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Abstract. Hydrological analysis utilizing a hydrological
model requires a parameter calibration process, which is
largely influenced by the length of calibration data period
and prevailing hydrological conditions. This study aimed to
quantify these uncertainties in future runoff projection and
hydrological drought based on future climate data and the
calibration data of the hydrological model. Future climate
data were sourced from three Shared Socioeconomic Path-
way (SSP) scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5) of
20 general circulation models (GCMs). The Soil and Water
Assessment Tool (SWAT) was employed as the hydrologi-
cal model, and hydrological conditions were determined us-
ing the Streamflow Drought Index (SDI), with calibration
data lengths ranging from 1 to 20 years considered. Sub-
sequently, the uncertainty was quantified using Analysis of
Variance (ANOVA). After calibrating SWAT parameters, the
validation performance was found to be influenced by the
hydrological conditions of the calibration data. Hydrologi-
cal model parameters calibrated using a dry period simulated
runoff with 11.4 % higher performance in dry conditions and
6.1 % higher performance in normal conditions, while hy-
drological model parameters calibrated using a wet period
simulated runoff with 5.1 % higher performance in wet con-
ditions. While the ANOVA results confirmed that GCMs are
the dominant source of total uncertainty, the uncertainty con-
tribution from the hydrological model calibration in estimat-
ing future runoff was analyzed to be 3.9 %–9.8 %, particu-
larly significant in the low runoff period. The uncertainty
contribution in future hydrological drought analysis result-
ing from the calibration of hydrological model parameters

was analyzed to be 2.7 % on average, which is lower than
that of future runoff projection.

1 Introduction

In the current global climate scenarios, characterized by sig-
nificant warming trends, there are increased challenges in
understanding and managing water systems (IPCC, 2014;
Masson-Delmotte et al., 2021). Water availability for runoff
is directly influenced by precipitation, while temperature
affects water availability through its effect on evapotran-
spiration rates (Mahabadi and Delavar, 2024). These cli-
matic changes significantly affect the availability of water
resources and increase the occurrence and severity of hydro-
logical extreme events such as floods and droughts in differ-
ent regions (Milly et al., 2008; Santos et al., 2021; Song and
Chung, 2025). Hydrological projection is crucial for sustain-
able water resource planning and management (Peng et al.,
2022; Yang et al., 2023, 2024). Consequently, quantifying
the uncertainty in hydrological projection is essential as it
directly affects the effectiveness of these management strate-
gies and decision-making processes in ensuring the reliabil-
ity and safety of water resources (Zhang et al., 2024).

Droughts, which could become more severe due to cli-
mate change, begin with a lack of precipitation and lead to a
decrease in streamflow and soil moisture deficiency, encom-
passing a complex hydrological cycle that adversely affects
plant and crop growth and human life. Generally, droughts
progress over time into meteorological, agricultural, hydro-
logical, and socio-economic droughts, and become a fatal
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disaster if prolonged (Sheffield and Wood, 2012). Conse-
quently, future droughts due to climate change has been ac-
tively conducted, with most studies concluding that droughts
are becoming more frequent and severe (Sung et al., 2018;
Kim et al., 2021).

Hydrological drought requires an understanding of the hy-
drological cycle, including runoff, surface water, and ground-
water. Runoff, a key indicator of hydrological drought, sig-
nificantly affects the availability of water for agricultural,
industrial, and domestic uses (Ghasemizade and Schirmer,
2013; Devia et al., 2015). Therefore, understanding and pre-
dicting runoff behavior is essential for hydrological drought
analysis in water resource management and planning. While
runoff data can be obtained from river observations within
the region, there are limitations in observation technology
and coverage. Consequently, simulated runoff data using re-
gional meteorological data and hydrological models are uti-
lized. Hydrological models simulate runoff by inputting me-
teorological data, soil data, and topographical data, allow-
ing for the prediction of future hydrological cycles. However,
these hydrological models are influenced by various factors,
including the quality and quantity of input data, structural
uncertainties of the models, and uncertainties in the calibra-
tion process (Xu et al., 2007; Renard et al., 2010). There-
fore, quantifying and recognizing these uncertainties is cru-
cial to enhancing the reliability of future hydrological analy-
sis (Feng et al., 2019).

The future hydrological analysis considering uncertainty
is essential for effective water management. These pro-
jections are largely based on General Circulation Models
(GCMs) and hydrological models, which are critical tools
for modelling the hydrological impacts of climate change.
However, GCMs introduce significant uncertainty in future
runoff prediction due to their inherent structural complex-
ity and variability in scenario-based inputs (Broderick et al.,
2016). This uncertainty has a direct impact on the accuracy
of runoff predictions and poses a significant challenge to wa-
ter resource management. The selection and use of GCMs
have a crucial role in shaping these uncertainties, making
the consideration of a variety of GCMs and shared socioe-
conomic pathways (SSP) scenarios essential for managing
uncertainties and improving projections (Vetter et al., 2015;
Chae et al., 2024a). Indeed, Shi et al. (2022) had shown how
different evapotranspiration models embedded in GCMs af-
fect runoff prediction, highlighting GCMs and Representa-
tive Concentration Pathways (RCPs) as major factors affect-
ing uncertainty. Similarly, Lee et al. (2021b) had shown how
the choice of GCMs significantly affects prediction of water
storage in wetlands under future climate scenarios. To un-
derstand these uncertainties, Wang et al. (2020) suggested
the use of a broad ensemble of at least 10 GCMs, which al-
lowed for a more comprehensive assessment of hydrological
impacts and helped to reduce the inherent uncertainties as-
sociated with climate change. Thus, the use of a wide range
of GCMs is an essential strategy for maximizing the effec-

tiveness of water resource management under global climate
change conditions.

The hydrological model calibration involves significant
uncertainty, especially when predicting future conditions.
This process, crucial for aligning model parameters with his-
torical data, often incorrectly assumes that parameters val-
idated under past hydrological conditions will remain valid
in the future. Thirel et al. (2015) and Fowler et al. (2016)
demonstrated that models calibrated with historical climate
data might not perform accurately under changed conditions,
leading to substantial uncertainties in runoff projections. This
challenge is exacerbated by the dependency of model param-
eters on the hydrological conditions prevalent during the cal-
ibration period (Merz et al., 2011; Coron et al., 2012; Kim
et al., 2024). Effective calibration strategies, therefore, must
consider variable climate scenarios to ensure model robust-
ness. This involves rigorous calibration under diverse con-
ditions to validate hydrological models’ reliability in pro-
jecting future water resource availability (Saft et al., 2016;
Dakhlaoui et al., 2017). Furthermore, the interaction between
model parameters and hydrological conditions during these
periods often complicates the calibration process, underscor-
ing the need for robust validation techniques. The duration of
the calibration period also contributes significantly to the un-
certainty in runoff projection. Razavi and Tolson (2013) and
Arsenault et al. (2018) highlighted the importance of suffi-
ciently long calibration periods to ensure meaningful calibra-
tion and validation results. In addition, Kim et al. (2011) cau-
tioned against using overly short calibration periods, as this
can lead to large and unstable model performance variabil-
ity during calibration and validation. Despite the emphasis
on longer calibration periods, Perrin et al. (2007), Sun et al.
(2017), Yu et al. (2023), and Ziarh et al. (2024) had found that
an extended calibration data length does not guarantee im-
proved model performance, suggesting a nuanced approach
to calibration period selection. These insights underlined the
complex interplay among calibration length, model parame-
ter selection, and climatic variability in shaping the reliability
of hydrological models.

