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Abstract. The Central American mid-summer drought
(MSD) is a defining precipitation pattern within the regional
hydrologic system linked to water and food security. Past
changes and future projections in the MSD show a strong
sensitivity to how the MSD is defined. The question then
arises as to whether multiple definitions should be consid-
ered to capture the uncertainty in projected impacts as cli-
mate warming continues and a need to understand the im-
pacts on regional hydrology persists. This study uses an en-
semble of climate models downscaled over Nicaragua using
two methods, global warming levels up to +3 °C, and dif-
ferent definitions of the MSD to characterize the contribu-
tions to total uncertainty of each component. Results indicate
that the MSD definition contributes the least to total uncer-
tainty, explaining 5 %–9 % of the total. At the same time, ev-
idence suggests a shift of the MSD to later in the year. As
warming progresses, total uncertainty is increasingly dom-
inated by variability among climate models. While not a
dominant source of uncertainty, downscaling method adds
approximately 8 %–18 % to total uncertainty. Future studies
of this phenomenon should include an ensemble of climate
models, taking advantage of archives of downscaled data to
adequately capture uncertainty in hydrologic impacts. These
findings provide critical guidance for future research aiming
to inform water planning and adaptation efforts in the region:
by identifying the dominant sources of uncertainty across
warming levels, this framework helps prioritize where to fo-
cus modeling and monitoring efforts. In particular, water re-
source managers can use this information to design adaptive
strategies that are robust to model spread and shifts in sea-

sonal precipitation timing, rather than to definitional ambi-
guity. The projection uncertainty partitioning approach could
serve as a template to quantify the relative importance of
uncertainty for projections of other precipitation-driven phe-
nomena in different geographic contexts.

1 Introduction

Central America is consistently identified as a global hotspot
for anthropogenic climate change, being prone to exacer-
bated impacts of already considerable natural climate vari-
ability and change (e.g., Giorgi, 2006; Hidalgo et al., 2017;
Stewart et al., 2021). Any effort to develop strategies for mit-
igating impacts of future climate disruption or to adapt to
probable hydrologic impacts is based on climate model pro-
jections (IPCC, 2023; Lemos and Rood, 2010; Zhao et al.,
2021). A quantitative assessment of how variability in precip-
itation is partitioned into other hydrologic processes, espe-
cially the evaluation of changes in extremes such as droughts
and floods, can help anticipate variability in impacts (Yin and
Roderick, 2020).

This study focuses on future precipitation-driven hydro-
logic changes, which introduce a cascade of uncertainties
into impact projections (Aitken et al., 2023). The uncer-
tainty associated with each step along this cascade, which
can include future greenhouse gas concentrations, climate
response, downscaling, and hydrologic response can be es-
timated using multi-model ensembles (discussed in more de-
tail below). Assessing this uncertainty can be a daunting task
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for stakeholders preparing strategies to cope with the pro-
jected changes in the timing and availability of water. Im-
proved understanding of the comparative magnitudes of dif-
ferent sources of variability in impact projections can high-
light opportunities to reduce them. Even more importantly,
these comparative magnitudes can help identify which steps
in the modeling chain may be simplified without adversely
affecting metrics relevant to decision-making related to adap-
tation and mitigation strategies in water resources (Stein-
schneider et al., 2023).

As characterized by early efforts to compare variability
among precipitation and temperature predictions (Hawkins
and Sutton, 2009, 2011), uncertainties arise from imperfect
representation of the earth system in numerical models (sci-
entific uncertainty), the inability to know future atmospheric
concentrations of greenhouse gases (forcing or scenario un-
certainty), and the impossibility of precisely predicting the
behaviour of a chaotic system (internal variability). Hawkins
and Sutton found that, using climate model projections from
the third Coupled Model Intercomparison Project (CMIP3),
internal variability becomes less important than scientific
or scenario uncertainty later in the 21st century. They also
observed a marked difference between precipitation projec-
tions, with greater internal and model variability persisting
late into the 21st century, and temperature projections, which
showed scenario uncertainty dominating projections in most
regions late in the 21st century. This reflects the dominant
physics of temperature being a primary response to the in-
creased radiative forcing of accumulating greenhouse gases,
and precipitation being driven by secondary physical pro-
cesses that are more challenging to model, such as the mois-
ture holding capacity of the atmosphere, the variety of phe-
nomena that can cause precipitation, and feedbacks with the
land surface, ocean, and cryosphere lead to significant vari-
ability on scales much smaller than those of temperature
(Neelin et al., 2022; O’Gorman and Schneider, 2009; Stain-
forth et al., 2005). Other studies have found similar results
with more recent climate model simulations at continental
scales (Lehner et al., 2020; Woldemeskel et al., 2016).

