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Abstract. High-quality rainfall data are crucial for various
climatological and hydrological applications, especially in
detailed modelling at fine temporal and spatial resolutions.
However, obtaining precipitation data with fine spatiotempo-
ral resolution is often challenging due to the limited availabil-
ity of sub-daily point measurements and the sparse distribu-
tion of rainfall stations in many regions. This paper presents
and demonstrates a method to generate the Commonwealth
Scientific and Industrial Research Organisation Hourly Rain-
fall (CHRain) dataset, which provides hourly and 1 km grid-
ded rainfall surfaces for hydrological/hydrodynamic mod-
elling. The method applies thin-plate spline interpolation to
generate rainfall surfaces using hourly input time series ob-
tained from hourly rainfall stations, and from daily data dis-
aggregated into hourly intervals based on patterns observed
in nearby hourly rainfall stations, and also guided by con-
tinuous radar images. The method is used to represent rain-
fall patterns and amounts from 2007 to 2022 in the Rich-
mond River catchment in New South Wales, Australia. Our
analysis shows that the performance of the spline interpola-
tion improves with the inclusion of the elevation data. Larger
rainfalls responded more sensitively to changes in topogra-
phy, with an optimum supporting DEM horizontal resolution
of around 5 km, in agreement with previous studies. Perfor-
mance was also significantly enhanced by using a stable spa-
tial occurrence analysis to reliably remove false zeros from
the data. About 0.26 % of the data were found to be false
zeros. During the 2017 event, CHRain achieved a correla-
tion coefficient of 0.949 against hourly gauges, showing that
the dataset can adequately reproduce the patterns of hourly
rainfall measurements. The spatial and temporal analyses in-
dicate that the CHRain dataset outperforms other gridded

datasets currently available in Australia in representing the
sub-grid distribution, the daily and hourly variation of rain-
fall across the study area, and the high rainfall values. These
are all essential for capturing the spatiotemporal characteris-
tics of flood inundation in the study area, which is frequented
by disastrous flood events.

1 Introduction

High resolution temporal and spatial representations of pre-
cipitation data are required in many hydrological applica-
tions, such as modelling flood inundation (Jhong et al., 2017;
Pappenberger et al., 2005), analysing catchment responses
in rainfall-runoff models (Xu et al., 2022; Acharya et al.,
2019), and forecasting extreme events and natural hazards
(Ficchi et al., 2016; Mukherjee et al., 2018). Sub-daily and
even sub-hourly precipitation data are required to accurately
represent the variability of rainfall especially during extreme
flood events or when a catchment receives excessive and in-
tense amount of rainfall within a few minutes to several hours
(Davis, 2001; Ficchi et al., 2016; Westra et al., 2012). Several
studies (Ficchi et al., 2016; Acharya et al., 2022; Brighenti
et al., 2019) indicated that improving the quality of rain-
fall data temporally can enhance the performance of rainfall-
runoff models in simulating flood peaks, flood frequency,
and the timing of the peaks. Peleg et al. (2013) analysed
the subpixel rain distribution by comparing the data from
radar with point measurements at high density gauges. The
results showed that a density of 3 rain gauges per radar pixel
(4 km× 4 km) will allow an adequate presentation of radar
rainfall. Peleg et al. (2017) indicated a valuable contribution
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of 26 % of spatial distribution rainfall on the total variabil-
ity of modelled urban drainage network. However, high spa-
tial and temporal resolution precipitation data are not always
available for those applications.

There are significant variations in the rainfall patterns in
Australia at both regional and seasonal scales (Taschetto
and England, 2009). The rainfall patterns can be observed
from rainfall time series measured at stations and gridded
data with various resolutions. There are more rainfall sta-
tions that record at daily intervals than those that record at
hourly or sub-hourly intervals. Observations from daily sta-
tions are also available for longer periods than the hourly sta-
tions. There are 4765 active daily rainfall stations with data
from the 1960s in Australia. There are 759 sub-daily rain-
fall stations and only 442 stations having records more than
20 years long (Morbidelli et al., 2020; Westra et al., 2012).
Most rainfall stations are located in highly populated regions
such as the southwest, east-coastal, and south-coastal areas
(Morbidelli et al., 2020). The coarse distribution of rainfall
stations in some regions and the short records of available
data limit the ability to generate sub-daily rainfall data at a
high spatial resolution for the whole of Australia.

Some efforts have been invested in disaggregating daily
rainfall data to sub-daily (Acharya et al., 2022; Schreider and
Jakeman, 2001; Breinl and Di Baldassarre, 2019). Acharya
et al. (2022) disaggregated daily rainfall data from the Aus-
tralian Gridded Climate Data (AGCD) version 1 (previously
known as Australian Water Availability Project (AWAP)
(Jones et al., 2009)) to hourly using the patterns from a
coarser spatial resolution dataset of the Bureau of Meteo-
rology Atmospheric high-resolution Regional Reanalysis for
Australia (BARRA) (Su et al., 2019). Westra et al. (2012);
Breinl and Di Baldassarre (2019) applied the method of frag-
ments, which finds the relationship between hourly and daily
data of the currently available records and applies a mov-
ing window to disaggregate the daily data where the hourly
data are not available. A comparison by Pui et al. (2012)
showed that the method of fragments resulted in a better per-
formance in keeping intensity-frequency relationships at the
hourly scale and disaggregating extreme values than other
parameterized methods, such as the random multiplicative
cascades and the randomized Bartlett–Lewis model. These
disaggregation methods open options to produce sub-daily
time series at a higher temporal resolution.

Although daily rainfall measurements are reliable and
available for a reasonably long period in Australia (although
at limited spatial locations), many hydrological applications
require gridded rainfall data to present the rainfall variation
over land surfaces (e.g., detailed climate inputs for hydro-
logical and hydrodynamic models). Several techniques have
been applied to generate spatial rainfall data in Australia.
There are three common types of gridded rainfall data based
on point measurements, satellite data, and model reanaly-
ses (Chua et al., 2022). The thin-plate spline interpolation
method has been widely applied to generate daily, monthly

to mean annual rainfall surfaces (Hutchinson et al., 2021;
Johnson et al., 2016; Hutchinson et al., 2009). Thin-plate
spline interpolation allows the inclusion of topography pat-
terns, which has been shown to have a significant impact
on the spatial distribution and quantity of rainfall (John-
son et al., 2016). This method was applied to generate the
ANUClimate dataset, which is the daily and 0.01° resolu-
tion (approximately 1 km) climate gridded data, including
daily rainfall from 1900 for the whole of Australia (Hutchin-
son et al., 2021). Jeffrey et al. (2001) interpolated ground
measurement data using ordinary kriging to generate the cli-
mate surfaces of Scientific Information For Land Owners
(SILO) including daily rainfall at 0.05° grid. The AWAP
dataset also provides daily and monthly spatial rainfall at a
resolution of 0.05° (Jones et al., 2009). The AWAP dataset
are generated using an anomaly-based method, including the
application of Barnes successive correction method (Jones
and Trewin, 2000) to generate weighted-anomalies layers
at daily time steps, and thin spline interpolation to provide
the relationship between point measurements and locations
(longitude, latitude and elevation) (Jones et al., 2009). The
AWAP data was enhanced to produce the AGCD dataset, us-
ing statistical interpolation and satellite rainfall data (Chua
et al., 2022). However, Chappell et al. (2013) indicated no
clear benefit of blending satellite data with point measure-
ments compared with ordinary point kriging in estimating
near real-time rainfall in Australia. The satellite data only
appeared to improve rainfall estimation where the distribu-
tion of rainfall stations is sparse (e.g., less than 4 gauges
per 10 000 km2) (Chappell et al., 2013). Instead of using ob-
servation such as point measurements or satellite data, the
reanalysed rainfall data are usually generated from models
solving deep-atmosphere global non-hydrostatic equations
(Wood et al., 2014). BARRA is the first gridded dataset pro-
viding hourly rainfall data for the Australasian region at ap-
proximately 12 km resolution, with a downscale sub-product
of 1.5 km resolution in 4 areas. The evaluation by Acharya
et al. (2019) showed that reanalysed rainfall data (i.e., from
BARRA) had poorer performance compared to interpolated
rainfall data (i.e., from AWAP) in terms of representing the
point measurements. Lewis et al. (2018) applied a nearest
neighbour interpolation scheme to disaggregate 1 km gridded
estimates of daily and monthly areal rainfall for the United
Kingdom (CEH-GEAR) to produce an hourly dataset. How-
ever, the method is not applicable in Australia for several rea-
sons. The distribution of hourly rainfall gauges in Australia is
much coarser, especially in the central and northern parts of
Australia, compared with the distribution in the United King-
dom. The record of hourly measurements is shorter than the
daily data and only available from 2007; therefore, a method
to disaggregate daily rainfalls to hourly when there is no or
very little hourly observations is needed before we can disag-
gregate gridded data for those periods. Despite all the efforts,
there are still gaps in generating high resolution temporal and
spatial rainfall data, which are relevant to hydrological pur-
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poses, especially for detailed flood modelling using fully dis-
tributed hydrodynamic models.