The rigorous quantification of uncertainties in hydrolog-
ical modeling is essential to enhance the reliability of wa-
ter resources planning and management. This study em-
ploys Analysis of Variance (ANOVA), a statistical method
widely used in hydrological studies, to systematically quan-
tify uncertainties in hydrological projections. ANOVA dis-
sects the variance observed in projections into contributions
from various sources of uncertainty, such as GCM outputs,
SSP scenarios, and hydrological model parameters (Qi et al.,
2016; Chae et al., 2024b, 2025). By identifying the domi-
nant sources of variability and analyzing their interactions,
ANOVA provides a clear understanding of how different
factors drive uncertainties in hydrological projections. Re-
cent applications of ANOVA in future hydrological stud-
ies demonstrated its effectiveness in understanding model-
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Figure 1. Uncertainty concept in this study.

driven uncertainties (Chen et al., 2022; Yuan et al., 2023; Mo
et al., 2024).

This study focuses on the uncertainty in future hydrolog-
ical analyses, which are influenced by hydrological model
parameters during different calibration periods under future
climate data and different hydrological conditions. This re-
search utilizes the Soil and Water Assessment Tool (SWAT),
a widely recognized hydrological model, to analyze the im-
pact of hydrological conditions during the calibration period
on the projection of future runoff and hydrological drought.
Three SSP scenarios and 20 GCMs were used to consider
uncertainty due to future climate, and different hydrologi-
cal conditions according to the Streamflow Drought Index
(SDI) and different calibration period data lengths from 1 to
20 years were used to consider uncertainty in hydrological
model parameter calibration. This study aims to contribute to
the refinement of hydrological modelling practices by quan-
tifying the uncertainties associated with future runoff projec-
tion and hydrological drought analysis.

This manuscript is structured as follows. In Sect. 2, the
study area, datasets, and the methodologies used in this study
are described, including SWAT, the ANOVA framework, and
the statistical validation procedures. In Sect. 3, the results of
the analysis are presented, showing the effects of calibration
conditions on model performance and quantifying the un-
certainty contributions from various sources for both future
runoff and hydrological drought. In Sect. 4, the implications
of these findings are discussed in the context of previous re-
search. Finally, Sect. 5 summarizes the main conclusions of
this study.

2 Methodology

2.1 Procedure

The procedure of the study is as follows. The overall work-
flow, illustrating the main phases of data processing, model
setup, and analysis, is visualized in Fig. 1. First, topographic
data for four dam basins in South Korea were established,
taking into account the overall hydrological characteristics
of the region, and observed dam inflow data were utilized to
consider the length and hydrological conditions of the hydro-
logical model calibration data. The length of the calibration
data considered ranged from 1 to 20 years, and hydrological
conditions were categorized using the Streamflow Drought
Index (SDI). Subsequently, validation performance analysis
was conducted, with calculations varying according to the
length of calibration data and hydrological conditions (Dry,
Normal, and Wet). For the study, future climate data from 20
Coupled Model Intercomparison Project Phase 6 (CMIP6)
GCMs and three SSP scenarios (SSP2-4.5, SSP3-7.0, and
SSP5-8.5) were bias-corrected. Future runoff projection and
hydrological drought were then analyzed using calibrated hy-
drological model parameters under different conditions along
with the future climate data. Finally, the uncertainties in the
future hydrological analysis were quantified using the Anal-
ysis of Variance (ANOVA).

2.2 Study area and datasets

The study areas selected in this study are the Andong (AD),
Chungju (CJ), Habcheon (HCH), and Seomjingang (SJ) dam
basins located in Korea as shown in Fig. 2. To achieve stable
calibration and validation results for a hydrological model,
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Figure 2. Description of study area.

it is imperative to choose catchments with extensive hydro-
logical data records. This enables the accurate estimation of
appropriate calibration data lengths through various testing
periods of the hydrological model. Furthermore, incorporat-
ing a variety of basins is crucial to ensure that the findings
of this study are not biased by specific hydrological con-
ditions. These four basins, which have the longest hydro-
logical records in Korea, are situated in major river basins.
Detailed basin characteristics are provided in Table S1 in
the Supplement. While all four basins are located in tem-
perate climate zones and are predominantly forested (Forest
ratio > 75 %, except for CJ at 61.7 %), they represent a di-
verse range of hydrological and climatic conditions. While
all four basins are located in temperate climate zones and
are predominantly forested (Forest ratio > 75 %, except for
CJ at 61.7 %), they represent a diverse range of hydrolog-
ical and climatic conditions. Area varies significantly from
763 (SJ) to 6648 km2 (CJ). Mean annual precipitation also
ranges from 1045.7 (AD) to 1329.8 mm (SJ). These regions
are devoid of artificial structures (Urban ratio < 5.3 % for all
basins), ensuring that runoff remains natural and unaltered.
Located in different regions of Korea, these basins have a
range of hydrological conditions and runoff characteristics,
providing a representative cross-section of the country’s hy-
drological characteristics.

2.3 Soil and water assessment tool (SWAT)

SWAT was used to calibrate hydrological processes in our
study basin. SWAT is particularly adept at simulating runoff
and other hydrological variables under a wide range of envi-
ronmental conditions and is a robust, physically based, semi-
distributed model. Its efficiency in modelling hydrological
cycles within basins relies on simple input variables to pro-
duce detailed hydrological outputs. The capability of this
model has been effectively shown in various studies, includ-
ing those in South Korea (Kim et al., 2022; Song et al., 2022).

The core of SWAT is the water balance equation, which
integrates daily weather data with land surface parameters to
calculate water storage changes over time:

SWt = SW0+
∑t

i=0
(Rday−Qsurf−Ea−wseep−Qgw) (1)

where SW0 is the initial soil moisture content (mm), SWt is
the total soil moisture per day (mm), Rday is precipitation
(mm), Qsurf is surface runoff (mm), Ea is evapotranspiration
(mm), Wseed is penetration, Qgw is groundwater runoff (mm),
and t is time (day).

