
Hydrol. Earth Syst. Sci., 30, 289–315, 2026
https://doi.org/10.5194/hess-30-289-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.

High resolution monthly precipitation isotope estimates across
Australia from machine learning
Georgina Falster1,2, Gab Abramowitz3, Sanaa Hobeichi3,4, Catherine Hughes5,6, Pauline Treble5,6,
Nerilie J. Abram7,8,9, Michael I. Bird10,11, Alexandre Cauquoin12, Bronwyn Dixon13, Russell Drysdale13,
Chenhui Jin14,15, Niels Munksgaard10, Bernadette Proemse16, Jonathan J. Tyler1, Martin Werner17, and
Carol V. Tadros5,6

1School of Physics, Chemistry and Earth Sciences, Adelaide University, Adelaide 5005, SA, Australia
2The ARC Centre of Excellence for Climate Extremes, The Australian National University, Canberra 2601, ACT, Australia
3Climate Change Research Centre, UNSW Sydney, Kensington 2052, NSW, Australia
4The ARC Centre of Excellence for the Weather of the 21st Century, UNSW Sydney, Kensington 2052, NSW, Australia
5ANSTO, Lucas Heights 2234, NSW, Australia
6School of Biological, Earth, and Environmental Sciences, UNSW Sydney, Kensington 2052, NSW, Australia
7Research School of Earth Sciences, The Australian National University, Canberra 2601, ACT, Australia
8The ARC Centre of Excellence for the Weather of the 21st Century, The Australian National University,
Canberra 2601, ACT, Australia
9The Australian Centre for Excellence in Antarctic Science, The Australian National University,
Canberra 2601, ACT, Australia
10College of Science and Engineering, James Cook University, Cairns 4878, Queensland, Australia
11ARC Centre of Excellence for Indigenous and Environmental Histories and Futures,
James Cook University, Cairns 4878, Queensland, Australia
12Institute of Industrial Science, The University of Tokyo, Kashiwa 277-8574, Chiba, Japan
13School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne 3053, Victoria, Australia
14ARC Centre of Excellence for the Weather of the 21st Century, Monash University, Melbourne 3800, Victoria, Australia
15School of Earth Atmosphere and Environment, Monash University, Melbourne 3800, Victoria, Australia
16School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia
17Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), 27570 Bremerhaven, Germany

Correspondence: Georgina Falster (georgina.falster@adelaide.edu.au)

Received: 26 May 2025 – Discussion started: 11 July 2025
Revised: 3 December 2025 – Accepted: 16 December 2025 – Published: 22 January 2026

Abstract. The stable isotopic composition of precipitation
(δ2HP, δ18OP; “water isotopes”) is a powerful tool for track-
ing water through the atmosphere, as well as fingerprint-
ing land-surface water masses and identifying water cycle
biases in isotope-enabled climate models. Water isotopes
also underpin our understanding of multi-decadal to multi-
centennial water cycle variability via their retrieval from
palaeoclimate archives. Water isotopes thereby increase our
understanding of past and present – and hence future – wa-
ter cycle variability. Understanding the drivers of spatial and
temporal water isotope variability is a critical first step in

applying these tracers for a better understanding of the wa-
ter cycle. However, water isotope observations are sparse in
both space and time. Here we develop and apply a machine
learning (random forest) approach to predict spatially con-
tinuous monthly δ2HP and δ18OP across the Australian con-
tinent at 0.25° resolution from 1962–2023. We train the ran-
dom forest models on monthly δ2HP (n= 5199) and δ18OP
(n= 5217) observations from 60 sites across Australia. We
also predict the deuterium excess of precipitation (dxsP, de-
fined as δ2HP− 8× δ18OP). Out-of-sample δ2HP and δ18OP
prediction skill is high both geographically and temporally.
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Skill is slightly lower for the secondary parameter dxsP,
likely reflecting the larger reliance of spatio-temporal dxsP
variability on moisture source conditions. The random forest
models accurately capture both the seasonal cycle of precip-
itation isotopic variability and long-term annual-mean pre-
cipitation isotopic variability across the continent, and out-
perform estimates from an isotope-enabled atmosphere gen-
eral circulation model over an equivalent time period. We
show that spatio-temporal variability in precipitation amount,
precipitation intensity, and surface temperature are partic-
ularly important for monthly δ2HP and δ18OP variations
across the continent, with local surface pressure also impor-
tant for dxsP. Drivers of site-level δ2HP, δ18OP, and dxsP
are more varied. Overall, the new random forest modelled
dataset reveals clear spatial and temporal variability in δ2HP,
δ18OP, and dxsP across the Australian continent over the
past decades – providing a robust foundation for hydrology,
ecology, and palaeoclimate research, as well as an accessi-
ble framework for predicting water isotope values in other
locations.

1 Introduction

The stable isotopic composition of precipitation (δ2HP,
δ18OP

1) is an integrative tracer of the dynamical processes
resulting in a particular amount of precipitation falling in
a particular place at a particular time (Bowen et al., 2019;
Galewsky et al., 2016). Water molecules comprising only
the common light (1H, 16O) isotopes have higher saturation
vapour pressures than water molecules containing a rarer
heavy (2H, 18O) isotope. Consequently, a mass-dependent
isotopic fractionation occurs every time water changes phase
(evaporation, condensation, sublimation, riming). For exam-
ple, when water vapour condenses to liquid, water molecules
with heavy isotopes will preferentially go to the liquid phase
relative to those with light isotopes. The magnitude of equi-
librium fractionation depends on the ambient temperature
(Majoube, 1970, 1971). Diffusive processes impart addi-
tional kinetic fractionation, resulting in important impacts
from, for example, ambient relative humidity and the time
available for isotopic equilibration between the two phases
(Galewsky et al., 2016). Hence, information about any pro-
cess involving a water phase change is recorded in the stable
isotope composition of a moisture parcel as it moves through
the atmosphere, and may be preserved in the ultimate iso-
tope composition of surface precipitation. These water cycle
processes include (but are not limited to): evaporation from a

1There is a third stable oxygen isotope, 17O. δ2HP and δ18OP
have been widely measured since the 1960s (e.g., Araguás-Araguás
et al., 2000). Observations of “triple oxygen” (117OP) are far less
common than δ2HP and δ18OP due to the difficulty of accurately
measuring 17O / 16O ratios (Aron et al., 2021), and are not dealt
with further in this study.

particular oceanic source (e.g., Araguás-Araguás et al., 1998;
Wolf et al., 2020), cloud formation (Aggarwal et al., 2016),
sub-cloud evaporation (e.g., Graf et al., 2019; Risi et al.,
2010a), and prior rainout along a moisture parcel’s trajectory
(e.g., Dansgaard, 1964; Gat, 1996; Wang et al., 2020). The
derived parameter “deuterium excess” (dxs; δ2H−8×δ18O)
describes a water sample’s deviation from equilibrium iso-
tope fractionation (Craig, 1961; Dansgaard, 1964). dxsP pro-
vides additional information about temperature and relative
humidity at a moisture parcel’s source – including any con-
tinental moisture recycling (Aemisegger et al., 2014; Pfahl
and Sodemann, 2014).

The integrative nature of precipitation isotope tracers
means they have applications beyond understanding dynami-
cal variability in the water cycle. For example, water isotopes
are useful for fingerprinting terrestrial water masses (e.g.,
rivers, groundwater) because environmental waters tend to
strongly reflect the isotopic composition of the source precip-
itation (Bowen et al., 2011; Jasechko, 2019; Vystavna et al.,
2024). Spatial and temporal water isotope patterns can be fur-
ther incorporated into flora and fauna that use environmental
waters to form tissues or biomolecules containing H and/or
O (e.g., bone, cellulose, chitin, enamel, feather, fur, lipids)
(Anon, 2008; Hobson, 2023; Meier-Augenstein, 2019). This
allows use of spatio-temporal isotope fingerprints for track-
ing insect and animal migration (e.g., Hobson et al., 2021;
Rogers et al., 2022; Wunder, 2012), identifying illegal plant
and animal trafficking (e.g., Hopkins et al., 2022; Retief et
al., 2014), identifying movement of invasive species (Hein-
rich and Collins, 2017), food provenancing (Camin et al.,
2017; Kelly et al., 2005; Varrà et al., 2023), and tracing
the origin and movements of modern and ancient humans –
with applications in archaeology, anthropology, and crimi-
nal forensics (Bartelink and Chesson, 2019; Depaermentier,
2023; Font et al., 2015; Fraser and Meier-Augenstein, 2007;
Mützel Rauch et al., 2009; Obertová et al., 2023).

