at the
regional scale: statistical methods struggle to fully charac-
terize complex nonlinear responses with multiple time lags
and scales, while process-based models depend heavily on
high-precision hydrogeological parameters that are often un-
available in most regions, and their results are susceptible to
biases introduced by prior assumptions.

Differing from previous groundwater level dynamics re-
search, this study explores the dominant factors and their
mechanisms controlling various groundwater level changes
in the Songnen Plain from the perspective of extracting infor-
mation embedded within the LSTM model, thereby achiev-
ing a data-driven, bottom-up mechanism identification. This
approach relies solely on multi-source observational data
(precipitation, temperature, snow thickness, groundwater ex-
traction, etc.) and can reveal the spatial (across monitoring
wells) and temporal (intra-annual and seasonally frozen soil
periods) patterns of dominant factor effects without requiring
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Figure 11. (a) Spatial distribution of the ground surface elevation and three dynamic types of annual groundwater level (precipitation
infiltration-evaporation type, precipitation infiltration-runoff type, and extraction type) in Songnen Plain, China. The correlation between
the three dynamic types of annual groundwater level and (b) annual mean groundwater level depths, (c) annual water level fluctuations,
(d) months of peak water level and (e) months of water level trough. (f, g) Monthly distribution of the precipitation and extraction volume in
Songnen Plain, China in 2019, respectively. Each point in (b)–(e) represents a groundwater level monitoring point.

inaccessible hydrogeological data such as aquifer parame-
ters and recharge-discharge relationships. Compared to tradi-
tional process-based models, this method not only enhances
the feasibility and applicability of causative analysis but also
reduces biases stemming from prior assumptions, providing
a more realistic reflection of the groundwater system’s re-
sponse mechanisms (Jiang et al., 2022).

4.3 Limitations of existing models

A deep learning model was successfully developed in this
study to simulate the groundwater level in the seasonally
frozen ground regions of Northeast China, with 81.88 % of
the monitoring wells in the study area achieving an NSE
> 0.7 on the test set. A common issue with deep learning
models is that they are often considered black-box models,
making it difficult to interpret their internal decision-making
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Figure 12. (a) Spatial distribution of whether the groundwater level is affected by the soil freeze–thaw process and the three groundwater
level dynamic types during the freeze–thaw period (V-shaped, continuously declining, and continuously rising) in the Songnen Plain, China.
Correlations between the groundwater level dynamic types in the three freeze–thaw period and (b) maximum capillary rise height of the soil,
(c) the soil freezing depth, (d) the initial groundwater level depth at the start of the freezing period, and (e) maximum snow thickness. Each
point in (b)–(e) represents a groundwater monitoring well.

processes, which limits their credibility and interpretability
in practical applications (Gunning et al., 2019). In groundwa-
ter level simulation studies, this research is the first to apply
the EG method to quantify the importance of input factors in
simulating groundwater level during non-freezing and freez-
ing periods, revealing the driving forces behind groundwater
level dynamics in different seasons. The introduction of this
method offers a novel approach to understanding the ground-
water level dynamics in seasonally frozen regions.

We opted for a local modeling approach (i.e., training a
separate model for each groundwater monitoring well) rather
than a regional approach (training a single model with data
from multiple monitoring wells). This decision was based on
our goal to identify the contribution patterns of the input fac-
tors (precipitation, air temperature, extraction volume, and
snow depth) to groundwater level at the regional scale, in-
cluding the duration of their influence and the significance of
their impact. From a prediction standpoint, a regional model
might be more suitable for areas where data are scarce or
incomplete (Frame et al., 2022; Nearing et al., 2021), as it
can learn more general relationships between input and out-
put factors from historical data (Kratzert et al., 2019). How-
ever, regional models are associated with the issue of mul-
ticollinearity between static factors, and this issue must be
addressed. Collinear input factors may share a substantial
amount of information, making it difficult for the model to

accurately distinguish the independent influence of each in-
put factor on the output, leading to challenges in interpreting
the impact of inputs on the output. Therefore, using regional
models to explain the causes of groundwater level dynam-
ics in seasonally frozen regions could be more challenging
than using local models. Nevertheless, we acknowledge the
advantages of regional models. Future research could further
explore how to address the multicollinearity issues associ-
ated with static factors in regional models. In conclusion,
we successfully combined deep learning models with the EG
method to reveal the causes of groundwater level dynamics
in seasonally frozen regions.

5 Conclusions

Groundwater dynamics in seasonally frozen regions are com-
plex, influenced by both climate variability and human activ-
ities. Deep learning models require more sophisticated ar-
chitectures and broader input variables to improve simula-
tion accuracy, but this increases the difficulty of interpret-
ing their internal mechanisms. Therefore, this study applies
an interpretable deep learning approach to reveal the driv-
ing mechanisms behind groundwater level dynamics in sea-
sonally frozen soil regions. High-precision simulations of
groundwater levels at 138 monitoring points were conducted
using an LSTM model, and combined with the EG method,
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the main controlling factors and underlying mechanisms of
different types of water level changes were identified. The
main findings are as follows:

First, the LSTM model demonstrated high accuracy in
simulating groundwater level variations in seasonally frozen
areas, with NSE values on the test set ranging from 0.53
to 0.96, indicating its effectiveness in capturing complex
groundwater dynamics.