For rainfall-runoff analysis, SWAT is structured into sev-
eral sub-basins, each of which is further subdivided into
Hydrologic Response Units (HRUs) based on different soil
types, land use and topography. Each HRU independently
simulates parts of the hydrological cycle, allowing a granu-
lar analysis of basin hydrology. This setup reflects the spatial
heterogeneity within the basin and allows continuous simu-
lation of hydrological processes over long time periods, en-
hancing the utility of the model for climate change studies.
The model was calibrated and validated using R-SWAT for
parameter optimization. R-SWAT incorporates the SUFI-2
algorithm, which is known for its rapid execution and pre-
cision in parameter optimization, ensuring accurate and reli-
able simulation results (Nguyen et al., 2022). In this study,
the setup and evaluation of SWAT for the historical period
were performed using observed data. The model was forced
with observed meteorological data, and the parameters were
calibrated and validated against historical daily dam inflow
records for the period 1980–2023.

2.4 Streamflow drought index (SDI)

The drought index was used to classify hydrological condi-
tions considering the calibration effect of periods with differ-
ent hydrological conditions. SDI is a commonly used method
for quantifying the severity and duration of drought condi-
tions in a river basin. It is based on the comparison of ob-
served streamflow with a historical reference period, usually
the average streamflow over a long-term period. SDI which
is a hydrological drought index, is calculated as Eq. (2) (Nal-
bantis and Tsakiris, 2009).

SDIi,k =
Vi,k −V k

Sk

(2)

where Vi,k is the runoff accumulated during the kth period in
the ith year, and V k and Sk represent the average and stan-
dard deviation of the accumulated river flow, respectively.

The critical level is mainly the average V k . In small scale
rivers, the runoff rate approximates the Log-normal distri-
bution type and the probability distribution type is distorted.
Therefore, the runoff rate must be converted to fit the normal
distribution. When converting to a two-variable log-normal
distribution type, SDI is finally equal to Eq. (3), and yi,k is a
value obtained by taking the natural logarithm of the amount
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of river water, such as Eq. (4).

SDIi,k =
yi,k − yk

Sy,k

, i = 1,2, . . .,k = 1,2,3,4 (3)

yi,k = ln(Vi,k),I = 1,2, . . ., K = 1,2,3,4 (4)

To classify the hydrological conditions, this study catego-
rized−0.5 and below as Dry, 0.5 and above as Wet, and−0.5
to 0.5 as Normal (Nalbantis and Tsakiris, 2009; Hong et al.,
2015).

2.5 General Circulation Models (GCMs)

In this study, M1 to M20 GCMs from the CMIP6 suite that
have been consistently used in studies for East Asia and Ko-
rea were selected for future runoff projection and hydrologi-
cal drought analysis. The details of the development institu-
tions, model names and resolutions of these 20 GCMs were
presented in Table S2 in the Supplement.

The climate data from the GCMs were evaluated using
daily observed climate data provided by the Korea Mete-
orological Administration (KMA). The evaluation used ob-
served data from the past period (1985–2014) to evaluate the
future climate data from the GCMs, which were analyzed
for two future periods: the near future (NF) and the distance
future (DF). The future climate change scenarios used were
SSP2-4.5, SSP3-7.0 and SSP5-8.5. The SSP scenarios are di-
vided into five pathways based on radiative forcing, reflect-
ing different levels of future mitigation and adaptation efforts
(O’Neill et al., 2016). The SSPs are numbered from SSP1
to SSP5, with SSP1 representing a sustainable green path-
way and SSP5 representing fossil fuel driven development.
The numbers 4.5 to 8.5 indicate the level of radiative forcing
(4.5: 4.5 Wm−2, 7.0: 7.0 Wm−2 and 8.5: 8.5 Wm−2). For
the analysis of future changes, the calibrated SWAT was then
driven by bias-corrected future climate projection data from
the 20 GCMs under the three SSP scenarios. This approach
ensures that the model’s baseline performance is grounded
in observational data, while the future analysis specifically
assesses the uncertainties propagated from the climate pro-
jections and hydrological modeling choices.

2.6 Bias correction using quantile mapping

The GCMs data outputs in a gridded format with a fixed res-
olution, requiring the use of spatial interpolation methods.
In this study, the inverse distance weighting (IDW) method
was employed to spatially interpolate the GCM data based
on the locations of the Korea Meteorological stations. Subse-
quently, to align the GCM data with the actual observational
data, the quantile mapping method was utilized. This method
adjusts the GCM data based on the quantile relationship be-
tween the cumulative distribution functions (cdf) of the GCM
data and the observed data (Gudmundsson et al., 2012). The
quantile mapping method is described by Eq. (5).

Po = F−1
o (Fm(Pm)) (5)

where, Po and Pm represent observed and simulated climate
variables, Fm is the CDF of Pm and F−1

o is the inverse CDF
corresponding to Po.

The quantile relationship can be also derived directly using
parametric transformations. In this study, the linear method
of parametric transformation was adopted as Eq. (6).

P̂ = a+ bPm (6)

where, P̂ represents the best estimate of Po and a and b are
free parameters that are subject to calibration.

2.7 Quantifying uncertainty

The ANOVA used in this study is an effective statistical
method that decomposes the total sum of squares (SST) into
contributions from different sources and their interactions.
This method would be particularly useful in the study frame-
work, as it allows us to assess not only the individual effects
of each source of uncertainty but also the combined effects
of these sources interacting with each other (Bosshard et al.,
2013; Lee et al., 2021b).

For this analysis, the primary sources of uncertainty con-
sidered are General Circulation Models (GCMs), Shared So-
cioeconomic Pathway (SSP) scenarios, hydrological condi-
tions (HC) during the calibration period, and period length
(PL). Each of these sources could have a significant impact
on the projections of hydrological models; therefore, their
comprehensive evaluation is crucial (Morim et al., 2019; Yip
et al., 2011). Higher-order interactions (e.g., three-way) were
excluded as they are often difficult to interpret physically and
can introduce noise into the model.

SST= SSGCMs+SSSSPs+SSHC+SSPL

+SSInteractions(2-way)+SSResiduals (7)

where each term (SS) indicates the sum of squares attributed
to each factor or interaction. Here, SSGCMs, SSSSPs, SSHC,
and SSPL represent the sum of squares due to GCMs, SSPs,
HC, and PL, respectively, known as the main effects. The re-
maining terms represent the sum of squares due to the inter-
actions among GCMs, SSPs, hydrological conditions, period
length, their two-way interactions, and the residual error.

The model setup for ANOVA was designed to ana-
lyze the set of projections. As detailed in the flowchart
(Fig. 1), this set was generated by combining 60 climate data
(20 GCMs× 3 SSPs) with 60 distinct hydrological model
parameterization (3 HC× 20 PL). This resulted in a total
of 3600 combinations for each basin analyzed. Initially, the
SST, representing the total variation within the data, was cal-
culated. Subsequently, the sum of squares attributable to each
source of uncertainty was computed. To quantify the relative
impact of each source, its contribution was calculated as the
proportion of its Sum of Squares relative to the Total Sum of
Squares. This provides a clear measure of the percentage of
total uncertainty explained by each factor and interaction.
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The statistical robustness and validity of the ANOVA mod-
els were rigorously evaluated. First, the overall goodness-of-
fit for each model was assessed using the Adjusted R-squared
(R2

adj), defined as Eq. (8).