An accurate high spatial and temporal resolution rain-
fall is a critical input for accurately representing flood vol-
umes and times of flood peaks. This paper presents a method
to generate the Commonwealth Scientific and Industrial
Research Organization Hourly Rainfall (CHRain) dataset,
which consists of high temporal (hourly) and spatial res-
olution (1 km grids) rainfall surfaces that capture the sub-
daily instantaneous variation of rainfall patterns, necessary
for modelling heavy rainfall events. The method uses hourly
point rainfall measurements and thin-plate spline interpola-
tion to generate hourly rainfall surfaces at 1 km resolution.
In the areas with sparse distribution of hourly rainfall sta-
tions, daily measurements are disaggregated to hourly data
from 9:00 am the previous day to 8:00 am the current day,
using patterns from nearby hourly rainfall stations, to match
with the daily data provided by the Australian Bureau of Me-
teorology (BoM). We applied the proposed method to pro-
duce hourly rainfall surfaces for the Richmond River catch-
ment (≈ 7025 km2) in New South Wales, Australia. The new
rainfall surfaces are evaluated using point measurements and
other common gridded datasets currently available in Aus-
tralia. The method proposed in this study opens an opportu-
nity to produce high resolution spatiotemporal rainfall sur-
faces for other regions where detailed modelling is to be un-
dertaken.

2 Data and methods

The study area is the Richmond River catchment, located in
the northern rivers region of New South Wales, Australia,
near the border between New South Wales and Queensland
(Fig. 1). The catchment area is approximately 7025 km2. The
north and west sides of the catchment are mostly forested,
while the central to the south-east areas are agricultural land
(NSW Department of Climate Change, Energy, the Envi-
ronment and Water, 2025). The topography of the catch-
ment changes significantly across the landscape. The ele-
vation ranges between 0 and 934.6 m across the catchment.
Most of the northern and western mountainous areas and the
areas upstream of Lismore are very steep, while the south-
ern and the coastal areas around Casino are very flat. The
Richmond River catchment is an important habitat for endan-
gered fauna and flora. The national parks and reserves, e.g.,
the Border Ranges, are protected under the Australia World
Heritage (NSW Department of Climate Change, Energy, the
Environment and Water, 2025).

The annual rainfall in the catchment can exceed 1800 mm
per year, with particularly high rainfall intensities observed
in the north-east and coastal areas (Lerat et al., 2022). Due
to the combination of the topographic and climate condi-
tions, the Richmond River catchment is prone to extreme and
devastating floods. There were 17 major flood events from

1945 to 2022, with a maximum daily rainfall of more than
60 mmd−1 (Lerat et al., 2022). The severe floods in 2017
(1 in 21 Annual Exceedance Probability, AEP) and 2022
(the largest observed flood event in the catchment on record)
overtopped the levee at Lismore, causing loss of lives and se-
rious damages to businesses and properties. Having a more
precise representation of the rainfall data in the Richmond
River catchment is essential for reliable flood modelling and
mitigation in the region. The analysis was done for an area
(30 389 km2) as shown in Fig. 1, which is larger than the
Richmond River catchment area, to adequately support the
hourly rainfall interpolation along the catchment boundaries.

2.1 Thin-plate spline interpolation model

The thin-plate smoothing splines method, as described by
Wahba (1990), fits a “smooth” function to a set of noisy data
across a multidimensional space. Hutchinson et al. (2021)
applied the method to generate surfaces of climate variables
such as temperature, rainfall, and evaporation, while consid-
ering the impacts of topographic conditions. The model for
thin plate spline interpolation is:

zi = f (xi)+ bTyi + ei for i = 1, . . .,N; (1)

where xi is a d-dimensional vector of spline independent
variables; yi is a p-dimensional vector of independent co-
variates; zi is the value of a data point at location xi ; f is
an unknown smooth function of xi ; b is an unknown p-
dimensional vector of coefficients; ei is the independent zero
mean error with variance σ 2 that is constant across all data
points; and N is the total number of observed data. The
smooth function f and coefficient b are found by minimising
the function below:
N∑
i=1

[
zi − f (xi)− bTyi

]2
+ ρJm(f ) (2)

where ρJm(f ) is a measure of the complexity of f , which is
an integral of mth order partial derivatives of f , and ρ is
a positive smoothing parameter. The smoothing parameter
is normally determined by minimising the generalised cross
validation, a measure of the mean square predictive error of
the fitted spline function.

In this analysis, we employed the software ANUSPLIN
Version 4.4 to generate hourly rainfall trivariate spline func-
tions of longitude, latitude and appropriately scaled eleva-
tion. The elevations were obtained from DEMs with a range
of underpinning horizontal resolutions. The detailed descrip-
tion of the setup and input files is available in Hutchinson and
Xu (2004).

2.2 Rainfall data

In our analysis, we used the daily and hourly point rainfall
measurements to interpolate the rainfall surfaces and to gen-
erate the gridded datasets. In areas where the distribution
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Figure 1. Locations of the study area at Richmond catchment.

of hourly gauges is coarse, the rainfall data at nearby daily
gauges were disaggregated to hourly (by using the hourly
patterns from the neighbouring hourly stations and radar im-
ages to determine the rain front movement) for the spline
interpolation. Gridded rainfall datasets, including the radar,
BARRA data for the eastern New South Wales (BARRA-
SY), ANUClimate, and AGCD datasets, were used in the
evaluation and comparison with our results from CHRain
(Table 1).

The daily and hourly data at rainfall gauges were sourced
from the BoM and the Water New South Wales Corpora-
tion (WaterNSW). The rainfall data during the flood events in
2022 at Rocky Creek Dam (RCD) and Emigrant Creek Dam
(ECD) were provided by the Rous County Council. These
two stations are critical as both these stations are located
in the higher rainfall areas where there are limited gauges.
There are 330 daily stations with records from 2007 to 2022.
However, only 253 stations are active in 2022. There are 143
hourly rainfall stations. Most of the hourly records start from
30 January 2007. A detailed quality control was undertaken

for all the rainfall data before being used in the ANUSPLIN
program to construct the CHRain hourly rainfall surfaces at
1 km resolution, from 30 January 2007 to 31 December 2022.

The radar data were provided by the BoM, showing the
rain front movement and rainfall intensity over the catchment
area (image every 5 min). The radar intensity data were used
to generate Radar-derived rainfall accumulation, showing the
amount of rainfall accumulating in 1 h (Bureau of Meteorol-
ogy, 2023). We acknowledge that the radar rainfall shows
the rainfall in the atmosphere instead of the rainfall reach-
ing the ground. There are errors in the radar-derived rainfall
data, showing unreasonable high rainfall values in some ar-
eas (Bureau of Meteorology, 2023). The radar data were em-
ployed to observe and understand the movement and distri-
bution of rainfall front in the study area. The hourly rainfall
accumulating from radar data were not used in our analy-
sis. The radar images in the Richmond River catchment were
available from 2 December 2013.

The hourly 1.5 km resolution BARRA-SY dataset was
compared with our hourly CHRain product. The BARRA-
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Table 1. Gridded data descriptions.

Dataset Description Method Domain Resolution Reference

BARRA-SY Bureau of Meteorology
Atmospheric
high-resolution Regional
Reanalysis for the Eastern
New South Wales,
1990–2019

Local reanalysis ([−28°, −38°],
[147°, 155°])

hourly, 1.5 km Su et al. (2019);
Bureau of
Meteorology
(2021)

Radar Radar-Derived Rainfall
Accumulations,
2013–present

Radar blended 128 km radius centred
around the radar
location at Grafton
(−29.62°, 152.97°)

hourly, 1 km Bureau of
Meteorology
(2023)

ANUClimate Australian National
University Climate,
1900–present

Gauge interpolation Australia land area daily, 1 km Hutchinson et al.
(2021)

AGCD/AWAP Australian Gridded
Climate Data / Australian
Water Availability Project,
1900–present

Gauge interpolation Australia land area daily, 5 km Jones et al. (2009);
Australian Bureau
of Meteorology
(2020)

SY dataset is available from 1 January 1990 to 28 February
2019 and covers a domain with the latitude range [−28°,
−38°] and the longitude range [147°, 155°]. The ANUCli-
mate version 2 dataset (Hutchinson et al., 2021) provides
gridded daily rainfall data at 0.01° resolution (approxi-
mately 1 km) from 1 January 1900. These grids have been
generated using the thin-plate spline method to interpo-
late daily point measurements, considering the impacts
of topography (Hutchinson et al., 2021; Johnson et al.,
2016). The AGCD dataset contains daily 0.05° resolution
(approximately 5 km) rainfall surfaces from 1 January 1900.
The AGCD dataset covers the whole of Australia and is
regularly updated with real-time data. The BARRA-SY,
ANUClimate, and AGCG data are available from the
National Computational Infrastructure Data Catalogue
(https://geonetwork.nci.org.au/geonetwork/srv/eng/catalog.s
earch#/home, last access: 30 December 2025).