Second, by applying the EG method, three dominant intra-
annual groundwater dynamic types in the Songnen Plain of
China were identified: precipitation infiltration–evaporation
type (29.0 %), precipitation infiltration–runoff type (18.1 %),
and extraction type (52.9 %). Correspondingly, during the
freeze–thaw period, these types are reflected as V-shaped,
continuously declining, and continuously rising patterns, ac-
counting for 38.4 %, 23.2 %, and 38.4 % of the monitoring
wells, respectively.

Third, while all three intra-annual types are primarily
recharged by precipitation infiltration, their discharge path-
ways differ: evaporation, runoff, and groundwater extraction,
respectively. During the freeze–thaw period, changes in the
soil water potential gradient due to freezing and thawing lead
to interactions between soil water and groundwater, resulting
in the V-shaped variation. In contrast, the continuously ris-
ing and types declining reflect gradual water level changes
primarily driven by groundwater extraction and precipitation
recharge, without strong influence from freeze–thaw pro-
cesses. These dynamic types represent groundwater fluctu-
ations jointly driven by multiple factors across different tem-
poral scales.

The results demonstrate the great potential of the EG
method to bridge model accuracy and interpretability, offer-
ing a new perspective for analyzing complex hydrological
processes. Future research may incorporate more advanced
interpretability techniques to further enhance understanding
of deep learning models. The significance of deep learn-
ing lies not only in high-accuracy simulations, but also in
advancing the discovery of hydrological mechanisms. This
study provides new methodological support and theoretical
insights for groundwater resource management in seasonally
frozen soil regions.
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V., and Szűcs, P.: Assessment of groundwater level fluctuation
using integrated trend analysis approaches in the Kapran sub-
basin, North East of Iraq, Groundw. Sustain. Dev., 26, 101292,
https://doi.org/10.1016/j.gsd.2024.101292, 2024.

Singh, A., Nath Panda, S., Flugel, W.-A., and Krause, P.: Waterlog-
ging and farmland salinisation: causes and remedial measures in
an irrigated semi-arid region of India, Irrig. Drain., 61, 357–365,
https://doi.org/10.1002/ird.651, 2012.

Sturmfels, P., Lundberg, S., and Lee, S.-I.: Visualizing the
impact of feature attribution baselines, Distill, 5, e22,
https://doi.org/10.23915/distill.00022, 2020.

Sundararajan, M., Taly, A., and Yan, Q. Q.: Axiomatic Attribu-
tion for Deep Networks, in: Proceedings of Machine Learning
Research, Vol. 70, 34th International Conference on Machine
Learning, Sydney, Australia, 6–11 August 2017, 2017.

Wang, J., Ouyang, W., Liu, X., and Wang, L.: Monitor-
ing hydrological changes with satellite data: Spring
thaw’s effect on soil moisture and groundwater in sea-
sonal freezing-thawing zones, J. Hydrol., 626, 130365,
https://doi.org/10.1016/j.jhydrol.2023.130365, 2023.

Wang, S., Peng, H., and Liang, S.: Prediction of
estuarine water quality using interpretable ma-
chine learning approach, J. Hydrol., 605, 127320,
https://doi.org/10.1016/j.jhydrol.2021.127320, 2022.

Wang, T., Li, P., Li, Z. B., Hou, J. M., Xiao, L., Ren, Z. P., Xu,
G. C., Yu, K. X., and Su, Y. Y.: The effects of freeze–thaw
process on soil water migration in dam and slope farmland on
the Loess Plateau, China, Sci. Total Environ., 666, 721–730,
https://doi.org/10.1016/j.scitotenv.2019.02.284, 2019.

Wu, C., Zhang, X., Wang, W., Lu, C., Zhang, Y., Qin, W., Tick,
G. R., Liu, B., and Shu, L.: Groundwater level modeling frame-
work by combining the wavelet transform with a long short-term
memory data-driven model, Sci. Total Environ., 783, 146948,
https://doi.org/10.1016/j.scitotenv.2021.146948, 2021.

Wu, H., Ye, X., Du, X., Wang, W., Li, H., and Dong, W.: Assessing
groundwater level variability in response to climate change: A
case study of large plain areas, J. Hydrol. Reg. Stud., 57, 102180,
https://doi.org/10.1016/j.ejrh.2025.102180, 2025.

Wu, T., Li, H., and Lyu, H.: Effect of freeze–thaw pro-
cess on heat transfer and water migration between soil
water and groundwater, J. Hydrol., 617, Part B, 128987,
https://doi.org/10.1016/j.jhydrol.2022.128987, 2023.