R2
adj = 1−

(1−R2)(n− 1)

n− k− 1
(8)

Where, R2 is the coefficient of determination, n is the
number of observations, and k is the number of predictions.
This metric is preferred over the Standard R-squared as it ad-
justs for the number of predictors in the model, providing a
more accurate measure of model fit.

Second, a residual analysis was conducted to verify that
the core assumptions of ANOVA were met. The normality
of residuals was a primary focus of this validation, exam-
ined both statistically with the Shapiro–Wilk test and visu-
ally using Quantile-Quantile (Q-Q) plots. The Shapiro–Wilk
test evaluates the null hypothesis that the residuals are nor-
mally distributed. However, given the large sample size in
this study, which can lead to statistically significant results
even for minor deviations from normality, greater empha-
sis was placed on the visual inspection of Q-Q plots to as-
sess practical adherence to the normality assumption. The
assumption of homoscedasticity (constant variance of resid-
uals) was also inspected using Residuals vs. Fitted values
plots. These validation steps ensure that the results of the
uncertainty partitioning are statistically sound and reliable.
All statistical analyses were performed using the R software
environment.

3 Results

3.1 Determining the hydrological conditions

The calculated SDI was shown in Fig. S1 in the Supplement.
The SDI values of AD and HCH in the Nakdong River basin
showed drought conditions similar to the actual events that
occurred in 1994–1995, 2009, 2014–2015, 2016, 2017 and
2022 (Karunakalage et al., 2024). Similarly, SDI values of CJ
in the Han River basin accurately reflected the actual drought
events of 2014–2015 and 2017 (Lee et al., 2021a). Finally,
those of SJ in the Seomjin River basin also represented the
drought events of 1995, 2005–2006 and 2018–2019, demon-
strating that the SDI was accurately calculated. Therefore,
this study using the observed inflow data of the four basins
could reflect the hydrological drought characteristics of the
historical periods in South Korea.

3.2 SWAT parameter calibration

The simulated runoff data were analyzed for performance us-
ing the Kling–Gupta Efficiency (KGE; Gupta et al., 2009).
KGE was developed to overcome some limitations of the
commonly used Nash–Sutcliffe Efficiency (NSE) in perfor-
mance analysis (Gupta et al., 2009). The attributes of KGE

include focusing on a few basic required properties of any
model simulation: (i) bias in the mean, (ii) bias in the vari-
ability, and (iii) cross-correlation with the observational data
(measuring differences in hydrograph shape and timing).
The parameter optimization of SWAT was performed us-
ing 20 different data lengths, from 1 to 20 years. The spe-
cific for these calibration periods, illustrating which histori-
cal years correspond to each length, is schematically shown
in Fig. S2 in the Supplement. A rigorous validation scheme
was adopted to prevent bias from specific period character-
istics and to ensure a robust evaluation of predictive perfor-
mance. For any given calibration period, the validation was
not performed on the entire remaining period as a single
dataset. Instead, we conducted a year-by-year validation, cal-
culating a separate KGE value for each individual year not in-
cluded in the calibration set. For instance, if a model was cal-
ibrated on years 1–5 from a 20 year record, 15 distinct single-
year KGE values were calculated for years 6 through 20. This
approach strictly separates calibration and validation datasets
and ensures that model performance is assessed across a di-
verse range of annual hydrological conditions, providing a
robust foundation for the subsequent uncertainty analysis.

Following parameter optimization, KGE values as shown
in Fig. 3 were found to be suitable for conducting the study,
with all four dam basins achieving values above 0.60. The
performance improvements are as follows: AD’s KGE in-
creased from 0.55 before calibration to 0.64 after calibra-
tion, CJ’s from 0.68 to 0.75, HCH’s from 0.70 to 0.80, and
SJ’s from 0.50 to 0.73. This improvement in KGE after cali-
bration underscores the robustness of the hydrological mod-
els used and their enhanced capability in projecting future
runoff.

3.3 Effect of varying data length

The validation performance according to the calibration data
length was shown in Fig. 4. The impact of calibration data
length on validation performance was analyzed, revealing a
departure from previous studies, which suggested that longer
calibration data lengths lead to more effective optimization
of hydrological model parameters. Instead, the influence of
calibration data length on performance is all different by
basin. For AD, the best performance was observed with a
2 year period, averaging a KGE of 0.66, while the 1 year
period resulted in the lowest performance with an average
KGE of 0.48. The Inter Quartile Range (IQR) showed that
variations were smaller for periods longer than 10 years (av-
erage IQR of 0.15) compared to those less than 10 years (av-
erage IQR of 0.20). For CJ, the optimal performance was at a
15 year period with an average KGE of 0.72, and the lowest
at a 4 year period with an average KGE of 0.58. The IQR val-
ues were 0.19 for periods under 10 years and 0.20 for periods
over 10 years, indicating minor differences due to length. For
HCH, the highest KGE of 0.77 was recorded at 19 years, and
the lowest KGE of 0.66 at 1 year. The IQR for periods under
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Figure 3. Comparison of KGE values for the four basins using default parameters (Before) and calibrated parameters (After). (a) is AD, (b) is
CJ, (c) is HCH, and (d) is SJ. The x-axis (1–20) represents the calibration data length, which defines the before calibration/after calibration
data split.
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Figure 4. Validation performances depending on data length of the calibration period. (a) is AD, (b) is CJ, (c) is HCH, and (d) is SJ.

10 years was 0.19, and 0.10 for those over 10 years, show-
ing that longer periods yielded less variability. In the case of
SJ, a 9 year period had a KGE of 0.68, and a 20 year pe-
riod had a KGE of 0.60, with IQRs of 0.23 for periods under
10 years and 0.21 for those over. While the best validation
performance due to calibration data length varied by basin, it
was observed that the differences due to the period decrease
as the length increases.

3.4 Effect of varying hydrological conditions

The performance analyses based on the hydrological condi-
tions of the calibration and validation periods are shown in
Fig. S3 in the Supplement and Table 1. Figure S3 shows the
KGE values and the confidence level (prediction) for each
hydrological condition during the validation period accord-
ing to the SDI values. Overall, during the dry and normal
validation periods, it was analyzed that lower SDI values (dry

condition) correlated with higher KGE values. This indicates
that SWAT parameters calibrated with dry validation period
data effectively simulate runoff under Dry and Normal hy-
drological conditions. For wet validation periods, higher SDI
values (wet condition) correlate with higher KGE values, in-
dicating that SWAT parameters calibrated with wet calibra-
tion period data accurately simulate runoff under wet condi-
tions.

