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Abstract. Evapotranspiration comprises transpiration, soil
evaporation, and interception. The partitioning of evapotran-
spiration is challenging due to the lack of direct measure-
ments and uncertainty of existing evapotranspiration parti-
tioning methods. We propose a novel method to estimate
long-term mean transpiration to evapotranspiration (E{/E)
ratios based on the generalized proportionality hypothesis
using long-term mean hydrological observations at the wa-
tershed scale. We tested the method using 648 watersheds
in the United States classified into six vegetation types. We
mitigated impacts of the variability associated with different
E, data products by rescaling their original Ep values using
the product E/E, ratios in combination with the observed
E calculated from watershed water balance. With E}, thus
rescaled, our method produced consistent E;/E across six
widely used E}, products. Shrubs (0.33) and grasslands (0.32)
showed lower mean E;/E than croplands (0.48) and forests
(respectively 0.69, 0.60, and 0.70 for evergreen needleleaf,
deciduous broadleaf, and mixed forests). E;/E showed sig-
nificant dependence on aridity, leaf area index, and other
hydrological and environmental conditions. Using E;/E es-
timates, we calculated transpiration to precipitation ratios
(E¢/ P) ratios and revealed a bell-shaped curve at the water-
shed scale, which conformed to the bell-shaped relationship
with the aridity index (AI) observed at the field and remote-
sensing scales (Good et al., 2017). This relationship peaked
at an E{/P between 0.5 and 0.6, corresponding to an Al
between 2 and 3 depending on the E, dataset used. These
results strengthen our understanding of the interactions be-

tween plants and water and provide a new perspective on
a long-standing challenge for hydrology and ecosystem sci-
ence.

1 Introduction

Partitioning evapotranspiration is important for understand-
ing water and energy balances of terrestrial ecosystems.
Evapotranspiration has been predicted to increase at the ex-
pense of soil moisture due to climate change (Li et al., 2022;
Niu et al., 2019) with potential implications for future pro-
jections of water, energy, and carbon balances. Large un-
certainty remains in the partitioning of evapotranspiration
into its components: transpiration, interception, and bare soil
evaporation. Various methods have been developed to parti-
tion evapotranspiration based on measurements (Kool et al.,
2014; Stoy et al., 2019). These include (1) flux-variance sim-
ilarity methods using high frequency (10-20 Hz) flux tower
measurements, which estimate E/E based on carbon-water
correlation since transpiration and plant carbon uptake are
concurrent (Scanlon and Kustas, 2010, 2012; Scanlon and
Sahu, 2008; Skaggs et al., 2018); (2) eddy-covariance meth-
ods, which estimate E;/E using assumptions related to water
use efficiency based on widely available half-hourly/hourly
eddy covariance measurements (Berkelhammer et al., 2016;
Li et al., 2019; Scott and Biederman, 2017; Yu et al., 2022;
Zhou et al., 2016); and (3) isotopic methods (Griffis, 2013;
Williams et al., 2004; Zhang et al., 2011). Measurements of
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sap flow through plant stems have also been commonly used
to more directly estimate transpiration. Sap flow measure-
ments are classified into three groups (Kool et al., 2014):
heat balance methods (Cermék et al., 1973; Sakuratani, 1981,
1987), heat pulse methods (Cohen et al., 1981; Green et al.,
2003; Swanson and Whitfield, 1981), and constant heater
methods (Cermék et al., 2004; Granier, 1985). Poyatos et al.
(2021) compiled 202 sap flow datasets to form the global
SAPFLUXNET dataset. Recent studies have used remotely
sensed solar-induced fluorescence (SIF) measurements (Ale-
mohammad et al., 2017; Damm et al., 2018; Liu et al., 2022;
Lu et al., 2018; Pagén et al., 2019; Shan et al., 2019) to es-
timate global transpiration, relying on the close coupling be-
tween transpiration and photosynthesis.

The ratio of transpiration to evapotranspiration (E¢/E) is
a particularly important quantity because the controls on T
(which is tightly regulated by plants through stomatal behav-
ior) are substantially different from the controls on the other
two components. The evapotranspiration partitioning meth-
ods summarized above have multiple limitations and pro-
duce an alarmingly wide range of values for the global mean
Ei/E. Wei et al. (2017) showed mean global E;/E varying
from 0.24 to 0.90 based on a variety of remote-sensing, iso-
topic, and modelling studies. Another compilation by Liu
et al. (2022) showed the mean varying between 0.24 and
0.86. Schlesinger and Jasechko (2014) showed that E(/E
ratios derived from isotopic methods tend to be systemati-
cally higher than those produced by other methods. It has
also been shown that two different evapotranspiration parti-
tioning methods could produce greatly different E¢/E val-
ues at the same site (Cavanaugh et al., 2011; Moran et al.,
2009). Some E;/E estimates at the stand scale ignore tran-
spiration from subcanopy vegetation, resulting in underesti-
mation (Schlesinger and Jasechko, 2014). There is no con-
sensus on which method is more accurate (Stoy et al., 2019);
this presents a challenge for applying the E;/E estimates us-
ing any of the above methods, especially when they are de-
veloped based on data at site scale but are applied at larger
(regional to global) spatial scales.

Few studies have considered partitioning evapotranspi-
ration based on hydrological concepts using widely avail-
able long-term hydrological observations, which could in
principle provide reliable methods to estimate E\/E. Ger-
rits et al. (2009) estimated monthly and (upscaled) annual
transpiration based on precipitation, interception, soil mois-
ture, and the aridity index. They estimated E;/E by mod-
eling interception (which includes topsoil evaporation) as a
daily threshold process (threshold is the interception stor-
age capacity) and used rainfall distributions to upscale it to
the monthly and then annual interception. Transpiration was
modeled as a monthly threshold process based on net rain-
fall (precipitation minus interception), with the threshold be-
ing the soil moisture storage estimated based on a hydrolog-
ical model, and upscaled it to annual transpiration via a rain-
fall distribution. E/E is then calculated by assuming evap-
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otranspiration is interception plus transpiration, since top-
soil evaporation is included in interception, and deeper soil
and open water evaporations are neglected. Mianabadi et al.
(2019) extended their approach and applied it globally. In
this study, we propose a new method to partition evapotran-
spiration based on the Generalized Proportionality Hypoth-
esis (GPH) using long-term hydrological observations. The
GPH was initially used by the United States Soil Conserva-
tion Service (SCS) for runoff calculation (USDA SCS, 1985)
and was afterwards generalized by Ponce and Shetty (1995a,
b). Wang and Tang (2014) provided a comprehensive discus-
sion of the use of GPH and noted its connection to various
models, including the “abcd” model, the SCS direct runoff
model, and the Budyko-type models. The GPH partitions wa-
ter fluxes into their components and has been implemented
as a two-stage partitioning. The first stage partitions precip-
itation into soil wetting and surface runoff; the second stage
partitions soil wetting into baseflow and evaporation (Ponce
and Shetty, 1995a, b; Tang and Wang, 2017). We follow an
approach based on the GPH partitioning of soil wetting to es-
timate catchment E/E based on hydrological observations.
Due to the wider availability of hydrological observations
compared to the observations required for the techniques pre-
viously mentioned, this method has a wide potential for ap-
plication in gauged watersheds across the globe.

