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Abstract. Floods are a recurring global threat, causing lives
lost, property damage, and agricultural impacts. Accurate
and timely flood inundation forecasts are crucial for effective
disaster preparedness and mitigation. However, traditional
flood forecasting methods often face challenges in terms of
computational demands and data requirements, particularly
when applied to large geographic areas. This study presents
a novel approach to scaling a data-driven flood forecast-
ing framework, Forecasting Inundation Extents using REOF
(Rotated Empirical Orthogonal Function) (FIER), to large
geographic regions. FIER leverages historical satellite im-
agery and streamflow data to predict flood inundation ex-
tents offering a solution in regions typically considered data-
scarce for traditional hydrodynamic modelling (i.e., lacking
detailed bathymetry and friction coefficients information).
We demonstrate the effectiveness of applying FIER over a
large geographic extent using watershed boundaries to cre-
ate individual FIER models and then mosaicking the results
geographically to provide large flood inundation predictions.
The Upper Mississippi Alluvial Plain in the United States
was used as a test region. We evaluated multiple buffer sizes,
ranging from 0–50 km, for watersheds for generating the
data-driven FIER models to reduce edge effects along water-
shed boundaries when mosaicking the individual FIER im-
plementations. The FIER method using watersheds, coupled
with different forecast lead times from the National Water
Model operational streamflow forecasts, was used to accu-
rately predict the extent of surface water for select flood and

low flow use cases. Our results show that the scaled FIER
approach using watersheds yields higher accuracies for dif-
ferent error metrics, including the Structural Similarity Index
Measure (SSIM), RMSE, and MAE. We found that scaling
FIER using a watershed approach yielded statistically signif-
icant better performance compared to the baseline area using
the Kolmogorov–Smirnov test: this is particularly true when
using buffer sizes for the watersheds of 0–10 km and when
applying a cumulative distribution function (CDF) match-
ing post-processing correction to the FIER outputs. This ap-
proach offers a promising solution for large-scale flood fore-
casting, particularly in data-scarce regions where data re-
quired for traditional hydrodynamic modelling is lacking or
ungauged basins. Future research will focus on refining the
framework to incorporate additional hydrological variables
and improve the accuracy of long-range flood inundation pre-
dictions.

1 Introduction

Natural disasters, with flooding the most prevalent, are es-
timated to cause over USD 300 billion in annual direct asset
losses globally (Hallegatte et al., 2017). A recent study by the
World Bank suggests that 1.47 billion people, or 19 percent
of the world population, are directly exposed to substantial
risks during 1-in-100 year flood events. Of these 1.47 bil-
lion people exposed to flood risk, 89 percent live in low- and
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middle-income countries (Rentschler et al., 2022). Climate
change projections for 2030 indicate that the proportion of
the population exposed to floods will increase (Tellman et al.,
2021). Since 1980, 42 riverine and urban flooding events in
the United States have cost a total of USD 197.2B (on aver-
age USD 4.4B per year) (Smith, 2020). Research has found
that flood exposure and damages in the US could also be ex-
acerbated in the future due to anthropogenic climate change,
population growth, and urban development (Tate et al., 2021;
Wing et al., 2022). Accurate and timely forecasts that cap-
ture the spatiotemporal evolution of flood inundations with
sufficient lead time for actions are crucial for mitigating the
devastating impacts of floods on communities and infrastruc-
ture.

Hydrodynamic modeling is a widely used method for sim-
ulating the spatiotemporal behavior of flood inundation by
creating inundation maps computed from modeled stream-
flow from hydrologic models (Teng et al., 2017). Model-
ing of streamflow using hydrologic models requires accu-
rate forcing data, parameterization, and calibration which
can lead to inherit errors in the predicted streamflow outputs
(Renard et al., 2010). Furthermore, hydrodynamic models
are highly sensitive to inputs, including the streamflow, the
boundary and initial conditions, the digital elevation model
(DEM) used, and friction coefficients, all of which are dif-
ficult to obtain and have associated variation and uncer-
tainty. These uncertainties in hydrodynamic model calibra-
tion and data inputs significantly influence the uncertainty
of flood inundation predictions (Bates et al., 2014; Teng
et al., 2017) with the inundation extent estimates most sen-
sitive to topography and friction coefficients (Yalcin, 2020).
Hydrodynamic models carry a heavy computational burden,
especially for a more accurate high-resolution large-scale
forecasting framework, that could affect forecast lead-time
and accuracy (Ben-Haim et al., 2019). While continental-
scale hydrodynamic models such as LISFLOOD-FP (Samp-
son et al., 2012), CaMa-Flood (Yamazaki et al., 2011), or
HyMAP (Getirana et al., 2012) are more computationally
efficient and have been successfully implemented at large
scale, they are typically run as “offline” models or are set
up to run at a coarse resolution (1–25 km resolution) which
limits the use for operational flood inundation purposes at
the local level. Even these more efficient models still require
detailed parameterization, which can introduce errors, mak-
ing them impractical in some cases due to data requirements,
uncertainty, and complexity.

An area of active research in flood forecasting leverages
advancements in Earth observations and machine learning to
enhance prediction accuracy and provide spatially explicit in-
undation information. Data-driven approaches are being ex-
plored to establish relationships between rainfall forecasts,
satellite-observed inundation patterns, and other hydrome-
teorological variables, enabling more efficient and poten-
tially accurate flood extent predictions. For example, a re-
cent study published methods for forecasting inundation ex-

tent using Earth observation data, such as rainfall forecasts
with machine learning approaches to estimate water frac-
tion (Du et al., 2021). Another example that uses machine
learning to estimate flood inundation extent is the Google
Flood Forecasting system (Nevo et al., 2022), which trains
a per-pixel thresholding algorithm on historical satellite ob-
servations of flooding using simulated streamflow as inputs.
These research efforts integrating historical satellite data,
machine learning algorithms, and hydrologic variables high-
light a promising avenue for developing robust flood fore-
casting systems.

A promising data-driven framework for predicting surface
water extents using satellite and hydrologic data is the Fore-
casting Inundation Extents using Rotated Empirical Orthog-
onal Function (FIER) framework (Chang et al., 2020). This
framework operates by extracting historical patterns to iden-
tify recurring spatial and temporal patterns of flooding using
a statistical technique called Rotated Empirical Orthogonal
Function (REOF) analysis (Kaiser, 1958). Then these flood
patterns are then correlated with historical hydrological data
(e.g., streamflow, water levels) to build regression models.
Using simulated (retrospective or forecast) hydrological data
as input, FIER synthesizes corresponding flood maps. FIER
allows user to simulate inundation maps without the need
to develop and calibrate a complex hydrologic and hydro-
dynamic model from scratch, instead utilizing existing, of-
ten operational, streamflow forecasts. The main advantages
of this framework are its computational efficiency, scalabil-
ity, and ability to operate in data-scarce regions. While re-
lying on existing modelled streamflow from operation sys-
tems can be advantageous, users also inherit the errors from
operational model outputs which can lead to some perfor-
mance degradation in the outputs. To date FIER implemen-
tations are typically trained on and applied to specific re-
gions, limiting their applicability to broader areas. Hydrolog-
ical regimes, topography, and flood characteristics vary sig-
nificantly across different geographical locations, requiring
regionally tailored implementations for accurate predictions.
This is due to FIER being a data driven method meaning that
the method is dependent on the data inputs and the patterns
it can extract from the data. FIER has been applied to the
Mekong Delta (Chang et al., 2023) and small regions in the
US (Rostami, et al., 2024) but it is unknown how the method
will perform when attempting to develop the model for very
large areas (e.g., all of the Mississippi basin) when there may
be varying patterns of floods. Moreover, there is a computa-
tional challenge as the nature of developing the flood patterns
requires loading data in memory for processing so applying
FIER over large areas can be a challenge. Expanding the spa-
tial coverage of FIER is crucial for the applicability of the
method for an operational product over large areas.

This paper explores the feasibility of applying FIER in a
manner that creates a consistent inundation forecast for both
flooding and low-flow cases for large areas making the meth-
ods applicable for operational use. We apply FIER for mul-
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tiple watersheds across a large area and test combining them
to create a seamless surface water predictions. The results
of the method are compared against a baseline implementa-
tion of FIER for a single area to compare how the combi-
nation for large area simulation compares to the traditional
methods. The technical implementation and statistical val-
idation are described. Furthermore, we provided additional
analysis to highlight the method’s capability to provide ac-
curate flood forecasts. This approach has the potential to be
highly beneficial for operational flood forecasting and can
contribute to more effective decision-making in the events
of floods. By enabling the application of FIER to large river
basins with diverse hydrologic characteristics, this research
paves the way for developing robust, computationally effi-
cient inundation forecasting systems worldwide, particularly
in data-scarce regions where traditional hydrodynamic mod-
els are often infeasible.