As shown in Table 1, the average KGE according to hy-
drological conditions is as follows. The KGE values for each
dam basin, according to the hydrological conditions of the
calibration-validation periods, are as follows: For AD, D-D
(Dry-Dry; hydrological conditions for calibration and valida-
tion periods, respectively) was 0.480, higher than W-D (Wet-
Dry) of 0.382; D-N (Dry-Normal) was 0.573, higher than W-
N (Wet-Normal) of 0.510; and W-W (Wet-Wet) was 0.642,
higher than D-W (Dry-Wet) of 0.571. For CJ, D-D was 0.743,
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Table 1. Validation performance according to hydrological conditions. The bold values indicate the highest average validation performance.

Basins Validation climatic
conditions

Calibration period hydrological conditions

D N W

AD D 0.480 0.401 0.382
N 0.573 0.562 0.510
W 0.571 0.621 0.642

CJ D 0.743 0.727 0.725
N 0.643 0.621 0.615
W 0.674 0.686 0.706

HCH D 0.732 0.691 0.670
N 0.738 0.719 0.714
W 0.763 0.757 0.769

SJ D 0.557 0.544 0.515
N 0.677 0.671 0.650
W 0.674 0.681 0.684

higher than W-D at 0.725; D-N was 0.643, higher than W-N
at 0.615; and W-W was 0.706, higher than D-W at 0.674.
For HCH, D-D was 0.732, higher than W-D at 0.670; D-N
was 0.738, higher than W-N at 0.714; and W-W was 0.769,
higher than N-W (Normal-Wet) at 0.757. Lastly, for SJ, D-D
was 0.557, higher than W-D at 0.515; D-N was 0.677, higher
than W-N at 0.650; and W-W was 0.684, higher than D-W at
0.674.

The performance evaluation classified by data length and
hydrological conditions for validation are influenced by hy-
drological conditions for calibration, but the optimal data
length for the best performance varies between basins as
shown in Fig. 5. These results confirm the importance of un-
certainty in hydrological models due to differences in hy-
drological conditions during the calibration and validation
periods, as suggested by previous studies (Bai et al., 2021;
Fowler et al., 2016). Furthermore, the different data lengths
with high validation performance for each basin confirm the
opinion that shorter calibration data lengths can be applied
under limited data conditions (Perrin et al., 2007; Yu et al.,
2023), instead of the traditional opinion that longer calibra-
tion data lengths are better for hydrological modelling (Ar-
senault et al., 2018; Kim et al., 2011).

3.5 Bias correction for GCMs

In this study, climate data from GCMs were bias-corrected
using observed climate data from KMA weather stations lo-
cated within each dam basin. Figure S4 in the Supplement
describes the root mean square error (RMSE), Pearson co-
efficient and standard deviation (SD) in a Taylor diagram.
After bias correction, all GCMs’ climate data showed im-
proved performance. The Pearson coefficient of precipita-
tion increased from 0.04 to 0.99 and the RMSE decreased
from 4.43 to 0.05. Similarly, the Pearson coefficients of the

daily maximum and minimum temperatures averaged 1.00
and their RMSEs averaged 0.08. This is an indication that
the GCM’s climate data after bias correction were appropri-
ate for use in this study.

3.6 Projection of climate variable

The future climate data from bias-corrected GCMs were de-
picted in Fig. 6 and Table S3 in the Supplement. The fu-
ture period was divided into NF and FF, and it was found
that daily precipitation, maximum temperature, and mini-
mum temperature all increased overall. Except for July and
August, future precipitation generally increased, with sig-
nificant rises particularly noted in April and May. In NF,
the largest increase occurred in May under SSP2-4.5 with
51.4 mm, while in DF, the largest increase occurred in April
under SSP5-8.5 with 59.8 mm. The largest decrease in NF
was calculated for July under SSP5-8.5, and in DF it was
most significant under SSP3-7.0, indicating considerable un-
certainties in the GCMs during July and August, the months
of the highest precipitation.

With regard to maximum temperatures, the analysis shows
that there has been an increase in all months except April
in NF, especially in fall (September–November). This in-
crease was more pronounced in the DF than in the NF, with
the largest increases observed under SSP5-8.5. Similarly, the
minimum temperature was found to have increased in the fu-
ture compared to the past, following the same trend as the
maximum temperature.

3.7 Projection future runoff

3.7.1 Annual runoff change

The future runoff was projected using climate data and hy-
drological model parameters as shown in Fig. S5 in the Sup-
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Figure 5. Heatmap matrix of KGE performance by calibration and validation conditions. The four main rows represent the basins (AD, CJ,
HC, SJ). The three main columns (labeled “Dry”, “Normal”, “Wet”) represent the hydrological conditions of the validation period. Within
each individual heatmap, the y-axis represents the calibration data length (1–20 years), and the x-axis (labeled D, N, W) represents the hy-
drological conditions of the calibration period. Blue indicates high KGE (good performance) and red indicates low KGE (poor performance).

plement. Overall, future runoff is expected to increase rel-
ative to the historical data, with more significant increases
projected during DF than NF As the SSPs change (e.g.
from SSP2-4.5 and SSP3-7.0 to SSP5-8.5), not all annual
runoff show a consistent increase with the scenario change,
as shown in Table 2. In particular, the increase in annual
runoff under SSP5-8.5 was not always higher than SSP2-4.5

or SSP3-7.0. These differences were analyzed to vary signif-
icantly between different basins and GCMs.

For AD, the future seasonal runoff is likely to increase in
all seasons except summer. This increase would be more pro-
nounced during DF than NF, with the largest increases occur-
ring under SSP5-8.5. For CJ, the future runoff is expected to
increase compared to the past in all seasons, with the highest
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Figure 6. Projected annual changes in future precipitation (mm) and temperature (°C). (a) is precipitation, (b) is max temperature, and (c) is
min temperature.
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Table 2. Changes from historical to future runoff for four dam basins.

Basins SSPs NF (unit: %) DF (unit: %)

Spring Summer Fall Winter Spring Summer Fall Winter

AD SSP2-4.5 82.1 −9.9 10.8 178.3 92.6 −5.3 18.1 179.2
SS3-7.0 84.3 −11.1 6.7 168.3 104.3 −6.3 16.4 188.9
SSP5-8.5 91.0 −5.7 12.9 194.2 118.9 1.2 26.7 216.1

CJ SSP2-4.5 184.6 25.1 34.7 242.8 191.7 32.4 47.3 252.7
SS3-7.0 186.6 21.0 32.8 226.7 210.2 27.6 44.7 276.5
SSP5-8.5 148.8 8.0 0.8 173.1 157.2 14.0 13.1 192.0

HCH SSP2-4.5 207.6 2.7 −19.7 95.4 222.7 8.1 −12.3 100.8
SS3-7.0 213.7 −1.3 −22.5 91.2 243.4 6.8 −12.7 109.0
SSP5-8.5 223.2 5.7 −15.2 110.0 268.8 14.8 −3.3 127.4

SJ SSP2-4.5 170.9 1.5 7.7 60.5 181.4 5.9 18.4 63.3
SS3-7.0 175.1 −2.1 7.3 58.6 198.9 5.6 17.9 75.6
SSP5-8.5 181.1 5.5 12.9 75.1 217.2 14.0 29.7 88.6

Table 3. Differences in projected low-flow (Q75) based on HC. Q75 Differ (m3 s−1) is the difference (range, max-min) in the magnitude of
projected Q75 (75 % exceedance flow) values when comparing results from models calibrated under different hydrological conditions (Dry,
Normal, and Wet).