The objectives of our study are: (1) to develop a new
method to estimate E/E at the catchment scale based on
long-term hydrological observations, (2) to test the method
and evaluate its robustness to different data products us-
ing watersheds with different vegetation types, (3) to find
E/ P (transpiration/precipitation) ratios based on E;/E and
to compare this to previous studies, and (4) to understand the
effect of hydrological and environmental conditions on both
E(/E and E;/P. The paper is organized as follows. Section 2
describes the newly developed method and the datasets used.
Section 3 investigates the differences in potential evapotran-
spiration (Ep) data products, and the use of a rescaled E}, for
E/E estimation. Section 4 presents the results from the new
method. Section 5 discusses the results and investigates their
dependence on hydrological and environmental factors. Sec-
tion 6 provides an insight into the variation of some existing
partitioning methods. Section 7 summarizes our conclusions.

2 Methods and data
2.1 Theory

We present a new method to estimate long-term mean E/E
ratios at a watershed scale by taking advantage of long-
term available hydrological observations. The new method is
based on the Generalized Proportionality Hypothesis (GPH),
shown in Eq. (1). The GPH equation has been previously
established in the literature based on the observed relation-
ships found by L’Vovich (1979) and the later mathematical
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Figure 1. Two stage partitioning of annual precipitation. E: evapo-
transpiration; Es: soil evaporation; Ej: interception evaporation; E¢:
transpiration; P: precipitation; W: soil wetting; Qy: baseflow; Qg4:
direct runoff; Q: total runoff.

derivation (and generalization) by Ponce and Shetty (1995a,
b). The proportionality hypothesis of the SCS method was
obtained based on observed data from a larger number of
watersheds (USDA SCS, 1985), which was then generalized
by Ponce and Shetty (1995a). GPH partitions an unbounded
water quantity Z into an unbounded water quantity Y and a
water quantity X that is bound by its potential value X,. The
value Xy is the initial quantity of X that is fulfilled prior to
the competition between X and Y'; for example, interception
is a portion of E that is initially lost and not accessible for
baseflow:

X-Xo Y o
X,—Xo Z-Xo

Ponce and Shetty (1995a, b) applied the GPH for hydrolog-
ical partitioning. They partitioned annual precipitation over
two stages: the first stage partitions precipitation into catch-
ment wetting and surface runoff; and the second stage parti-
tions wetting (W) into evapotranspiration (E) and baseflow
(Qyp) as shown in Fig. 1. Both stages of partitioning follow
the generalized formula in Eq. (1). The two-stage partition-
ing is well established, has been proved with thermodynamic
principles (Wang et al., 2015), and has been extensively used
in the literature in studies (Abeshu and Li, 2021; Chen and
Wang, 2015; Sivapalan et al., 2011; Tang and Wang, 2017;
Wang and Tang, 2014).

In this work, we use the second stage partitioning to par-
tition wetting into evapotranspiration and baseflow as shown
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in Eq. (2):

E—Ey QO
E,—Ey W-—E

2

where Ej is the initial evapotranspiration that does not com-
pete with baseflow and E), is the potential evapotranspira-
tion. W can be estimated from watershed balance as P — Qy,
where P is precipitation and Qq is direct runoff. E can be
estimated from watershed balance as P — Q, where Q is the
total runoff (since the long-term mean soil moisture change
can be ignored). Initial evapotranspiration (Ep) has been rep-
resented in different ways in the literature. Ponce and Shetty
(1995a, b) and Sivapalan et al. (2011) used AE}, to repre-
sent Eq, where A is a coefficient, Tang and Wang (2017) and
Wang and Tang (2014) used AW, and Abeshu and Li (2021)
used AE. In this study, we choose LE as Eq due to the in-
terpretability of the A parameter. We alternately use k instead
of X to avoid confusion with the latent heat of vaporization,
leading to Eq. (3):

E—kE Oy
Ey,—kE W —kE

3)

In Abeshu and Li (2021), Ej included interception, evapora-
tion from surface depression, topsoil evaporation, and shal-
low transpiration. In Gerrits et al. (2009), they assumed that
interception includes canopy and understory interception, in
addition to topsoil evaporation, while deep soil evaporation
is insignificant or can be combined with interception. In
Savenije (2004), they considered topsoil evaporation to be a
part of interception, and distinguished transpiration between
fast and slow ones, where fast transpiration relies on mois-
ture in the top 50 cm of soil, and slow transpiration relies on
deeper soil moisture. Therefore, we assume that E includes
bare soil evaporation, interception, and a portion (f) of the
transpiration (E;) representing the fast transpiration from the
top 10cm of soil (Abeshu and Li, 2021; Savenije, 2004).
Since root uptake not only occurs near the surface but also
progresses downwards (Gardner, 1983), we assume that tran-
spiration extracted from the topsoil occurs in a rapid manner
that makes it inaccessible to the competition between base-
flow and E, and therefore belongs to Ep. Therefore, Eg in-
cludes all evaporative fluxes except slow transpiration, mean-
ing that slow transpiration is the only evaporative flux that
competes with baseflow. Slow transpiration can therefore be
expressed as E¢ slow = E — Ep. For transpiration, we define
fast transpiration as E a5t = f Ey, and thus slow transpira-
tion as E; gow = (1 — f) E;. Equating these two E;_gow €qua-
tions yields E — Eg = (1 — f) E;. Substituting Ey with kE
yields (1 — k) E = (1 — f) Ey, and thus we can get:
E_1-k "
E 1-f

Equation (4) indicates that E{/E can be found using k and
f values. The k parameter can be found by applying an
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optimization technique that maximizes the non-parametric
Kling-Gupta efficiency (KGE, Eq. 5, Gupta et al., 2009; Pool
et al., 2018) between observed soil wetting (from watershed
balance, Eq. 6) and simulated soil wetting (rearranging Eq. 3
to be in terms of soil wetting, Eq. 7).

KGE:1—\/(r—1)2+(o¢—1)2+(,8—1)2 (5)

where r is Pearson correlation coefficient, « is relative vari-
ability in the simulated and observed values, and § is the ratio
between the mean simulated and mean observed flows.

From the water balance equation at the watershed scale,
we obtain observed wetting as:

Wobs = P — Qud (6)
And by rearranging Eq. (3) to obtain simulated wetting:

E,—kE

Weim = Qbm +kE (7
Since f represents the fast response of transpiration, we fol-
low a similar approach to Abolafia-Rosenzweig et al. (2020)
in defining the ratio of surface transpiration using root dis-
tribution and soil water stress. We additionally distinguish
between energy- and water-limited regions by constraining
energy-limited f using the aridity index as displayed in
Eq. (8):

f=rioxSx far (8

Where r is the root percentage in the top 10 cm of the soil, S
is the soil moisture availability, and fag represents impact of
available energy. If the aridity index (Al = E,/ P) is less than
1, the region is energy limited. Thus, fa;=AIL If Al > 1,
then far = 1. The rationale behind this is that when Al <
1, only a fraction of the transpiration from the top surface
layer is quantified to be part of the fast components due to its
energy limited nature.

The literature shows variation in how the depth of fast tran-
spiration is defined. For example, Abolafia-Rosenzweig et al.
(2020) used the top 5cm to estimate transpiration from the
surface soil layer. Wang et al. (2021) indicated that evapo-
transpiration occurs most rapidly from the top 10 cm of soil,
with deeper layer responding more slowly. Similarly, Zhang
et al. (2022) reported that rapid soil moisture responses to
rainfall were concentrated in the top 5-10 cm, suggesting that
fast transpiration is likely driven by increased soil moisture
within this layer. By contrast, Abeshu and Li (2021) used
50 cm as the depth of the rapid response. We consider 50 cm
to be an overestimation, as for some vegetation types (e.g.,
grasses) this depth may encompass nearly the entire rooting
zone. Based on this evidence, we adopted 10 cm as the rep-
resentative depth for fast transpiration. In addition, we con-
ducted a sensitivity analysis in Sect. 4.4 to quantify the effect
of this depth choice on the E;/E values.
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The soil moisture availability, S, represents the moisture
availability in the root zone for root water uptake. Abolafia-
Rosenzweig et al. (2020) calculated the soil moisture avail-
ability as a function of soil moisture, wilting point, and field
capacity. To rely on hydrological observations instead of sim-
ulated or remotely sensed soil moisture, we assume the soil
moisture availability to be represented by the ratio between
baseflow and total streamflow (Qy/ Q). This ratio can give an
indication of water availability in the soil and hence can be
used to indicate soil moisture availability. Since we apply this
method at the watershed scale, there may be multiple vegeta-
tion types in the same watershed, and therefore, we calculate
a weighted value of f.