2 Details on the FIER framework

The FIER framework offers a novel approach to flood inun-
dation forecasting, leveraging a data-driven method to pro-
duce spatial flood inundation estimates without the complex-
ities and computational needs of traditional hydrodynamic
models such detailed data, parameterization, and calibra-
tion for successful implementation. While FIER involves its
own data processing and model fitting steps, the framework
shared as an open-source Python package is designed to be
accessible. At its core, FIER establishes a statistical relation-
ship between historical flood patterns, derived from satel-
lite imagery, and corresponding hydrological data, typically
streamflow or water levels. This relationship is then used to
predict historical and future flood extents based on modeled
hydrological conditions.

The FIER process begins by applying Empirical Orthog-
onal Functions (EOF) (Lorenz, 1956) to a multi-temporal
stack of satellite images that capture historical flood events.
EOF, a variant of Principal Component Analysis (PCA), de-
composes the spatiotemporal variability of the images into
a set of orthogonal spatial patterns, and their correspond-
ing temporal variations. The original images can be recon-
structed by weighted combinations of these components. In
many cases the signal from any individual component may
not be significantly different from random noise, therefore a
Monte Carlo significance test (Hannachi, 2004) is performed
to identify the significant components. The extracted signif-
icant components that are retained represent truncated infor-
mation. In some fields physical meaning can be assigned to
components, but the extracted significant components may
not contain isolated signals, meaning individual components
are hard to interpret as physical processes (Dommenget and
Latif, 2002), therefore a rotation is applied, in this case the
varimax rotation, which changes the orientation of the factors
without altering their fit to the data to obtain simple struc-

tures. This makes it easier to physically interpret the inun-
dation patterns in the components. The process of rotating
the EOF is known as Rotated Empirical Orthogonal Function
(REOF) analysis. The resulting spatial patterns are termed
Rotated Spatial Modes (RSMs) whereas their correspond-
ing temporal variations are called Rotated Temporal Princi-
pal Components (RTPCs). Each RSM represents a distinct
spatial pattern, while its associated RTPC describes how that
pattern evolves over time. Next, a correlation analysis is per-
formed that identifies the RTPCs that are significantly corre-
lated with the hydrological data, representing flood-relevant
modes. Regression models are then built to link these flood-
relevant RTPCs to the corresponding hydrological variable.
These regression models can consist of using generalized lin-
ear models (Chang et al., 2020) or more sophisticated ma-
chine learning/deep learning approaches (Chang et al., 2023).
To forecast flood inundation, forecasted hydrological data are
used as the input into the trained regression models to predict
future RTPCs. These predicted RTPCs are then multiplied by
their corresponding RSMs and summed to synthesize a fore-
casted flood signal (essentially a reverse PCA), which can be
further processed to generate a map of predicted flood extent.
Figure 1 displays a flowchart schematic which summarizes
the FIER process, readers are directed to (Chang et al., 2020,
2023) for additional details on the FIER process.

Scaling the FIER approach to larger geographic extents
presents several challenges. One key limitation is the dimin-
ishing signal of floods as the area of analysis increases. FIER
relies on identifying recurring spatial patterns of flooding
from satellite imagery. As the area expands, these patterns
become less distinct and more challenging to extract, partic-
ularly in regions with diverse hydrological regimes or where
flooding is not widespread. This can lead to reduced accuracy
and difficulty in establishing robust relationships between
flood patterns and hydrological variables because the REOF
process may extract other signals occurring on the land sur-
face.

Additionally, computational challenges arise when pro-
cessing large volumes of satellite data and performing REOF
analysis over extensive areas. The FIER training implemen-
tation requires significant computational resources and pro-
cessing time when applied to large areas at regional to
continental scales. However, applying predictions using the
framework are relatively fast. For example, applying the
REOF process part of the FIER training over large areas re-
quires reading in an entire time series of satellite imagery into
memory and applying the PCA and REOF process over mas-
sive arrays. This challenge limits its applicability to select
organizations with such computational resources and hinders
its operational feasibility due to computational needs and
runtime. These limitations necessitate exploring alternative
approaches, such as the proposed watershed-based scaling
method, to overcome the diminishing flood signal and com-
putational bottlenecks associated with scaling FIER to larger
geographic extents.
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Figure 1. Schematic of the FIER workflow. Adapted from Rostami et al. (2024).

3 Materials and methods

3.1 Study area

This study focuses on a flood plain as part of the lower Mis-
sissippi basin, more specifically the region extending from
approximately St. Louis, Missouri past Memphis, Tennessee.
This region was selected because it is characterized by exten-
sive floodplains along the Mississippi River and complex net-
work of tributaries which experience flooding and droughts.
The primary inflows to this segment of the Mississippi are
from its own upstream reaches and major tributaries like the
Missouri River (joining upstream of the study area near St.
Louis) and the Ohio River (joining near the downstream end
of our baseline area at Cairo, Illinois). The Cumberland and
Tennessee Rivers are major tributaries to the Ohio, contribut-
ing significant volume to the system. Furthermore, there are
reservoirs, namely the Kentucky Lake, Lake Barkley, and
Pickwick Lake on the eastern side, Rend Lake in the north,
and Sardis Lake to the south within the region which are
used for hydropower generation and to regulate flow into the
Mississippi River to reduce flooding. Additional structures
along the study area include dikes and levees constructed by
The US Army Corps of Engineers for flood control (Wat-
son et al., 2013). The Mississippi River near the inflow of
the study area measured at the USGS gauge in St. Louis has

an average streamflow of 6197 m3 s−1 with a peak stream-
flow ranging from 29 166–101 940 m3 s−1 for years 2012–
2020. Flood events in the lower Mississippi area are primar-
ily triggered by rainfall and snowmelt. More recently, the re-
gion is experiencing a shift in climate leading to increases in
streamflow (Yin et al., 2023). In 2011 and 2019 there were
flooding events related to heavy precipitation and late spring
snowmelt (Gledhill et al., 2020) where the recent flood event
in 2019 was regarded as one of the longest lasting events in
the past century (Pal et al., 2020). Conversely to the reported
long-term climatic changes, the Mississippi River also ex-
periences significant droughts with the most recent record-
low water levels being recoded in 2022 and 2023, particu-
larly in the Memphis area. Droughts and the low water lev-
els are caused by a lack of precipitation in the Mississippi
River basin and extreme temperatures contributing to exces-
sive evapotranspiration (Muñoz et al., 2023). All these fac-
tors lead to a complex hydrology for the region making it an
ideal candidate for testing the scalability of the FIER method.

Figure 2 shows the study area along with historical av-
erage (2012–2020) surface water fraction derived from the
Visible Infrared Imaging Radiometer Suite (VIIRS) sensors.
The study uses two subsets of the broader region for test-
ing the methods: (1) a baseline region and (2) the watersheds
surrounding the baseline region (see details in Sect. 3.3 Ex-
perimental Design for further explanation on the two sub-
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regions). The baseline region is marked in red whereas the
watersheds are shown with the black outlines.

3.2 Data

The Visible Infrared Imaging Radiometer Suite (VIIRS) is
an optical sensor onboard the Suomi-NPP, NOAA-20, and
NOAA-21 satellites. The VIIRS sensors provide images with
a spatial resolution of 375 m across five spectral bands rang-
ing from visible to thermal infrared channels and has a swath
width of 3000 km with a consistent across-scan spatial res-
olution. These sensor characteristics ensure more compre-
hensive global daily coverage and make it more favorable
than the MODIS data for flood mapping (Li et al., 2020,
2022). The National Oceanic and Atmospheric Administra-
tion (NOAA) uses the VIIRS imagery from the three satel-
lites to produce an operational daily surface water fraction
estimate for the entire globe (Li et al., 2018). The VIIRS
water fraction product produced by NOAA was used to ex-
tract the spatiotemporal patterns of surface water and flood
changes using the FIER framework. These data were ac-
cessed from the AWS Registry of Open Data, specifically
the NOAA Joint Polar Satellite System (JPSS) cloud stor-
age bucket (https://registry.opendata.aws/noaa-jpss/, last ac-
cess: 4 May 2024). The data were ingested into Google Earth
Engine (Gorelick et al., 2017) as an ImageCollection. Earth
Engine was used to preprocess the VIIRS data and extract
data cubes in the format required for processing with FIER.
We used the full record of VIIRS water fraction maps for
the study, 20 January 2012–31 December 2023, however the
VIIRS water fraction data has a missing period from 1 Jan-
uary 2021–10 August 2023 that was excluded from the study.
While SAR imagery offers cloud penetration advantages and
has been used with FIER (Chang et al., 2023), VIIRS was
selected for this study due to its extensive and consistent
daily historical archive dating back to 2012, which is crucial
for extracting robust spatio-temporal patterns via REOF over
a long period and diverse hydrological conditions (Rostami
et al., 2024).