2.3 Quality control for the hourly rainfall data

A commonly used quality control method described in (Wes-
tra et al., 2014) was applied to the hourly and daily point
rainfall measurements. The first step checks the range of val-
ues and the changes overtime. We manually plotted rainfall
time series and compared them to all neighboring stations.
Thresholds of 300 mmh−1 and 1500 mmd−1 were used to
remove unreasonably high hourly and daily rainfall data. The
suspicious data were removed, including negative, unreason-
able high values, linear interpolated values, and the values
that were significantly higher or lower compared with those
at nearby stations (within 5 km) and are also inconsistent
with the radar data. Some unusually high values of hourly

rainfall, mostly occurring at midnight, were detected. If an
hourly rainfall value exceeded the sum of the previous 23 h
by more than 30 mmh−1, it was removed. Additionally, if
there were two or more stations within 2 km of each other,
they were compared, and only the more reliable one was re-
tained (based on the quality code). This step is required to
avoid instability in thin-plate spline interpolation, which oc-
curs when the close data points have very different rainfall
values. The data from nearby stations were compared and
combined if the rainfall records overlapped. The station with
a longer record was retained to be used in the ANUSPLIN
package.

Close inspection of initial analyses of the hourly rainfall
data indicated that there were significant numbers of false
zeros in the data leading to underestimation of rainfall dur-
ing periods of high rainfall. This is a common problem with
rainfall data, particularly when they are recorded automat-
ically. These values are hard to detect by applying simple
thresholds. As noted by Hutchinson et al. (2009), rainfall oc-
currence is more spatially coherent than rainfall amounts. An
initial trivariate spline analysis of the hourly occurrence data
was therefore conducted to detect and automatically remove
false zeros.

Positive rainfalls were set to an occurrence value of 1 and
zero rainfalls were set to an occurrence value of 0. The spline
analysis used the same underpinning DEM resolution and el-
evation scaling as optimised for the rainfall amount analysis.
Zero hourly rainfall values were deemed to be false, and re-
moved from the data set, when the interpolated occurrence
value exceeded 0.5. The limited spatial coverage of the data
set led to instabilities when the data values were almost all
positive or almost all zero. This was overcome by setting a
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Table 2. Summary statistics of occurrence corrections with respect to hourly radar data over five successive days, during the two flood events
in 2022. Occurrence agreement is calculated as the percentage of the number of agreements in occurrence (both zero or both non-zero)
divided by the total number of hourly data values.

Date Average Percent occurrence Number of Percent agreement Percent occurrence
rainfall agreement of raw estimated false of corrections with agreement of corrected

[mmh−1] data with radar data zeros radar data data with radar data

24 Feb 2022 3.3 57 75 57 57
25 Feb 2022 0.8 57 36 53 57
26 Feb 2022 2.3 72 54 87 72
27 Feb 2022 8.6 92 102 98 96
28 Feb 2022 10.5 56 85 46 56
28 Mar 2022 4.2 81 90 83 83
29 Mar 2022 4.2 65 94 92 67
30 Mar 2022 3.0 57 83 43 58

constant error standard deviation of 0.25, consistent with the
automatically derived error standard deviations when there
were significant numbers of zeros and ones. This ensured that
sufficient smoothing was applied to the data to interpolate
spatially stable occurrence patterns with a robust dependence
on the data values. A total of 42 193 false zeros were removed
from a total number of 15 737 817 data values, amounting to
0.26 % of the data.

The reliability of the occurrence based corrections was as-
sessed by comparing the analyses with hourly radar rainfall
data over eight successive days during the two flood events in
2022 (with the peak around 28 February 2022 and 29 March
2022). Summary statistics are presented in Table 2. As noted
above, the radar rainfall is not always reliable. The percent
occurrence agreement of the raw hourly rainfall data with the
radar data ranged between 56 % and 72 % for six of the 8 d,
while there were strong occurrence agreements of 92 % and
81 % on the two high rainfall days on 27 February 2022 and
28 March 2022. This indicates there were major deficiencies
in the radar data, except on the heavy rainfall days when sig-
nificant rainfall was widespread over the data network. Com-
paring the occurrence corrections with the radar occurrence
data showed strong agreement with the original data occur-
rence agreements, ranging from 43 % to 92 % on six of the
days and 98 % and 83 % on 27 February 2022 and 28 March
2022. If the corrections were all correct, comparison with the
radar data could be expected to assess them as having an ac-
curacy similar to the initial overall agreements between the
rainfall data and the radar data. The strong agreement be-
tween column 3 and column 5 in Table 2 is consistent with
the corrections being in fact highly reliable, with a true accu-
racy up to around 98 % on all 8 d. The true reliability maybe
somewhat lower on days with less widespread rainfall and
less spatially coherent rainfall occurrence patterns. The oc-
currence corrections were sufficient to improve the overall
occurrence agreement with the radar data on the fourth day
in the first event and on all 3 d in the second event. The over-
all agreement was unchanged for the other days. A range of

occurrence thresholds was tested by assessing the overall oc-
currence agreement of the corrected data with respect to the
occurrence threshold. A range of thresholds from 0.4 to 0.8
gave similar results to the chosen value of 0.5. Further re-
finements are limited by the overall unreliability of the radar
rainfall data.

Close inspection of the analyses and a detailed comparison
with radar data over high rainfall periods indicated that the
false zero detections are reliable. The occurrence analysis is
also illustrated by tabulating the occurrence corrections for a
high rainfall day in Appendix B.

2.4 Disaggregation of daily rainfall data to hourly
rainfall data

The distribution of hourly stations in the Richmond River
catchment is sparse in some areas, especially at the west
boundary of the catchment. We chose 23 daily rainfall sta-
tions (shown as red dots in Fig. 1) to disaggregate the rainfall
data from daily to hourly, using the patterns from the near-
est hourly stations. We also used the observed movement of
rainfall from the radar data to select suitable nearby hourly
gauges to disaggregate data from daily to hourly.

Some criteria were set up to disaggregate daily data into
hourly:

1. The daily rainfall data were disaggregated using the
hourly distribution pattern from the nearest hourly sta-
tion. The summed 24 h hourly data from 9:00 am the
previous day to 8:00 am of the current day was scaled to
match the daily recorded total for that day.

2. If a daily record at a certain time step was missing (no
data), the associated 24 h data were set as missing values
in the disaggregated dataset.

3. If a daily record at a certain time step was positive
but the hourly data on the same day at the nearby sta-
tion were missing or 0, the daily rainfall value was dis-
tributed equally over 24 h.
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After cleaning, disaggregating, and completing a detailed
quality control of the data, there were 139 hourly stations
(including 23 disaggregated stations) for generating hourly
rainfall surfaces (shown in Fig. 1).

2.5 Calibration of the DEM smoothing scale and the
elevation transformation parameter

The 5 m resampled to 1 km averaged LiDAR Digital
Elevation Model (DEM) from Geosciences Australia
was used to define the boundary of the rainfall sur-
faces in the ANUSPLIN package (https://ecat.ga.gov.au/
geonetwork/srv/eng/catalog.search#/metadata/89644, last
access: 30 December 2025). A set of 1 km resolution
smoothed DEMs was prepared by calculating the focal mean
with distances from 2 to 10 km to investigate the impacts
of topographic scale on the rainfall surfaces using ArcGIS
program. The focal mean at each 1 km pixel is calculated
as the mean of a square window with a specified distance
around that pixel.