2.2 Data

From Eqs. (2)-(5) and the descriptions of Sect. 2.1, we
see that one needs long-term observed precipitation, stream-
flow, baseflow, estimated E,, and root distribution to esti-
mate the E¢/E ratio. Watershed boundaries and precipitation
data were retrieved from the Hydrometeorological Sandbox
— Ecole de technologie supérieure (HYSETS) dataset (Arse-
nault et al., 2020). The HYSETS dataset includes watershed
boundaries, land cover, soil properties, meteorology, and hy-
drological data for 14425 watersheds in North American.
We selected 648 watersheds (Fig. 2) across the United States
with at least 10 years of streamflow data between 1980 and
2018 from this HYSETS data source. Detailed land cover
data were retrieved from the ESA CCI Land Cover project
(https://www.esa-landcover-cci.org, last access: 28 Decem-
ber 2022).

Streamflow data were retrieved from the US Geological
Survey (USGS), and their corresponding baseflow magni-
tudes were estimated by separating it from the streamflow
data using a one-parameter digital filter separation method
(Lyne and Hollick, 1979). Filtering methods separate direct
runoff and baseflow by differentiating them based on fre-
quency spectrums of the hydrograph, where low frequency
flow represents baseflow and high frequency represents the
direct runoff which has rapid responses to precipitation. We
employed the widely used filtering method tool developed by
Purdue University, Web-based Hydrological Analysis Tool
(WHAT, Lim et al., 2005, 2010 , https://app.envsys.co.kr/
what2020/index.php, last access: 18 December 2025), to sep-
arate baseflow from the observed streamflow. We set the
value of the filter parameter to be 0.925 which is within the
suggested range. We did a sensitivity analysis (in a separate
study) and used different filter values and methods available
from WHAT, the results were similar. Since other methods
such as Eckhardt (2005) require knowledge of hydrogeo-
logical conditions, we chose the one-parameter digital filter
method due to its simplicity and constant parameter value,
which produces plausible results (Eckhardt, 2008; Xie et al.,
2020). Additional details on the baseflow separation method
are presented in Lim et al. (2005).
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https://www.esa-landcover-cci.org
https://app.envsys.co.kr/what2020/index.php
https://app.envsys.co.kr/what2020/index.php

A. Hassan et al.: Evapotranspiration partitioning using hydrological observations 321

35°N

30°N

Vegetation Type
Shrubs
Grass
ENF
Crops
DBF

MF

R O> T O

120°W 110°W 100°W

90°W 80°W 70°W

Figure 2. 648 watersheds in the US, categorized into six vegetation types; crops, grass, shrubs, evergreen needleleaf forest (ENF), deciduous
broadleaf forests (DBF), and mixed forests (MF). The inset map at the bottom left shows watersheds in Alaska.

Information related to root density functions was obtained
from Zeng (2001), who represented root density distribution
as a two-parameter function for each vegetation type based
on a compiled root database. The root density distribution
from Zeng (2001) was validated using root information from
other studies (Fan et al., 2016; Jackson et al., 1996; Lozanova
etal., 2019; Schenk and Jackson, 2002; Wallace et al., 1980).
Soil moisture stress (Qp/Q) was calculated based on the
USGS observed streamflow and the estimated baseflow from
WHAT.

Numerous Ej, data products are available that satisfy our
study regions and time period requirements, posing a ques-
tion as to which one should be selected — as each has its
own strengths. To address this question, we examined six
widely used E} data products and assessed their impact on
the estimation of E/E ratios. These data products were se-
lected because they are (1) widely used within the hydrolog-
ical and ecological communities, (2) associated with a wide
range of spatial resolutions, and (3) derived using different
methods. The six E} datasets are the Global Land Evap-
oration Amsterdam Model (GLEAM v3.5a, Martens et al.,
2017), the Moderate Resolution Imaging Spectroradiometer
(MODIS MOD16A3GF) product (Running et al., 2022), the
E, dataset from Zhang et al. (2010), the North American Re-
gional Reanalysis (NARR, Mesinger et al., 2006), the Simple
Process-Led Algorithms for Simulating Habitats (SPLASH
v2.0, Sandoval et al., 2024) , and the Breathing Earth Sys-
tem Simulator (BESS v2, Li et al., 2023). Details of these six
products are provided in Table 1.

Environmental variables — relative humidity, downward
shortwave radiation, air temperature, wind speed, and soil
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moisture content — were retrieved from the NARR dataset
to study the dependencies of E;/E on environmental factors.
Data on leaf area index (LAI) were obtained from the Global
Monthly Mean Leaf Area Index Climatology produced by
ORNL DAAC (Mao and Yan, 2019) and aggregated to ob-
tain the long-term mean LAI at watershed scale.

The relevant data were collected for 648 watersheds and
aggregated to the annual timescale. The dominant vegetation
type was determined for each watershed from the ESA CCI
land cover data, and watersheds were classified into six vege-
tation types: crops, grass, shrubs, evergreen needleleaf forest
(ENF), deciduous broadleaf forest (DBF), and mixed forest
(MF). We assume each watershed has a single mean long-
term E/E value. For each dataset, due to the different time
coverage of the datasets and the streamflow gauges, we fil-
tered the watersheds to include only those that have available
data for at least 10 years. We used optimization to find k.
We then performed additional filtering for each dataset to re-
move watersheds with KGE values less than zero. Using the
filtered watersheds, we calculated E;/E based on estimated
k and f together with the other variables. The final number
of watersheds associated with each dataset used in this study,
after filtering, is shown in Table 2.

3 Impact of E,, products

Figure 3a shows mean annual E,, values from six different
data products for the 648 study watersheds. We observe large
differences in mean annual E, among the six different data
products. The differences in E|, are likely attributed to varia-
tions in input data and parameter values used by these prod-

Hydrol. Earth Syst. Sci., 30, 317-341, 2026
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Table 1. Description of six Ep products used in this study.

A. Hassan et al.: Evapotranspiration partitioning using hydrological observations

Dataset Ep equation Spatial and temporal scale Remarks
GLEAM v3.5a  Priestley-Taylor 0.25 x 0.25°,
Daily/Monthly, 1980-2021
NARR Eta Model 32 x 32km,
(Penman based) Daily/Monthly, 1979-2022
MODIS Combination of 500 x 500 m, 8 d/Yearly, 2000-2021
MOD16A3GF Penman-Monteith and
Priestley-Taylor
SPLASH v2 Priestley-Taylor 1 km, Daily, 1980-2018 Forced using daily DayMet
(Thornton et al., 2022) data
BESS v2 Priestley-Taylor 5 km, Monthly, 1982-2022
Zhang Penman-Monteith 8 x 8 km, Daily/Monthly, 1983-2006

Table 2. Number of filtered watersheds for each potential evapotranspiration (£Ep) data product. Watersheds with less than 10 years of data
and/or with Kling-Gupta efficiencies less than zero were removed from the analysis. Numbers are shown for each of the six vegetation types.