Water isotope tracers are also used to reconstruct past
climates. The stable isotope composition of environmental
waters can be incorporated into natural archives with min-
imal transformation relative to other environmental proxies
for climatic variables (Konecky et al., 2020). Palaeoclimate
archives that preserve information about their source wa-
ter isotope composition are globally distributed and include
coral and cave carbonate, lake and marine sediments, tree
wood, and ice (Konecky et al., 2020) – allowing reconstruc-
tion of many aspects of the global water cycle. Water isotope
proxy records from these archives have been used to quantify
decadal to multi-centennial variability in climate variables
ranging from the El Niño-Southern Oscillation (e.g., Falster
et al., 2023; Thompson et al., 2013) and the Pacific-North
American teleconnection (Liu et al., 2014) to local precipi-
tation amount (e.g., Bird et al., 2020; Hu et al., 2008; Kurita
et al., 2016; Sinha et al., 2007; Tierney et al., 2017), ground-
water recharge (e.g., Priestley et al., 2023), and dynamical
variability in the global water cycle (Konecky et al., 2023).
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Water isotope transport and fractionation processes have
also been incorporated into the atmospheric water cycle of
some general circulation models (GCMs) (e.g., Brady et al.,
2019; Hoffmann et al., 1998; Joussaume et al., 1984; Risi
et al., 2010b; Steen-Larsen et al., 2017). Understanding wa-
ter cycle bias in GCMs is important as they are used for both
future climate projections and palaeoclimate reconstructions.
Comparing outputs from isotope-enabled GCMs with precip-
itation and vapour isotope observations has revealed previ-
ously unidentified biases in how these GCMs simulate dy-
namical variability in the atmospheric water cycle. Identified
biases include: model overestimates of deep convection over
the mid-latitude oceans (Nusbaumer et al., 2017); too-weak
shallow convective mixing in the tropical mid-troposphere
(Tanoue et al., 2023); and biases in both mid-troposphere rain
evaporation and stratiform rain fraction over India (Nimya et
al., 2022).

Understanding the drivers of spatial and temporal δ2HP,
δ18OP, and dxsP variability is a critical first step in ap-
plying water isotope tracers for a better understanding of
the water cycle. However, δ2HP and δ18OP observations are
sparse in both space and time (Terzer-Wassmuth et al., 2021).
Previous attempts to understand precipitation isotopic vari-
ability beyond data from discrete monitoring stations have
mostly been via temporally invariant long-term mean pre-
cipitation “isoscapes”. Long-term mean isoscapes (or “time-
mean isoscapes”) infer spatially continuous precipitation iso-
topic variability between monitoring stations (Bowen, 2010;
Bowen et al., 2009). Interpolation is usually performed with
a linear geostatistical algorithm that uses information from
one or more explanatory variables to predict climatological
δ2HP, δ18OP, and/or dxsP over a particular spatial domain.
Explanatory variables are generally geographical, and have
commonly included elevation, latitude, and minimum dis-
tance to the coast (e.g., Bowen and Wilkinson, 2002) – with
the assumption that these variables provide adequate proxies
for the dynamical processes affecting a moisture parcel’s iso-
topic composition. When creating time-mean isoscapes, ob-
servational data are temporally reduced into long-term mean
annual, seasonal, or monthly values. More recently, machine
learning approaches have been used to infer spatial variabil-
ity in global surface seawater δ18O (Murray et al., 2023)
and spatio-temporal variability in precipitation isotopes over
New Zealand (Hill et al., 2025) and Europe (Erdélyi et al.,
2023; Nelson et al., 2021). In the case of the latter, the ma-
chine learning models performed better than both geostatis-
tical models and isotope-enabled GCMs.

The Australian continent has a network of current and
former precipitation isotope monitoring stations (Hollins et
al., 2018) that has very large gaps in both space and time.
This low density of observational precipitation isotope data
mirrors the small number of water isotope-based palaeoen-
vironmental reconstructions for the continent (Konecky et
al., 2020), as well as limiting the use of water isotopes
in ecological, hydrological, and forensic studies compared

with other regions. There are isoscape estimates of spatially-
continuous precipitation variability across the continent (e.g.,
Hollins et al., 2018; Terzer et al., 2013; Terzer-Wassmuth
et al., 2021). However, these isoscapes either (1) do not
provide information about precipitation isotope variability
through time, or (2) span at most a two-year period, across
the subset of the continent with relatively high observational
data density (Duff et al., 2025). Here we develop and ap-
ply a machine learning (random forest) approach to pre-
dict monthly δ2HP, δ18OP, and dxsP across the entire Aus-
tralian continent, at 0.25° resolution from 1962–2023. We
quantify the random forest models’ out-of-sample predictive
skill in both the spatial and temporal domains, and com-
pare the predicted values with outputs from a state-of-the-
art isotope-enabled GCM. This allows us, for the first time,
to characterise spatio-temporal variability in δ2HP, δ18OP,
and dxsP across the entire Australian continent – and fa-
cilitates a wide range of future applications. Outputs are
available in netcdf format at monthly and annual resolu-
tion from https://doi.org/10.5281/zenodo.15486277 (Falster,
2025). We also provide a web app (https://wateriso-aus.
shinyapps.io/apic, last access: 21 January 2026 – the “Aus-
tralian Precipitation Isotope Calculator”) where users can:
(1) download δ2HP, δ18OP, and/or dxsP time series at loca-
tions and temporal resolutions of their choice; and (2) obtain
maps of locations across the continent matching specific in-
put values (e.g., for sample provenance searches). The web
app also hosts downloadable maps of long-term mean δ2HP,
δ18OP, and dxsP across the Australian continent.

2 Methods

We used a machine learning approach to model the rela-
tionships between each of δ2HP, δ18OP and dxsP (the “tar-
get variables”) and a range of geographical, meteorological,
and dynamical variables (the “predictors”). The models were
then used to predict time series precipitation isotope maps
spanning the Australian continent, and to explore the drivers
of their predictability across different locations.

2.1 Precipitation isotope training data

We trained the models on δ2HP and δ18OP observations from
60 unique sites across Australia (Table S1). We also calcu-
lated dxsP for the 59 sites with both δ2HP and δ18OP val-
ues. The δ2HP and δ18OP data are from a mix of published,
“grey”, and unpublished sources, as well as the Australian
contributions to the Global Network of Isotopes in Precipita-
tion (GNIP) database, which in turn is facilitated by the Inter-
national Atomic Energy Agency. “Grey” refers to data pub-
lished in government reports or student theses. Where wa-
ter isotope data were sub-monthly, the values were converted
to amount-weighted monthly means using the precipitation
amount measurements associated with the water isotope data.
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If precipitation amount measurements were not available, we
used the daily precipitation amount data from the Australian
Gridded Climate Dataset v1 (AGCDv1), which is available
at 0.05° latitude by 0.05° longitude resolution from 1900 to
2022 (Jones et al., 2009). At some sites there were months
with observations from multiple sources (Table S1); in those
cases, monthly values were averaged. Temporal coverage at
the sites ranged from 2 to 573 months of data, with data in
between 1 and 56 calendar years. The dataset spans 1962–
2023; this interval was used to set the temporal bounds on our
predictions. All site information is summarised in Table S1.

2.2 Random forest models to predict precipitation
isotopes

We used random forest regression models to predict monthly
δ2HP, δ18OP, and dxsP values from a suite of 26 geographi-
cal, meteorological, and dynamical predictor variables (de-
scribed in Sect. 2.3). Random forest models are ideal for
capturing highly non-linear relationships and handling cor-
related predictors, and perform well with a small number of
target variable samples. These features make random forest
models suitable for the target variables and predictors used in
this study. Precipitation isotopic variability is influenced by
many highly correlated variables, and by using a random for-
est approach we aim to capture as much of the nuance across
those relationships as possible.

In brief, our random forest models are ensembles of re-
gression trees (Breiman, 2001). Each tree in the forest is cre-
ated with a unique bootstrapped (with replacement) subset of
the full training dataset. That is, the forest’s trees are trained
on different but overlapping datasets, introducing randomi-
sation and variability across the forest. Data omitted from
the bootstrapped subset are used by the algorithm to com-
pute the training error and optimise tree construction. In each
tree, the training data undergo recursive binary partitioning
(“splitting”), with each split at a node defined by a particular
threshold in a particular predictor variable. For example, at
one node, the precipitation isotope data may be grouped ac-
cording to whether the amount of precipitation in that month
was more or less than 70 mm. At another node, the data may
be split according to whether the site elevation is above or
below 20 m. At each node, the predictor variable by which
the data are split is chosen from a reduced set of predic-
tor variables randomly selected from the full available set
of predictors. From that reduced set, the model chooses (1)
the variable (e.g., precipitation amount) and (2) the threshold
(e.g., 70 mm) that best homogenise the precipitation isotope
samples in subsequent “child” nodes, reducing the variabil-
ity of the child nodes compared to the parent node. A dif-
ferent randomly determined subset of predictor variables is
used to choose the variable for each split. This binary parti-
tioning continues until the number of samples remaining at a
node falls below a threshold. These nodes, which no longer
undergo splitting, constitute the leaves of the tree, with their

values representing the average precipitation isotope value of
the remaining samples. Predictions from all trees in the for-
est are averaged to provide the final predictions for the given
set of predictors.

The random forest models were built using the ranger
package (Wright and Ziegler, 2017) in R (v4.4.0; R
Core Team, 2024). Random forest model hyperparameters
were determined objectively using the tuneRanger package
(Probst et al., 2018). The hyperparameters tuned for each
model (with the parameter name in ranger shown in italics)
were: (1) the size of the reduced set of predictor variables
used at each node for splitting (mtry); (2) the minimum num-
ber of samples in a node to continue splitting (min.node.size);
and (3) the fraction of the training dataset used in each tree’s
training dataset (sample.fraction). All other model parame-
ters were as per the ranger defaults. Random forest models
incorporate randomness in both the data subset used to grow
the trees, and the subset of variables available for splitting
at each node. To account for this inherent randomness, we
repeated each of the stages described below 50 times, each
with a different random seed.