We used the National Water Model (NWM) streamflow
data as the hydrologic variable to predict the flood-relevant
temporal patterns with FIER. The NWM (Cosgrove et al.,
2024) is a hydrologic modeling framework developed by
NOAA at the National Water Center in Tuscaloosa, Alabama
that simulates streamflow data for over 2.7 million river
reaches across the United States along with other hydrologic
information such as snow water equivalent and soil moisture.
The NWM forecasts include two datasets, the retrospective
dataset which is a historical simulation from 1979–2023 and
the operational dataset which is run every day to produce op-
erational forecasts since late 2018. The operational dataset
includes a short-range 18-h deterministic forecast that pro-
vides flow estimates on an hourly time step, a medium-range
forecast with 10 d (member 1) and 8.5 d (members 2–6) with
a 3 h time step and a long-range 30 d four-member ensemble

forecast on a 6 h time step. The short-range forecast is initial-
ized every hour and the medium- and long-range forecasts
are initialized every 6 h. In addition to the forecast runs there
is also an analysis and assimilation run which is a nowcast
of current streamflow conditions that includes data assimila-
tion from streamflow gauges and a run with no data assimi-
lation. We used both NWM datasets in this study; the retro-
spective data version 3.0 were used to fit the FIER temporal
components to the historical simulated streamflow whereas
the operational products were used to predict flood extent
for select cases. The retrospective data was accessed through
the AWS Registry of Open Data from the NOAA National
Water Model CONUS Retrospective Dataset (https://registry.
opendata.aws/nwm-archive/, last access: 27 July 2024). The
operational data was accessed via the Google Cloud Public
Dataset on BigQuery (Markert et al., 2024b).

3.3 Experimental design

The experimental design for this study aims to evaluate
the effectiveness and accuracy of scaling the FIER method
across larger spatial extents. We tested two approaches: ap-
plying FIER to a singular baseline area encompassing a por-
tion of the study area, which is used as the control, and ap-
plying FIER to multiple watersheds individually before mo-
saicking the results together. The study area was subdivided
into 46 smaller watersheds using HUC8 watershed bound-
aries (see Fig. 4.2 for geographical representation of the wa-
tersheds). This comparison is meant to assess whether divid-
ing the region to run FIER individually and then mosaick-
ing together impacts the accuracy of the flood predictions.
The basins were selected by identifying watersheds that in-
tersected the baseline area using a 50 km buffer which is the
maximum buffer size tested. This insured that we could com-
pare the mosaicked outputs to the baseline area with every
watershed that would have data from the baseline area while
addressing the need to test applying FIER over larger areas.
Given that the FIER method is data-driven, the patterns it
can extract and the results of flood inundation are based on
the data inputs. This can cause edge effects along watershed
boundaries when mosaicking the individual FIER implemen-
tations. To mitigate potential edge effects and ensure smooth
transitions between mosaicked watershed predictions, vary-
ing buffer sizes (0, 1, 2, 5, 10, 20, and 50 km) were tested
when processing individual watersheds. The buffer sizes do
not represent any relationship to the watershed size and are
meant to represent a range from no buffer to a substantial one
to identify general trends in applying buffer sizes to reduce
FIER mosaicking edge effects.

The FIER framework requires that all pixels in a time-
series be present to use to extract patterns, therefore only
imagery with 99.9 % clear sky conditions, a threshold to re-
tain mostly clear scenes while allowing for minor imperfec-
tions in automated cloud masking. were used to limit the gaps
in space for the extracted spatial patterns. Water fractions
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Figure 2. Study area map showing the average surface water fraction derived from the VIIRS sensor from 2012–2020 along with two
subregions, the baseline region for FIER in red and the surrounding watersheds in black.

were predicted and evaluated using dates where the observed
imagery had a greater than 90 % clear sky conditions. The
dates used for training were not evaluated for performance
and used only to fit the FIER framework. This selection pro-
cess retained approximately 5.3 %–21.6 % of daily images
for training and 25.1 %–40 % for the evaluation dataset, vary-
ing by watershed due to cloud cover prevalence.

FIER predictions use truncated information from the
modes that are correlated with hydrologic variables, mean-
ing mathematically the predicted water fraction cannot main-
tain its original scale of 0 %–100 %. Other research (Rostami
et al., 2024) have applied a quantile mapping method to the
FIER predictions which restore the complete signal range as
much as possible. Quantile mapping is widely used in cli-
mate and hydrology studies to correct the biases in model-
estimated values (Enayati et al., 2020; Farmer et al., 2018).

The method matches the quantiles of Cumulative Distribu-
tion Functions (CDFs) from the predicted to the observed.
The CDFs were calculated for all FIER trials (baseline and
different buffers) using only the dates that were used for
training on a per-pixel basis. The quantile mapping post-
processing was applied for the prediction dates for all FIER
trials. The two versions of FIER outputs, the original FIER
predictions and post-processed predictions utilizing quantile
mapping, were evaluated. This allows for evaluating the im-
pact of post-processing on the accuracy of the mosaicked re-
sults compared to the baseline.

3.4 Statistical analysis

To effectively compare the different experiments with the
baseline, a statistical analysis was performed to understand
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and compare the accuracies as well as test if there are sta-
tistical differences between the experiments and baseline.
The accuracy assessment employs multiple metrics: Struc-
tural Similarity Index Measure (SSIM) (Wang et al., 2004)
to assess the spatial accuracy of flood extents, Root Mean
Square Error (RMSE) to quantify the accuracy of intensity
of flood predictions, Relative RMSE to assess the errors rel-
ative to the observed value, and lastly Mean Absolute Error
(MAE) as another statistical measure to quantify the accu-
racy of intensity of flood predictions (Jackson et al., 2019).

The SSIM metric is defined by Eq. (1):

SSIM(x,y)=
(2µxµy +C1)(2σxy +C2)(

µ2
x +µ

2
y +C1

)(
σ 2
x + σ

2
y +C2

) , (1)

Where µx is the pixel sample mean of x, µy is the pixel sam-
ple mean of y, σ 2

x is the variance of x, σ 2
y the variance of

y, σxy is the covariance of x and y, x is the test image, y is
the reference image, c1 = (k1L)

2, c2 = (k2L)
2 two variables

to stabilize the division with weak denominator, L is the dy-
namic range of the pixel-values (in this case 100 to represent
the range of water fraction), k1 = 0.01 and k2 = 0.03 by de-
fault. The SSIM index is calculated on various windows of an
image, in this case we used an 11× 11 Gaussian kernel for
the calculation, and then averaged across the image to get the
final SSIM metric. The SSIM has a range of −1 to 1 where 1
indicates perfect similarity, 0 indicates no similarity, and -1
indicates perfect anti-correlation.

The RMSE metric is calculated using Eq. (2):

RMSE=

√√√√1
n

n∑
i

(xi − yi)
2 , (2)

Where xi are the observations, yi are the observed values,
and n is the number of observations.

The RRMSE metric is calculated using Eq. (3):

RRMSE=

√√√√ 1
n

∑n
i (xi − yi)

2

1
n

∑n
i (y

2
i )

, (3)

Lastly, the MAE is defined as Eq. (4):

MAE=
1
n

n∑
i

|xi − yi | , (4)

These error metrics were calculated for each pixel comparing
the predictions to the observed and then averaged across the
baseline area for each date of prediction. The baseline area
was used to calculate the metric averages to keep the area
consistent between the baseline and mosaicked results so that
the results can be compared without influence of different
areas.

The last statistical test used was the Kolmogorov–Smirnov
test (Massey, 1951) to statistically compare the distributions

of the evaluation metrics between the baseline and mosaicked
results for both original and post-processed FIER outputs.
This test compares whether two samples came from the same
distribution. The test was performed for each metric and for
every buffer size but keeping the baseline consistent. Lastly,
the one-sided test was used to identify whether a given error
metric was statistically greater than or less than the baseline.
For the SSIM metric we tested if the mosaicked predictions
are significantly greater than the baseline. For the other error
metrics (RSME, RRMSE, MAE) we tested if the mosaicked
predictions are significantly lower than the baseline.

3.5 Case studies

The statistical analysis described in the previous section was
done using retrospective NWM streamflow as inputs into
FIER, however, running FIER for actual flood extents will
involve using the operational NWM streamflow predictions.
Using case studies serves to provide an evaluation of using
the operational NWM for specific flood and low flow cases.
We selected the statistically best FIER experiment for run-
ning the use cases.