Type All watersheds NARR MODIS Zhang GLEAMv3.5a BESSv2 SPLASH v2
Crops 74 72 61 57 73 59 71
Grass 89 84 66 73 86 79 81
Shrubs 146 131 107 114 134 128 131
ENF 206 166 118 118 173 161 156
DBF 65 65 61 54 65 64 65
MF 68 63 58 52 66 51 61
Total 648 581 471 468 597 542 565

ucts, while differences in methods and resolutions used to
compute E, may play a secondary role (Hassan et al., 2024).
Discrepancies between the input net radiation used in dif-
ferent data products result in especially large variations in
the computed Ep. Variations in parameter values, including
the Priestley-Taylor « parameter, among different data prod-
ucts also result in significant differences in the resulting Ej,.
On the other hand, the E/E, ratios from the six different
E, products are relatively consistent among the six datasets
(except for GLEAM) as shown in Fig. 3b. This is likely be-
cause within each product the same input/forcing data and
parameter values are employed for both Ej, and E, resulting
in similar impacts on both. Such consistency is an indica-
tion of a uniformity of the underlying physics across these
five products, despite the large disparities in their individ-
ual E}, magnitudes. The GLEAM E|, product, which has also
been previously identified for its overestimation of E/E,
ratio by Peng et al. (2019) in comparison with FLUXNET
E/E,, appears to be an exception. Rather than excluding the
GLEAM data product, we opted to adjust its E/E}, ratio by
normalizing it with the average ratio of the other five datasets
(NARR, MODIS, Zhang, SPLASH v2, and BESS v2), yield-
ing an adjusting factor of 0.7. This adjusting factor of 0.7

Hydrol. Earth Syst. Sci., 30, 317-341, 2026

was applied to GLEAM to adjust its E/E}, values. In addi-
tion, rescaled E, values from the six data products in this
study were newly derived by applying their individual E/E},
ratios, obtained from their own data products, to the water-
shed E values calculated based on watershed balance (i.e.,
E = P — Q) for each watershed. The importance of deriv-
ing E}, values for each data product through this rescaling
approach (referred to as rescaled Ep), rather than using the
original E, product, is to ensure consistency between the Ej,
values and the watershed-budget estimated E values for each
watershed while preserving the E/E), ratios from the indi-
vidual products. This is necessary because the magnitudes of
some original E, products are smaller than their correspond-
ing watershed-budget estimated E values.

In essence, we derive new E, values for all six products us-
ing Eq. (9), maintaining the E/E, ratio for each data product
(except for GLEAM, whose E/E|, ratio is adjusted by a fac-
tor of 0.7). This approach yields consistent £}, values across
the 648 watersheds for each individual data product and cap-
tures the essential variations among the six Ep datasets. The
rescaled Ep values obtained from Eq. (9) uphold the funda-
mental principles of individual products by preserving their
respective E/E, ratios. By doing so, the effects stemming

https://doi.org/10.5194/hess-30-317-2026
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Figure 3. Original Ep for six data products: NARR, MODIS, Zhang, GLEAM v3.5a, SPLASH v2, and BESS v2 for 648 watersheds. (a)
Ep values retrieved from the data products, and (b) E/Eyp ratios retrieved from the data products. Watersheds are sorted in descending order

according to GLEAM’s E/E}p.

from differences or uncertainties in their inputs/forcing data
are notably mitigated, as the new E}, values are calculated us-
ing the watershed-budget estimated E and their own E/E,
ratios. This concept is akin to the notion of emergent con-
straints employed by others (Green et al., 2024; Hall et al.,
2019; Williamson et al., 2021).

E
Drescaled — % X EObS (9)
dataset

where Egataser and Epy,, ., are E and E), values extracted
from different data products, and Egps is the watershed-
budget estimated E calculated as P — Q based on observed
P and Q for each watershed. Table 3 shows the correlation
between the rescaled E, values of the six data products; the
correlations show good consistency between the rescaled E,
values. These six rescaled E}, data products are then applied
to Egs. (2)—(5) to obtain E/E ratios for each of the six veg-
etation types over the 648 watersheds. With the six rescaled
Ep data products, we can assess how variations in Ej, affect
the robustness of our new method in estimating E/E.

https://doi.org/10.5194/hess-30-317-2026

4 Results
4.1 k values

Figure 4 shows an example of the optimization between ob-
served soil wetting (Wqps) and the simulated soil wetting
(Wsim) with the optimized & value for a representative water-
shed of each vegetation type. Figure 5 shows the estimated
values of k for the 648 watersheds using each of the six input
datasets based on Eqs. (5)—(7). The six datasets show similar
trends, where the highest k values are observed for the shrubs
and grass vegetation types. Crops have lower k values than
shrubs and grass, but equal or higher than those for forests ac-
cording to the dataset used. Figure 5 illustrates that the great-
est variations among the six data products occur in the mixed
forest and crops. This discrepancy may be attributed to dif-
ferences in how each data product defines mixed forest and
crop compositions, resulting in varying estimated parame-
ters. The k values observed in our study are similar in trend to
those reported by Abeshu and Li (2021), but lower in magni-
tude. This difference is likely due to differences in input data
to the GPH equation such as precipitation and PET values

Hydrol. Earth Syst. Sci., 30, 317-341, 2026
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Table 3. Correlations between rescaled Ep of six data products: NARR, MODIS, Zhang, GLEAM v3.5a, SPLASH v2, and BESS v2 for 648

watersheds.
MODIS GLEAM NARR SPLASHvV2 BESSv2 Zhang
MODIS 1
GLEAM v3.5a 0.72 1
NARR 0.81 0.83 1
SPLASH v2 0.80 0.84 0.83 1
BESS v2 0.92 0.78 0.73 0.75 1
Zhang 0.70 0.83 0.68 0.69 0.92 1

since different datasets are used for both studies. Sivapalan
et al. (2011) reported lower k values (between 0 and 0.45).
However, their definition of k differs from ours: while we
define Eg = kE in Eq. (3), they adopted the formulation of
Eo =kEp. Since actual evapotranspiration (E) is typically
much smaller than potential evapotranspiration (£)), it is €x-
pected that their k values are lower than ours. In addition, the
analysis of Sivapalan et al. (2011) was limited to 12 water-
sheds under relatively humid conditions (maximum aridity
of 2.29), which does not capture the full range of climatic
conditions, particularly drier environments.

4.2  f values

Figure 6 shows the values of the f parameter for 648 wa-
tersheds classified into six vegetation types. The highest f
value is observed in grass, which can be explained by their
shallow rooting depths causing higher portions of fast tran-
spiration. The lowest f values are observed in forests due to
their deeper rooting system, which provides access to deeper
soil moisture, reducing the portion of fast transpiration.

4.3 E./E values

Ei/E ratios are shown in Fig. 7 and Table 4. Overall, the
trend is consistent among the six datasets. Grass and shrubs
have the lowest E;/E values, with mean E;/E in the range
of 0.25-0.41. Crops have higher mean E;/E ratios, with
NARR, Zhang, and GLEAM averaging around 0.5, while
MODIS shows a higher crop mean E/E of around 0.65.
BESS has the lowest crop Ei/E with a value of 0.35. All
datasets have similar forest E¢/E trend, with lowest mean
E{/E for DBF (0.54-0.69), followed by ENF (0.65-0.77).
The highest mean E/E is exhibited for MF (0.61-0.90).