Xie, H.-Y., Jiang, X.-W., Tan, S.-C., Wan, L., Wang, X.-S., Liang,
S.-H., and Zeng, Y.: Interaction of soil water and groundwa-
ter during the freezing–thawing cycle: field observations and
numerical modeling, Hydrol. Earth Syst. Sci., 25, 4243–4257,
https://doi.org/10.5194/hess-25-4243-2021, 2021.

Xing, Z., Yu, Y., Li, F., Wang, L., Fu, Q., and Wang, H.: Change
trend and key influencing factors identification of main crops wa-
ter demand in Jiansanjiang, Trans. Chin. Soc. Agric. Mach., 53,
308–315, https://doi.org/10.6041/j.issn.1000-1298.2022.07.033,
2022.

Xu, L., Cui, X., Bian, J., Wang, Y., and Wu, J.: Dynamic change
and driving response of shallow groundwater level based on ran-
dom forest in southwest Songnen Plain, J. Hydrol. Reg. Stud.,
53, 101800, https://doi.org/10.1016/j.ejrh.2024.101800, 2024.

Yang, X.: Application of the conceptualization groundwater data
model to study the Upper Arkansas River corridor, Western
Kansas, J. Earth Sci., 23, 77–87, https://doi.org/10.1007/s12583-
012-0234-9, 2012.

Yi, C., Huang, R., Xu, J., Xing, J., and Yi, D.: Dynamic re-
sponse characteristics of shallow groundwater level to hydro-
meteorological factors and well irrigation water withdrawals un-
der different conditions of groundwater buried depth, Water, 14,
3937, https://doi.org/10.3390/w14233937, 2022.

You, N., Dong, J., Huang, J., Du, G., Zhang, G., He, Y.,
Yang, T., Di, Y., and Xiao, X.: The 10-m crop type maps
in Northeast China during 2017–2019, Sci. Data, 8, 41,
https://doi.org/10.1038/s41597-021-00827-9, 2021.

Zhang, J., Zhu, Y., Zhang, X., Ye, M., and Yang, J.: Developing a
Long Short-Term Memory (LSTM) based model for predicting
water table depth in agricultural areas, J. Hydrol., 561, 918–929,
https://doi.org/10.1016/j.jhydrol.2018.04.065, 2018.

Zhao, H. Q., Li, H., Lyu, H., Pang, B., Su, X., Dong, W., Wan, Y.,
Song, T., and Shen, X.: Investigation and evaluation of ground-
water resources and their environmental problems in the Song-
nen Plain, Geological Publishing House, Beijing, China, 270 pp.,
ISBN 978-7-116-06095-1, 2009.

Zhou, R. and Zhang, Y.: Predicting and explaining karst spring dis-
solved oxygen using interpretable deep learning approach, Hy-
drol. Process., 37, e14948, https://doi.org/10.1002/hyp.14948,
2023.

https://doi.org/10.5194/hess-30-503-2026 Hydrol. Earth Syst. Sci., 30, 503–523, 2026

https://doi.org/10.1016/j.advwatres.2020.103595
https://doi.org/10.1016/j.jhydrol.2018.12.037
https://doi.org/10.1016/j.gsd.2024.101292
https://doi.org/10.1002/ird.651
https://doi.org/10.23915/distill.00022
https://doi.org/10.1016/j.jhydrol.2023.130365
https://doi.org/10.1016/j.jhydrol.2021.127320
https://doi.org/10.1016/j.scitotenv.2019.02.284
https://doi.org/10.1016/j.scitotenv.2021.146948
https://doi.org/10.1016/j.ejrh.2025.102180
https://doi.org/10.1016/j.jhydrol.2022.128987
https://doi.org/10.5194/hess-25-4243-2021
https://doi.org/10.6041/j.issn.1000-1298.2022.07.033
https://doi.org/10.1016/j.ejrh.2024.101800
https://doi.org/10.1007/s12583-012-0234-9
https://doi.org/10.1007/s12583-012-0234-9
https://doi.org/10.3390/w14233937
https://doi.org/10.1038/s41597-021-00827-9
https://doi.org/10.1016/j.jhydrol.2018.04.065
https://doi.org/10.1002/hyp.14948

	Abstract
	Introduction
	Data and methodology
	Study area
	Dataset and selection of representative groundwater level values
	Research methods
	LSTM model
	Model interpretations
	Evaluation metrics


	Results
	Simulation Accuracy of Deep Learning Model for Groundwater Level
	Dynamic Characteristics of Regional Groundwater Level and their Distribution Laws
	Annual Dynamics Variations and Spatial Distribution
	Freeze–Thaw Period Dynamics Variations and Spatial Distribution

	Main Controlling Factors and Identification of Causes for Various Groundwater Level Dynamic Types
	Annual Dynamics: Influencing Factors and Dynamics Mechanisms
	Freeze–Thaw Dynamics: Influencing Factors and Dynamics Mechanisms

	Regional Distribution Characteristics of the Dynamic Causes of Groundwater Level in the Songnen Plain, China

	Discussion
	Implications of Groundwater Level Dynamics Classification for Water Resources Management
	A New Perspective on Identifying Groundwater Level Dynamics Mechanisms
	Limitations of existing models

	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