Each precipitation isotope metric (δ2HP, δ18OP, dxsP)was
modelled separately. We acknowledge that this represents a
fundamental inconsistency, in that dxsP is not an independent
parameter. After producing the models, we therefore com-
pared the independently modelled dxsP values with dxsP as
calculated from the modelled δ2HP and δ18OP.

2.2.1 Quantifying model predictive skill

We tested out-of-sample model skill separately in the spa-
tial and temporal domains (spatial and temporal transitivity).
To test spatial transitivity we excluded all data from one site
(the “test site”) from the full training dataset, trained a ran-
dom forest model using the remaining data, then used that
model to predict values for the excluded test site. We re-
peated that process for all sites. To test temporal transitiv-
ity we excluded a random 10 % of observations from the full
training dataset, trained the model on the remaining 90 %,
then used the model to predict values for the excluded 10 %.
We repeated that process so every data point was tested out-
of-sample.

To formally quantify skill, we used a suite of seven inde-
pendent skill metrics (Table S4 in Abramowitz et al., 2024).
The skill metrics are independent in the sense that a change
can be made to the predicted values that affects one metric
but not the others. The metrics are:

– The Pearson correlation coefficient (r) between the ob-
served and modelled monthly values;

– the Mean Bias Error (MBE), which describes the aver-
age size of the deviation between model and observa-
tion;
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– the Normalised Mean Error (NME), which is the ratio
of MBE to the average deviation of observations from
the observational mean;

– the difference between the Standard Deviation (SD) of
the observed and modelled monthly values (modified
from Abramowitz et al. (2024), who report the absolute
difference);

– the difference in the 5th percentile of modelled ver-
sus observed values (modified from Abramowitz et
al. (2024), who report the absolute difference);

– the difference in the 95th percentile of modelled ver-
sus observed values (modified from Abramowitz et
al. (2024), who report the absolute difference); and

– the density estimate overlap proportion, which sum-
marises the degree of overlap between density estimates
calculated for the modelled and observed values (a value
of 1 indicates perfect overlap; 0 indicates no overlap).

We report the mean and variance of each skill score across
models created with the 50 unique seeds.

Finally, we qualitatively evaluated the stability of model
performance through time. For this, we calculated the dif-
ference between observed and modelled δ2HP, δ18OP, and
dxsP values for all months that have observations. We then
summarised these bias values by decade. For this analy-
sis, we used the final δ2HP, δ18OP, and dxsP estimates
(Sect. 2.2.3) from the longer models trained over 1962–2023
(see Sect. 2.3.1), and show the mean of the 50 models created
with unique random seeds.

2.2.2 Estimating predictor importance

Random forest models assess the relative importance of pre-
dictor variables based on their impact on the model’s pre-
dictive skill. This relative importance can be estimated us-
ing methods such as permutation and impurity importance.
The permutation method involves selecting a predictor vari-
able, shuffling its values, and observing the resulting degra-
dation in model performance based on the out-of-bag error
(see Sect. 2.2) across the entire forest (see Breiman, 2001
for details). Predictor variables that cause a larger degrada-
tion in performance are considered more important for accu-
rately predicting the target variable. The impurity importance
method, on the other hand, quantifies the extent to which a
predictor variable contributes to reducing the dataset’s vari-
ability at each split within the forest (Ishwaran, 2015). Vari-
ables that result in greater variance reduction have higher im-
purity importance. It is important to note that relative impor-
tance values compare the importance of predictors with each
other, rather than being interpreted as absolute measures of
importance.

The two methods were tested and yielded similar results;
in the interest of brevity we report only results from the per-
mutation method – which is easily interpretable in that in

effect, it “removes” each variable in turn by randomising its
values, thereby removing any predictive power. This is also
the importance method used by Hill et al. (2025) in their
recent assessment of precipitation isotopic variability over
New Zealand. We report predictor importance estimates for
the final models (incorporating information from all sites).
We also report predictor importance estimates for the seven
individual sites with over 200 monthly observations; results
are likely not meaningful with fewer than ∼ 200 observa-
tions. In all cases, for each predictor variable we report its
average rank across the models created with the 50 unique
seeds, with 1 being the least important and a rank equivalent
to the number of included variables being the most important.
Note that the random forest predictor importance estimation
algorithms assign a negative importance value to variables
that decrease model skill (this was not the case with any of
our chosen predictor variables).

2.2.3 Building final models

When creating the final models, we trained the random for-
est models using the entire water isotope observation dataset.
We then used those models to predict monthly δ2HP, δ18OP,
and dxsP values for each 0.25° grid cell over the Australian
continent across 1962–2023.

2.3 Predictor variables

To predict monthly precipitation isotope variability on a spa-
tially continuous grid across the Australian continent, we as-
sembled a suite of known meteorological, dynamical, and
geographical drivers of precipitation isotope spatio-temporal
variability (Table S2). Geographical variables include lat-
itude, longitude, minimum distance to the coast (“conti-
nentality”), and elevation (of these, only elevation was in-
cluded in the final models; see Sect. 2.3.2). Continental-
ity was calculated using the Australian Statistical Geogra-
phy Standard GDA2020 digital boundary file. Elevation data
are from the GEODATA 9 Second Digital Elevation Model
Version 3 (Hutchinson et al., 2008), available at 9 s latitude
by 9 s longitude resolution (approximately 250 m) over Aus-
tralia. All meteorological data were derived from the Euro-
pean Centre for Medium-Range Weather Forecasts Reanal-
ysis v5 (ERA5), available at 6-hourly and monthly resolu-
tion on a 0.25° latitude by 0.25° longitude grid (approxi-
mately 31 km) from 1940 to present (Hersbach et al., 2020;
Soci et al., 2024). Meteorological variables include: air tem-
perature, evaporation, fraction of precipitation delivered as
snow, mean sea level pressure, precipitation amount, precip-
itation intensity, ratio of convective to total precipitation, rel-
ative humidity, wind direction, and wind strength (more de-
tails provided in Table S2). We note that there is a gridded
precipitation amount product specific to Australia that spans
our 1962–2023 analysis interval – the AGCDv2 (Evans et
al., 2020). However, AGCDv2 is only available at monthly
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resolution, and daily data are required to calculate precipita-
tion intensity. Nevertheless, we compared monthly precipi-
tation amount in ERA5 with AGCDv2 in discrete locations
across Australia and the two were similar (not shown). We
therefore used the ERA5 precipitation amount data for con-
sistency across the predictor variables.

The source and delivery mechanism of precipitation are
important drivers of local precipitation isotopic variability,
but extremely difficult to condense into discrete site-level
variables. We therefore included “weather objects” in our
suite of predictor variables, providing a proxy for many of
these processes (Table S2). In brief, the synoptic processes
responsible for daily precipitation over the Australian conti-
nent can be classified into eight weather object categories:
anticyclone, cutoff low (troposphere), cutoff low (strato-
sphere), cyclone, front, potential vorticity streamer, warm
conveyor belt (ascent), and warm conveyor belt (inflow) –
see Jin et al. (2024) and Sprenger et al. (2017) for details.
The weather object/s responsible for precipitation are implic-
itly linked to particular weather systems that characteristi-
cally transport moisture from distinct source regions, and fol-
low particular trajectories. Therefore, including the weather
object data as predictors incorporates information about the
processes that brought the moisture to its ultimate precip-
itation location. The precipitation-bringing weather objects
were originally calculated at daily resolution, on a 0.5° lati-
tude by 0.5° longitude grid from 1980–2019 (Jin et al., 2024).

To include information about possible broader-scale dy-
namical drivers of Australian precipitation isotopic variabil-
ity, we included indices for known remote drivers of Aus-
tralian precipitation amount. These are: the Niño 3.4 index
for the strength of the El Niño-Southern Oscillation (ENSO);
the trans-Pacific sea level pressure gradient (1SLP) index
for the strength of the Pacific Walker Circulation; the Dipole
Mode Index (DMI) for the strength of the Indian Ocean
Dipole; the difference in the zonal mean SLP between 40
and 65° S for the Southern Annular Mode (SAM); and the
first principal component of Indian Ocean SST for the Indian
Ocean Basin Mode (IOBM). The Nino 3.4 index was calcu-
lated as area-mean sea surface temperature (SST) anomalies
in a box 10° S–10° N, 170–120° W. The1SLP index was cal-
culated as the difference in SLP anomalies averaged over the
central/east Pacific (5° S–5° N, 160–80° W) and the Indian
Ocean/west Pacific (5° S–5° N, 80–160° E) (following Vec-
chi et al., 2006). The DMI was calculated as the difference
in SST anomalies averaged over the west (10° S–10° N, 50–
70° E) and east (10° S–0°, 90–110° E) Indian Ocean (follow-
ing Saji et al., 1999). The SAM index was calculated as the
difference in SLP anomalies averaged over 40 and 65° S (fol-
lowing Velasquez-Jimenez and Abram, 2024). The IOBM in-
dex was calculated as the first principal component of lin-
early detrended SST anomalies over the Indian Ocean (fol-
lowing Yu et al., 2022). All indices were calculated using
SST or SLP data from ERA5 and all area means were area
weighted.