4.4 Sensitivity of E¢/E to f values

We perform a sensitivity analysis to investigate the effect of
soil depth used in estimating f on the E(/E values. Since
f =r10 xS x far, and both S and fa1 are constant for the
watershed, differences in f arise from changes in rq¢. There-
fore, we tested the effect of using different depths of rapid
response (5, 10, and 15cm) on the resulting E(/E values,
which are shown in Fig. 8. We selected 5 and 10 cm based

Hydrol. Earth Syst. Sci., 30, 317-341, 2026

on the general consensus in the literature and extended the
range to 15 cm to account for additional uncertainty. These
depths represent plausible values for fast transpiration, and
as discussed in Sect. 2.1, we do not consider larger depths to
contribute significantly as fast transpiration.

The percentage and absolute changes in E/E resulting
from variations in rapid response depth are summarized in
Table 5 as average change per vegetation type (with six data
products averaged for each type). The full results for individ-
ual data products are provided in Appendix A (Tables Al-
A6). The largest percentage changes were observed for the
grass type, with E;/E varying by about 10 %—13 % when the
depth was increased or decreased by 5 cm from the 10 cm ref-
erence. The largest absolute change occurred when the depth
was increased from 5 to 15 cm for the ENF vegetation type,
with a difference of 0.108. Overall, the differences due to
changing the fast response depth are minor and remain well
within the uncertainty ranges reported in the literature for
evapotranspiration partitioning methods, as noted in the in-
troduction.

5 Discussion
5.1 kand E/E ratios

Shrubs and grass showed higher k values, likely due to their
occurrence in arid and semi-arid regions in the US. The high
k values could be explained by the higher bare soil evapora-
tion expected in arid regions (Baver et al., 1972), especially
due to the sparse nature of shrubs, increasing bare areas and
thus bare soil evaporation (Liu et al., 2022). Also, the high
aridity is expected to cause water stress, lowering the con-
tinuing transpiration (portion of transpiration not included in
k). The lower k values in crops and forests may be due to
the higher vegetation coverage in these areas which provides
shade to the soil, reducing the amount of soil evaporation
(Baver et al., 1972). Additionally, litter contributes to reduc-
ing soil evaporation and may even have a larger reduction ef-
fect than canopy shade (Magliano et al., 2017). The broader
leaves of DBF increase their interception compared to ENF,
thus resulting in a higher k value as well.

https://doi.org/10.5194/hess-30-317-2026
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Figure 4. Optimization of k values using observed and simulated soil wetting as explained in Egs. (5)—(7). Figure shows observed and
simulated soil wetting time series for an example watershed for each of the six vegetation types (crops, grass, shrubs, ENF, DBF, MF) using

NARR data.

Table 4. Mean E¢/E values for six vegetation types using Ep data from the six data products. Minimum, maximum, and mean values are

shown for each vegetation type.

Data product Crops Grass  Shrubs

ENF DBF MF Mean

NARR 0.52 0.37 037 072 059 061 0.52
MODIS 0.65 0.38 041 077 0.67 0.80 0.59
Zhang 0.49 0.34 034 069 0.69 0.90 0.52
GLEAM 0.48 0.28 031 0.67 054 0.67 0.48
SPLASH v2 0.43 0.30 029 065 055 0.71 0.47
BESS v2 0.35 0.25 030 0.65 056 0.64 0.45
Minimum 0.35 0.25 029 065 054 0.61 0.45
Maximum 0.65 0.38 041 077 0.69 090 0.59
Mean 0.48 0.32 033 069 060 0.70 0.50

https://doi.org/10.5194/hess-30-317-2026
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Figure 5. k values for the watersheds using data from six datasets: NARR, MODIS, Zhang et al. (2010), GLEAM after rescaling, SPLASH
v2, and BESS v2. Note that ENF, DBF, and MF represent, respectively, evergreen needle-leaf forest, deciduous broadleaf forest, and mixed

forest in the figure.

Table 5. Relative and absolute change in mean Et/E values due to changes in fast transpiration depth. Results are shown as an average of

the change in the six data products for each vegetation type.

Type % Change in Et/E ‘ Absolute change in Et/E

5to 10cm relative to Scm 10 to 15cm relative to 10cm 5 to 15 cm relative to 5Scm ‘ S5tol0cm  10to15cm  Sto15cm
Crops 10.04 8.50 19.40 0.045 0.041 0.086
Grass 13.58 10.09 25.05 0.038 0.032 0.070
Shrubs 8.93 6.86 16.41 0.027 0.023 0.050
ENF 9.47 6.98 17.12 0.060 0.048 0.108
DBF 7.98 6.72 15.24 0.045 0.041 0.085
MF 5.49 4.52 10.26 0.038 0.033 0.071

0.8

f values
o
[}

o
N

:%E%ﬁ%§

8
Grass MF ENF DBF Shrubs
Vegetation Type

Figure 6. Portion of fast transpiration (/) values for the 648 water-
sheds classified into six vegetation types. ENF: evergreen needleleaf
forest, DBF: deciduous broadleaf forest, MF: mixed forest.
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These estimated mean E./E ratios followed explainable
trends, with shrubs and grass watersheds showing low E/E
ratios, forests exhibiting higher E/ E ratios, and crops falling
in between. Given greater water availability in crops and
forests, it is expected that they would exhibit higher E;/E
ratios. Many crops in the US benefit from continuous irri-
gation, reducing water stress and promoting transpiration.
Forests, with their dense canopy cover offering shade, re-
duce soil evaporation (Baver et al., 1972) and consequently
boost the E¢/E ratios. Crops also show high vegetation cov-
erage, thereby providing shade to the soil and increasing
E(/E (Baver et al., 1972). Moreover, in arid regions domi-
nated by shrubs, lower soil water content is anticipated, re-
sulting in diminished root water uptake (Gardner, 1983). Fur-
thermore, the shedding of leaves in deciduous forests reduces
transpiration when examined over the whole year (as here),
resulting in a decreased E/E ratio for DBF.

Differences in study scale may hinder the comparison with
other studies, since our method estimates E{/E at the wa-
tershed scale, while other studies are based at a plot-scale
(field/eddy covariance-based methods) or grid scale (mod-

https://doi.org/10.5194/hess-30-317-2026
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Figure 7. E/E values for the 648 watersheds using data from the six datasets: NARR, MODIS, Zhang et al. (2010), GLEAM after rescaling,

SPLASH v2, and BESS v2.

els and remote-sensing methods). Factors affecting water-
shed scale E;/E include the possible presence of secondary
vegetation within the watershed and the possible sparseness
of the primary vegetation and presence of bare areas which
can increase soil evaporation and reduce E;/E, especially
for shrublands. Therefore, this method has the advantage of
providing a realistic watershed E/E ratio that accounts for
multiple vegetation types and sparseness in vegetation dis-
tribution. Consistent results across different datasets under-
score the reliability of our new method, irrespective of the
data product employed (see Fig. 7 and Table 4).