In the ANUSPLIN program, the independent variable
transformation for the DEM is h/a, where h [m] is the el-
evation value and a is the transformation parameter. The
usual recommended a value for interpolating monthly and
daily data is 1000 (Hutchinson et al., 2021; Hutchinson et al.,
2009). This corresponds to a 100-fold exaggeration of the
impact of elevation on precipitation patterns compared to the
impact of horizontal position. In this study for hourly splines,
a was calibrated in the range from 1000 to 10 000, corre-
sponding to vertical exaggerations ranging from 100-fold to
10-fold. We also tested the performance of the interpolation
model using bivariate (without the elevation variable) and
trivariate (with the elevation variable) analyses.

The days of hourly rainfall data were categorised into two
groups to analyse the impact of topography on spatial rain-
fall patterns. Days with average hourly rainfall between 0
and 1 mmh−1 were considered as light rain days, and days
with average hourly rainfall exceeding 1 mmh−1 were con-
sidered medium to high rainfall days. There were 3379 light
rainfall days and 111 medium to high rainfall days. There
were 246 d with zero rainfall across the whole data network.
These days were omitted from the calibration. The focal
mean distance and the elevation scaling parameter a were
jointly optimised to minimise the average of the generalised
cross validation of the fitted splines over all medium to high
rainfall days.

The performances of the different spline models were
compared using the Mean Absolute Predictive Error (MAPE)
and the Mean Absolute Residual (MAR) provided by the
spline interpolation model. The MAPE is calculated from the
individual cross validation residuals as afforded by the “leav-
ing out one lemma” described in Wahba (1990).

2.6 Generate hourly splines using ANUSPLIN

The hourly rainfall splines were generated using ANUSPLIN
version 4.4 (Hutchinson and Xu, 2004). There are four main
steps to generate daily and hourly splines, including prepar-
ing the input data (.dat) files, preparing the command (.cmt)
files, running the spline program to generate interpolating pa-
rameters, and running the lapgrd program to generate rainfall
surfaces. For the hourly rainfall surfaces, we ran the ANUS-
PLIN program daily (24 splines per day) from 30 January
2007 to 31 December 2022. The details of the setup are:

1. The independent variables include the longitudes, lati-
tudes, and DEM values of the hourly stations. The de-
pendent variables are the measured rainfall values at the
hourly stations.

2. For the spline commands, the numbers of knots were set
as 90 % of the total number of stations, as read from the
input data files. The dependent variable transformation
was set as the square root of the data surface to comply
with the positive skew of the rainfall values, often in-
cluding many zeros, and to ensure that the fitted values
are always non-negative Hutchinson et al. (2009).

3. The optimised parameters from the spline program and
the 1 km smoothed DEM were input into the lapgrd pro-
gram to generate the rainfall grids.

2.7 Temporal and spatial analyses

2.7.1 Temporal analysis

We calculated the statistics for the hourly rainfall record
during the simulation period from 2007 to 2022, including
the mean, maximum, standard deviation, and the ratios of
the maximum values at different accumulated time intervals
(i.e., 3, 6, 12, and 24 h) to the maximum values in the hourly
time series (Pk [%]):

Pk =
maxNi=1

(
1
k

∑i+ k−1
2

i− k−1
2
xi

)
maxNi=1(xi)

× 100, (3)

where xi is the hourly rainfall value at time step i, k is the
rolling sum time interval (3, 6, 12, and 24 h), and N is the
total number of observed data.

Since hourly rainfall data usually contains numerous zero
values, the evaluation metrics calculated for a long period
are biased toward underestimation of extreme values (Gires
et al., 2012). Therefore, the flood event in 2017 (1 in 21 AEP)
and in 2022 (the biggest flood event observed in the catch-
ment) were selected for further evaluation. The flood event
in 2017 started from 1 March 2017 to 5 April 2017, with the
peak rainfall period occurring on 30–31 March 2017. The
flood event in 2022 occurred from 25 January 2022 to 5 May
2022, including two peak events on 28 February–1 March
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2022 and 29–30 March 2022. The thresholds of 0.1 mmh−1

and 1 mmd−1 were used to eliminate the numerical noise in
the interpolated splines and to classify dry and wet pixels.

In the temporal evaluation, we compared the time se-
ries extracted from gridded rainfall data, including CHRain,
BARRA-SY, radar, ANUClimate, and AGCD datasets to the
point measurements. Because all of the hourly gauges were
included in the generation of the CHRain dataset, we evalu-
ated the CHRain with the daily measurements at 169 gauges,
that were not used in the interpolation. We selected 8 hourly
stations to undertake further analysis, shown as blue triangles
in Fig. 1. The 8 gauges are located in the important cities and
towns within the Richmond Rivers catchment, including Lis-
more, Casino, Ballina, Kyogle, Channon, and Nimbin. These
areas were affected significantly during the flood events in
2017 and 2022. The ANUClimate and AGCD daily values
were disaggregated evenly from 9:00 am the previous day to
8:00 am the current day to generate the hourly time series.
A similar comparison was conducted for the daily time se-
ries, extracted from 8 daily stations (shown as purple trian-
gles in Fig. 1). These daily stations were not used in gener-
ating the CHRain splines. The hourly CHRain, BARRA-SY,
and radar data were aggregated from 9:00 am the previous
day to 8:00 am the current day to produce the daily datasets
to compare with ANUClimate and AGCD data.

The Bias, Mean Absolute Error (MAE), correlation co-
efficient (r), Nash–Sutcliffe Efficiency (NSE) metrics were
calculated in the evaluation (Appendix A). Positive and neg-
ative bias values show overestimation and underestimation,
respectively. The MAE shows the absolute errors of the pre-
dicted values compared to the measurement data. The range
of the NSE is from −∞ to 1, where 1 is the optimal value.

2.7.2 Spatial analysis

In the spatial analyses, we compared the hourly CHRain with
the ANUClimate and AGCD datasets. The hourly CHRain
data were summed to generate 24 h total surfaces, from
9:00 am the previous day to 8:00 am the current day.

The daily rainfall data were classified as heavy and ex-
tremely heavy if the recorded values were higher than
95th and 99th percentiles of the daily measurement data
from 2007 to 2022, as suggested by Bureau of Meteorol-
ogy (2024). In the Richmond River catchment, rainfall values
from 21 to 58 mm d−1 are considered heavy rain, and rain-
fall values higher than 58 mmd−1 are classified as extremely
heavy rainfall.

The Bias, Hit Rate, and the Critical Success Index (CSI)
(Ebert, 2008) were used to compare the 24 h total CHRain
with the ANUClimate. The optimal value for the Hit Rate and
CSI is 1, showing a perfect match between the two datasets.
The Bias value describes the difference between the gener-
ated grid and the observed data. The Hit Rate shows the pro-
portion of wet pixels in the generated dataset that are cor-

rectly predicted. The CSI considers both the underestimation
and overestimation of the generated dataset.

3 Results

3.1 Rainfall statistics

The statistics of the hourly rainfall time series from 30 Jan-
uary 2007 to 31 March 2022 are shown in Table 3. The max-
imum values during the 2017 flood event in the Richmond
River catchment vary from 57.2 to 93.4 mmh−1 in 8 hourly
validated gauges. By averaging the hourly data from 3 to
24 h, the dynamic extreme variation of the hourly rainfall is
diminished. The averaged maximum rainfall values reduce
from 62.6 % to 26.2 % if the averaging time interval increases
from 3 h to 24 h (Table 3). Especially at station 203030, the
peak of 24 h averaged data can only capture 14.8 % of the
hourly peak value. Many hydrological applications, such as
detailed hydrodynamic models, require hourly or even sub-
hourly data to generate flows and water movement correctly,
while the input rainfall is only usually available at a daily
time step. If the daily rainfall totals are available and pro-
vided as input, the model disaggregates it evenly and dis-
tributes it over the day. This process leads to the underestima-
tion of the hourly flood peaks. During flood events, intensive
rainfall periods only occur over a few hours. Hence, generat-
ing hourly rainfall data is essential to preserve the sub-daily
variations in rainfall intensity and dynamic patterns of rain-
fall observations (Westra et al., 2014).

3.2 Impacts of topography on the spatial interpolation
of hourly rainfall splines

Tables 4 and 5 show the Square RooT of the average Gen-
eralised Cross Validation (RTGCV) of the trivariate spline
model for light rainfall days and medium to high rainfall days
as a function of DEM focal distance and elevation scaling, as
derived in the initial analyses with no removal of false ze-
ros. The light rainfall days indicate a very broad dependence
on the topographic parameters with an optimum DEM fo-
cal distance around 10 km or possibly larger. On the other
hand, the medium to high rainfall days indicate an optimum
DEM focal distance of around 5 km and an optimum eleva-
tion scaling of around 4000. This suggests that topography
plays an important role in interpolating larger rainfalls while
the response of smaller rainfalls to topography is fairly flat.
The daily average 1 mmh−1 threshold appears to be an effec-
tive discriminator of light and medium to high rainfall days.
Setting a lower threshold gave rise to multiple local minima
in the RTGCV patterns for days with average hourly rainfall
greater than 0.5 mmh−1. These tables were recalculated after
false zeros were removed by the spline occurrence analysis
described above, with DEM focal distance set to 5 km and el-
evation scaling set to 4000. The resulting patterns were simi-
lar to those shown in Tables 4 and 5, with an optimum DEM
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Table 3. Statistics for the observed hourly rainfall from 2007 to 2022. The average values of the statistics are shown in bold.