Finally, we explicitly accounted for the seasonal cycle by
encoding the month of the year using sine and cosine trans-
formations and including these as predictors.

When similarly using a regression tree approach to model
precipitation isotopic variability, Nelson et al. (2021) started
with a broad suite of possible predictor variables. They then
used the impurity importance method (see Sect. 2.2.2) to
identify their models’ least important predictor variables, and
excluded those variables in their final models. We did not
perform a similar feature selection step, instead relying on
(1) a careful initial choice of predictors; then (2) the random
forest’s predictor importance algorithm to determine if any
predictors were detrimental to model skill (which was not
the case; see Sect. 2.2.2)

2.3.1 Predictor data processing

All predictor variable datasets not sourced from ERA5 were
regridded to a common 0.25° latitude by 0.25° longitude
grid using bilinear interpolation (matching the spatial resolu-
tion of ERA5). The weather object data were converted from
daily to monthly resolution by calculating the proportion of
total monthly precipitation delivered by each weather object
category. To train the models, we extracted the predictor data
from the 0.25° grid cells matching the location of each moni-
toring site, then filtered the monthly time series to only retain
months with observations. Together with the δ2HP, δ18OP,
and dxsP data, this formed the set of full training datasets.
We retained the full spatio-temporally continuous set of pre-
dictor variables for making predictions with the final models.

The weather object data are available from 1980–2019;
all other datasets are either time-invariant or available for
the full calendar years matching the precipitation isotope
data availability (1962–2023). We therefore performed all
methodological steps described in Sect. 2.2 twice: once us-
ing the longer, reduced set of predictor variables (without
the weather objects; spanning 1962–2023), and once using
the shorter, complete set of predictor variables (including the
weather objects; spanning 1980–2019).

2.3.2 Predictor variables included in the final models

Previous spatially-continuous estimates of precipitation iso-
tope variability across the Australian continent were pre-
dicted based solely on geographical variables (latitude, ele-
vation, continentality). We initially incorporated these as pre-
dictors in our random forest models; however, latitude, lon-
gitude, and continentality induced visible artifacts in derived
metrics (e.g., the slope of the meteoric water line, not shown).
Repeating the skill tests (Sect. 2.2.1) on results from models
using a predictor set without these variables did not impact
the results, so they were omitted from the final models.
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2.4 Comparison with observations and precipitation
stable isotopic estimates from other sources

We compared final modelled δ2HP, δ18OP, and dxsP val-
ues (Sect. 2.2.3) with (1) observations from each site; and
(2) outputs from an isotope-enabled atmospheric GCM,
ECHAM6-wiso, which simulates δ2HP and δ18OP (Cauquoin
and Werner, 2021). The ECHAM6-wiso simulation had its
3D fields of temperature, vorticity, and divergence, as well
as its surface pressure field, nudged toward ERA5 data – and
is therefore directly comparable with monthly observations
(Cauquoin and Werner, 2021). Outputs from ECHAM6-wiso
are available globally at 0.9° latitude by 0.9° longitude reso-
lution from 1979–2021 (1979–2018 publicly available, with
an additional three years provided by the authors). We as-
sessed both models’ (random forest and ECHAM6-wiso)
performance in retrieving (1) the full distribution of observed
δ2HP, δ18OP, and dxsP values at each site; and (2) the sea-
sonal cycle of δ2HP, δ18OP, and dxsP at each site. When cal-
culating the density functions and seasonal cycles, we used
isotope values from the time interval in which all three data
sources overlap (1979–2021), only including months with
observations. In the case of the random forest models, we
used predictions from the longer models trained over 1962–
2023 with the reduced set of predictor variables (without
weather objects), and show the mean of the 50 models cre-
ated with unique random seeds.

We also used both models (random forests and ECHAM6-
wiso) to estimate long-term mean precipitation amount-
weighted annual mean δ2HP, δ18OP, and dxsP (“time-
mean isoscapes”), and compared this with a set of linear
regression-based time-mean isoscapes (Hollins et al., 2018).
The linear regression-based time-mean isoscapes were es-
timated from latitude, altitude, and distance from the near-
est coastline, and are available at 0.17° latitude by 0.17°
longitude resolution (no time dimension). When directly
comparing the three time-mean isoscapes, we used a mass-
conservative interpolation scheme to regrid the climatologi-
cal δ2HP, δ18OP, and dxsP from the ECHAM6-wiso and lin-
ear regression models to match the spatial resolution of the
random forest isoscapes.

In all three cases, we estimated the isoscape bias rela-
tive to observations by calculating observed long-term mean
amount-weighted annual mean δ2HP, δ18OP, and dxsP at
each site with five or more years of observations, then cal-
culating the difference between this observed value and the
matching grid cell in each of the three modelled time-mean
isoscapes. We report both total and absolute mean bias across
all sites – noting that this is not representative of the true
isoscape skill given the temporal and geographical bias in site
distribution. Values are reported as a percentage of the total
observed range in mean annual mean δ2HP, δ18OP, and dxsP
at each site, so the bias estimates for the three isotope metrics
are roughly comparable. At each site, we only included years
with >3 monthly observations (sites north of 23° S, where it

is common for no precipitation to be delivered in dry-season
months) or >8 monthly observations (sites south of 23° S,
where precipitation delivery is relatively uniform through the
year). Noting that these bias estimates compare average ob-
served values over different time periods: for the random for-
est and ECHAM6-wiso models we additionally calculated
the absolute and overall bias, only including model years
with matching observations. This test was not possible for
the temporally-invariant linear regression-based isoscape.

We note that Duff et al. (2025) used a linear (kriging) ap-
proach to estimate monthly δ2HP and δ18OP isoscapes across
south-eastern Australia over a two-year time period (2007–
2008). However, formal comparison of our random forest re-
sults with the regional monthly δ2HP and δ18OP isoscapes
of Duff et al. (2025) was not possible as these data are not
publicly available.

3 Results

3.1 Overall model skill

The random forest models’ out-of-sample predictive skill
across all metrics is high in both the geographical (Figs. 1–
2, S1–4) and temporal (Figs. 3, S5–6) domains, indicating
that the random forest approach is suitable for modelling
precipitation isotope variability across the Australian conti-
nent. All results are robust to the inherent randomness of the
method, with minor differences between the 50 instances of
each model (Fig. S7). Temporal transitivity is generally supe-
rior to spatial transitivity; that is, the random forest models
are better at filling gaps in time than filling gaps in space.
There is little difference in predictive skill between shorter
models trained over 1980–2019 (including the weather ob-
jects) and the longer models trained over 1962–2023 (omit-
ting the weather objects). Skill scores for the shorter models
are generally slightly better: for example, the average model-
observation correlation coefficient for δ2HP and δ18OP spa-
tial transitivity in the shorter models is 0.7 (not shown) com-
pared with 0.68 for the longer models (Figs. 2a, S3a). The
exception is the density estimate overlap proportion for dxsP
with respect to temporal transitivity, which is much higher
in the shorter models (including the weather objects) than
the longer models (omitting the weather objects; Fig. S6g).
Model performance is fairly stable through time (Fig. 4).

In terms of predictive skill in modelling isotope variabil-
ity at out-of-sample locations: for all three isotope metrics,
there was no relationship between skill and the distance to
the nearest site included in the training dataset (Figs. 1, S1–
2). This provides confidence that the model predictions for
locations with no training data are likely no worse than in-
dicated by the skill tests at the training data locations – not-
ing that on average, for over 98 % of grid cells, > 99 % of
predictor values are within the range of the training dataset
(Fig. S8).
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Figure 1. Crossplots summarising a suite of independent metrics describing out-of-sample random forest model skill in predicting spatial
δ18OP variability. Scores were calculated by removing one site from the training data (the “test site”), training a random forest model using
the remaining data, then using that model to predict values for the excluded test site. This process was repeated 50 times for each site, each
time initialising the random forest model with a different random seed. Each point shows the skill for a single site. Sites are plotted according
to the distance to the nearest site included in the training dataset. Each site has two points on each crossplot: triangles show results for δ18OP
predicted using the longer models trained over 1962–2023 using the reduced set of predictor variables (without weather objects). Circles
show results for δ18OP predicted using models trained over 1980–2019 using the full set of predictor variables (including weather objects).
Sites are coloured according to record length. The vertical line over each point shows± one standard deviation in that skill score across the 50
models. In all cases, the dashed black line shows the expected value if the modelled values perfectly matched observations. Panel (a) shows
the Pearson correlation coefficient between the observed and modelled monthly δ18OP values. Panel (b) shows the Mean Bias Error (MBE).
Panel (c) shows the Normalised Mean Error (NME). Panel (d) shows the difference between the Standard Deviation (SD) of the observed
and modelled values (following (Abramowitz et al., 2024), a positive value denotes modelled values have lower SD than observations). Panel
(e) shows the difference in the 5th percentile of modelled versus observed values (a positive value denotes the 5th percentile of the modelled
values has a positive bias relative to observations). Panel (f) shows the difference in the 95th percentile of modelled versus observed values
(a negative value denotes the 95th percentile of the modelled values has a negative bias relative to observations). Panel (g) shows the density
estimate overlap proportion (DEOP), which summarises the degree of overlap between density estimates calculated for the modelled and
observed values (a value of 1 would indicate perfect overlap; 0 would indicate no overlap). See Sect. 2.2.1 or Table S4 in Abramowitz et
al. (2024) for skill metric definitions.
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Figure 2. Maps showing average random forest model skill in predicting out-of-sample δ18OP variability at the 60 sites across Australia
with δ18OP observations. Scores were calculated by removing one site from the training data (the “test site”), training a random forest model
using the remaining data, then using that model to predict values for the left-out test site. This process was repeated 50 times for each site,
each time initialising the random forest model with a different random seed. Points are coloured according to the average skill score from the
50 models, and are sized according to the record length (record lengths range from 2 to 573 months). Values are monthly δ18OP predicted
using the longer models trained over 1962–2023, using the reduced set of predictor variables (without weather objects). Skill metrics across
panels (a)–(g) are all as per Fig. 1. The average skill score across all sites is shown in the lower left corner.