5.2 Effect of hydrological indices on E{/E

We explore the sensitivity of E(/E to two hydrological in-
dices, namely the runoff ratio (Q/P) and the baseflow ra-
tio (Qp/ Q). Figure 9a shows a proportional relationship be-
tween E(/E and Q/P. The relationship appears to mani-
fest as two distinct linear correlations, with arid catchments
showing a steeper slope than humid catchments. Arid re-
gions typically experience minimum runoff as a significant
portion of precipitation evaporates in various forms owing to
elevated atmospheric demand. This phenomenon yields high
E/E ratios at relatively low Q/ P values. Conversely, humid
catchments often experience substantial runoff, attributed to
either saturation excess or infiltration excess runoff mecha-
nisms and the contribution of baseflow, resulting in elevated
Q/P ratios compared to arid catchments at equivalent E/E
values. In both cases, a higher Q/ P ratio signifies increased
water availability, consequently leading to higher E;/E ra-
tios.

https://doi.org/10.5194/hess-30-317-2026

In Fig. 9b a non-linear positive relationship is depicted be-
tween the mean E(/E and Qp/Q (baseflow ratio). The base-
flow ratio serves as an indicator of soil water availability, as
higher baseflow typically corresponds to increased soil mois-
ture content (Hurkmans et al., 2008). Consequently, a posi-
tive correlation between E/E and the baseflow ratio is an-
ticipated. Notably, the majority of arid catchments cluster in
the low Qp/Q and low E/E region, while transitioning to-
ward wetter catchments naturally augments both O/ Q and
E\/E.

5.3 Effect of LAl on E¢/E

The leaf area index (LAI), representing the leaf area per unit
ground area, reflects the combined influences of leaf size and
canopy density. As shown in Fig. 10, LAI appears to ex-
ert some influence over evapotranspiration partitioning. Arid
watersheds show lower LAI values, and E/E ratios increase
non-linearly with LAI. However, as watersheds transition to-
ward higher humidity levels, their LAI and E/E ratios in-
crease non-linearly, albeit at different rates. In arid regions,
plants tend to reduce their leaf area to mitigate water loss
(Chaves et al., 2003) decreasing both LAI and E(/E — a di-
rect consequence of high aridity. This suggests that aridity
plays a role in regulating E/E. Figure 10 illustrates a com-
plex relationship between LAI and E/E, characterized by
substantial scatter. Our findings align with previous studies
indicating diverse dependence of E/E on LAI. For instance,
LAI has been shown to provide a control on E partitioning
(Li et al., 2019; Wang et al., 2014; Wei et al., 2017), but that
effect varies from one study to another. Wang et al. (2014)
showed that LAI has a non-linear relationship with E;/E dur-

Hydrol. Earth Syst. Sci., 30, 317-341, 2026
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Figure 8. Sensitivity of E¢/E to different depths of fast transpiration responses: (a) 5 cm; (b) 10 cm; and (c) 15 cm.

ing the growing season, whereas Li et al. (2019) showed a
weak linear relationship between mean growing season LAI
and mean annual E/E across sites, with the E¢/E and LAI
relationship within the same site being non-linear. Addition-
ally, Cao et al. (2022) showed a non-linear positive relation-
ship between annual E(/E and LAL

Hydrol. Earth Syst. Sci., 30, 317-341, 2026

5.4 Impacts of environmental variables on E;/E ratios

We explore the effect of six environmental factors on the
mean E./FE ratios. They are aridity index (Al), relative hu-
midity (RH), air temperature (7,;;), downward shortwave ra-
diation (DSW), soil moisture, and wind speed (WS). These

https://doi.org/10.5194/hess-30-317-2026
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(AI) less than or equal to 2; (b) Al greater than 2.

factors were derived from the NARR dataset, and the E(/E
ratios were calculated based on the same dataset. Since some
of these environmental variables are highly correlated (as
shown in Fig. 11), we first perform variable selection using
stepwise regression and Lasso regression to identify those
that are strongly correlated with each other. Stepwise regres-
sion aims to select a subset of variables that provide the best
prediction with minimum redundancy, while Lasso regres-
sion adds a penalty term to reduce the coefficients of insignif-
icant variables. Both methods resulted in the elimination of
downward shortwave radiation, while stepwise selection ad-
ditionally eliminated relative humidity and air temperature.
Table 6 shows the coefficients of the environmental variables
and their significance for both stepwise and Lasso regression.
Although the significance test shows that air temperature and
relative humidity have an insignificant impact on the Lasso
regression, while the aridity index, soil moisture, and wind

https://doi.org/10.5194/hess-30-317-2026

speed are significant (Table 6), they are still included because
they marginally contribute to the model’s predictive power.
Additionally, they represent independent and observable di-
mensions, distinct from the other three significant environ-
mental variables.

A negative non-linear correlation between E;/E and Al
is present (see Fig. 12a). Increased aridity prompts plants
to adopt water conserving strategies (Chaves et al., 2003),
thereby reducing the transpiration ratios. In humid regions,
the relationship between E(/E and Al is more discernible,
with Al accounting for a significant portion of the variance of
E:/E. Conversely, for arid regions, particularly those domi-
nated by shrubs, the relationship shows greater scatter, sug-
gesting that Al exerts a relatively smaller effect on E/E,
while other factors play a more prominent role. Further-
more, higher air temperature contributes to lowering E{/E
(see Fig. 12b), as it prompts water-conserving behaviors in

Hydrol. Earth Syst. Sci., 30, 317-341, 2026
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Table 6. Coefficients of standardized environmental variables re-
gressed against Et/E using stepwise selection and Lasso regres-
sion. Significance levels are shown next to the coefficients (***:
p<0.001, **: p<0.01, *: p<0.05, blank: p>0.1).

Coefficient Coefficient
(Stepwise selection)  (Lasso regression)

Al —0.105%** —0.026%**

RH 0.001

Tair —0.004

DSW

SM 0.066™** 0.0005%**

WS 0.023** 0.037*

plants and elevates soil evaporation, consequently reducing
E:/E ratios. Conversely, increasing soil moisture leads to en-
hanced water availability for plant root uptake, resulting in a
near linear increase in E/E, as shown in Fig. 12¢c. The rela-
tionship between wind speed (WS) and E;/E is inconclusive;
this finding is consistent with several previous studies (Dixon
and Grace, 1984; Huang et al., 2015; Schymanski and Or,
2016) which have presented a mixed effect of wind speed
on transpiration. Nevertheless, the effects of other environ-
mental variables on E;/E demonstrate explainable patterns
as discussed here. The other five data products (MODIS,

Hydrol. Earth Syst. Sci., 30, 317-341, 2026

Zhang, GLEAM, SPLASH, and BESS) show similar impacts
of all the environmental variables on E;/E as those shown in
Fig. 12 for NARR.

5.5 E./P ratios

We computed transpiration to precipitation (E¢/P) ratios
based on E/E values calculated from the six adjusted Ep
data products. The mean E¢/ P ratios from these six datasets
range from 0.27 to 0.39, aligning closely with the global
mean E;/P of 0.39 estimated by Schlesinger and Jasechko
(2014).

We also compared our estimated E¢/ P ratios to the E¢/ P
versus aridity index relationship identified by Good et al.
(2017). Good et al. (2017) presented this relationship based
on a compilation of field studies, three remote-sensing based
models, and an ecohydrological model, revealing good con-
sistency among the various E;/P data sources. Figure 13
shows a similar trend to that presented in Fig. 1 of Good et al.
(2017), with the maximum E;/ P ratio close to the intersec-
tion between water and energy-limited states. This maximum
E./ P corresponds to an aridity index ranging between 2 and
3 in our study, similar to the estimated aridity index range
of 1.3 to 1.9 for the maximum E;/ P as reported by Good et
al. (2017). Moreover, the maximum E;/P shown in Fig. 13
ranges between 0.52 and 0.59, consistent with the maximum
E/P of 0.6 based on field data in Good et al. (2017). No-
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tably, there is greater variation on the right side of the curve
(indicating more arid conditions) compared to the left side
(representing wetter conditions). In arid regions, transpira-
tion is influenced not only by aridity, but also by factors such
as groundwater table depth and soil moisture content, result-
ing in higher variability in the E/ P versus aridity index (AI)
relationship. The consistency between Good et al. (2017) and
this study suggests that this relationship holds not only at
the field and remote sensing scales (as shown by Good et
al., 2017), but also at the watershed scale, as demonstrated
in this study. This relationship holds significance for studies
like that of Cai et al. (2025) and Zhou et al. (2025) where
E\/ P serves as a parameter (referred to as fj in their study)
to determine water-limited fAPAR and LAIL Cai et al. (2025)
estimated E;/ P as a global mean using non-linear regression,
with a value of 0.62, akin to the maximum E/P of 0.52 to
0.59 estimated by our fitted curves depicted in Fig. 13. Zhou

https://doi.org/10.5194/hess-30-317-2026

et al. (2025) used a variable E;/P as a function of Al, akin
to our fitted curves. Their maximum E;/P of 0.65 occurred
at an Al of 1.9, similar to our fitted curves.