Station ID Mean [mmh−1] Max [mmh−1] Std [mmh−1] P3 [%] P6 [%] P12 [%] P24 [%]

58214 1.6 57.2 3.3 72.0 50.0 35.3 32.3
203900 1.5 78.0 2.8 67.0 54.0 44.7 33.8
58198 2.1 93.4 4.0 46.4 28.2 21.5 14.7
H058147 1.8 83.6 3.6 67.4 44.5 39.6 35.0
58208 1.7 61.6 3.3 94.0 65.9 40.8 40.8
H058180 1.6 58.6 3.1 50.9 32.8 28.9 15.8
H058162 1.8 70.9 3.4 46.5 42.1 30.1 22.6
203030 1.8 84.4 3.6 56.2 39.3 22.0 14.8

Average 1.7 73.5 3.4 62.6 44.6 32.9 26.2

Table 4. Performance of the interpolation model with different elevation transformation parameters and elevation smoothing scales for light
rain days (0–1 mmh−1). The minimum values of the RTGCV are shown in bold.

a 1 km 2 km 3 km 4 km 5 km 6 km 7 km 8 km 9 km 10 km

1000 0.2003 0.2005 0.1993 0.1984 0.1981 0.1980 0.1978 0.1978 0.1976 0.1978
2000 0.1983 0.1978 0.1981 0.1976 0.1976 0.1973 0.1970 0.1969 0.1969 0.1968
3000 0.1975 0.1978 0.1976 0.1974 0.1973 0.1973 0.1973 0.1972 0.1971 0.1967
4000 0.1975 0.1976 0.1975 0.1973 0.1972 0.1974 0.1973 0.1970 0.1971 0.1971
5000 0.1976 0.1974 0.1973 0.1972 0.1972 0.1972 0.1971 0.1970 0.1971 0.1969
6000 0.1975 0.1973 0.1973 0.1972 0.1972 0.1972 0.1970 0.1970 0.1969 0.1969
7000 0.1975 0.1973 0.1973 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1969
8000 0.1974 0.1973 0.1972 0.1973 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970
9000 0.1975 0.1972 0.1974 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970
10 000 0.1974 0.1972 0.1973 0.1972 0.1972 0.1971 0.1970 0.1970 0.1969 0.1970

focal distance of around 5 km and a slightly larger elevation
scaling of around 5000. There was little difference between
the performance with these two elevation scales. All the re-
maining analyses were completed on the data with false ze-
ros removed, using the initially determined 5 km DEM focal
distance and elevation scaling of 4000.

The impact of including the DEM as an independent vari-
able was further quantified in Table 6. It shows that, com-
pared to the bivariate analysis, the optimal trivariate analysis
reduced the MAPE by about 4 % for light rainfall days and by
about 2 % for medium to heavy rainfall days. The trivariate
analysis reduced the MAR by about 16 % across all days.

3.3 Temporal evaluation

The hourly time series at 8 hourly stations were extracted
from the gridded datasets and compared with the point mea-
surements for the 2017 (Table 7) and 2022 flood events
(Appendix D). The CHRain dataset outperforms the hourly
BARRA-SY and radar datasets in representing the measured
rainfall data, as indicated by the high correlation coefficient
of 0.949, compared to 0.234 and 0.154 for BARRA-SY and
radar datasets, respectively (Table 7). Note that as the hourly
data from the 8 stations were used to generate the CHRain
dataset, it is expected that the CHRain can adequately match

the hourly rainfall patterns from the measurements. How-
ever, it is not necessary for the thin-plate spline interpolation
model to generate exact values of rainfall at the gauges. The
rainfall value of a grid cell is calculated and smoothed in re-
lation to the rainfall values measured at surrounding gauges.

All the gridded datasets underestimate the hourly mea-
surements, shown by the negative Bias values. The hourly
rainfall patterns of the BARRA-SY did not closely repro-
duce the point data, as suggested by a low correlation co-
efficient of 0.234 and a negative NSE of −0.493 (Table 7).
The discrepancies between the peaks of BARRA-SY and the
measured rainfall are also observed in Fig. 2. In all 8 hourly
stations, the peaks of the BARRA-SY data are earlier than
the peaks in the point measurements. However, the differ-
ences in the peak arrival time between the two datasets are
not consistent across the 8 hourly gauges, varying from 5 h
at station H058180 to 9 h at station H058162. The BARRA-
SY data also shows an unreasonably high value of rainfall at
station H058162 shown in (Fig. 2), compared to other grid-
ded datasets. The performance of the BARRA-SY dataset is
even poorer than the hourly disaggregated ANUClimate and
AGCD data. Although Acharya et al. (2019) indicated that
the average annual rainfall from the BARRA dataset agreed
well with the AGCD dataset, our results demonstrate that at
the hourly scale the reanalysed data do not reproduce well
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Table 5. Performance of the interpolation model with different elevation transformation parameters and elevation smoothing scales for
medium to high rain days (> 1 mmh−1). The minimum value of the RTGCV is shown in bold.

a 1 km 2 km 3 km 4 km 5 km 6 km 7 km 8 km 9 km 10 km

1000 0.5536 0.5518 0.5485 0.5449 0.5427 0.5438 0.5431 0.5436 0.5423 0.5442
2000 0.5429 0.5408 0.5411 0.5385 0.5372 0.5362 0.5374 0.5374 0.5366 0.5403
3000 0.5387 0.5393 0.5377 0.5364 0.5359 0.5352 0.5370 0.5370 0.5376 0.5366
4000 0.5387 0.5372 0.5366 0.5357 0.5348 0.5359 0.5363 0.5361 0.5369 0.5362
5000 0.5369 0.5366 0.5362 0.5351 0.5356 0.5357 0.5362 0.5464 0.5367 0.5359
6000 0.5368 0.5356 0.5351 0.5349 0.5359 0.5364 0.5363 0.5465 0.5363 0.5361
7000 0.5358 0.5355 0.5351 0.5350 0.5359 0.5364 0.5363 0.5366 0.5362 0.5360
8000 0.5356 0.5354 0.5352 0.5354 0.5362 0.5363 0.5363 0.5366 0.5363 0.5360
9000 0.5354 0.5354 0.5356 0.5364 0.5367 0.5464 0.5363 0.5365 0.5358 0.5359
10 000 0.5354 0.5353 0.5361 0.5364 0.5365 0.5461 0.5366 0.5366 0.5359 0.5359

Table 6. Comparison between bivariate and optimal trivariate
analyses on light (0–1 mmh−1) and medium to high rainfalls
(> 1 mmh−1).

Bivariate Trivariate

Average rainfall MAPE MAR MAPE MAR
0–1 mmh−1 0.0884 0.0505 0.0851 0.0420
> 1 mmh−1 0.9007 0.4378 0.8816 0.3681

Table 7. Evaluation metrics for hourly rainfall extracted from the
gridded datasets during the flood event in 2017 at 8 hourly gauges.

Bias MAE r NSE

CHRain −0.600 0.861 0.949 0.866
BARRA-SY −2.224 3.171 0.234 −0.493
Radar −2.155 3.186 0.154 −0.268
ANUClimate −1.519 2.396 0.503 0.186
AGCD −1.486 2.412 0.500 0.181

the variation of rainfall patterns in the Richmond catchment,
during high flood events like in 2017.

Compared with other gridded datasets, the hourly radar-
derived rainfall data are the least adequate in reproducing the
point measurements, observed in both the 2017 and 2022
flood events. The mismatches between radar rainfall data
and point measurements were mentioned in previous studies
(McMillan et al., 2011; Seo and Krajewski, 2011; Manda-
paka et al., 2009; Schleiss et al., 2020). From our analysis,
the hourly peak rainfall values from the radar data are 3–
20 h earlier than the peaks measured at the hourly gauges,
observed in all 8 validated stations (Fig. 2). The radar dataset
has the biggest MAE values in both 2017 and 2022 events
compared with other gridded datasets. It is noted that the
radar rainfall captures the rainfall in the atmosphere instead
of the point measurements on the ground. Therefore, the ar-
rival times of the peaks measured by radar are expected to
be earlier than at the rainfall stations. Moreover, the rainfall

Figure 2. Comparison of hourly rainfall data extracted from the
gridded datasets at 8 hourly stations during the flood event in 2017.

amounts that reach the ground are affected by winds and ver-
tical variability of rainfall (Schleiss et al., 2020). More analy-
ses need to be done on the pre-processing of the radar dataset
before using it for detailed hydrological applications.