In the most recent sixth assessment report of the Intergov-
ernmental Panel on Climate Change (IPCC), a new emphasis
was placed on assessing impacts at specified levels of global
warming (relative to pre-industrial conditions of 1850–1900)
to facilitate comparisons with earlier reports and coordina-
tion with targets in international agreements (IPCC, 2023).
Assessing impacts at specific global warming levels also al-
lows the use of models irrespective of their sensitivity (Haus-
father et al., 2022). This approach essentially combines sci-
entific and scenario uncertainties into a single ‘projection’
uncertainty, reducing the variability in simulated projections,
but leaving the time at which any specified level of warm-
ing occurs less well defined. An advantage for stakeholders
is that policies can be developed to respond to locally impor-
tant hydrologic impacts at different levels of warming with-
out having to cope with forming an ensemble by culling mod-

els (based on correspondence of model sensitivity to a likely
range) or with selecting atmospheric greenhouse gas concen-
tration scenarios (Merrifield et al., 2023). In fact, demonstra-
ble skill may be lost when excluding models from an en-
semble based solely on correspondence of model sensitivity
to observational estimates (Goldenson et al., 2023; Swami-
nathan et al., 2024).

Because hydrologic impacts analysis often requires pro-
jections at a finer spatial scale than what climate models pro-
duce, some type of downscaling is performed, which adds
an additional layer of uncertainty that has been included in
more recent studies (Lafferty and Sriver, 2023; Michalek et
al., 2024; Wootten et al., 2017). The selection of downscaling
method has been found in some locations to add a significant
amount of uncertainty to projections, sometimes persisting at
levels comparable to other sources through the 21st century,
though results can vary widely in different regions (Lafferty
and Sriver, 2023; Wootten et al., 2017).

When expanding an analysis to include specific impacts,
varying definitions of impacts will add to the total uncer-
tainty. For example, for future projections of potential evap-
oration (PE) for France, Lemaitre-Basset et al. (2022) found
the PE formulation had a minor contribution to total pro-
jection uncertainty, except when only a single scenario was
used. How droughts were characterized for compound hot
and dry events was a dominant uncertainty source for low
precipitation events but was a much smaller portion of un-
certainty for other formulations (Jha et al., 2023). Even when
given identical input, different models will simulate different
impacts, compounding the uncertainty in projections (Cheg-
widden et al., 2019; Clark et al., 2016). The importance of
this level of uncertainty can vary widely, based on the spe-
cific impact assessed (Bosshard et al., 2013).

Across Central America, the midsummer drought (MSD)
is a phenomenon where boreal summer seasonal rainfall is
characteristically divided into two distinct rainy periods by
a relative lull in precipitation, and it is a critical compo-
nent of the regional hydrologic system (Anderson et al.,
2019). Changes in the MSD can lead to lower soil mois-
ture, reduced groundwater recharge, and increased evapora-
tion rates, which can have important impacts on the agricul-
tural calendar, and local food and water security (Stewart et
al., 2021). Thus, understanding the causes and impacts of the
disruption of MSDs is crucial for managing water resources,
predicting agricultural outcomes, and mitigating the effects
of such dry periods. A recent study of the Central American
MSD explored the variability in historical trends based on
how the MSD is defined (Maurer et al., 2022). In addition,
many studies have examined projected future changes in the
MSD (Corrales-Suastegui et al., 2020; Maurer et al., 2017;
Rauscher et al., 2008), though whether the uncertainty added
by the MSD definition is important relative to other projec-
tion uncertainties remains to be determined and is the focus
of this study.
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The Central American Dry Corridor (CADC) is a highly
climate sensitive region that occupies much of the Pacific
side of Central America. The CADC is generally dry and
has highly seasonal and variable climatic conditions, one
expression of which is the MSD. The MSD persists across
much of the region, strongly influencing smallholder farm-
ers who depend on rainfed agriculture (Stewart et al., 2021).
In Nicaragua, distinctly precarious socio-economic and cli-
matic vulnerabilities intersect with a scarcity of observa-
tional (station) data (Girardin, 2024), rendering advances in
the understanding of the regional hydrologic system particu-
larly pertinent (Stewart et al., 2021).