When predicting values out-of-sample, the random forest
models generally under-estimate extreme values at both ends
of the distribution. That is, the slope of the linear relationship
between observed and modelled values is generally less than
1 (Figs. 5, S9–10). This is the case for both spatial (Figs. 1–
2e–f, S1–4e–f) and temporal transitivity (Figs. 3e–f, S5–6e–
f), where the modelled 5th percentile values are mostly pos-
itively biased, and the modelled 95th percentile values are
mostly negatively biased, and standard deviations are mostly
lower than in observations. However, the seasonal cycles of
δ2HP, δ18OP, and dxsP are well represented by the random
forest models (blue versus grey curves in Figs. 6, S11–12).
This is the case even at sites with very few observations (e.g.,
rows 7–10 of Figs. 6, S11–12).

3.1.1 Relative predictability of the three isotope metrics

Predictive skill for δ2HP and δ18OP is similar whilst predic-
tive skill for dxsP is slightly lower across all metrics. This

is the case for out-of-sample skill in both the temporal and
spatial domains (Figs. 1–3, 5, S1–6, S9–10), for predictions
based on the full training dataset (Figs. 6–7, S11–14), and
for the models with the full versus reduced predictor sets.
For example, both the mode and shape of site-wise density
functions for observed versus modelled δ2HP and δ18OP are
similar (Figs. 7, S13, grey versus blue curves). This is par-
ticularly the case for sites with over ∼ 50 observations (first
four rows in Figs. 7, S13) where there is generally a large
overlap between the grey (observations) and blue (random
forest models) distributions. Additionally, the random forest
models accurately reproduce features such as the left-skewed
δ2HP and δ18OP distributions at the tropical sites (Cairns,
Willis Island). In comparison, although the mode of the ran-
dom forest-modelled dxsP values is generally accurate at
sites with over ∼ 50 observations, the distributions generally
have excessive kurtosis (Fig. S14).
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Figure 3. Violin-and-boxplots (“voxplots”) summarising a suite of independent metrics describing model skill in predicting out-of-sample
temporal δ18OP variability (across all sites). Scores were calculated by removing a random 10 % of all training data, predicting the missing
values, then assessing the model’s skill in retrieving the held-out data. This process was repeated such that all training data were tested
out-of-sample. Additionally, each random forest model was calculated 50 times, each time with a different random seed. These two iterative
processes comprise the distributions. In each panel, the left voxplot shows results for monthly δ18OP predicted using models trained over
1962–2023, using the reduced set of predictor variables (without weather objects). The right voxplot shows results for monthly δ18OP
predicted using models trained over 1980–2019, using the full set of predictor variables (including weather objects). Skill metrics across
panels (a)–(g) are all as per Fig. 1.

3.2 Comparison of independently modelled dxsP with
dxsP calculated from δ2HP and δ18OP

There is minimal difference in long-term dxsP across the
Australian continent as estimated from the independent set
of random forest models, compared with long-term mean
dxsP calculated from modelled δ2HP and δ18OP (Fig. 8).
Broadly, the independent random forest models (Fig. 8a) pre-
dict slightly higher dxsP across inland western Australia than
implied by the δ2HP and δ18OP models (Fig. 8b). The re-
verse is true for the southern and northern coastline, except-
ing the far-northern tips of the continent. However, the mag-
nitudes of the difference are small in the long-term annual
mean (Fig. 8c).

3.3 Key predictors of δ2HP, δ18OP, and dxsP
spatio-temporal variability

For the final models (incorporating all training data), precip-
itation amount and precipitation intensity were the most im-
portant predictors of δ2HP and δ18OP spatio-temporal vari-
ability (Fig. 9). Relative humidity, surface temperature, the
ratio of convective to total precipitation, and the seasonal cy-
cle were also important. For dxsP, surface temperature and
mean sea level pressure were the most important predictors,
followed by precipitation amount and relative humidity.

In the shorter models including the weather object data, the
weather objects (shown in lavender on Fig. 9) were generally
of middling importance, with precipitation delivered by po-
tential vorticity streamers the most important weather object
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Figure 4. Violin-and-boxplots (“voxplots”) summarising bias in
modelled monthly δ2HP, δ18OP, and dxsP values with respect to
observed values at the equivalent months/locations. Each distribu-
tion summarises all months at all locations for each decade. Mod-
elled values are from the longer models trained over 1962–2023,
using the reduced set of predictor variables (without weather ob-
jects), and in all cases are the mean of values predicted by 50 unique
random forest models, each initiated with a different random seed.
Note that the 1960s and 2020s are incomplete decades (compris-
ing 1962–1969 and 2020–2023, respectively). Voxplot width scales
with the number of observations in that decade.

for spatio-temporal variability in all three isotope metrics.
Remote drivers (e.g., ENSO, SAM, shown in green) tended
to be less important across all isotope metrics. Of the remote
drivers, the 1SLP and Niño 3.4 indices for tropical Pacific
variability were the most important. The fraction of precipi-
tation delivered as snow was the least important predictor of
spatio-temporal variability in all isotope metrics – likely be-
cause it is only relevant for a very small geographical region.
Nevertheless, all predictors contributed meaningfully to the
final models. Predictor importance was robust to the inherent
randomness of the models, with minimal differences between
the models produced with the 50 unique seeds.

3.3.1 Predictor importance for individual sites

Predictor importance for temporal variability in δ2HP, δ18OP,
and dxsP varied by site (Fig. 10). For δ2HP and δ18OP: pre-
cipitation amount, precipitation intensity, relative humidity,
and the seasonal cycle were prevalent in the top five most
important predictors across sites, but other variables – includ-
ing those less important for continental spatio-temporal δ2HP
and δ18OP variability – also scored highly. These include the
ratio of convective to total precipitation and local evapora-
tion; weather objects also regularly featured in the five most
highly-ranked predictors.

Relative to δ2HP and δ18OP, there was more inter-site vari-
ability in dxsP predictor importance (Fig. 10 third column).
Both surface temperature and precipitation delivered by po-
tential vorticity streamers appeared the most frequently in
the five most highly-ranked predictors across the five sites.
Weather objects (shown in lavender) tended to be ranked
more highly than for δ2HP and δ18OP, with local precipita-
tion amount and intensity generally less important.

3.4 Spatio-temporal variability in precipitation stable
isotopes over the Australian continent

The spatio-temporally complete modelled dataset shows
clear interannual variability in all three isotope metrics
(Figs. 11–12, S15–16). For one example, the unprecedent-
edly extreme 2017–2019 eastern Australian “Tinderbox”
drought (Devanand et al., 2024; Falster et al., 2024) is as-
sociated with distinct isotopic anomalies in the annual mean
(see also Fig. S17). This is particularly the case for dxsP,
where negative dxsP values associated with the final year of
the drought are the most extreme of any in the past 20 years
(Figs. S16–17).

In terms of the total range of values spanned at any
one location (i.e., the maximum value occurring at a loca-
tion minus the minimum value occurring at that location,
across 1962–2023), monthly precipitation isotopic ranges
span 30.1–114.3 ‰, 4.1–17.4 ‰, and 5.7–30.9 ‰ for δ2H,
δ18O, and dxs, respectively (Fig. 12a–c). Annual-mean site-
wise total ranges span 5–61.7 ‰, 0.5–9.4 ‰, and 0.8–12.7 ‰
for δ2H, δ18O, and dxs, respectively (Fig. 12d–f).