To identify dates to use as cases for the low flow ex-
ample, we selected a representative reach within the region
close to the center of the baseline region along the Missis-
sippi River. The streamflow data for the representative reach
was averaged by month. The months with the lowest stream-
flow for 2019 and 2020 was used to select two dates (one
from 2019 and one from 2020) as the low flow cases. These
years were selected because they included operational NWM
forecasts starting in late 2018 and overlap with available VI-
IRS imagery which had a substantial gap in data from 1 Jan-
uary 2021–10 August 2023. This process was done using the
NWM operational analysis and assimilation data. Figure 3
displays the hydrographs for the reach where the low flow
periods can be seen in 2019 and 2020. It should be noted that
while the Mississippi River has been reported that increase
in streamflow are expected due to long-term shifts in the cli-
mate Yin et al. (2023), the Mississippi River has experienced
droughts reported by recent research (Muñoz et al., 2023)
leading to the downward trend in streamflow.

For the high flows, there were fewer options to select
therefore a different approach was taken. We calculated the
return periods for floods based on the NWM retrospective
data for the representative reach within the region. We cal-
culated the return periods on data from 1980–2018 using the
Gumbel Type 1 distribution:

Qrp =− log
(
− log

(
1−

1
rp

))
× σ × 0.7797

×µ− (0.45× σ) ,
(5)

where Qrp is the return period flow, rp is the return period
in years, σ is the standard deviation of the dataset, and µ is
the average of the dataset. Next, we identified flood events
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Figure 3. Streamflow hydrograph from the National Water Model (NWM) for the representative reach showing (a) retrospective simulations
from 1980–2017 and (b) operational simulations from the analysis_assim run from 2018–2024. Horizontal lines indicate the 2, 5, 10, 25, and
50 year flood recurrence interval discharge values for the stream reach.

from the NWM operational analysis and assimilation dataset
from late 2018–2020 by comparing their peak flows to these
calculated return period thresholds. We used the NWM oper-
ational product to determine flood events for the case studies
because these are the data that would hypothetically be used
in actual situations for forecasting FIER. Another criterion
for selection was finding dates where the data were reserved
and not used for training the models but used for evaluation.
We selected a date that exceeded a 50 year return period in
2019 as well as a separate date that exceeded a 5 year return
period as flooding case studies to evaluate FIER predictions.
We selected these events in order to have an extreme flooding
event and a more common flooding case.

We ran FIER with streamflow data from a nowcast from
the analysis and assimilation, 7 d medium-range forecast, and
with a 15 d long-range forecast from the NWM to evaluate
how different forecast runs and time horizons affect the FIER
outputs. Since NWM produces sub-daily streamflow predic-
tions, we averaged the streamflow values for the prediction
date to use as inputs into FIER. For this initial scaling study
daily average streamflow values were used as inputs to FIER
to align with the daily VIIRS observation frequency and sim-
plify the analysis, however, since NWM provides sub-daily
streamflow the FIER predictions could be produced on a
sub-daily time step and is a potential area for future refine-
ment and operational use. The medium-range and long-range
NWM streamflow predictions have multiple ensemble runs,
so we averaged these across the different ensembles. Simi-
larly, while NWM forecasts include ensembles, these were
averaged for this study to provide a deterministic input to
FIER. Incorporating ensemble streamflow to generate prob-
abilistic inundation forecasts with FIER is a relevant avenue
for future work. The medium-range and long-range stream-
flow predictions have multiple initialization times; we used
the 00Z initialization for the forecasts to have a single fore-
cast when calculating the streamflow values for the FIER ex-

tent predictions. We used the same statistics to evaluate the
outputs from FIER for each of these use cases.

4 Results

4.1 Statistical analysis

The experimental design aimed to assess the feasibility of
applying the FIER method over larger geographic scales by
segmenting the area of interest (AOI) into multiple smaller
watersheds and then mosaicking the results together. An
analysis of the REOF process and regressions are provided
in Appendix A. Here we focus on comparing the results of
the mosaicked process to running FIER over a larger base-
line area. Figure 4 displays the average error metrics and how
they vary with buffer sizes. First, applying FIER to multi-
ple watersheds and then mosaicking the results does not lead
to poor statistical performance compared to running FIER
over the baseline AOI. When considering the original FIER
outputs (green lines), Fig. 4 shows that the performance of
the mosaicked results perform better than the baseline when
the buffer size is smaller (0–10 km). When the buffer size
is larger (20–50 km), the error metrics of the mosaicked re-
sults (green lines) trend more closely aligned with the base-
line (dashed green line). For the SSIM metric specifically,
the original mosaicked outputs at smaller buffer sizes (0–
10 km) are not substantially greater than the baseline SSIM.
For the RRMSE metric, the mosaicked results show higher
errors from the original FIER outputs (no correction applied)
compared to the baseline outputs but are closer to the base-
line for the 1 and 2 km buffer experiments. When considering
the post-processed outputs (blue lines), the mosaicked results
perform better than the baseline for all the error metrics ex-
cept for RRMSE. This is particularly notable for the SSIM
metric, indicating that the post-processing applied to the mo-
saicked outputs are able to better capture the spatial patterns
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of observed flood inundation more effectively than either the
baseline FIER output with post-processing or original out-
puts.

A noteworthy observation is the increase in error metric
values for the post-processed FIER outputs compared to the
original outputs, particularly noticeable in the RMSE and
RRMSE values (Fig. 4 blue lines compared to green lines
in graphs b and c). While there is also an increase in SSIM
outputs with post-processing (Fig. 4a), the increase in SSIM
shows improvement whereas an increase in RMSE/RRMSE
indicates worse performance. Interestingly, the RMSE for the
post-processed mosaicked results is much lower than that
of the post-processed baseline output (blue lines in graph
b). Moreover, this pattern of increasing error values is not
present for MAE (graph d). RMSE and RRMSE gives more
weight to larger errors, meaning these metrics are more sen-
sitive to outliers than MAE. The results suggest that the post-
processing reduces many smaller absolute errors but can in-
troduce or amplify a few larger errors, particularly if the dis-
tributions of predicted and observed values used for CDF
matching have significant differences in their tails or if the
underlying flood patterns are complex and not perfectly cap-
tured by the limited modes.

Limited research has been conducted on properly vali-
dating inundation map and the interpretation. Those studies
that have been published have focus on binary (water/no-
water) maps (e.g. Schumann, 2019; Landwehr et al., 2024).
Conversely, there are well-known metrics and guidance for
model for continuous variables from hydrologic simulations
(e.g. Moriasi et al., 2005) however the guidance does not di-
rectly map to evaluating output images of continuous val-
ues such as water fraction. Therefore, the error metrics cho-
sen and interpretation are based on important properties to
evaluate for inundation predictions (water fraction intensity
and spatial patterns) and to compare different configurations
without making universal claim of satisfactory outputs. De-
termining whether the outputs for a specific implementation
of FIER should be the role of the practitioner considering
their tolerance for specific errors.

The other statistical analysis we performed was to com-
pare the distributions of the errors. Figure 5 displays the CDF
for the various error metrics and compares the baseline FIER
predictions to the mosaicked FIER predictions with different
buffer sizes. The CDF plots show that the original outputs
(top row) have similar curve shapes aside from at the upper
quantiles (0.8–1) where the mosaicked results for SSIM met-
ric show more values with better performance compared to
the baseline (black line). Conversely, the RMSE, RRMSE,
and MAE curves show more values with greater errors com-
pared to the baseline. The plots displaying the post-processed
CDFs (bottom row) display a different pattern compared to
the original outputs. The SSIM curve for the mosaicked out-
puts displays better SSIM values compared to the baseline.
However, the RMSE, RRMSE, and MAE CDF plots show
that the post-processed mosaicked results have fewer values

with less error (better performance) compared to the base-
line for the lower quantiles (0–0.4) but have more values
with higher errors (worse performance) at the upper quan-
tiles (0.8–1) suggesting that the majority of errors for the
post-processed results are due to large discrepancies with the
observed. This supports the finding from comparing buffer
sizes (Fig. 4) where the averaged RMSE metric worsens af-
ter the correction. The larger number of high error values
can lead to higher RMSE and lower MAE errors because the
RMSE metric is more sensitive to outliers than MAE.

Table 1 provides the p values from one-sided
Kolmogorov–Smirnov tests, indicating whether the dis-
tributions from the various approaches are statistically
different. The p values from the Kolmogorov–Smirnov
test reveal that there are significant differences between
the baseline FIER and the mosaic approach across both
the various error metrics and buffer sizes. In general, the
buffer sizes of 20 and 50 km show that the mosaicked results
are not statistically better (higher SSIM or lower RMSE,
RRMSE, and MAE) than the baseline for the original
outputs. Furthermore, the mosaicked results for buffer sizes
of 0–10 km have significantly better performance only for
the SSIM and RMSE. While the mosaic outputs have values
less than the baseline for the MAE metric, this difference is
not significant. Additionally, the mosaicked outputs have a
higher RRMSE than the baseline.