In this study, we demonstrate a method of uncertainty par-
titioning for the MSD in Nicaragua to determine whether the
choice of MSD definition is important to include as an addi-
tional source of uncertainty when estimating projected future
impacts. We also recast the typical uncertainty analysis using
specific warming levels rather than defined time windows so
the results will be less sensitive to changes in the models se-
lected or future emissions scenarios in projecting impacts, in
this case to MSD characteristics.

2 Methods

The main sources of uncertainty in projections of the mid-
summer drought (MSD) evaluated in this study include inter-
nal variability, differences among climate models, the choice
of downscaling method, and the definition of the MSD itself.
They are determined based on climate projections of daily
precipitation and the simulated MSD characteristics (the im-
pacts of concern for this study) and described as follows.

2.1 Climate model projections

Downscaled daily precipitation data are obtained from two
sources: the climate impacts lab (CIL) data set (Gergel et al.,
2024), and the CMIP6 version of the NASA-NEX archive
(Thrasher et al., 2022). While both data sets use statistical
downscaling, their methods are distinct. CIL uses a quan-
tile delta mapping method for bias adjustment (Cannon et
al., 2015) with a downscaling method that preserves climate
model trends at quantiles. The NASA-NEX data set uses a
similar bias correction, but a very different spatial disaggre-
gation method based on perturbing the historical observa-
tions with bias corrected anomalies, without preserving pre-
cipitation trends of the climate models. Additionally, the two
methods use different observational baselines for bias cor-
rection, which has been shown to influence results (Rastogi
et al., 2022; Wootten et al., 2021). Both the NASA-NEX
and CIL downscaled data have a resolution of 0.25° (ap-
proximately 27.5 km in Nicaragua). It should be noted that
restricting the analysis to model runs common to both CIL
and NASA-NEX, with a single run per model, may limit the
characterization of internal variability by relying on single

realizations per model, and equal model weighting may un-
derstate the effect of model dependence or skill.

This study uses a set of eight climate model runs that are
shared between both data sets for both historic and future
projections, using shared socioeconomic pathway (SSP) 5-
8.5 (Meinshausen et al., 2020). These are listed in Table 1,
which also includes the original spatial resolution before
downscaling. SSP5-8.5 is the scenario with the highest an-
thropogenic emissions and resulting radiative forcing, which
means all the models used in this study produce in excess of
+3 °C of warming during the 21st century, allowing all to be
used in analyses at global warming levels of+1.5,+2.0, and
+3.0 °C.

By only including those downscaled runs that use identi-
cal climate model simulations for both CIL and NASA-NEX
as input, the variability due to model selection is separated
from that due to internal variability represented by different
model initial conditions or parameterizations. All model pro-
jections are considered equally plausible and are thus equally
weighted as in Michalek et al. (2023).

2.2 Warming levels

The years at which each model projection reaches +1.0,
+1.5, +2.0, and +3.0 °C of global mean warming (relative
to pre-industrial conditions) were determined by Hauser et
al. (2022) for CMIP6 climate models using the mid-year of a
20-year moving window. In this experiment, a 30-year win-
dow was used around the defined mid-year for each model
run and the mean of each impact in that 30-year period was
determined at different levels of warming. The years at which
the model projections simulate the different levels of warm-
ing are shown in Fig. 1. The +1.0 °C warming level is not
used in this study as it has already been exceeded.

2.3 MSD characteristics

The MSD as a hydrologic phenomenon is defined using lo-
cal stakeholder descriptions and the methods described in
Maurer et al. (2022). The methods are implemented in the
R package msdrought (Uyeda et al., 2024). The MSD char-
acteristics are entirely derived from the timing and magni-
tude of smoothed daily precipitation, and the occurrence of
two maxima and a relative minimum within two defined win-
dows, as depicted in Fig. 2. Years that do not display a timing
of peaks and the intervening minimum occurring within the
defined windows are designated as NULL. The default defi-
nition for the Central American region requires that the MSD
maxima must occur between 1 May and 31 October and the
minimum within the 1 June to 31 August window (Fig. 2),
though these are adjusted for this experiment as noted below.