A similar analysis on the 24 h total CHRain data was un-
dertaken. The daily data at 8 different daily gauges, which
were not used to generate the CHRain dataset, were ex-
tracted for all the gridded datasets. Since the data at the
8 daily gauges were included in constructing the ANUCli-
mate and AGCD datasets, these datasets show better matches
to the measurements than the CHRain dataset (Table 8). The
24 h total rainfall from the CHRain is strongly associated
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Figure 3. Comparison of daily rainfall data extracted from the grid-
ded datasets at 8 daily stations during the flood event in 2017.

Table 8. Evaluation metrics for daily rainfall during the flood event
in 2017 at 8 daily gauges.

Bias MAE r NSE

CHRain −5.769 8.09 0.935 0.747
BARRA −5.482 17.340 0.555 −0.873
Radar −6.323 16.743 0.297 −0.234
ANUClimate −1.360 4.426 0.975 0.927
AGCD −0.632 5.484 0.957 0.878

with the daily measurements, as indicated by the correlation
coefficients of 0.935 in the 2017 flood event and 0.938 in the
2022 flood event. Figure 3 also demonstrates a good agree-
ment in the peak times between the CHRain, ANUClimate,
and AGCD datasets with the daily measurement. The evalua-
tion for the 2022 flood event also resulted in the same conclu-
sion (Appendix D). These results indicate that the CHRain
dataset can reproduce the rainfall patterns reasonably well,
both at hourly or daily time scales, even at locations without
input hourly measurements.

We also conducted a comparison of the 24 h total CHRain
performance with the daily measurements for the whole pe-
riod from 2007 to 2022 at 169 daily gauges, which were
not included in the generation of CHRain splines. Overall,

the CHRain dataset is highly correlated with the daily mea-
surement, indicated by an averaged correlation coefficient of
0.86. Figure 4 compares the relationship between the 24 h to-
tal CHRain and the daily measurements at 8 selected daily
gauges, during days with light rainfall, and medium to ex-
tremely heavy rainfall. The CHRain dataset performs better
during periods of medium to very heavy rain compared to
days with light rain, except at station 58015. For the Rich-
mond River catchment, the light rain events usually occur at
a small scale. A slight difference in the locations where rain-
fall values are extracted from the 24 h total CHRain splines
and the exact locations of daily rainfall gauges can lead to
significant variations between the two datasets during light
rain periods.

The performance of the CHRain dataset at 169 evaluated
daily gauges depends on the distances to the nearest input
hourly stations and the density of input gauges around them.
The relationship between the correlation coefficients of the
24 h CHRain and the distance to the nearest input hourly
gauge is weak (Fig. 5A). However, the CHRain dataset’s
performance decreases as the distance from the nearest in-
put gauge increases. Figure 5B illustrates that the 24 h total
CHRain has a better agreement with the point measurements
where the distribution of the input hourly stations is denser.
The performance scores spread in a larger range if the gauge
density is less than 5 stations per 25 km radius. This is to be
expected as the splines are dependent on the available input
gauges to fit the rainfall surfaces and as the distance from a
input gauge increases the spline is purely the fitted surface
without any actual measurement constraint.

3.4 Spatial evaluation

From the temporal analysis in Sect. 3.3, the ANUClimate
dataset gives the best match to the daily measurements. In
this spatial analysis, we compared the splines from 1 km
CHRain dataset to the 1 km ANUClimate and 5 km AGCD
datasets. Table 9 shows the comparison between the 24 h to-
tal CHRain dataset and the ANUClimate dataset during the
2017 flood event, for the days with heavy rainfall (i.e., the
maximum rainfall value in a grid is higher than the 95th per-
centile).

The averaged Bias score of 0.916 indicates that the 24 h to-
tal CHRain slightly overestimates the wet areas compared
with the ANUClimate grids (Table 9). However, the Hit Rate
and CSI scores close to 1 demonstrate the high similarity be-
tween the two datasets, especially during the extremely high
rainfall days on 30–31 March 2017. The evaluation scores in-
crease when the mean rainfall values across the catchment in-
crease. In the days with lighter rain (i.e., lower mean rainfall
values), the rains usually occur locally and are spread across
smaller areas. A small mismatch between the two datasets
results in a bigger penalty in the evaluation indices and vice
versa.
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Figure 4. Comparison between 24 h total CHRain and daily point measurements at 8 daily rainfall stations for the whole period from 2007–
2022 (A). (B) shows the relationship between the two datasets in light rain days, and (C) show the relationship in medium to heavy rain days.
r is the correlation coefficient between the two datasets.

Figure 5. (A) Relationships between the correlation coefficients (r) of the 24 h total CHRain and the distance to the nearest input hourly
gauge, and (B) the correlation coefficients (r) of the 24 h total CHRain as a function of the hourly gauges density (number of hourly gauges
within 25 km radius from a daily station).

Even though the spatial resolution of CHRain and ANU-
Climate datasets is both 1 km (i.e., the 1 km resolution
smoothed DEM with focal distance of 5 km), there are
bigger variations in the rainfall values in the 24 h total
CHRain splines than in the ANUClimate splines. The dif-
ference between the average mean rainfall and the average
maximum value of the CHRain spreads wider from 22.3

to 118.8 mmd−1, while this range for the ANUClimate is
from 26.6 to 102.6 mmd−1 (Table 9). Figure 6 compares the
rainfall surfaces from the 24 h total CHRain, the ANUCli-
mate, and the AGCD datasets at the peak of the 2017 flood
event on 31 March 2017. There is an agreement in the dis-
tribution of the rainfall represented in the three datasets. The
variation in the rainfall values within a 5 km window clearly
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Table 9. Comparison between 24 h total CHRain and ANUClimate data during the 2017 flood event.

Time Bias Hit Rate CSI MAE CHRain ANUClimate

[mmd−1] Max [mmd−1] Mean [mmd−1] Max [mmd−1] Mean [mmd−1]

1 Mar 2017 0.911 0.901 0.893 4.2 43.3 4.1 28.6 7.4
2 Mar 2017 0.728 0.721 0.715 4.5 35.9 3.7 37.0 8.0
3 Mar 2017 0.554 0.498 0.472 2.6 82.9 3.1 35.2 2.3
5 Mar 2017 0.805 0.800 0.797 4.0 58.1 8.8 51.5 10.4
6 Mar 2017 0.667 0.657 0.650 2.9 27.7 2.1 29.3 4.7
13 Mar 2017 1.154 0.972 0.823 2.1 44.0 9.4 45.4 9.2
14 Mar 2017 1.005 0.998 0.992 7.1 43.0 12.3 51.6 18.9
15 Mar 2017 0.998 0.992 0.986 5.4 176.5 19.4 102.0 22.0
16 Mar 2017 0.959 0.954 0.949 9.8 131.6 27.2 146.2 36.1
18 Mar 2017 0.948 0.940 0.933 8.1 160.9 24.1 146.4 29.3
19 Mar 2017 1.050 0.993 0.939 11.6 196.3 26.0 141.7 35.0
20 Mar 2017 1.010 0.995 0.981 8.9 131.7 16.6 81.1 23.1
21 Mar 2017 0.980 0.975 0.969 7.0 103.6 23.5 91.7 26.9
24 Mar 2017 0.923 0.909 0.896 4.4 53.8 8.6 37.6 10.2
30 Mar 2017 1.006 1.000 0.994 10.1 225.3 50.7 266.2 47.3
31 Mar 2017 1.005 1.000 0.994 22.8 487.3 135.1 428.1 155.3
6 Apr 2017 0.864 0.855 0.847 2.0 17.6 4.1 23.7 5.9

Average 0.916 0.892 0.872 6.9 118.8 22.3 102.6 26.6

Figure 6. Comparison between CHRain, ANUClimate and AGCD datasets on 31 March 2017. (A–C) show the rainfall surfaces from three
datasets for the whole study area. (D–F) show the 5 km areas at the hourly gauge 58214.
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shows that the CHRain can capture the sub-grid variability
better than the other 2 datasets with the range of 55, 7.4,
and 0 mmd−1 for CHRain, ANUClimate and AGCD datasets
respectively. Interpolating rainfall surfaces using hourly data
helps to maintain the details of rainfall distribution in gener-
ating the splines compared with using daily data. The local
analysis of a specific study area in the CHRain dataset also
increases the influence of topography on the rainfall surface,
compared with the analysis for the whole of Australia as the
ANUClimate dataset.