Basins SSPs NF (unit: m3 s−1) DF (unit: m3 s−1)

Q75 Differ Ratio (%) Q75 Differ Ratio (%)

AD SSP2-4.5 7.24 10.28 7.00 10.42
SSP3-7.0 7.04 9.58 7.71 9.56
SSP5-8.5 7.43 9.32 7.88 9.94

CJ SSP2-4.5 48.93 5.60 49.00 5.35
SSP3-7.0 48.80 4.60 52.35 5.53
SSP5-8.5 39.02 5.70 38.09 6.11

HCH SSP2-4.5 5.84 12.67 5.86 13.93
SSP3-7.0 5.55 13.86 5.95 12.86
SSP5-8.5 6.03 12.86 6.44 14.62

SJ SSP2-4.5 4.61 9.84 4.51 9.61
SSP3-7.0 4.23 11.24 4.64 9.76
SSP5-8.5 4.64 9.37 4.97 9.12

increase observed in DF under SSP3-7.0 and the lowest in-
crease under SSP5-8.5. For HCH, future runoff is expected to
increase in all seasons except fall, with the greatest variabil-
ity in fall under SSP3-7.0. For SJ, future runoff is projected
to increase compared to the past in all scenarios except NF
under SSP3-7.0.

3.7.2 Differences in projected future runoff due to
hydrological model parameters

The future runoff projections using many calibrated sets
of hydrological model parameters were analyzed using the
flow duration curve (FDC). In water resources planning and
drought management, the differences in future runoff projec-

tions due to hydrological model parameters at low runoff are
critical. These differences are shown in Fig. S6 in the Sup-
plement, and the differences in Q75 for each basin and their
proportions relative to the mean runoff are shown in Table 3.
The basin with the largest differences due to hydrological
conditions in the calibration period was analysed as HCH.
HCH is a basin with relatively low precipitation and a small
watershed area. CJ, the largest basin, was analysed to have a
5 %–6 % difference in runoff by hydrological model parame-
ters, which means that the effect of hydrological model cali-
bration is larger in smaller basins. The overall trend shows
larger variances in DF than NF, and these variances were
more pronounced for SSP5-8.5 scenario than SSP2-4.5. This
indicates the need to consider the variations caused by hy-
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Table 4. Frequency of statistical significance (p < 0.05) of uncertainty sources for future monthly runoff during the NF period.

Factor Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

GCM 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4
SSP 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4
HC 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4
PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4
GCM : SSP 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4
GCM : HC 3/4 2/4 2/4 2/4 2/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4
GCM : PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4
SSP : HC 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 1/4 1/4 0/4
SSP : PL 0/4 0/4 0/4 0/4 0/4 1/4 2/4 1/4 0/4 1/4 0/4 0/4
HC : PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4

Table 5. Frequency of statistical significance (p < 0.05) of uncertainty sources for future monthly runoff during the DF period.

Factor Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

GCM 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4
SSP 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4
HC 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4
PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4
GCM : SSP 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4
GCM : HC 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4
GCM : PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4
SSP : HC 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4
SSP : PL 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4 0/4
HC : PL 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4 4/4

drological model parameters when managing water resources
during both flood and drought periods. Table S4 in the Sup-
plement details the top three GCMs that showed the most
significant differences in runoff projections due to hydrolog-
ical model parameters for each basin. Models, M5 and M6
were consistently identified as having the largest discrepan-
cies in future runoff projections due to hydrological model
parameters.

3.8 Uncertainty contribution of future runoff
projections

3.8.1 Statistical significance of ANOVA results for
future runoff projection

Before assessing the significance of individual uncertainty
sources, the statistical validity of the developed ANOVA
models was confirmed. The goodness-of-fit for all monthly
models across all four basins and both future periods (NF
and DF) were exceptionally high, with Adjusted R-squared
values consistently exceeding 0.99. This indicates that the
selected factors and their two-way interactions explain more
than 99 % of the variance in the projected future runoff. Fur-
thermore, a comprehensive residual analysis was conducted
for each model. While statistical tests for normality, such as
the Shapiro–Wilk test, are sensitive to large sample sizes,

the visual inspection of Q-Q plots and Residuals vs. Fitted
plots confirmed that the assumptions of normality and ho-
moscedasticity were practically satisfied, ensuring the relia-
bility of the subsequent significance testing (Figs. S7 and S8
in the Supplement).

The factors related to the hydrological model calibration,
HC and PL, were also found to be statistically significant
for the future runoff projections. Tables 4 and 5 summarizes
the frequency of statistical significance (p < 0.05) for each
factor across the four study basins. The values indicate the
number of basins out of four where the factor was found
to be significant. Although their influence was smaller than
that of GCMs and SSPs, both HC and PL were significant
(p < 0.05) in numerous months, particularly during the low-
flow periods such as spring and winter. This result highlights
that the calibration conditions should be considered an im-
portant source of uncertainty.

Among the two-way interactions, the GCM : SSP interac-
tion consistently showed the highest statistical significance
(p < 0.001) across all months and basins, indicating that the
effect of a GCM is strongly dependent on the chosen SSP
scenario, and vice versa. Furthermore, interactions involving
the calibration factors, such as GCM : HC and HC : PL, were
also found to be statistically significant in various months.
This finding is crucial as it demonstrates that the uncertainty
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Table 6. Differences in the number of drought events according to hydrological conditions.

SSPs Basin AD (unit: occurrences) CJ (unit: occurrences)

Duration 3 6 12 3 6 12

245 NF 5.65 1.65 0.10 1.60 0.55 0.15
DF 4.80 0.90 0.30 1.65 0.85 0.45

370 NF 6.25 1.65 0.45 1.60 0.20 0.55
DF 4.35 0.90 0.25 1.85 0.55 0.30

585 NF 3.95 1.65 0.25 2.35 0.50 0.40
DF 4.55 0.90 0.20 1.75 0.65 0.60

SSPs Basin HCH SJ

Duration 3 6 12 3 6 12

245 NF 0.40 0.25 0.10 1.45 0.60 0.15
DF 0.45 1.25 0.85 2.00 0.30 0.10

370 NF 0.50 0.45 0.45 1.45 0.85 0.25
DF 0.15 0.40 0.30 1.95 0.10 0.10

585 NF 0.55 0.20 0.15 2.50 0.30 0.35
DF 0.45 0.30 0.50 1.65 0.35 0.30

stemming from hydrological model calibration does not act
in isolation but interacts in a complex manner with future cli-
mate projections, thereby influencing the overall uncertainty
of future runoff.