3.5 Comparison with precipitation isotopic estimates
from other sources

3.5.1 Monthly variability

In terms of both the seasonal cycle (Figs. 6, S11–12, grey
versus blue and green curves) and the overall distribution of
values (Figs. 7, S13–14), the random forest models generally
outperform the physically-based ECHAM6-wiso estimates
of δ2HP, δ18OP, and dxsP for the equivalent months. For ex-
ample, the site-wise seasonal cycles of δ2HP and δ18OP in
ECHAM6-wiso (green curves in Figs. 6, S11) are generally
damped (e.g., Yarrangobilly, Mt. Werong), offset (e.g., Cape
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Figure 5. Crossplots comparing modelled and observed monthly δ18OP values at the 60 sites across Australia with δ18OP observations. For
each site, δ18OP values were predicted out of sample (i.e., that site’s data was removed from the training dataset). Each point shows the
mean of values predicted by 50 unique random forest models, each initiated with a different random seed. Sites are arranged by decreasing
latitude, with the northern-most site (Darwin) in the top left corner and the southern-most site (Margate) in the bottom right corner. Site
details are as per Table S1. In each panel, the thin black line shows the expected relationship if modelled δ18OP values exactly matched
observations (1 : 1). The blue line shows the linear relationship between the modelled and observed δ18OP values, with the 95 % confidence
interval shown in the blue shading. Data points are coloured by month to highlight the seasonal cycle. Values are from the longer models
trained over 1962–2023, using the reduced set of predictor variables (without weather objects).
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Figure 6. Average seasonal cycle of δ18OP at 60 sites across Australia, in observations (grey circles); the random forest models described
in this paper (blue diamonds); and the ECHAM6-wiso simulation nudged to the ERA5 reanalysis (see Methods; green squares). Seasonal
cycles are calculated from δ18OP values in the interval overlapped by all three data sources (1979–2021), and only include months with
observations present in all three data sources. In the case of the random forest-predicted δ18OP, values are from the longer models trained
over 1962–2023, using the reduced set of predictor variables (without weather objects), and show the mean of the 50 models created with
unique random seeds. Sites are arranged by decreasing number of observations. Brisbane (top left) has the most observations (n= 500);
Wilkawatt and Exmouth (bottom right) have the equal fewest observations (n= 3).
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Figure 7. Density plots comparing the distributions of monthly δ18OP values at 60 sites across Australia, from observations (grey); the
random forest models described in this paper (blue); and the ECHAM6-wiso simulation nudged to the ERA5 reanalysis (see Methods;
green). Density curves are calculated from δ18OP values in the interval overlapped by all three data sources (1979–2021), and only including
months with observations (i.e., curves are constructed with δ18OP values from exactly the same months). In the case of the random forest-
predicted δ18OP, values are from the longer models trained over 1962–2023, using the reduced set of predictor variables (without weather
objects), and show the mean of the 50 models created with unique random seeds. Sites are arranged by decreasing number of observations
across 1979–2021. Brisbane (top left) has the most observations (n= 500); Wilkawatt and Exmouth (bottom right) have the equal fewest
observations(n= 3).
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Figure 8. Maps showing the effects of modelling dxsP across the Australian continent directly versus calculating dxsP from modelled
δ2H and δ18O. Panel (a) shows long-term annual mean precipitation dxs across the Australian continent, modelled directly as described
in Sect. 2.2 (and shown in Fig. 13k). Panel (b) shows long-term annual mean precipitation dxs across calculated from the random forest-
modelled δ2HP and δ18OP as follows: dxsP = δ2HP− 8× δ18OP. Panel (c) shows the difference between dxsP as estimated by the two
approaches; the dxsP values implied by the separate δ2HP and δ18OP models subtracted from the directly-modelled dxsP values.

Grim, Macquarie Marshes), or both (e.g., Melbourne) rela-
tive to both observations and the random forest models. The
random forest models perform particularly well compared
with ECHAM6-wiso in retrieving the seasonal cycle of dxsP,
where the random forest models generally capture both the
magnitude and timing of the seasonality, but estimates from
ECHAM6-wiso generally have either a larger overall bias
(e.g., Margaret River, Lucas Heights) and/or bias in the sea-
sonal cycle magnitude (e.g., Brisbane, Sydney) (Fig. S12).

Differences in skill between the two models are less dis-
tinct in predicting the overall distribution of δ2HP and δ18OP
values (Figs. 7, S13) – both the random forest and general cir-
culation models perform well. Whilst the distributions of ran-
dom forest-predicted values are generally closer to observa-
tions than those predicted by ECHAM6-wiso, there are sites
where ECHAM6-wiso out-performs the random forest mod-
els (e.g., Adelaide, Alice Springs). There are also instances
where estimates from the two models are similar but both di-
verge from observations (e.g., Lucas Heights, Mt. Isa). The
dxsP estimates from ECHAM6-wiso lack the positive kurto-
sis of the random forest estimates (Fig. S14). However, the
ECHAM6-wiso estimates have a negative dxsP bias at most
sites; this negative bias is not present in the random forest
estimates.

3.5.2 Long-term mean precipitation isoscapes

In terms of the long-term mean annual-mean δ2HP and δ18OP
across the Australian continent (“time-mean isoscapes”;
Fig. 13), there are some similarities between estimates
from the random forest models, the physical ECHAM6-
wiso model (Cauquoin and Werner, 2021), and linear re-
gressions using geographic variables (Hollins et al., 2018).
Common features include: relatively negative values over the
Australian Alps, relatively positive values in south-central
continental Australia, and a trend to more negative values
northward and westward (Fig. 13a–j). The random forest
and linear regression time-mean isoscapes also predict rel-

atively negative δ2HP and δ18OP values over the Tasma-
nian Alps. The ECHAM6-wiso and linear regression time-
mean isoscapes predict large areas of very negative δ2HP and
δ18OP across northern Australia; these are not so strongly
present in the random forest isoscape.

The three dxsP time-mean isoscapes are quite different
(Fig. 13k–o). Overall, there are more similarities between
the two statistically-derived isoscapes where dxsP was mod-
elled directly (random forests and linear regressions) than
the physically-based isoscape (ECHAM6-wiso) where dxsP
was calculated from δ2HP and δ18OP. For example, the ran-
dom forest and linear regression time-mean isoscapes predict
relatively positive values over higher-elevation areas (Aus-
tralian Alps, Tasmanian Alps, MacDonnell Ranges). These
features are not present in the ECHAM6-wiso dxsP time-
mean isoscape which relies on accurate modelling of the rel-
ative variability in δ2HP and δ18OP.

The random forest δ2HP and δ18OP time-mean isoscapes
are the most similar to long-term mean annual-mean ob-
servations; the linear regression-based isoscape has slightly
lower absolute dxsP bias at the sites/years with observa-
tions (mean absolute bias in Table 1). In the random for-
est δ2HP and δ18OP time-mean isoscapes, values tend to be
positively biased in central to north-western Australia, and
negatively biased in eastern Australia (Figs. S18–19). The
reverse is broadly true for the ECHAM6-wiso time-mean
isoscape; most sites have a negative bias in the linear regres-
sion isoscape (Fig. S18, mean overall bias in Table 1). The
random forest dxsP time-mean isoscape has a negative bias
at most sites (Figs. S18g, S19f, mean overall bias in Table 1).
Overall, the random forest models’ absolute biases are simi-
lar across the three isotope metrics (Table 1). The ECHAM6-
wiso dxsP time-mean isoscape has much larger mean abso-
lute bias than the ECHAM6-wiso δ2HP and δ18OP isoscapes;
the linear regression dxsP isoscape has much smaller mean
absolute bias than the linear regression δ2HP and δ18OP
isoscapes (Table 1). When biases are calculated using only
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Figure 9. Average importance rank of each predictor variable with respect to the random forest models’ predictive performance, calculated
using the “permutation” method. The panels show the overall rank of each variable’s relative importance in predicting spatio-temporal
precipitation isotopic variability across the Australian continent. Ranks are the average for that variable across 50 random forest models,
each created with a different random seed. The least important variable for a predictor model receives a rank of 1; the most important
variable receives a rank equal to the number of variables included. So, the most important variables for the model are shown at the top
of each panel; the least important at the bottom. Predictors are coloured according to the variable type: blue for meteorological variables,
lavender for weather objects, forest green for climate indices (representing remote dynamical drivers), black for month of the year, and
lime green for elevation. Panel (a) shows results for the δ2HP models trained over 1962–2023, using the reduced set of predictor variables
(without weather objects). Panel (b) is as per panel (a) but for δ18OP. Panel (c) is as per panel (a) but for dxsP. Panels (d)–(f) are as per
panels (a)–(c) but for the models trained over 1980–2019, using the full set of predictor variables (including weather objects). Variable names
and descriptions are as per Table S2.

model values in years with observations (as opposed to the
full long-term mean), the random forest models’ absolute
biases are uniformly lower; the ECHAM6-wiso biases are
higher (Fig. S19, Table 1). Nevertheless, the values are simi-
lar to those calculated using all model years, suggesting that
these bias estimates provide a reasonable approximation of
skill across the three time-mean isoscapes.