In the hourly measurements, the magnitude of the rain-
fall at each station and the differences between stations are
smaller than in the daily data. If the rainfall at one gauge
is lower than at other gauges around it, the difference in
the magnitude of hourly data is not significant so the spline
can “bend” and match the rainfall input at the gauges. In
the daily dataset, the differences in rainfall values between
stations are bigger since the hourly values are accumulated
over 24 h to daily data. In this case, the smoothing spline in-
terpolation method tries to compensate and balance the rain-
fall values between stations. Therefore, the smoothing effects
are more pronounced in the daily splines compared to the
24 h total CHRain grid (Fig. 6). This finding also explains the
larger variation in the rainfall values in the 24 h total CHRain
dataset compared with the ANUClimate dataset, as shown in
Table 9. The rainfall surfaces generated using hourly data can
reproduce more details about the rainfall variation and cap-
ture the high rainfall values better than the daily splines. On
the other hand, it is noted that the hourly splines are more
sensitive to the bad zeros in the hourly input dataset. The
analysis to generate hourly splines without flagging bad ze-
ros showed some local dipping points in the rainfall surfaces.
Including the rainfall occurrence analysis to remove those
bad zeros effectively helps to remove those low rainfall areas
in the splines.

The rainfall variability at hourly time step during the
peak of the 2017 flood event (30–31 March 2017) is pre-
sented in Fig. 7. The maximum 24 h total rainfalls are 225.3
and 487.3 mmd−1 on 30 and 31 March 2017, respectively,
which were classified as an extremely high rainfall event.
The hourly pattern was unevenly distributed, with signif-
icant changes occurring both over time and across differ-
ent locations. The rain started from 1:00 am on 30 March
2017 and reached the peak of 88.5 mmh−1 at 11:00 pm on
31 March 2017. The rain stopped 4 h after reaching the peak.
The hourly spatial pattern also shows the movement of the
rain front, which moved from the north to the south coast but
mostly concentrated towards the northeast boundary of the
Richmond River catchment. The spatial distribution and the
movement of the rainfall in the CHRain splines contribute to
explaining the creation of the high flood event in the Rich-
mond River catchment in 2017. For many hydrological ap-
plications such as simulating the flow in small river chan-
nels, the variation of rainfall patterns is essential to correctly
estimate the accumulated volumes and arrival times of floods

in rapid responding catchments (Acharya et al., 2022; Lewis
et al., 2018; Lerat et al., 2022).

4 Discussion

Compared to daily or monthly data, the hourly data contains
significantly more zeros, which can increase the instability
of the interpolation model. This paper is the first to test the
ability of the ANUSPLIN program to generate hourly rainfall
surfaces. It has also incorporated a robust automated process
to remove false zeros from the data. False zeros are a very
common problem with rainfall observations. They are hard
to detect by applying simple thresholds. Comparison with
hourly radar rainfall data indicates that the spatial occurrence
based corrections are highly reliable with an accuracy of up
to around 98 %. The method proposed in this study has been
successfully applied to generate a 1 km hourly gridded rain-
fall dataset for a larger area. Hourly rainfall data are essential
for many hydrological, ecological, and meteorological appli-
cations (Lewis et al., 2018; Hatono et al., 2022).

Including elevation data enhances the performance of the
thin-spline interpolation model in generating hourly rainfall
surfaces, more significantly during larger rainfalls. While the
response of the splines to the topography during light rain
days is quite broad, the elevation data has greater impacts
during larger rain days and results in the clear optimal val-
ues for the DEM transformation parameter and the smooth-
ing distance. There are higher resolution DEMs than the
1 km used in the analysis in this paper. However, the result
suggests including finer topographic data does not result in
better rainfall surfaces at higher spatial resolution. For our
study area, the optimal values for the transformation param-
eter a and the DEM focal distance are around 4000 to 5000
and 5 km, respectively. The optimal DEM focal distance of
5 km is in agreement with the analysis of Sharples et al.
(2005), who showed that similarly averaged DEMs with fo-
cal distances from 5 to 10 km performed best in interpolating
monthly rainfall across Australia. On the other hand, the op-
timal elevation scaling of around 4000 to 5000 corresponds
to a vertical exaggeration of around 20. This is somewhat
less than the vertical exaggeration of around 100 found with
spatial analyses of rainfall at broader time scales by Hutchin-
son et al. (2021) and Johnson et al. (2016). This suggests that
hourly rainfall, though significantly influenced by elevation,
has a less consistent dependence on elevation than rainfall
values recorded at broader time scales.

The initial hourly rainfall occurrence analysis appears to
have been effective in detecting and removing the many false
zeros that can arise with automatically recorded hourly rain-
fall data. This was aided by the limited spatial extent of this
rainfall analysis. The detections would likely to be less reli-
able when applied to sites with no relatively near neighbours.

The CHRain dataset most closely aligns with the
hourly measurements compared to other datasets, including
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Figure 7. Hourly rainfall splines from the CHRain dataset during the peak of the 2017 flood event on 30–31 March 2017.

BARRA-SY and radar data. From our analysis, the reanal-
ysed BARRA-SY data does not reproduce the hourly pat-
terns of the recorded rainfall in the Richmond River catch-
ment, and it performs worse than the daily averaged to hourly
datasets (e.g., from ANUClimate and AGCD data). The re-

sults from our analysis disagrees with the conclusion by
Acharya et al. (2022), showing that using the hourly patterns
from the BARRA dataset is useful to disaggregate the daily
AGCD data to hourly for rainfall-runoff modelling. Rhodes
et al. (2015) also concluded that the reanalysed products can
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only capture 40 %–65 % wet areas during extreme rainfall
events in the UK and Wales. The objective of generating
the reanalysed datasets (e.g., BARRA) is to provide con-
sistent information of historical climate variations including
precipitation at a higher temporal scale (hourly), especially
when and where the measurement data are not available.
The datasets are valuable for climatological studies across
a much larger area and longer periods. Currently, the reanal-
ysed data did not consider the point measurements in the gen-
eration process (Su et al., 2019). Therefore, the reanalysed
rainfall data are not yet suitable for using in detailed hydro-
logical/hydrodynamic modelling. Further research need to be
conducted to address the uncertainties in reanalysis data and
enhance its precision for using in modelling applications.

The method to generate 1 km resolution hourly rainfall
data presented in this study opens an opportunity to produce
high spatiotemporal accurate rainfall datasets for areas where
detailed modelling is required in Australia, and where hourly
measurements are available. The ANUSPLIN program has
options to incorporate spatially dependent variables, such as
rainfall observations from satellites or radars. However, be-
cause of the artifacts, there are limitations in using hourly
rainfall extracted from radar datasets (McMillan et al., 2011;
Schleiss et al., 2020). We also expect the radar estimates of
rainfall to improve over time as it is still a developing tech-
nology and there will be major advances in this field with
time. As for now, for future studies, we suggest investigat-
ing the relationships between the radar observations and the
ground measurements. Then, we can utilize the distribution
of rainfall intensity in radar datasets for interpolating rainfall
splines.

The reliability of the CHRain dataset depends on the in-
tensity of an event, the quality of the input hourly data at
rainfall stations, the distribution of the hourly gauges in the
area of interest, and the distances of the point/area of interest
to the nearest input gauge. Despite the removal of suspicious
point measurements through automated quality control and
manual checks, errors that fall outside the checking criteria
may still exist. Disaggregating daily data into hourly inter-
vals helps to represent hourly rainfall patterns in areas where
hourly gauges are scarce. However, this method cannot accu-
rately capture changes in the pattern caused by the movement
of the rain front (unless short interval radar images are used
to provide this information). The performance of the CHRain
is better during the medium to heavy events, and when the
rain is spread over a larger area. In general, Ebert (2008)
stated that it is more challenging to simulate the light inten-
sity rainfall over a small area. During these events, the model
is highly sensitive to the input from rainfall gauges. Small
errors in the rainfall record or slight variations in the loca-
tion of the gauges can lead to significant differences between
the generated data and the actual measurements. Consider-
ing the computational efficiency of the ANUSPLIN program
and the distribution of the hourly rainfall stations, with appli-
cations that do not require the observation of rainfall across

an extensive area (i.e., for the whole of Australia), we sug-
gest generating splines locally to increase the accuracy and
reliability of the rainfall surfaces.