3.8.2 Contribution of uncertainty using the ANOVA

A comprehensive overview of the relative contributions from
all factors to the uncertainties in future runoff projections
for each basin is provided in Fig. S9 in the Supplement. As
confirmed in Fig. S9, the differences in future climate data
from the GCMs were found to be the largest source of un-
certainty, consistently contributing over 60 %. This contri-
bution is more significant during NF than DF, as discussed
in Sect. 3.6. Figure 6 specifically highlights the uncertainty
contributions attributed to hydrological models.

The uncertainty contributions from hydrological models
were most significant during the spring (March–May) and
winter (December–February) periods, as shown in Table S5
in the Supplement. The results of the analysis for each basin
were as follows: For AD, the hydrological model uncertainty
was most significant in spring (NF: 7.54 %, and DF: 5.86 %),
with a maximum of 9.76 % in June for NF and 7.54 % in
April for DF. In CJ, the highest uncertainties were also found
for NF in winter (3.9 %) and for DF in spring (3.96 %). HCH
showed the highest uncertainty in winter (NF: 6.09 %, and
DF: 5.5 %), with a maximum in November (NF: 9.76 %, and
DF: 8.92 %). For SJ, the most significant contributions were
found in spring (NF: 5.58 %, and DF: 3.88 %). In the end,
hydrological model uncertainties were more significant in
months with lower runoff.

3.9 Future hydrological drought uncertainty

3.9.1 Future hydrological drought uncertainty
according to hydrological conditions

To quantify the uncertainty in the future hydrological drought
analysis using the calibrated sets of hydrological model pa-
rameters, the Streamflow Drought Index (SDI) was used to
calculate the hydrological drought conditions during the fu-
ture period. For the uncertainty analysis, runoff data were
considered for both historical and future periods. Table 6
shows the difference in the number of drought events un-
der hydrological conditions during the calibration period af-
ter calculating SDIs for 3, 6, and 12 month durations. The
difference in the number of drought events according to the
hydrological conditions of the calibration period was anal-
ysed differently for each SSP and basin. The difference was
significant for the shorter duration of 3 months.

According to the analysis by basin, the difference in the
number of drought events in the AD basin with a 3 month
duration was calculated to be the largest, with an average
of 4.93 events, followed by SJ, CJ, and HCH. Between
the near future (NF) and distant future (DF), the differ-
ence in the number of drought events under the overall hy-
drological conditions was larger in the NF, and this dif-
ference was calculated differently by basin, confirming the
need for basin-specific analysis in water resource manage-
ment planning. Therefore, the uncertainty quantification of
the drought analysis was performed using the SDI with a du-
ration of 3 months.
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Table 7. Frequency of statistical significance (p < 0.05) of uncertainty sources for future hydrological drought.

Factor 2040s 2050s 2060s 2070s 2080s 2090s

GCM 4/4 4/4 4/4 4/4 4/4 4/4
SSP 4/4 4/4 4/4 4/4 4/4 4/4
HC 4/4 4/4 4/4 4/4 4/4 4/4
PL 4/4 4/4 4/4 4/4 4/4 4/4
GCM : SSP 4/4 4/4 4/4 4/4 4/4 4/4
GCM : HC 4/4 4/4 4/4 4/4 4/4 4/4
GCM : PL 4/4 4/4 4/4 4/4 4/4 4/4
SSP : HC 0/4 0/4 0/4 0/4 0/4 0/4
SSP : PL 0/4 0/4 0/4 0/4 0/4 0/4
HC : PL 4/4 4/4 4/4 4/4 4/4 4/4

3.9.2 Statistical significance of ANOVA results for
future hydrological drought

To confirm the statistical validity of the ANOVA models for
the future hydrological drought analysis, the goodness-of-
fit was evaluated. The models showed a high goodness-of-
fit, with Adjusted R-squared values consistently greater than
0.99 for all annual models across the four basins. This indi-
cates that the selected factors and their two-way interactions
explain more than 99 % of the variance in the future drought
projections, ensuring the reliability of the analysis.

Table 7 summarizes the frequency of statistical signifi-
cance (p < 0.05) for each factor, aggregated by decade, to
provide a concise overview of the results across the entire
future period. The values indicate the number of basins (out
of four) where the factor was found to be significant for the
majority of years within that decade. The primary climate-
related factors, GCM and SSP, were consistently identified as
the most significant sources of uncertainty. As shown in Ta-
ble 7, both factors were found to be highly significant across
all four basins for all decades, underscoring the profound
impact of climate model choice and emission scenarios on
drought projections.

The hydrological model calibration factors, HC and PL,
also proved to be important sources of uncertainty. Both fac-
tors were statistically significant across all four basins for the
entire future period. This finding reinforces that the hydro-
logical conditions and data length used for model calibration
have a persistent and significant influence on long-term hy-
drological drought assessments.

Regarding the interaction effects, the GCM : SSP inter-
action was the most consistently significant, highlighting
that the projected drought severity under a specific GCM is
highly dependent on the emission scenario. Moreover, inter-
actions involving calibration factors, particularly GCM : HC,
GCM : PL, and HC : PL, were also found to be statistically
significant across all basins and decades. This indicates that
the uncertainty from calibration conditions does not merely
add to the total uncertainty but also modulates the uncertainty
stemming from climate models, which is a critical consid-

eration for developing robust drought management strate-
gies. In contrast, other interactions such as SSP : HC and
SSP : PL were found to be not significant across the basins
and decades.

3.9.3 Uncertainty contribution of future hydrological
drought

The quantification of uncertainty in future hydrological
drought was conducted using ANOVA. The uncertainty in fu-
ture hydrological drought projections caused by SSP, GCM,
and hydrological modelling parameters was clearly quanti-
fied by ANOVA. Figure S10 in the Supplement shows the
contribution of each factor to the total uncertainty. Among
single-factor uncertainties, GCM contributed the most, aver-
aging over 30 %. The largest contributor to the total uncer-
tainty, however, was the interaction between SSP and GCM,
averaging over 50 %.