4 Discussion

Our new spatially and temporally continuous estimates of
monthly δ2HP, δ18OP, and dxsP reveal strong variability
across the Australian continent, both in space (Fig. 13) and
through time (Figs. 11–12, S15–16). Rainfall-related climate
extremes (e.g., the 2017–2019 Tinderbox Drought; Fig. S17)
are reflected in distinct isotopic anomalies, suggesting that
dynamical atmospheric processes associated with extreme
climate events could be further interrogated using precipita-
tion isotopic data. Importantly, we show that even at individ-
ual locations, both monthly and interannual variability in the
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Figure 10. Average importance rank of each predictor variable with respect to the random forest models’ predictive performance, calculated
using the “permutation” method. The panels show the overall rank of each variable’s relative importance in predicting temporal precipitation
isotopic variability at the seven longest precipitation isotopic monitoring stations in Australia. Site details are as per Table S1. Sites are
arranged in order of descending latitude from top to bottom. Ranks are as per Fig. 9, with the most important variable receiving the highest
rank, and less important variables receiving lower ranks. As per Fig. 9, predictors are coloured according to the variable type; variable names
and descriptions are as per Table S2. Here only showing the five most important predictor variables at each site. The first column shows
results for δ2HP predicted at the seven sites, with models trained over 1980–2019, using the full set of predictor variables (including weather
objects). Second column is as per the first column but for δ18OP. Third column is as the first column but for dxsP.
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Figure 11. Precipitation amount-weighted annual mean δ18OP values across Australia for the 20 most recent years of the random forest
models trained over 1962–2023, using the reduced set of predictor variables (without weather objects).

Table 1. Modelled isoscape δ2HP, δ18OP, and dxsP bias with respect to observed long-term means. Only including sites with five or more
years of observations. The values state the average bias across all sites (shown in Figs. 13, S18). All bias estimates are shown as a percentage
of the total range of variability in that particular isotope metric (δ2HP, δ18OP, or dxsP). Values in parentheses were calculated using the
subset of values present in both the random forest and ECHAM6-wiso datasets, to facilitate direct comparison between the two (shown in
Fig. S19). Rows in the top half of the table show the absolute bias values; rows in the bottom half of the table show the overall bias (i.e.,
highlighting the average direction of each product’s bias). Note that dxsP was modelled directly in the random forest and linear regression
models. For ECHAM6-wiso, dxsP was calculated from the simulated δ2HP and δ18OP and the bias values are shown in italics. To facilitate
fair comparison, we show the average absolute bias for only δ2HP and δ18OP (estimated directly in all three products) as well as the average
absolute bias across the three isotope metrics.

Random forests ECHAM6-wiso Linear regression

Mean absolute bias (%): all years

δ2HP 8.8 (7.4) 15.6 (19) 16.4
δ18OP 7.1 (5.8) 13 (15.5) 13
dxsP 8.2 (7.1) 25.6 (27) 6.9
Average (δ2HP and δ18OP) 8.0 (6.6) 14.3 (17.2) 14.7
Average (all) 8.0 (6.8) 18.1 (20.5) 12.1

Mean overall bias (%): all years

δ2HP −1 (−0.7) −3.4 (−6.6) −15.4
δ18OP −0.1 (−0.4) 0.7 (−1.3) −11.9
dxsP −6.6 (−5.3) −18.7 (−20.2) 1
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Figure 12. Maps showing the total range in precipitation isotopic values over the 1962–2023 period. Maps show the total inter-month (top
row) and inter-annual (bottom row) range in δ2HP (first column), δ18OP (second column) and dxsP (third column) values at all locations
across the Australian continent. That is, at each location the maps shows the difference between the most positive value occurring in the
1962–2023 period and the most negative value occurring in that period. Ranges calculated using the random forest models trained over
1962–2023, using the reduced set of predictor variables (without weather objects). Annual values are precipitation amount-weighted annual
means.

isotopic composition of precipitation is high (Fig. 12). This
has implications for water isotope-based provenance studies,
which have often relied on temporally invariant isoscapes for
isotopic fingerprinting (e.g., Fig. 12 compared with Fig. 13).

Comprehensive skill testing suggests that random forest
modelling is a robust method for reliably estimating wa-
ter isotope variability across the Australian continent in
places/times where direct observations are not available. This
may include both sites lacking observations, and times at cur-
rent or previous monitoring stations where data were not col-
lected. Random forest models may be particularly useful for
the latter, given their relatively high skill in filling time gaps
(Figs. 3, S5–6).

4.1 Reasons for mismatch between modelled and
observed values

As is common for any predictive model of physical climate
variables (e.g., Hill et al., 2025; Nelson et al., 2021), the ran-
dom forest models tend to under-estimate extreme values in
all three isotope metrics (Figs. 5, S9–10). This may be due
to several factors. First, the most extreme monthly δ2HP,
δ18OP, and dxsP values may be driven by a small number
of extreme precipitation events (e.g., Griffiths et al., 2022;
Munksgaard et al., 2012), which ERA5 underestimates com-
pared with precipitation events closer to the mean (Lavers et
al., 2022). Second, we may have missed predictor variables
specifically relevant for the most extreme negative or posi-
tive δ2HP, δ18OP, and dxsP values that have also not been

previously identified in the literature or are not practical for
inclusion in random forest models. Third, the mismatch in
the extremes may be due to observational error, and there-
fore not well simulated by the random forest models that are
mostly trained on data closer to the median. For example,
during low precipitation months, high δ2HP and δ18OP and
low dxsP values may result from evaporation during sam-
ple collection (discussed in Sect. 4.2 in more detail). Fourth,
random forest modelling is an ensemble method where each
prediction is the average of predictions from all trees. This
approach enhances robustness to biases by reducing the in-
fluence of any single tree’s error. However, it also dampens
extremes due to the averaging process, limiting the models’
ability to capture outliers.

Regarding the lower skill in simulating dxsP relative to
δ2HP and δ18OP: compared with δ2HP and δ18OP, dxsP vari-
ability is strongly driven by ambient conditions at the precip-
itation source (Pfahl and Sodemann, 2014). Moisture source
conditions are not well captured in our models, which by ne-
cessity rely on largely site-level predictors. The shorter mod-
els – incorporating the weather object data – predicted dxsP
more skillfully than the longer models without the weather
objects. Further, the skill increase resulting from inclusion
of the weather objects was larger for dxsP than for δ2HP
and δ18OP, suggesting that the moisture source and trans-
port information inherent in the weather objects is particu-
larly important for dxsP. Nevertheless, these proxies for the
moisture source location and conditions were evidently in-
sufficient for fully capturing spatio-temporal dxsP variabil-
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Figure 13. Long-term annual mean precipitation isotopic variability across the Australian continent (“time-mean isoscapes”). Panel (a)
shows long-term (1962–2023) annual-mean precipitation amount-weighted δ2HP as calculated from the random forest models described in
this paper (showing the mean of the 50 models created with unique random seeds). Panel (b) shows long-term (1979–2021) annual-mean
precipitation amount-weighted δ2HP as simulated by ECHAM6-wiso nudged to ERA5 (Cauquoin and Werner, 2021). Panel (c) shows the
difference between climatological δ2HP from ECHAM6-wiso and the random forest models (i.e., panel b minus panel a). Panel (d) shows
long-term (1962–2014) annual-mean precipitation amount-weighted δ2HP as estimated by linear regression using geographical variables
(Hollins et al., 2018). Panel (e) shows the difference between climatological δ2HP from the linear regression and the random forest models
(i.e., panel d minus panel a). Panels (f)–(j) are as per panels (a)–(e) but for δ18OP. Panels (k)–(o) are as per panels (a)–(e) but for dxsP.
Note that the isoscapes from Hollins et al. (2018) were calculated using data spanning 1962–2014, which exceeds the total coverage of
the ECHAM6-wiso simulation. As we could not average across matching time periods for all three data sources, we show annual means
across each dataset’s entire coverage interval to provide the most representative long-term isoscapes. Points show the long-term annual mean
precipitation isotopic values at each site with 2 or more years of observations (see Sect. 2.4 for details). Point sizes scale log-linearly with
record length (in years).

ity. Future work could attempt to incorporate information
about moisture source and transport path via moisture par-
cel back-trajectory analysis (e.g., Munksgaard et al., 2012;
Stein et al., 2015), although this would be computationally
expensive as calculations would need to be performed for all
precipitation events in all months, at all grid cells (in this
case, 744 months for > 8 000 000 grid cells).

4.2 Comparison with linear regression isoscape and
isotope-enabled model

In terms of long-term mean annual-mean δ2HP and δ18OP,
the random forest models have lower absolute bias than lin-
ear regression-based isoscapes using only geographical pre-
dictors (Hollins et al., 2018) – despite the random forest mod-
els being calculated at lower spatial resolution (Fig. S18, Ta-
ble 1). This demonstrates the importance of meteorological
and dynamical variables for precipitation isotope variability
across the Australian continent – and that the impact of that
variability on precipitation isotopes is not solely controlled
by geography.