Whether an MSD occurs in any year is often defined
using some measures of duration, intensity (or strength),
and timing (e.g., Alfaro, 2014; Anderson et al., 2019; Kar-
nauskas et al., 2013; Perdigón-Morales et al., 2018). Maurer
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Table 1. Climate model runs used by downscaling methods in this study. Nominal resolution is the approximate horizontal resolution of the
archived data for the model land component.

Model Variant Institution Nominal Resolution (km)

BCC-CSM2-MR r1i1p1f1 Beijing Climate Center 100
CMCC-ESM2 r1i1p1f1 Euro-Mediterranean Center 100
EC-Earth3-Veg-LR r1i1p1f1 EC-EARTH consortium, The Netherlands/Ireland 250
GFDL-ESM4 r1i1p1f1 NOAA Geophysical Fluid Dynamics Laboratory 100
INM-CM5-0 r1i1p1f1 Institute for Numerical Mathematics (INM), Russia 100
MIROC6 r1i1p1f1 National Institute for Environmental Studies, Japan 250
MPI-ESM1-2-HR r1i1p1f1 Max Planck Institute for Meteorology (MPI), Germany 100
NorESM2-MM r1i1p1f1 Norwegian Climate Center, Norway 100

Figure 1. The years at which each warming level is reached for the climate model ensemble in Table 1.

et al. (2022) determined that, considering several aspects of
MSD definition, the two with greatest impact on results were
the minimum intensity and the MSD timing, which are there-
fore used in this study. For this experiment, we use the same
definitions of intensity and duration as Maurer et al. (2022):
MSD intensity was calculated as the mean precipitation of
these maxima minus the minimum precipitation occurring
between them; MSD duration was defined as the number
of days between the two seasonal precipitation maxima. To
explore the variability associated with MSD definitions, the
dates are shifted 14 d earlier and then 14 d later from those
in Fig. 2 to estimate the effect of this definition on MSD
variability. We also vary the minimum intensity from 2 to
4 mm d−1.

While not a defining characteristic, the frequency of MSD
occurrence is often used to characterize the robustness and
importance of the MSD (Corrales-Suastegui et al., 2020;
Zhao et al., 2023). Where we present results, we focus on
regions that exhibit MSDs in ≥ 50 % of years.

2.4 Variance partitioning

The partitioning of variance among the different sources gen-
erally follows Michalek et al. (2023). Variance partitioning
was done for each MSD characteristic/impact (duration and

intensity), for each grid cell in the domain bounded by lon-
gitudes −83 and −88° and latitudes 10 and 15°.

First, for each climate model, downscaling method, and
definition (the experiments varying the MSD dates and min-
imum intensity) an 11-year smoothing window was applied
to the values for each year and the anomalies relative to a
1970–1999 base period were calculated. Internal variability
was then estimated by fitting a LOESS curve to the anomalies
of each impact and calculating the variance of the LOESS
residuals for each defined warming level and impact of inter-
est (+1.5, +2.0 and +3.0 °C) using a 30-year window cen-
tered on the midyear of warming for each climate model.
Some prior studies have used other methods to estimate in-
ternal variability, such as fitting a polynomial rather than a
LOESS curve (Hawkins and Sutton, 2009). The choice of
method for estimating internal variability has been shown to
add substantial uncertainty when a single climate model is
used (with many runs); using multiple climate models lessens
this impact (Lehner et al., 2020).

Model variability is estimated by calculating the variance
of the LOESS predicted values for each defined warming
level and impact of interest.

Model Variance=
1

N1

∑
d, e

var
[
x̂ (t, d, e, m)

]
(1)
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Figure 2. A schematic of a typical MSD year, highlighting the def-
inition (dates) and the impacts (intensity and duration) of interest
in this study. Red points mark maxima and the blue point marks
the minimum used. Duration is the number of days between the
peaks; intensity is the average of the two peaks minus the mini-
mum between them. All metrics are calculated from the smoothed
daily precipitation time series. To estimate the effect of the defini-
tion on MSD variability, dates are shifted 14 d earlier and later from
the definition dates shown here, and differing values for a minimum
intensity are applied.