For the corrected FIER outputs, all buffer sizes show sta-
tistically significant differences in SSIM compared to the
baseline with post-processing applied, indicating that by cor-
recting the mosaicked outputs, the results are better able to
capture the spatial distribution of flooding than using a sin-
gle FIER process for a larger AOI. Furthermore, mosaic out-
puts show significantly better performance compared to the
baseline AOI for the RMSE and MAE metrics. In partic-
ular, the p values show that the buffer sizes 0–10 km are
significantly less for RMSE, buffer size of 20 and 50 km
are not significantly better. Whereas buffer sizes 0–20 km
show statistically significant better performance compared
to the baseline AOI for MAE and the buffer size of 50 km
is not significant. While the RRMSE metric was lower than
the baseline for the corrected mosaicked results, the dif-
ferences for all buffer sizes was not significant. This high-
lights that while post-processing aligns the spatial distribu-
tion of the flood predictions from FIER, it does not elim-
inate the inherent differences in the magnitude and spread
of intensity-based errors between the two approaches. Over-
all, the Kolmogorov–Smirnov test results confirm that scal-
ing FIER by mosaicking smaller watersheds produces statis-
tically distinct error distributions. For the corrected outputs,
the buffer sizes of 0–10 km generally result in more accurate
predictions (higher SSIM, lower RMSE and MAE) compared
to the original baseline outputs, and also often outperform the
post-processed baseline outputs (as seen in Fig. 4).

These findings suggest that scaling the FIER method spa-
tially by mosaicking results from smaller watersheds is a
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Figure 4. Graphs illustrating the impact of varying buffer sizes on the performance of the FIER method for flood inundation mapping,
assessed using the areal average of four different metrics: (a) Structural Similarity Index Measure (SSIM), (b) Root Mean Squared Error
(RMSE), (c) Relative Root Mean Squared Error (RRMSE), and (d) Absolute Error. The green lines represent the original FIER outputs,
while the blue lines depict the corrected outputs after applying a CDF matching post-processing step. The dashed lines indicate the baseline
performance metrics obtained from applying FIER to a single, larger AOI.

Table 1. p values from one-sided Kolmogorov–Smirnov tests comparing the distributions of evaluation metrics for FIER predictions with
varying buffer sizes to the baseline FIER predictions. A lower p value indicates a statistically significant difference between the distributions.
Values denote significance at the 95 % level are denoted with an asterisk (*), while values at the 99 % level are denoted with double asterisks
(**).

Original Corrected

Buffer SSIM RMSE RRMSE MAE SSIM RMSE RRMSE MAE

0 0.0419* 0.0076** 0.9999 0.9878 0.0076** 0.0076** 0.6925 0.0076**
1 0.0241* 0.0074** 0.9813 0.1227 0.0074** 0.0025** 0.3697 0.0074**
2 0.0239* 0.0073** 0.9948 0.1865 0.0073** 0.0025** 0.3658 0.0073**
5 0.0234* 0.0072** 0.9973 0.1519 0.0072** 0.0044** 0.4869 0.0072**
10 0.0219* 0.0132* 1.0000 0.9826 0.0067** 0.0221** 0.6211 0.0089**
20 0.0876 0.1721 1.0000 0.9985 0.0064** 0.0648 0.6122 0.0749**
50 0.6267 0.2464 1.0000 0.9852 0.0121* 0.1276 0.4941 0.1087
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Figure 5. Cumulative distributions of different error metrics for the FIER spatial scaling experiments. The top row (a–d) shows the original
FIER outputs, while the bottom row (e–h) shows the outputs after applying CDF matching as post-processing. Different colors represent
varying buffer sizes used when delineating individual watersheds for the mosaicked FIER approach. The black line represents the baseline
FIER run over the larger area. The metrics include: (a, e) SSIM, (b, f) RMSE, (c, g) RRMSE, and (d, h) MAE.

viable approach based on the error metrics tested. The mo-
saicked approach consistently achieves comparable or better
spatial pattern accuracy (SSIM) than the baseline. Further-
more, CDF matching generally improves the SSIM of the
mosaicked results and can improve RMSE/MAE compared
to the original mosaicked outputs, leading to statistically sig-
nificant improvements over the baseline, particularly for 0–
10 km buffers. Furthermore, we found that the difference in
mosaicked results error metrics are statistically significant.
Larger buffer sizes (20 and 50 km) do not show consistent
improvements and may even lead to higher errors in some
cases. This suggests that excessive buffering can blur the
flood signal and reduce the accuracy of the predictions.

4.2 Case studies

We performed the statistical analysis to understand the over-
all errors associated with running FIER over larger geo-
graphic scales using retrospective NWM streamflow as in-
puts, however, running FIER for actual flood extents necessi-
tates using the operational NWM streamflow predictions for
forecast predictions. We selected two dates with flooding and
two dates with low flows then ran FIER for those time peri-
ods with only one buffer size to better understand how FIER
does for extreme cases using the NWM operational data.

We selected which buffer size to use for the case study
based on the statistical analysis that found a buffer size of 1
or 2 km for mosaicked FIER outputs seems to be the most
promising for operational use. While other buffer sizes show
improvements in either SSIM or RMSE, we selected the 1 km

buffer as it was found to strike a good balance between accu-
rately capturing both the spatial extent and intensity of flood-
ing when compared to the baseline. The corrected outputs
for the 1 km buffer generally demonstrate a better balance of
error metric results (SSIM, RMSE, MAE) when considering
overall performance improvements against the baseline and
the impact of correction, which suggests that the CDF match-
ing post-processing effectively reduces overall error in the
flood inundation estimates, even if RMSE itself might see a
slight increase for this specific buffer compared to its uncor-
rected version (Fig. 4b). While we selected the 1 km buffer
size over a 2 km buffer because the errors are slightly lower,
these differences are marginal.

Figure 6 displays the results for running the mosaicked
FIER process with the operational NWM predictions for the
selected flood dates. Examining the 25 February 2019 flood
event (top two rows), which exceeded the 50 year return pe-
riod, FIER demonstrates consistent performance across now-
cast, medium-range (7 d), and long-range (15 d) forecasts.
The second row is zoomed into the baseline area to highlight
more higher-resolution differences. Generally, it appears that
the predictions capture the spatial dynamics of the flood, but
the long-range prediction has a noticeably smaller extent than
the nowcast or medium-range predictions. The 15 February
2020 flood event (bottom two rows), exceeding a 5 year re-
turn period, shows similar results where the forecasts are able
to capture the extent of flooding, in this case, similar to the
2019 event’s longer lead times, the further the lead time for
prediction, the smaller the prediction of flood extents, sug-
gesting more uncertainty with longer range forecasts. In par-
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ticular, the long-range forecasts (Fig. 6, right column) also
reveal complex spatial differences compared to the medium-
range forecasts. For instance, while the overall extent might
shrink with lead time, some localized areas, particularly in
the eastern part of the region show decreased water fraction
for the tributaries may possibly reflecting spatial variations in
NWM forecast accuracy and its effects on the FIER outputs.
Appendix B provides additional figures highlighting differ-
ences maps of the different forecasts compared to the ob-
servation. Table 2 tabulates the error metrics for each sim-
ulation compared to the observation. While the long-range
forecast exhibits slightly lower RMSE compared to the now-
cast and medium-range for the 25 February 2019 flood event,
the differences are marginal, and all forecasts achieve SSIM
values above 0.57, indicating reasonable agreement with the
observed flood extent. This suggests that FIER can provide
reasonably consistent flood inundation predictions even with
extended lead times, allowing for proactive flood mitigation
measures.

The 15 February 2020 flood event, exceeding the 5 year
return period, showcases comparable performance across
forecasts horizons. The long-range forecast for this event
achieves the highest SSIM of 0.67 and lowest RMSE of 16.04
among its predictions, highlighting FIER’s potential for cap-
turing more frequent flood events with reasonable accuracy.
The nowcast for this event, however, shows a slight decrease
in performance compared to the forecasts. The degradation
in performance for the forecasts compared to the retrospec-
tive FIER simulations is likely due to the errors in the NWM
streamflow predictions over the extended lead times.