One of the major advances of our new random forest mod-
els from the linear regression-based isoscape is the addition

of the time dimension. Information about spatio-temporal
precipitation isotope variability was previously available
from isotope-enabled GCMs, including the state-of-the-art
nudged isotope-enabled ECHAM6-wiso model. Like the ran-
dom forest models, ECHAM6-wiso accurately simulates
the seasonal cycle and overall distribution of δ2HP, δ18OP,
and dxsP values at most sites (Figs. 6–7, S11–14). How-
ever, ECHAM6-wiso predictions of long-term mean δ2HP,
δ18OP, and dxsP are less accurate in high-elevation regions
(Figs. 13, S19). This lower accuracy at high-elevation sites is
likely due to the lower spatial resolution of ECHAM6-wiso
(0.9°) compared with the random forests (0.25°), affecting
the model topography (Cauquoin and Werner, 2021). High-
elevation regions such as the Australian and Tasmanian alps
form the headwaters for catchments important for both do-
mestic water supply and generation of hydro-electric power
(Donohue et al., 2011). The random forests’ relatively high
skill in modelling high-elevation precipitation isotopic vari-
ability will therefore be particularly useful in understand-
ing surface water and groundwater movements in catchments
critical for Australia’s water security.
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Inland and western Australia are poorly sampled by the
observational network, making our new estimates partic-
ularly useful in these areas. Broadly, the random forest
isoscapes predict higher inland climatological δ2HP and
δ18OP values than ECHAM6-wiso; the reverse is true for
dxsP (Fig. 13, fourth and fifth columns). It is difficult to
say which is more accurate – Fig. S18 shows that the ran-
dom forests tend to overestimate inland δ2HP and δ18OP val-
ues with respect to observations, but ECHAM6-wiso tends
to underestimate them. These differences may be influenced
by bias in the observational training data. Inland Australia
is climatologically hot and dry, and is sparsely populated.
Because of this sparse population, in many cases precipita-
tion samples for isotopic analysis are collected via composite
samplers rather than daily rainfall collection, despite the dry
climate. Composite samplers tend to be associated with iso-
topic bias in low-rainfall months, resulting in a positive (but
not systematic) bias in δ2HP and δ18OP values. Accordingly,
ECHAM6-wiso – which directly simulates processes impor-
tant for inland precipitation δ2H / δ18O / dxs, such as sub-
cloud evaporation (Crawford et al., 2017) – underestimates
inland precipitation δ2H / δ18O with respect to observations,
but may in fact be closer to the true values. Nevertheless, as
shown in Table 1 (and apparent visually from Fig. S18 for
the inland sites), the overall magnitude of the (apparent) bias
in the random forest isoscapes is less than that of ECHAM6-
wiso and this is essentially impossible to test further without
new observational data.

4.3 Drivers of precipitation isotopic variability across
the Australian continent

Australia’s precipitation is highly variable both spatially and
temporally, with large gradients in precipitation amount and
seasonality across the continent, and large variations from
year to year (Nicholls et al., 1997). Our models reveal that
this spatio-temporal heterogeneity in Australian precipita-
tion and its intensity is closely linked to spatio-temporal
heterogeneity in the isotopic composition of that precipi-
tation (Fig. 9). However, relative predictor importance for
monthly δ2HP, δ18OP, and dxsP variability varies spatially
(Fig. 10) – reflecting the large spatial variability in the
drivers, sources, and seasonality of Australian precipitation.
For example, tropical northern Australia receives most of
its rainfall in the austral summer, with rain generally deliv-
ered by monsoon troughs and tropical cyclones (Sharmila
and Hendon, 2020; Suppiah, 1992). Moisture in the mon-
soon season mostly originates from the proximal seas north
of Australia, with up to ∼ 11 % local recycled precipita-
tion (Holgate et al., 2020). In comparison, much of south-
ern Australia has winter-dominated precipitation, with mois-
ture generally delivered by extratropical cyclones, fronts, and
thunderstorms, and minimal precipitation recycling (Holgate
et al., 2020; Pepler et al., 2020, 2021). Inland Australia is
mostly arid, with highly variable precipitation (Van Etten,

2009), delivered by a wide range of weather systems (Ac-
worth et al., 2016), and with moisture sourced from oceans
all around Australia as well as terrestrial recycling (Acworth
et al., 2024; Holgate et al., 2020). South of the tropics, mois-
ture sources to the Australian continent vary widely, with
the Coral and Tasman seas supplying much of the south-
eastern to eastern coasts, and the proximal Indian and South-
ern oceans supplying south-western Australia (Holgate et al.,
2020). The timing and source of precipitation over the Aus-
tralian continent is influenced by both local weather systems
and remote drivers (Risbey et al., 2009) – including ENSO
(McBride and Nicholls, 1983), the IOD (Ummenhofer et al.,
2009), and the SAM (Hendon et al., 2007).

Accordingly: at Darwin in tropical northern Australia,
mean sea level pressure, rainfall amount, and rainfall inten-
sity are in the top five most important predictors of vari-
ability in all three isotope metrics (Fig. 10 top row). This
is likely linked to the monsoon troughs typically associated
with the intense rainfall delivered during “active” phases of
the austral summer monsoon season – and which are asso-
ciated with moisture that generally comes from the same
source region and follows the same trajectory (Berry and
Reeder, 2016). Rain delivered during “inactive” phases of the
monsoon is typically not associated with a monsoon trough,
and results from a different range of circulation and moisture
flux regimes (Godfred-Spenning and Reason, 2002). In con-
trast, at Cape Grim in south-eastern Australia (Fig. 10 bottom
row): whilst precipitation amount and intensity are important
for precipitation isotopic variability, the particular weather
systems delivering that precipitation – including fronts, an-
ticyclones, and potential vorticity streamers – are also im-
portant. This is likely due in part to these systems bringing
precipitation along different trajectories from different ocean
sources.

4.4 Applications

Our analyses reveal distinct spatial and temporal variabil-
ity in δ2HP, δ18OP, and dxsP across the Australian conti-
nent. This isotopic heterogeneity – combined with the ran-
dom forest models’ unprecedented out-of-sample skill, high
spatial resolution, and monthly temporal resolution over a
span of 62 years – provides a strong foundation for future
Australia-focussed hydrological, ecological, and archaeolog-
ical research (e.g., Adams et al., 2022, 2023; Bunney et al.,
2023; Gibson et al., 2008; Keegan-Treloar et al., 2024; McIn-
erney et al., 2023; Theden-Ringl et al., 2011), as well as food
provenancing (e.g., Anh et al., 2022; Simpkins et al., 1999)
and forensic investigations (e.g., Jones et al., 2016; Smith et
al., 2022). Further, site-level research previously restricted to
using precipitation isotopic data from the nearest GNIP sta-
tion – often over > 100 km away (e.g., Banks et al., 2021;
Buzacott et al., 2020; Zhou et al., 2022) – can now incorpo-
rate site-specific estimates from our spatio-temporally con-
tinuous random forest model outputs.
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The new δ2HP, δ18OP, and dxsP maps provide an unprece-
dented opportunity for quantifying the particular hydrocli-
matic signal/s preserved in water isotope proxy records (e.g.,
better defining modern isotope-climate relationships), which
can then be reconstructed over preceding centuries to mil-
lennia. This will be especially valuable for input to proxy
system models (Dee et al., 2015; Evans et al., 2013), which
explicitly resolve the range of environmental processes by
which a precipitation isotopic signal is encoded in a particu-
lar palaeoclimate archive (e.g., tree wood, Roden et al., 2000,
lake sediment, Dee et al., 2018, cave carbonate, Hu et al.,
2021). Proxy system models can provide detailed insights
into the drivers of temporal variability in a water isotope
proxy record – and ultimately more accurate palaeoclimate
reconstructions – but generally require estimates of precipi-
tation isotopic variability as inputs.

5 Conclusions

We developed a dataset of monthly δ2HP, δ18OP, and dxsP
values at 0.25° spatial resolution from 1962–2023 over the
entire Australian continent, using a random forest modelling
approach. The dataset provides unprecedented insights into
precipitation isotope variability in both space and time, as
well as the drivers of that variability. The precipitation iso-
tope data are predicted using a freely available suite of me-
teorological, geographical, and dynamical variables. Addi-
tional models spanning 1980–2019 include a set of “weather
object” data, but the predictive skill increase from addition
of these additional predictors is mainly restricted to dxsP.
Our preliminary analyses reveal distinct spatial and tempo-
ral variability in δ2HP, δ18OP, and dxsP values across the
Australian continent, with applications in many fields. Fu-
ture work will focus on quantifying the nature and drivers
of spatio-temporal variability in Australian precipitation iso-
tope variability.

We show that random forest modelling provides an ac-
curate and inexpensive means of estimating missing δ2HP,
δ18OP, and dxsP values both in space and through time. Pre-
diction errors relative to observations are lower than exist-
ing predictive tools. For an area the size of the Australian
continent – and using a carefully-selected suite of predictor
variables – random forest models can be built and tested on
a personal computer using open-source software. Our meth-
ods therefore provide an accessible framework for predicting
water isotope values in other locations with sufficient obser-
vational data density.

Data availability. The continent-wide modelled precipitation
δ2HP, δ18OP, and dxsP isoscapes produced in this study are
available in netcdf format from the following Zenodo repository:
https://doi.org/10.5281/zenodo.15486277 (Falster, 2025). The
isoscapes are available at monthly or annual resolution, from both
the shorter models trained over 1980–2019 (including the weather

objects) and the longer models trained over 1962–2023 (omitting
the weather objects). We also provide pre-calculated long-term
means.

Users can view and download (as csv) time series of modelled
precipitation δ2H, δ18O, and dxs values at locations of their choice
from the following website: https://wateriso-aus.shinyapps.io/apic,
last access: 21 January 2026. In this case, the data come from the
models trained over 1962–2023 (omitting the weather objects). At
the same website, users can also produce maps of locations where
particular δ2HP, δ18OP, and dxsP values occur over a specified time
window.

The availability of observational δ2HP and δ18OP data underly-
ing the models is outlined in Table S1.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/hess-30-289-2026-supplement.
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