The spatial analysis proves that the 1 km 24 h total CHRain
dataset can show more detail in the rainfall variation than
in the 1 km daily ANUClimate dataset. The hourly CHRain
splines also demonstrate the movement and distribution of
the rainfall across the Richmond River catchment. This in-
formation is essential for understanding and accurately mod-
elling large flood events (Davis, 2001; Westra et al., 2014).
As always with coastal storm fronts, these are fast moving
storm fronts and the total daily rainfall may only fall within
a couple of hours of the day with hardly any or no rainfall
after the front has passed over the area of interest. This cre-
ates a major limitation in floodplain inundation modelling
as this lumped daily representation of rainfall does not pro-
vide the model with the necessary inputs and this could lead
to major differences in peak heights and timing. However,
the hourly splines are more sensitive to the accuracy of input
data, including the DEM and the measured rainfall inputs. To
apply the thin-plate spline interpolation method on larger ar-
eas (e.g., for the whole of Australia), thorough investigations
need to be undertaken on the quality control of the hourly
measurements to minimise spatial-temporal errors of gauged
data (Lewis et al., 2018; Tang et al., 2018).

5 Conclusions

This paper has examined the topographic dependence of
hourly rainfall patterns. It has found that higher rainfalls have
a consistent dependence on DEM parameters, with an opti-
mal spatial resolution of around 5 km, consistent with pre-
vious studies, and a reduced exaggeration of elevation de-
pendence compared to previous studies of daily and monthly
rainfall.

This paper introduced a method to generate hourly
1 km resolution gridded rainfall data, that are suitable for hy-
drological/hydrodynamic modelling applications. The tem-
poral analysis demonstrated that the CHRain dataset is highly
correlated with the rainfall measurements at both hourly and
daily time steps (with correlation coefficients of 0.949 and
0.935, relatively). The spatial evaluation indicated that the
CHRain outperforms the ANUClimate and AGCD datasets,
which are the most commonly used reliable rainfall datasets
in Australia, in representing the 5 km sub-grid rainfall dis-
tribution at the Richmond River catchment. The 24 h total
CHRain dataset can also capture high rainfall values bet-
ter than the ANUClimate dataset (e.g., Bias= 0.916). The
hourly CHRain surfaces can capture the movement of rain
fronts and the dynamic temporal variations of the rainfall
during heavy rainfall events. Those rainfall characteristics
are required to achieve more accurate flood simulation/mod-
elling.
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The reliability of the proposed method depends on various
factors, such as the event rainfall intensity, quality of input
hourly data, distribution and proximity of rainfall stations,
and the process of disaggregating daily data into hourly in-
tervals. For future studies, we suggest investigating the in-
clusion of rainfall intensity from radar patterns into the thin-
spline interpolation, applying a thorough quality control, and
utilising a more advanced disaggregation method to increase
the reliability of the CHRain dataset.

Appendix A: Evaluation metrics and indices

The bias, Mean Absolute Error (MAE), correlation coeffi-
cient (r), and Nash–Sutcliffe Efficiency (NSE) metrics are
calculated in the temporal evaluation.

Bias=

∑N
i=1

(
Ŷi −Yi

)
N

, (A1)

MAE=

∑N
i=1
(∣∣Ŷi −Yi∣∣)
N

, (A2)

r =
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i=1(Yi −µYi )

(
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)
√∑N
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2
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(
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)2
, (A3)

NSE= 1−

∑N
i=1

(
Ŷi −Yi

)2

∑N
i=1(Yi −µYi )

2
, (A4)

where Ŷi is the predicted rainfall, Yi is the measured rainfall,
µ
Ŷi

is the mean of predicted rainfall, µYi is the mean of mea-
sured rainfall, r is the correlation coefficient between mod-
eled and predicted rainfall, σ

Ŷi
is the standard deviation of

predicted rainfall, σYi is the standard deviation of measured
rainfall and N is the total number of observations.

For the spatial analysis, we used Bias, Hit Rate, and CSI
scores to compares between gridded datasets (Ebert, 2008).

Bias=
hits+ false alarms

hits+misses
, (A5)

Hit Rate=
hits

hits+misses
, (A6)

CSI=
hits

hits+misses+ false alarms
. (A7)

Appendix B: The spline occurrence analysis for the high
rainfall day on 30 March 2017

The 1’s in Table B1 denote the false zerosas determined by
the spline occurrence analysis, over the 24 h for the high
rainfall day on 30 March 2017. On this day almost all sites
recorded all positive rainfall data values after the first 3 h.
Sites H057005, H057123, H058068, H058231 recorded zero
values for all 24 h. Sites H558071, H558076, H558090,
204900 recorded zero values for the first 8 or 9 h followed
by missing data. Site H558082 had 4 zero values over the
first 9 h followed by missing data. All of these false zero de-
tections appear to be correct. The few remaining isolated de-
tections are at sites with positive rainfall values on preceding
or succeeding days.
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Table B1. The spline occurrence analysis for 30 March 2017.

Site

H056199 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
H057005 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
H057123 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
H058068 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1
H058231 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
H558071 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H558076 0 0 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
H558082 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H558090 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
041525 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
204403 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
145020A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
145027A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
145003B 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
204007 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
204900 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
204033 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
058097 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
058061 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
057003 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Appendix C: Statistics of the hourly measurement data
for the flood events in 2017 and 2022

Table C1. Statistics for the observed hourly rainfall during the flood event in 2017. The average values of the statistics are shown in bold.

Station ID Mean [mmh−1] Max [mmh−1] Std [mmh−1] P3 [%] P6 [%] P12 [%] P24 [%]

58214 9.3 41.0 11.9 92.7 82.6 67.5 50.1
203900 5.7 30.2 6.8 71.3 54.6 49.8 31.0
58198 4.5 32.2 6.8 71.6 37.3 28.8 25.5
H058147 13.1 83.6 17.5 67.4 44.5 39.6 35.0
58208 5.6 26.0 6.3 86.9 69.5 50.4 39.7
H058180 12.4 50.7 13.2 62.9 56.9 55.6 54.1
H058162 7.8 33.4 8.9 81.3 47.3 38.2 37.2
203030 7.5 35.8 8.2 83.6 72.6 47.9 39.7

Average 8.2 41.6 9.95 77.2 58.2 41.0 39.0
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Table C2. Statistics for the observed hourly rainfall during the flood event in 2022. The average values of the statistics are shown in bold.

Station ID Mean [mmh−1] Max [mmh−1] Std [mmh−1] P3 [%] P6 [%] P12 [%] P24 [%]

58214 5.3 41.0 8.7 92.7 82.6 67.5 50.1
203900 2.3 30.2 4.2 71.3 54.6 49.8 31.0
58198 3.5 93.4 7.4 46.4 28.2 21.5 14.7
H058147 3.7 83.6 8.3 67.4 44.5 39.6 35.0
58208 2.4 26.0 4.1 86.9 69.5 50.4 39.7
H058180 3.0 50.7 6.4 62.9 56.9 55.6 54.1
H058162 3.2 33.4 5.5 81.3 47.3 38.2 37.2
203030 2.8 40.8 5.2 50.5 35.0 27.7 15.3

Average 3.3 49.9 6.2 69.9 52.3 43.8 34.6

Appendix D: Temporal analysis of the flood event in
2022

Table D1. Evaluation metrics for the flood event in 2022, observed
at 8 validated hourly gauges.

Bias MAE r NSE

CSIROGrid −0.608 1.681 0.928 0.839
Radar −4.000 6.051 0.223 −0.352
ANUClimate −2.575 4.555 0.502 0.129
AGCD −2.623 4.576 0.496 0.113

Table D2. Evaluation metrics for the daily rainfall during the flood
event in 2022 at 8 daily gauges.

Bias MAE r NSE

CSIROGrid −4.713 6.908 0.938 0.800
Radar −3.790 14.950 0.690 0.134
ANUClimate −1.825 3.724 0.988 0.964
AGCD −1.330 5.295 0.966 0.911

Figure D1. Comparison of hourly rainfall data at 8 hourly stations
during the flood event in 2022.
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Figure D2. Comparison of hourly rainfall data at 8 daily stations
during the flood event in 2022.

Code and data availability. We provided Python scripts and
a sample to prepare inputs and generate hourly rainfall
splines at 1 km resolution using the ANUSPLIN program
at https://doi.org/10.5281/zenodo.17686121 (Nguyen, 2025).
Users will need to contact the Fenner School of Environment
& Society (https://fennerschool.anu.edu.au/research/products/
anusplin-version-4-4, last access: 30 December 2025) to get the
ANUSPLIN program license.
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