6 Variation of evapotranspiration partitioning methods

Figure 7 demonstrates the influence of the six adjusted Ep
data products on the E;/E ratios by our new method for
each vegetation type, while Table 4 provides their variation
range between the minimum and maximum mean E(/FE ra-
tios. On the other hand, as outlined in the introduction, es-
timated global mean values of E;/E from various existing
methods exhibit a considerable variation, ranging from 0.24
to 0.9 (Liu et al., 2022; Wei et al., 2017). This variation
may be attributed to several factors, including data inconsis-
tencies, geographical disparities, and differences in selected

Hydrol. Earth Syst. Sci., 30, 317-341, 2026
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time periods, apart from differences in methodology. In an ef-
fort to explore what may be the cause for the large variation
among the different methods, we have tried to mitigate these
factors by using the same half-hourly eddy covariance data
from the FLUXNET and AMERIFLUX ONEFLUX towers
measurements in the US for the same locations and same
time periods. Such an approach would allow us to elucidate
the disparities among the existing E partitioning methods,
consequently, providing insights on influences by different
E, datasets in our method versus current existing different
methods on the large range of E/FE ratios.

The four methods we selected to investigate are: (1) Zhou
et al. (2016), (2) Scott and Biederman (2017), (3) Li et al.
(2019), and (4) Yu et al. (2022). These four methods are se-
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lected because they are based on eddy covariance measure-
ments whose data are widely available, unlike sap flow and
isotope measurements. Since these methods are based on flux
measurements, they can be considered as field-based esti-
mations of E;/E. We apply these four methods to the same
datasets from the FLUXNET and AMERIFLUX ONEFLUX
towers in the US, but the final number of flux towers in-
cluded for each method depends on the filtering criteria in
each method and the limitations in applying each method.
The first method by Zhou et al. (2016) is based on the wa-
ter use efficiency. The ratio E(/E is estimated as the ratio

between the apparent water use efficiency (WUE, = GPP x

V%DTO'S) and the potential water use efficiency (WUE, =

https://doi.org/10.5194/hess-30-317-2026
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Figure 14. E;/E values based on the eddy covariance tower data with 5 methods: Zhou et al. (2016) (n = 80), Scott and Biederman (2017)
(n =53), Lietal. (2019) (n = 46), Yu et al. (2022) (n =60) Tan et al. (2021) (n = 15).

GPP x %DO'S). Assuming that E¢/E approaches 1 at some
time during the growing season, the WUE, is estimated
from the 95th quantile regression of the half-hourly scat-
ter plot (based on all half-hourly data for the site) between
GPP x VPD? and E and is assumed to be constant for the
flux tower. WUE, is then estimated for each time step as the
linear regression of the E and GPP x VPD- relationship us-
ing half-hourly data for the desired time period, which can be
8d, monthly or annually.

The second method by Scott and Biederman (2017) is
based on water use efficiency to estimate multiyear monthly
average E./FE ratios. This approach estimates transpiration
as the product of the inverse of the marginal water use ef-
ficiency, the ratio between transpiration WUE and marginal
WUE, and GPP. The inverse of the marginal WUE is esti-
mated from the linear regression of the GPP versus E scatter
plot. The ratio between transpirational and marginal WUEs
is assumed to be 1. This method requires multiple years of
data for its application.

The third method by Li et al. (2019) is based on the stom-
atal conductance model of Lin et al. (2018) to partition evap-
otranspiration. The E/E ratio is equivalent to the ratio be-
tween canopy conductance and ecosystem conductance. The
eddy covariance data are divided into soil moisture bins to
calibrate the parameters. Therefore, the method requires soil
moisture data, along with GPP, VPD, E, and three calibrated
parameters to estimate the E;/FE ratio.

The fourth method by Yu et al. (2022) combines the water
use efficiency with the Medlyn et al. (2011) stomatal conduc-
tance model. This method relies on GPP, E, C,, P,, and VPD
from the flux tower data in addition to the parameter g; from
the Medlyn et al. (2011) model. The authors compared their
method to other methods and showed a high correlation with
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the Zhou et al. (2016) but a low correlation with the Li et al.
(2019) method.

Additionally, we compare our results to E¢/E values for
20 global flux towers used by Tan et al. (2021). E{/E was
calculated based on flux tower data and P-model (Stocker et
al., 2020; Wang et al., 2017) outputs.

The estimated E;/E ratios from the five methods are
shown in Fig. 14 and Table 7, respectively, for the same six
different vegetation types as shown in Fig. 7 with our new
method.

The inconsistencies among the five methods are evi-
dent, with Zhou, Yu, Li, and Tan showing minimal varia-
tion among vegetation types, while Scott displays substan-
tial variation. Moreover, the magnitudes and trends of E{/E
across these methods are also inconsistent. These discrep-
ancies indicate a lack of agreement on both the mean E(/E
values and the variation ranges among the different meth-
ods. Consequently, these methods are not suitable as refer-
ence points for evaluating our new method. Instead, the as-
sessment of our new method should be based on its physical
behavior and relationships with other variables, as discussed
in Sect. 5. It is noteworthy that compared to Fig. 7, the vari-
ation range of E/FE ratios from the five different methods,
utilizing the same data at the same locations, is significantly
greater than that for our new method in which disparity is
attributed to the variations associated with the £}, methods
employed. Additionally, since our method is at a larger (wa-
tershed) scale, we observe larger variations between vege-
tation types, which can be attributed to different vegetation
densities and bare land percentages at larger scales which is
not a factor at smaller (flux tower) scales.

Hydrol. Earth Syst. Sci., 30, 317-341, 2026
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Table 7. Mean E(/E values for six vegetation types using four evapotranspiration partitioning methods. Minimum, maximum, and mean
values are shown for each vegetation type.

Evapotranspiration partitioning method Crops Grass Shrubs ENF DBF MF Mean

Zhou et al. (2016) 0.54 0.48 046 046 052 042 0.48
Scott and Biederman (2017) 0.56 0.59 065 066 065 0.77 0.62
Lietal. (2019) 0.70 0.63 059 069 070 0.61 0.66
Yu et al. (2022) 0.34 0.37 038 043 046 044 0.39
Tan et al. (2021) 0.48 - 044 0.56 0.6 0.61 0.54
Minimum 0.34 0.37 038 043 046 042 0.39
Maximum 0.70 0.63 065 069 070 0.77 0.66
Mean 0.52 0.52 050 056 059 057 0.54

7 Conclusions

We have presented a new method for determining the tran-
spiration to total evapotranspiration (E;/E) ratio using long-
term hydrological observations. This method is based on the
generalized proportionality hypothesis, which has wide ap-
plications in hydrology. We applied the method to 648 wa-
tersheds in the US using six different E}, data products. Our
findings demonstrate consistent £/ E results across these di-
verse Ep datasets, facilitated by a rescaling of E}, derived
from the E/E, ratios obtained from each individual data
product and watershed-budget estimated £ computed from
the watershed water balances.