The evaluation of FIER performance during low flow pe-
riods, using operational NWM streamflow predictions and
the selected 1 km buffered and corrected configuration, re-
veals consistent and accurate results. Figure 7 displays the
results for running the mosaicked FIER process with the op-
erational NWM predictions for the selected low-flow dates.
Table 3 shows the resulting error statistics comparing the
FIER mosaicked predictions with the observation for the two
selected low-flow dates. For the 29 September 2019 low flow
event, FIER exhibits high SSIM values (above 0.73) across
all forecast ranges, indicating strong agreement with the ob-
served low flow conditions. The long-range (15 d) forecast
demonstrates the lowest RMSE (8.53), RRMSE (59.00 %),
and MAE (0.89), suggesting that FIER can effectively cap-
ture low flow dynamics especially with extended lead times.
This capability is particularly valuable for water resource
management applications, such as drought monitoring and
water allocation planning. Similarly, the 21 October 2020
low flow event shows consistent performance across all fore-
cast ranges, with SSIM values exceeding 0.73. Again, the
long-range forecast achieves the lowest RMSE (8.01) and
MAE (0.79), reinforcing the ability of FIER to accurately
predict low flow conditions with extended lead times. The vi-
sual comparison of the FIER-predicted water fraction maps
(Fig. 7) with the observed data further supports these find-

ings. The FIER outputs using the operational NWM stream-
flow outputs, while still capturing the general low flow pat-
terns, show some minor deviations such as on the eastern
side of the study regions for the 25 September 2019, likely
attributed to the inherent uncertainties in the model stream-
flow predictions.

These results highlight the potential of the scaled FIER
method for operational inundation prediction during low flow
and its ability to generate reliable and accurate predictions of
surface water extent during low-flow conditions,. This is im-
portant because an operational system should ideally perform
sensibly whether flows are high or low. The consistent perfor-
mance across different forecast ranges, coupled with the high
SSIM values and low error metrics, demonstrates the capabil-
ity of FIER to provide reliable and accurate low flow predic-
tions. This information, by providing spatially explicit maps
of surface water extent (e.g., surface water dynamics), can
be crucial for informing water management decisions, such
as simulating impacts due to dam constructions (Do et al.,
2025).

5 Discussion

5.1 Advantages and limitations of the watershed-based
approach

Scaling the FIER method to larger geographic extents neces-
sitates breaking the larger AOI into subunits. Hydrological
regimes, topography, and flood characteristics vary signifi-
cantly across different geographical locations, requiring re-
gionally tailored implementations for accurate predictions.
Furthermore, FIER is a data driven method meaning that
the method is dependent on the data inputs and the pat-
terns it can extract from the data. Using watersheds as the
fundamental unit offers several advantages. Primarily, water-
sheds inherently delineate areas with interconnected hydro-
logical regimes, ensuring that flood signals within each unit
are driven by a common set of forcing factors. This allows
for the development of regionally tailored FIER models that
better capture the unique flood characteristics of each wa-
tershed. Additionally, by dividing a large area into smaller
watersheds, the computational burden of FIER can be signif-
icantly reduced, facilitating parallel processing and enabling
the application over extensive regions where limitations of
computer resources can inhibit applying one FIER model.

Despite these advantages, the watershed-based approach
presents certain limitations. One challenge lies in the po-
tential for discontinuities at watershed boundaries when
mosaicking individual FIER predictions. Abrupt transitions
in predicted water fractions can arise due to variations in
model parameters or data availability across watersheds. We
showed that implementing the buffered approach around
each watershed during the FIER fitting process allows for
the mosaicking of multiple smaller FIER predictions to a
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Figure 6. Comparison of observed and FIER-predicted water fraction maps for the two selected flood events: 25 Feburary 2019, the 50 year
flood (top two rows), and 15 February 2020, the 5 year flood (bottom two rows) The lower rows are a zoomed view for the baseline area
to highlight local differences in the predictions. Predictions use the nowcast, medium-range (7 d lead time) and long-range (15 d lead time)
streamflow from the NWM. White areas are missing data due to clouds, cloud shadows and other poor-quality data.
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Figure 7. Same as Fig. 6 except for the two selected low-flow dates: (top two rows) 29 September 2019 and (bottom two rows) 21 October
2020. Predictions use the nowcast, medium-range (7 d lead time) and long-range (15 d lead time) streamflow from the National Water Model.
White areas are missing data.
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Table 2. Performance statistics for the FIER-predicted water fraction maps for two flood events 25 Feburary 2019, the 50 year flood, and
15 February 2020, the 5 year flood.

Date Forecast SSIM RMSE RRMSE MAE
[–] [Water fraction] [%] [Water fraction]

25 Feburary 2019 Nowcast 0.5723 16.9233 78.482 3.9396
Medium range 0.5766 17.2939 80.201 4.0435
Long range 0.6664 16.2569 75.391 3.5162

15 February 2020 Nowcast 0.5414 18.4803 79.022 4.6667
Medium range 0.6233 16.3844 70.060 3.6701
Long range 0.6676 16.0370 68.575 3.4319

Table 3. Performance statistics for the FIER-predicted water fraction maps for two selected low-flow dates: 29 September 2019 and 21 Oc-
tober 2020.

Date Forecast SSIM RMSE RRMSE MAE
[–] [Water fraction] [%] [Water fraction]

29 September 2019 Nowcast 0.7381 9.8846 68.336 1.2012
Medium range 0.7580 8.6568 59.848 0.9179
Long range 0.7688 8.5340 58.998 0.8879

21 October 2020 Nowcast 0.7374 8.7395 61.268 0.9843
Medium range 0.7394 8.7107 61.067 0.9571
Long range 0.7713 8.0128 56.174 0.7921

large-scale surface water predict with reasonable accuracy
compared to a baseline (Fig. 4) by incorporating informa-
tion from neighboring areas and smoothing the flood signal
across boundaries. However, the optimal buffer size is likely
to vary depending on watershed characteristics and requires
careful consideration. We found that selecting an excessively
large buffer size risks blurring the flood signal and reducing
the accuracy of predictions. More investigation is needed into
what factors contribute to varying accuracy, particularly wa-
tershed characteristics such as size, topography, land cover,
meteorology/climatology and flooding events.

Furthermore, the choice of watershed scale (i.e. HUC8 vs.
HUC12) has the potential to influence the performance of
the scaled FIER model. Utilizing smaller, more numerous
watersheds allows for finer details and can potentially cap-
ture localized flood dynamics more effectively. However, us-
ing more watersheds comes at the cost of increased compu-
tational complexity and the potential for greater boundary
discontinuities. Conversely, larger watersheds simplify the
mosaicking process but may omit fine-grained flood signals
and fail to capture fine-scale variations in inundation extent.
Ultimately, the optimal watershed scale and buffer size are
likely to be site-specific and require careful evaluation based
on the hydrological characteristics, computational resources,
and desired level of spatial detail for the application. For this
study we only used the HUC8 watershed scale for comparing
how FIER performs when mosaicking; using different water-

sheds scales was out of scope for this work but is a topic for
future research.

5.2 Implications for large-scale flood inundation
forecasting

The results from this study show that FIER can be suc-
cessfully implemented over large areas using a mosaick-
ing approach. The successful scaling of the FIER method
holds significant implications for operational flood inunda-
tion forecasting at regional and continental scales. FIER’s
data-driven nature and computational efficiency make it par-
ticularly well-suited for large-scale applications where tradi-
tional hydrodynamic models are often computationally pro-
hibitive or require extensive data inputs. By leveraging read-
ily available satellite imagery and streamflow forecasts from
hydrological models, like the NWM, FIER can provide rapid
and accurate flood inundation predictions without the need
for a complex modeling framework, high-resolution topo-
graphic data, or traditional calibration of physical parame-
ters although the selection of optimal watershed scale and
buffer size requires careful evaluation, akin to sensitivity
analysis. This independence from detailed site-specific data
typically required for hydrodynamic models such as high-
resolution bathymetry and spatially distributed friction coef-
ficients makes FIER a powerful tool for forecasting floods in
data-scarce regions or ungauged basins, expanding the reach
of flood inundation forecasting services to previously under-
served regions (Chang et al., 2023; Do et al., 2025). It is im-
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portant to note, however, that since FIER learns from histor-
ical data and the range of historical surface water dynamics,
significant future alterations to floodplains such as new ma-
jor flood control measures not present in the historical record
or substantial shifts in hydrologic regimes could necessitate
model retraining or adjustments to maintain forecast accu-
racy.

The scaled FIER method offers a valuable resource for a
wide range of applications related to flood risk assessment,
disaster preparedness, and water resource management. By
providing timely and accurate flood inundation forecasts for
events, FIER can support the development of effective early
warning systems, enabling communities to prepare for and
mitigate the impacts of flooding. In the context of water
resource management, FIER can contribute to simulating
flood responses to changes in hydrologic conditions which
can inform flood risk assessments and guide long-term land-
use planning decisions, optimizing reservoir building and
operations (Do et al., 2025), assessing the effectiveness of
flood control measures, and evaluating the impacts of climate
change and human activities on flood regimes. Furthermore,
FIER’s ability to generate flood inundation maps from his-
torical and even future long-term projected data can provide
extents for specific return-periods which are vital with re-
gards to climate change and planning (Wing et al., 2024).
The scalability and computational efficiency of FIER hold
promise to support large-scale flood inundation forecasting,
enabling a more proactive and data-driven approach to flood
risk management.