Here x̂ is the set of LOESS predicted values for the set of
years, t , associated with the warming level specified for each
climate model, m. N1 is the number of unique subsets of x̂

with valid (non-NULL) MSD impact data for each combi-
nation of downscaling method, d , and MSD definition ex-
periment, e. Similarly, uncertainty due to the downscaling
method is calculated by

Downscaling Variance=
1

N2

∑
m, e

var
[
x̂ (t, d, e, m)

]
(2)

where N2 is the number of unique subsets of x̂ with valid
(non-NULL) MSD impact data for each combination of cli-
mate model, m, and MSD definition experiment, e. Finally,
the uncertainty due to MSD definition is calculated by

MSD Definition Variance=
1

N3

∑
m, d

var
[
x̂ (t, d, e, m)

]
(3)

N3 is the number of unique subsets of x̂ with valid (non-
NULL) MSD impact data for each combination of downscal-
ing method, d, and climate model, m.

3 Results and Discussion

To frame the impacts of a warming climate on the MSD
in Nicaragua, Fig. 3 shows the median changes in intensity

and duration projected by the complete ensemble used for
this study. Figure 3 also shows the boundary of the Central
American Dry Corridor (CADC) as objectively determined
by Stewart et al. (2021). The CADC is a relatively arid re-
gion with highly seasonal precipitation in Central America
that exhibits a high sensitivity to climatic changes and is es-
pecially susceptible to drought impacts. It is therefore a focus
for some of the analysis in this study.

Figure 3 shows the highest intensity and longest duration
MSDs for 1970–1999 are experienced in the CADC on the
Pacific side of Nicaragua. Changes in MSD intensity antici-
pated with+3 °C of global warming are focused on the East,
in the area that has historically experienced the lowest inten-
sity (least pronounced) events of the shortest duration. Dura-
tion changes are more widespread, indicating a longer lull in
the rainy season as climate disruption progresses.

Figures 4 and 5 show the effect of shifting the default dates
in the MSD definition (Fig. 2) on projected changes to MSD
intensity and duration. Figure 4 shows that shifting the dates
14 d earlier dramatically reduces the area that would be clas-
sified as having an MSD, compared to Fig. 3. Conversely,
Fig. 5 shows that shifting the time windows 14 d later ex-
pands the area with an MSD. These results are consistent
with prior work that found the MSD tending to shift later
and to have a longer duration with climate change impacts
(Maurer et al., 2022).

Focusing on the CADC in the Nicaragua domain consid-
ered in this study, Fig. 6 shows the variability of the changes
in MSD duration and intensity, averaged over the CADC,
among the 16 different projections (eight climate models and
two downscaling methods) when shifting the MSD definition
dates 14 d earlier and 14 d later.

Figure 6 shows that for the CADC (the portion in
Nicaragua) the definition of the dates has a strong impact
on the projected changes, especially in MSD duration, with
the shift in projected duration change being comparable
to the variability among individual projections. This raises
the question of whether the choice of MSD definition adds
enough uncertainty to the MSD impacts, relative to the other
sources of uncertainty, where stakeholders should include
multiple definitions in impacts analysis. This is explored be-
low.

Figure 7 shows the contributions to total variance of MSD
intensity due to the different sources considered in this study
at different global warming levels. As has been found in other
analyses of precipitation uncertainties (Lehner et al., 2020;
Wu et al., 2022), this precipitation-derived MSD impact also
shows internal variability dominating for the historical pe-
riod. Internal variability contributes a substantial amount of
uncertainty as warming progresses, though even at the low-
est+1.5 °C level the model projection uncertainty constitutes
most of the uncertainty to the projection of MSD impact.
While not shown, the MSD duration shows similar patterns.

Despite very different spatial characteristics of changes
in MSD intensity (Figs. 3–5) and MSD frequency (Fig. 8),
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Figure 3. Historical values as simulated by the model ensemble of MSD intensity (a) and duration (c) for 1970–1999, and the projected
changes (b, d) with +3 °C of global warming, using the dates in Fig. 2 in the MSD definition. Grid cells marked with an “×” indicate the
change is significant at a 5 % level based on a Wilcox (Mann-Whitney) test. The magenta line is the boundary of the Central America Dry
Corridor (CADC), the black line denotes the coastline. Grid cells with less than 50 % of years having an MSD, in both historical and future
periods, are white. In addition, if less than half of the models in the ensemble show an MSD, the grid cell is white.