Our analysis reveals that varying E/E ratios across wa-
tersheds are associated with different vegetation types, with
shrubs and grasslands exhibiting lower E;/E values com-
pared to crops and forests. Furthermore, our results under-
score the significant influence of leaf area index (LAI), hy-
drological indices (Q/P and Qy/Q), and prevailing envi-
ronmental conditions on E;/E. Our method also provides a
realistic estimate of E;/E at a watershed scale that implic-
itly accounts for the heterogeneity of vegetation within the
catchment. Our method can also be useful for constraining
hydrological models, land surface models, and climate mod-
els.

We also explore the relationship between E(/ P and aridity
index, unveiling a bell-shaped curve at the watershed scale,
where the maximum E;/P ratio occurs at an aridity index
between 2 and 3, corresponding to an E/P ratio of around
0.52t0 0.59. These findings provide valuable insights into the
intricate interplay between hydrological processes and envi-
ronmental variables, shedding light on the complex dynamics
of evapotranspiration in diverse watershed ecosystems.
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Appendix A

Table A1. Relative and absolute change in mean E¢/E values due to changes in fast transpiration depth for the NARR dataset.

Type % Change in E¢/E ‘ Absolute change in Et/E

5to 10cm relative to Scm 10 to 15 cm relative to 10cm 5 to 15 cm relative to 5 cm ‘ 5to10cm 10to 15cm  Sto 15cm
Crops 10.65 9.12 20.75 0.05 0.05 0.10
Grass 13.11 9.87 24.27 0.04 0.04 0.08
Shrubs 9.20 6.83 16.65 0.03 0.03 0.06
ENF 8.85 6.68 16.11 0.06 0.05 0.11
DBF 7.84 6.71 15.08 0.04 0.04 0.08
MF 491 4.33 9.45 0.03 0.03 0.05

Table A2. Relative and absolute change in mean Et/E values due to changes in fast transpiration depth for the MODIS dataset.

Type % Change in E{/E ‘ Absolute change in E{/E

5to 10cm relative to Scm 10 to 15 cm relative to 10cm 5 to 15 cm relative to 5cm ‘ 5tol0cm  10to15cm  S5to 15cm
Crops 10.56 8.11 19.52 0.06 0.05 0.11
Grass 12.95 8.51 22.56 0.04 0.03 0.08
Shrubs 8.03 5.97 14.48 0.03 0.02 0.06
ENF 9.47 6.03 16.08 0.07 0.05 0.11
DBF 8.76 7.51 16.93 0.05 0.05 0.10
MF 5.73 5.07 11.09 0.04 0.04 0.08

Table A3. Relative and absolute change in mean E¢/E values due to changes in fast transpiration depth for the GLEAM dataset.

Type % Change in Et/E ‘ Absolute change in Et/E

5to 10cmrelative to Scm 10 to 15 cm relative to 10cm 5 to 15 cm relative to 5cm ‘ 5tol0cm  10to15cm  5to 15cm
Crops 10.31 9.11 20.36 0.04 0.04 0.09
Grass 13.42 10.58 25.43 0.03 0.03 0.06
Shrubs 9.00 7.05 16.68 0.03 0.02 0.05
ENF 9.13 7.01 16.77 0.06 0.05 0.10
DBF 7.52 6.40 14.40 0.04 0.03 0.07
MF 4.99 4.40 9.62 0.03 0.03 0.06

Table A4. Relative and absolute change in mean E¢/E values due to changes in fast transpiration depth for the Zhang dataset.

Type % Change in Et/E ‘ Absolute change in Et/E

5to 10cm relative to Scm 10 to 15cm relative to 10cm 5 to 15 cm relative to 5cm ‘ 5to10cm  10to15cm  S5to 15¢cm
Crops 10.20 8.48 19.54 0.05 0.04 0.09
Grass 13.73 10.39 25.54 0.04 0.04 0.08
Shrubs 8.29 6.35 15.16 0.03 0.02 0.05
ENF 10.50 7.70 19.01 0.07 0.05 0.12
DBF 8.80 6.98 16.40 0.06 0.05 0.10
MF 7.13 433 11.77 0.06 0.04 0.10
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Table AS. Relative and absolute change in mean E¢/E values due to changes in fast transpiration depth for the SPLASH v2 dataset.

Type % Change in Et/E ‘ Absolute change in Et/E

5to 10cmrelative to Scm 10 to 15cm relative to 10cm 5 to 15 cm relative to 5cm ‘ 5tol0cm  10to15cm  5to 15cm
Crops 9.78 8.60 19.22 0.04 0.04 0.07
Grass 14.23 10.40 26.11 0.04 0.03 0.07
Shrubs 9.56 7.53 17.82 0.03 0.02 0.05
ENF 9.99 7.57 18.32 0.06 0.05 0.11
DBF 7.56 6.39 14.43 0.04 0.04 0.07
MF 5.29 4.68 10.23 0.04 0.03 0.07

Table A6. Relative and absolute change in mean Et/E values due to changes in fast transpiration depth for the BESS v2 dataset.

Type % Change in E{/E ‘ Absolute change in E{/E

5to 10cm relative to Scm 10 to 15cm relative to 10cm 5 to 15 cm relative to 5Scm ‘ 5tol0cm  10to15cm  Sto 15cm
Crops 8.76 7.61 17.04 0.03 0.03 0.05
Grass 14.06 10.80 26.38 0.03 0.03 0.06
Shrubs 9.50 7.46 17.68 0.03 0.02 0.05
ENF 8.90 6.89 16.41 0.05 0.05 0.10
DBF 7.40 6.33 14.19 0.04 0.04 0.07
MF 4.87 4.29 9.37 0.03 0.03 0.06

Data availability. Streamflow observations were obtained from the
U.S. Geological Survey (USGS) National Water Information Sys-
tem. Watershed boundaries and precipitation were retrieved from
the HYSETS dataset (https://doi.org/10.17605/OSF.IO/RPC3W,
Arsenault et al., 2024). Land cover information was obtained from
the ESA Climate Change Initiative (CCI) Land Cover project (https:
/Iwww.esa-landcover-cci.org/, last access: 28 December 2022). Po-
tential evapotranspiration data were obtained from six publicly
available data products: NARR (https://psl.noaa.gov/data/gridded/
data.narr.html, last access: 5 October 2022), MODIS MOD16A3GF
(https://lpdaac.usgs.gov/, last access: 5 October 2022), GLEAM
v3.5a (https://www.gleam.eu/, last access: 4 October 2022),
SPLASH v2.0 (https://github.com/dsval/rsplash, last access: 18 De-
cember 2025; DOI: https://doi.org/10.5281/zenodo.10047627, San-
doval, 2023), BESS v2 (https://www.environment.snu.ac.kr/bessv2,
last access: 4 September 2023), and the dataset of Zhang et al.
(2010). Meteorological data and soil moisture were obtained from
NARR. Root distribution parameters were taken from Zeng (2001).
Leaf area index data were obtained from the Global Monthly Mean
Leaf Area Index Climatology provided by ORNL DAAC (https:
//daac.ornl.gov/, last access: 4 March 2020). Baseflow was derived
from USGS streamflow data using the Web-based Hydrological
Analysis Tool (WHAT; https://app.envsys.co.kr/what2020/, last ac-
cess: 18 December 2025). All datasets used in this study are pub-
licly available from the sources listed above.
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