5.3 Caveats and limitations

The watershed-based approach for scaling FIER, while
promising, presents several limitations that warrant further
investigation. The use of buffer zones, while mitigating
abrupt transitions at watershed boundaries, may introduce
artificial delineations that may not accurately represent the
complex hydrological connectivity of real-world systems.
For instance, in areas with complex topography or where
floodwaters overtop watershed divides, the buffer zones may
lead to inaccuracies in the mosaicked flood predictions. As
demonstrated in the statistical analysis, buffer sizes between
1–10 km showed the most promising results, but further re-
search is needed to optimize buffer zone selection based
on specific watershed characteristics and flood dynamics.
Similarly, the choice of watershed scale presents a trade-
off between spatial resolution and computational complex-
ity. While smaller watersheds offer finer detail, they increase
the potential for boundary discontinuities and computational
burden. Conversely, larger watersheds simplify mosaicking
but risks over smoothing the flood signal and missing lo-
calized flood events. The optimal scale is likely to be site-
specific, requiring careful consideration of the desired level
of detail and available computational resources.

Furthermore, the current FIER implementation’s reliance
solely on streamflow data as the hydrological driver, in this
case NWM streamflow outputs. This limits its applicability
in data-scarce regions or where streamflow observations are
unreliable. Other large scale model data (e.g. GEOGLOWS,
Hales et al., 2022) can be used and tested to understand
how sensitive the approach is to input streamflow particu-
larly for data-scare regions across the globe. GEOGLOWS
provides 15 d streamflow predictions at 3 h time steps for 51
ensemble streamflow predictions for approximately 7 mil-
lion reaches across the globe, it is lower spatial resolution
but has broader coverage as well as has different forecast
horizons and ensemble members compared to NWM which
would provide an interesting sensitivity analysis. Addition-
ally, the focus on streamflow-driven flooding may not ad-
equately represent other flood types, such as coastal flood-
ing, flash floods, or pluvial flooding, which are not directly
tied to streamflow variations. Expanding the framework to in-
corporate other hydrological variables, such as precipitation,
soil moisture, and antecedent conditions, could enhance its
robustness and broaden its applicability. It should be noted
that the FIER processing framework as is can handle arbi-
trary hydrologic inputs for fitting but would require the user
to prepare the data as inputs which is currently not imple-
mented in the scripts shared. A critical aspect is the quality
of the satellite-derived water fraction product used to train
FIER, in this study the VIIRS data. While VIIRS provides
valuable daily observations for large-scale monitoring, it is
subject to inherent uncertainties beyond the already men-
tioned data gaps due to cloud cover . Integrating data from
multiple satellite sensors, such as SAR and optical imagery
could further improve the temporal density and quality of
the input data (Markert et al., 2018). Furthermore, the ac-
curacy of satellite-derived water fraction estimates can be
significantly affected by land cover type; for instance, de-
tecting surface water is notoriously challenging under dense
forest canopies, within complex urban environments where
water surfaces may be small or obscured, or in areas with ex-
tensive emergent vegetation (Li et al., 2020). Shadows and
certain soil types can also be misclassified as water. Addi-
tionally, automated QAQC processing for satellites provide
satisfactory cloud masking the masking trades off between
over- and underestimation of clouds, resulting in misclas-
sified clouds. These uncertainties in the input satellite im-
agery, representing potentially imperfect and incomplete in-
undation areas, directly propagate into the FIER model dur-
ing its training phase, as the process extracts historical in-
undation patterns from this data. Consequently, FIER pre-
dictions may inherit these imperfections, potentially leading
to underestimations of flood extent in areas where water is
obscured by vegetation or overestimations due to misclassi-
fications. This implies that for real-world hydrological ap-
plications, particularly those requiring high precision in spe-
cific challenging land cover types (e.g., detailed damage as-
sessment in forested floodplains or urban flood mapping),
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the potential for such inaccuracies in FIER outputs must be
carefully considered. It is important to note that given FIER
is a data-driven approach and determines flooding signals
from historical data, there could be deviations from the data
that are used to train the models and significant long-term
changes in hydrological regimes due to climate change or
floodplain characteristics due to new infrastructure or de-
fenses. These changes could reduce the accuracy of FIER
predictions for long-term operational use. However, periodic
retraining should be completed to account for such changes
caused by climate change or infrastructure. Finally, it is cru-
cial to acknowledge that the performance of the scaled FIER
model may vary across different geographic regions with di-
verse hydrological regimes and flood characteristics (Prince
et al., 2025). The location used in this study along the Missis-
sippi River is humid with varying land cover types compared
to the Western US which is much drier but also experiences
flooding where FIER may be applicable. Further validation
and testing in various environments are necessary to assess
its generalizability and transferability beyond the study areas
examined in this research.

5.4 Future work

While this study demonstrates the potential of the scaled
FIER method for large-scale flood inundation forecast-
ing, several avenues for future research can further en-
hance its accuracy and applicability. First, exploring alter-
native regression methodologies between streamflow and the
FIER-derived temporal patterns (RTPCs) could improve the
model’s ability to capture complex flood dynamics. Other
studies (e.g. Chang et al., 2023, Rostami, et al., 2024) have
used dense neural networks (DNN) to create the forecasts
in the FIER framework. Incorporating non-linear regression
techniques, like DNN, in a scalable manner and additional
hydrological variables, such as precipitation and soil mois-
ture, may enhance the model’s predictive capabilities. Sec-
ond, addressing the limitations of input satellite data is cru-
cial for enhancing FIER’s reliability (Wan et al., 2025). Ad-
vanced data fusion methods, which synergistically combine
optical data (like VIIRS) with SAR and potentially higher-
resolution sensors, offer a promising avenue particularly with
respect to gaps due to cloud cover (Markert et al., 2018,
2024a). Such fusion approaches can provide more complete
and accurate historical flood observations, thereby improv-
ing the quality of the data used to train FIER and, conse-
quently, the reliability of its predictions. Further research
could also focus on developing land cover specific error char-
acterizations for input satellite data or incorporating ancillary
datasets to characterize water detection accuracy. A quantita-
tive assessment of NWM streamflow forecast errors and their
direct propagation into FIER inundation uncertainty was be-
yond this study’s scope but is crucial for future operational
implementation. A systematic analysis of the relationship
between buffer size and watershed characteristics is crucial

for optimizing the mosaicking process including buffer sizes
relative to watershed area. By examining factors like water-
shed size, shape, topography, and land cover, we can develop
guidelines for selecting appropriate buffer sizes for differ-
ent regions, minimizing boundary discontinuities while pre-
serving the accuracy of individual FIER predictions. Addi-
tionally, it was mentioned that only one watershed scale was
tested (HUC8) and different sizes of watersheds need to be
tested to understand how the FIER results will be affected by
watershed sizes. This can lead to a hybrid approach where
buffer size and watershed scale for running FIER can be data-
driven and yield better results over large areas. Finally, to
further enhance computational efficiency, masking out wa-
tersheds with historically limited flooding from the analysis
can significantly reduce processing time. This targeted ap-
proach focuses computational resources on areas most prone
to flooding, enabling more efficient application of FIER over
large geographic extent.

6 Conclusion

This study aimed to address the critical need for efficient
and accurate large-scale flood inundation forecasting by ap-
plying the FIER method, a data-driven technique previously
demonstrated at smaller scales, over large areas. Recognizing
the limitations of traditional hydrodynamic models and the
need for a computationally efficient approach for operational
flood forecasting, we investigated the feasibility of using a
watershed-based approach to scale FIER, leveraging the in-
herent hydrological connectivity of watersheds and then mo-
saicking results to create a single flood map for a given sim-
ulation. Our analysis focused on flood-prone regions in the
United States, the Upper Mississippi Alluvial Plain, where
flooding occurs often.

The results demonstrate the effectiveness of the
watershed-based approach for scaling FIER. Statistical
analysis of the mosaicked FIER predictions, using retro-
spective NWM streamflow data, revealed that buffer sizes
of 1–10 km achieved the best balance between accurately
capturing the spatial extent (SSIM) and intensity (RMSE)
of flooding. The average SSIM metric ranged from 0.714–
0.715 for the original FIER outputs and 0.797–0.804 for
the corrected outputs. The average RMSE metric ranged
from 7.15 %–7.45 % for the original FIER outputs, and
from 7.91 %–8.21 % for the corrected outputs. Notably,
the corrected FIER outputs, using a CDF matching post-
processing technique, consistently showed better SSIM error
values compared to the original outputs but higher RMSE
and lower MAE, suggesting the overall error was reduced
but also introduced larger errors. Overall, the correction
improves the predictions and yields significantly better error
metrics compared to a baseline for the 1–10 km buffer sizes.
Case studies using operational NWM streamflow forecasts
for specific flood and low flow events further validated the

https://doi.org/10.5194/hess-30-459-2026 Hydrol. Earth Syst. Sci., 30, 459–484, 2026



476 K. N. Markert et al.: Scaling FIER for large-scale flood prediction

performance of the scaled FIER method. The 1 km buffered
and corrected FIER outputs were used for the case study
and coupled with NWM forecasts with varying forecast lead
times. These flood extent predictions accurately forecasted
both the extent of inundation, achieving SSIM values above
0.54–0.66 for flood events and above 0.73 for low flow
events.