Figure 4. As in Fig. 3 but showing only mean changes in MSD intensity and duration when changing the MSD definition to use dates 14 d
earlier than shown in Fig. 2.

Fig. 7 shows relatively consistent fractional uncertainty for
all sources across the domain. This reflects the larger con-
tributions to MSD intensity uncertainty of climate model
and internal variability, both inherited from the larger spa-
tial scales of the climate models (Table 1). The bias correc-
tion and spatial downscaling included with the downscaling

methods aligns the climate model output to finer gridded ob-
servations but adds a relatively small portion to the overall
uncertainty in MSD impacts. As shown in Fig. 7, uncertainty
due to downscaling is relatively small over Central Amer-
ica because the dominant sources of uncertainty come from
large-scale climate model differences and internal variabil-
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Figure 5. Similar to Fig. 4, but with the MSD definition using dates shifted 14 d later than in Fig. 2.

Figure 6. Mean individual projections (points) for the CADC
(Nicaragua) and probability contours (based on a Gaussian kernel
density estimator) at +3 °C global warming with the MSD defini-
tion shifted 14 d earlier or 14 d later than in Fig. 2.

ity. Downscaling methods primarily refine model output to
match finer observational data but do not significantly in-
crease the total uncertainty. Thus, in the context of MSD
analysis, the role of downscaling in uncertainty is modest
compared to inherited uncertainties from the climate models
themselves. The MSD definition has the smallest contribu-
tion to total uncertainty at all warming levels with smaller
contributions toward the Pacific coast where MSD frequency
is greatest (Fig. 8) and intensity is strongest (Fig. 3).

While MSD impacts in this study are based on (smoothed)
daily precipitation, there might be more spatial heterogene-
ity in impacts derived from extreme precipitation events,

since mean daily precipitation is generally more skilfully
simulated by climate models than extremes (Volosciuk et
al., 2017), and extremes would therefore be adjusted more
dramatically during the downscaling process. Exploring the
uncertainty contribution of downscaling to impacts driven
by more extreme events may benefit from more varied,
regionally-focused downscaling efforts (e.g., Tamayo et al.,
2022).

The progression of uncertainty through different levels
of warming for both MSD intensity and duration, averaged
across the CADC in Nicaragua, is shown in Fig. 9. At lev-
els of warming above +2.0 °C model projection uncertainty
is the largest component to uncertainty in both MSD im-
pacts. At+3.0 °C of warming, internal variability contributes
19 %–29 % of the total uncertainty in MSD intensity and
duration over the CADC. Downscaling variability for the
CADC region contributes a relatively consistent 8 %–18 % of
the total uncertainty at all future warming levels, and a larger
percentage for MSD intensity than duration. This is consis-
tent with different downscaling methods, which are often de-
veloped to adjust for biases in mean values (Cannon et al.,
2015), diverging more for extreme precipitation, and MSD
intensity being a function of peak precipitation values in any
year.

The uncertainty due to the MSD definition is the smallest
portion at all warming levels, at 5 %–9 % of the total uncer-
tainty over the CADC and is slightly larger for duration than
for intensity as warming progresses. The uncertainty due to
MSD duration becomes higher than that for intensity because
for the CADC the intensities are already high, and even with
projected slight declines in intensity (Fig. 3), they remain
well above the minimum thresholds explored in this exper-
iment. By contrast, the timing established for the MSD win-
dows has a dramatic effect on the determination of an MSD
year and produces changes in duration that are large rela-
tive to its baseline (1970–1999) values (Figs. 4 and 5). While
these differences do emerge in our results, it should be em-
phasized that their contribution to total uncertainty remains
small.
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Figure 7. For MSD intensity, the percent of total variance contributing to each source included in this analysis, for the base period of
1970–1999 (top row) and for different levels of global warming. Only grid cells exhibiting 50 % or greater frequency of MSD years are
colored.

4 Conclusions

The advances in understanding the hydrologic system in this
study focus on refining the methods for projecting future pre-
cipitation changes and their impacts on the Central Ameri-
can Midsummer Drought (MSD). In considering projections
of future precipitation on the Central American MSD, this
study indicates the dominant sources of uncertainty are in-
ternal variability (especially for near term, or lower levels of
global warming) and variability among climate models (in-
creasingly so as warming level increases). While precipita-
tion downscaling has the potential to introduce large uncer-
tainties in some hydrologic impacts, for the MSD impacts
included in this study downscaling generally contributes less
to total uncertainty compared to other sources. Despite hav-
ing a strong impact on the magnitude and spatial extent of
the MSD, the exact definition of the MSD has a minor ef-
fect on the uncertainty of MSD projections at all warming

levels, similar to prior studies that found variable or limited
impact of definition uncertainty (Jeantet et al., 2023; Jha et
al., 2023; Lemaitre-Basset et al., 2022). Thus, while model
spread and internal variability dominate, the role of the MSD
definition was found in this study to be comparatively small;
future studies should continue testing how event or season
definitions influence uncertainty.

The main implication of these findings for future work
on climate disruption and the future of the Central Amer-
ican MSD is that selecting an ensemble of climate mod-
els is essential for characterizing the uncertainty in precip-
itation and its impact on the MSD. By analysing impacts
at specific levels of warming, rather than future spans of
years, the selection of models may be done without exclud-
ing models based on sensitivity, which simplifies the pro-
cess as other climate model skill metrics may be used. Us-
ing a single precipitation downscaling method for all climate
models would still capture the majority of MSD impact un-
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Figure 8. The frequency of MSD occurrence as a % of years for the different global warming levels depicted in Fig. 7, for regions exhibiting
an MSD in at least 50 % of years.

Figure 9. Mean fraction of variance for (a) MSD intensity and (b) MSD duration, averaged over the CADC in Nicaragua (see Figs. 4 and 5).
The Warming level labeled 0 is for 1970–1999.

certainty, though with multiple archives of downscaled data
freely available, multiple methods can be readily included.
The definition of the MSD can be chosen to capture im-
pacts of interest, but the specific definition of the time win-
dows and minimum intensity required for an MSD does not
add substantially to the uncertainty in impacts. These find-
ings show that future work can better support more effi-
cient decision-making by selecting climate model ensembles

based on performance metrics rather than sensitivity, fram-
ing projections by warming levels instead of time periods,
and using a single downscaling method without major loss of
uncertainty characterization. Additionally, they demonstrate
that flexibility in defining the MSD allows tailoring analy-
ses to stakeholder-relevant impacts without significantly af-
fecting uncertainty. Furthermore, the dominance of internal
variability at near-term timescales, and the growing role of
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model uncertainty under higher warming, has important im-
plications for stakeholders. Policymakers, water managers,
and agricultural planners must recognize that near-term vari-
ability may mask or amplify underlying trends, complicating
adaptation strategies. In the longer term, the prominence of
model uncertainty highlights the need for improved climate
modeling and ensemble strategies to better constrain future
risk assessments. Explicitly accounting for which source of
uncertainty dominates at a given time horizon allows stake-
holders to tailor their decisions accordingly.

While two precipitation downscaling methods were used
to characterize the uncertainty in downscaling on the MSD
impacts, including additional methods could improve this,
especially if dynamic downscaling were represented. Ex-
panding the domain would allow a greater exploration of the
spatial variability in the different components of uncertainty
on the regional MSD. Future research will further explore
these improvements to this study. The approach presented
in this study could serve as a template to quantify the rel-
ative importance on uncertainty for the projection of other
precipitation-driven impacts in different geographic contexts
and regional hydrologic systems, such as monsoon patterns
or the timing and duration of the rainy season in other highly
seasonal climates.

This study directly responds to the needs of stakeholders,
such as water managers and agricultural planners, who re-
quire actionable and skilful projections to inform adaptation
strategies under climate change. By identifying where sim-
plifications in modeling (e.g., MSD definition or downscal-
ing method) do not substantially impact uncertainty, and by
adopting a warming-level framing that aligns with interna-
tional policy targets, this work supports more efficient and
targeted planning in the face of future hydrologic change that
can be developed for other geographic regions.

Code availability. An R package is available at https://cran.
r-project.org/package=msdrought (last access: 25 July 2024) for de-
termining the characteristics of the mid-summer drought using daily
precipitation data. Processing code is archived at https://github.com/
EdM44/msd_variance (last access: 26 January 2026) and Zenodo
(https://doi.org/10.5281/zenodo.18355571, Maurer, 2026).
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