The watershed-based FIER approach offers several advan-
tages, including the ability to capture regional flood charac-
teristics and the ability to set up and run efficiently with-
out the need of prohibitively expensive hardware resources.
However, limitations such as boundary effects, sensitivity
to watershed scale, and reliance on streamflow data require
further investigation. Future research should focus on opti-
mizing buffer zone selection based on watershed character-
istics, exploring alternative regression methodologies, incor-
porating additional hydrological variables, and expanding the
framework to encompass non-fluvial flood processes. These
advancements will further enhance the scalability, accuracy,
and applicability of FIER for large-scale flood inundation
forecasting, enabling more effective flood risk management
and water resource planning.

Appendix A: FIER fitting statistics

We performed additional analysis to investigate and high-
light the results of the fitting process between the REOF and
hydrologic data. We separated the analysis into the baseline
area and the full area with the different watersheds.

For the baseline area, we found that the first three modes
of spatio-temporal patterns were significant and account for
about 93 % of the total variance of the VIIRS water fraction
image time series. Hereafter, the first modes of the RSM or
RTPC will be called RSM-01 or RTPC-01, respectively with
the second mode of RSM or RTPC will be called RSM-02 or
RTPC-02, respectively, and so forth.

Figure A1 displays the results of the REOF and fitting for
the baseline area. The top row displays the first three RSMs,
revealing distinct spatial flooding patterns captured by VIIRS
water fraction data. RSM-01 exhibits a widespread pattern
encompassing the main stem of the Mississippi River and
its tributaries, suggesting a dominant mode of flooding asso-
ciated with high flows in the main channel. RSM-02, high-
lights localized flooding patterns in the southeastern portion
of the basin, potentially indicating areas susceptible to back-
water effects or tributary flooding. RSM-03 shows a more
dispersed pattern with both positive and negative values, sug-
gesting a complex mode of flooding that may be influenced
by a combination of factors. The middle row in Fig. A1
presents the time series of the corresponding RTPCs and nor-
malized NWM streamflow for the representative reach. The
close alignment between the RTPC fluctuations and stream-
flow variations, particularly for RTPC-02, indicates a strong
correlation between these temporal patterns and the hydro-

Table A1. Summary statistics of REOF analysis and regression
model performance for varying buffer sizes. The table shows the
range of significant modes, average Pearson’s correlation coeffi-
cient, and average NSE for each buffer size, with standard devia-
tions in parentheses.

Buffer Range of Avg Avg fit
size Significant RSMs Pearson’s R NSE

0 km 1–8 0.727 (0.038) 0.587 (0.060)
1 km 1–8 0.728 (0.039) 0.586 (0.063)
2 km 1–8 0.732 (0.037) 0.594 (0.070)
5 km 1–8 0.741 (0.041) 0.611 (0.070)
10 km 1–8 0.742 (0.032) 0.599 (0.052)
20 km 2–10 0.745 (0.037) 0.602 (0.058)
50 km 1–11 0.765 (0.029) 0.616 (0.049)

logical driver. The scatter plots (bottom row) show the rela-
tionship between RTPCs and normalized NWM streamflow.
While linear regression was used here for simplicity and con-
sistency with previous FIER implementations (Chang et al.,
2020), some scatter plots (e.g., for RTPC-01) suggest that
more complex, non-linear fitting functions or robust regres-
sion methods accounting for outliers might yield different
fits. The influence of high-leverage points on the linear fit
is apparent in some cases. Exploring alternative regression
techniques such as those implemented by (Rostami et al.,
2024) or (Wan et al., 2025) is a key area for future FIER
development as discussed in Sect. 5.4). The three RTCPs
have a Pearson’s R correlation coefficient of 0.7342, 0.8722,
and 0.7615 for modes RTPC-01, RTPC-02, and RTPC-03, re-
spectively. This correlation between the RTCPs and stream-
flow is further quantified in the bottom row, which shows
scatter plots of the RTPCs against normalized NWM stream-
flow, along with the fitted regression models. The Nash–
Sutcliffe Efficiency (NSE) values (0.61, 0.77, and 0.63) for
the three fitted models, generally considered to indicate ac-
ceptable to good performance in hydrological modeling, con-
firm the positive statistical relationships established between
the flood patterns and streamflow, demonstrating the effec-
tiveness of the regression models in capturing these relation-
ships.

Figure A2 provides a view of how the performance of the
scaled FIER method varies across different buffer sizes and
watersheds. Given that there is so much data across the differ-
ent REOF and regression processes, Fig. A2 summarizes the
number of RSMs (left column), correlation between RTCPs
and streamflow (middle column) and NSE from the fitted
model (right column) for each watershed. Table A1 also pro-
vides the mean and stand deviation in parenthesis for each of
the metrics across all watersheds. Examining the number of
significant RSMs, we observe a general trend of an increas-
ing number of significant RSMs with larger buffer sizes. This
suggests that incorporating information from neighboring
watersheds through buffering enhances the ability of REOF
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Figure A1. Spatiotemporal patterns and regression models for the baseline area. Top: The first three Rotated Spatial Modes (RSMs) derived
from REOF analysis of VIIRS water fraction data. Red colors generally indicate positive correlations with the modes RTPC (increased
water fraction when the mode is active), while blue colors indicate negative correlations or opposing RTPC. Middle: Time series of the
corresponding Rotated Temporal Principal Components (RTPCs) (blue) and normalized NWM streamflow (orange) for the representative
reach. Bottom: Scatter plots of the RTPCs against normalized NWM streamflow, along with the fitted regression models (red dashed lines)
and their corresponding Nash–Sutcliffe Efficiency (NSE) values.

analysis to capture distinct flood patterns. However, the av-
erage Pearson’s correlation coefficient between RTPCs and
streamflow remains relatively consistent across buffer sizes,
ranging from an average of 0.727–0.765. This indicates that
the strength of the relationship between flood patterns and
streamflow is not significantly affected by the buffer size. In-
terestingly, the average NSE of the fitted regression models
shows a more nuanced pattern. While smaller buffer sizes (0–
2 km) exhibit relatively lower NSE values, indicating mod-
erate model performance, the NSE gradually increases with
larger buffer sizes, peaking at 0.616 for the 50 km buffer. This
suggests that incorporating broader spatial context through

larger buffer zones can improve the predictive capability of
the regression models. However, it’s important to note that
the standard deviation of NSE also varies with buffer sizes.
Overall, the analysis suggests that while the number of sig-
nificant modes and the strength of the correlation between
flood patterns and streamflow are not significantly impacted
by buffer size, larger buffer zones can potentially enhance
the predictive accuracy of the regression models. However,
the increased variability in model performance with larger
buffer sizes necessitates a careful consideration of the trade-
offs between model complexity and accuracy when selecting
the optimal buffer size for a given application. It is important
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to distinguish these REOF component fitting statistics from
the final inundation map accuracy metrics discussed in the
main paper. While better component fits (e.g., higher NSE
for the RTPC-streamflow regression) are generally desirable,
the optimal buffer size for the final map accuracy (e.g., SSIM,
RMSE) involves a balance, as very large buffers might im-
prove individual component fits by incorporating more data
but could also smooth out critical flood details or introduce
noise from distant, less relevant areas, potentially degrading
the final mosaicked inundation map.

Figure A2.
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Figure A2. Spatial distribution of FIER model performance metrics for varying buffer sizes. The figure displays maps showing (a) the
number of significant RSMs identified by the Monte Carlo test, (b) the average Pearson’s correlation coefficient between the RTPCs and
streamflow, and (c) the average Nash–Sutcliffe Efficiency (NSE) of the fitted regression models for each watershed, across different buffer
sizes (0, 1, 2, and 5 and 10, 20 and 50 km, respectively).
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Appendix B: Case study difference maps

Figure B1. Maps highlighting the observed water fraction from VIIRS and difference from FIER-predicted water fraction maps (predicted –
observation) for the two selected flood events: 25 February 2019, the 50 year flood (top two rows), and 15 February 2020, the 5 year flood
(bottom two rows). Warmer colors show underprediction from FIER whereas cooler colors show over prediction. White areas are missing
data. To be used as comparison with Fig. 6.
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Figure B2. Same as Fig. B1 except for the two selected low-flow dates: top two rows: 29 September 2019 and bottom two rows: 21 October
2020. To be used as comparison with Fig. 7.
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