Figure 8 and Table 8 present the percentage contribution of
hydrological modelling parameters to the total uncertainty of
the future 3 month SDI value. The uncertainty contribution
from hydrological model parameter estimation in future hy-
drological drought analysis averaged 2.7 %, which is lower
than that observed for future runoff projections. The uncer-
tainty contribution from hydrological model calibration for
future drought conditions was highest in HCH, followed by
CJ, AD, and SJ, respectively. These results differ from those
obtained in the runoff projections. The contribution of un-
certainty in hydrological drought analysis decreased for AD
and SJ, where uncertainty in future runoff projection due to
hydrological model calibration was relatively high. In con-
trast, HCH showed high uncertainty contributions from hy-
drological model calibration in both runoff and drought anal-
yses. Monthly runoff is a direct physical variable with high
temporal volatility. In contrast, the SDI, used here to quan-
tify hydrological drought, is a processed statistical indica-
tor. It is calculated by accumulating and standardizing runoff
over multi-month timescales. This integration process acts
as a filter, effectively smoothing the high-frequency variabil-
ity of the raw runoff series. Consequently, the absolute nu-
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Figure 7. Contribution of hydrological model parameter to uncertainty in future runoff projection using ANOVA.
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Figure 8. Contribution of hydrological model parameters to the total uncertainty in the future 3 month SDI. (a) is AD, (b) is CJ, (c) is HCH,
and (d) is SJ.

merical fluctuation of the SDI is significantly smaller than
that of the runoff itself. This reduced total variance in the
drought index is the primary reason why the quantified un-
certainty contributions appear lower and exhibit a different
pattern compared to the runoff analysis. This highlights that
while the underlying drivers of uncertainty are the same, their
manifestation can differ depending on the temporal scale and
the nature of the hydrological variable being analyzed. These
findings confirm the necessity to separately analyze and con-
sider uncertainties in future runoff projection and hydrologi-
cal drought analysis.

4 Discussion

This study quantified the cascade of uncertainties caused
by various factors in the process of projecting future runoff
and analyzing future hydrological drought. Previous studies

Table 8. Uncertainty contribution in future hydrological drought
analysis from hydrological model calibration.

Basins NF (unit: %) DF (unit: %)

AD 1.89 1.64
CJ 4.06 3.58
HCH 5.56 5.27
SJ 0.26 0.26

(Chegwidden et al., 2019; Wang et al., 2020) have reported
that climate data from GCMs and SSP scenarios are the pri-
mary sources of uncertainty in future hydrological analysis.
The results of this study also identified GCMs as the ma-
jor contributor to uncertainty in future runoff analysis. This
aligns with findings such as Her et al. (2019), who demon-
strated that GCM uncertainty is dominant for rapid hydro-
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logical components, whereas parameter uncertainty becomes
more significant for slower. However, recent research has
begun to identify and quantify the cascade of uncertainties
caused by factors beyond GCMs and SSP scenarios (Chen
et al., 2022; Shi et al., 2022). This study focused on the un-
certainties inherent in the calibration of hydrological mod-
els, which are essential for future water resource manage-
ment. Rather than seeking a single optimal parameter set, the
central aim of this study was to quantify the uncertainty that
arises from this very choice.

There have been limited studies that consider the uncer-
tainties in runoff projection due to various calibrated parame-
ter cases (Lee et al., 2021b). However, this study further sub-
divided the observation data used in the calibration period of
hydrological model parameters by the amount of data and hy-
drological conditions to quantify the uncertainties more pre-
cisely. The results showed that hydrological conditions had
a greater impact than the amount of calibration data period
on the uncertainties in the calibration of hydrological model
parameters.

This study went beyond merely projecting future runoff
by also quantifying the cascade of uncertainties in the anal-
ysis of future hydrological drought using this runoff projec-
tion. Many studies on future drought prediction reported that
hydrological drought becomes more complex and uncertain
due to its association with human activities and the use of
future climate data and hydrological models (Ashrafi et al.,
2020; Satoh et al., 2022). For example, Gao et al. (2020),
also using an ANOVA approach, found that for low flows,
GCM and RCP uncertainty became increasingly pronounced.
Most existing studies on future hydrological drought analy-
sis focused on the severity and frequency of droughts. How-
ever, this study quantified the cascade of uncertainties that
arise in the process of future drought analysis. Although the
contribution of hydrological model uncertainty to future hy-
drological drought may be lower compared to future runoff
projections, the characteristics of uncertainty differ between
drought and runoff projections, clearly indicating the neces-
sity to separately analyze and consider these uncertainties in
future hydrological analyses.

Furthermore, the basin-specific characteristics presented
in Table S1 help interpret the differing uncertainty contri-
butions seen in the results. For example, in the hydrolog-
ical drought analysis (Fig. 8), the uncertainty from model
calibration was highest in HCH (5.56 %) but lowest in SJ
(0.26 %), despite their similar areas (925 vs 763 km2 ). A key
difference is that the SJ basin receives significantly higher
mean annual precipitation (1,329.8 mm) compared to HCH
(1289.9 mm) and especially AD (1045.7 mm). This suggests
that basins with lower precipitation (like HCH and AD) may
be more hydrologically sensitive to calibration data selection,
leading to higher model-driven uncertainty, whereas the wet-
ter conditions in SJ create a more robust (less sensitive) hy-
drological response regardless of calibration choice.

5 Conclusion

This study aimed to quantify the uncertainties in future runoff
projections and hydrological drought analysis, considering
various climate change scenarios and hydrological model
calibrations. SWAT was used, and hydrological conditions
were classified using the SDI. Additionally, 20 GCMs and
3 SSP scenarios were applied. The calibration data length
ranged from 1 to 20 years, considering different hydrologi-
cal conditions (Dry, Normal, Wet).

The main findings are as follows:
First, the validation performance of the calibrated hydro-

logical model parameters depended significantly on the hy-
drological conditions of the calibration data. For instance,
when compared against parameters calibrated using wet pe-
riod data, hydrological model parameters calibrated with dry
period data showed an average of 11.4 % higher performance
when validated under dry conditions and 6.1 % higher perfor-
mance when validated under normal conditions.

Second, the contribution of hydrological model uncer-
tainty to future runoff projections ranged from 3.9 % to
9.8 %, with this uncertainty being more pronounced dur-
ing low runoff periods. ANOVA results clearly indicated
that GCMs contributed the most uncertainty, consistently ac-
counting for over 60 % on average, highlighting GCMs as
the dominant source. In contrast, the contributions of SSP
scenarios and hydrological model parameters were relatively
smaller.

Third, the contribution of hydrological model uncertainty
in future hydrological drought analysis was on average
2.7 %, lower than that observed for future runoff projections.
The uncertainty contributions varied by basin, showing dif-
ferent patterns from runoff projections, thus confirming the
necessity for separate analyses of future runoff and hydro-
logical drought uncertainties.

The significance of this study lies in emphasizing the
quantification of uncertainty from various sources, including
hydrological conditions and calibration data length, in ad-
dition to climate model scenarios. The systematic approach
using ANOVA provided insights into the dominant sources
and interactions of uncertainties, offering important guidance
for improving hydrological modeling practices and water re-
sources planning under future climate scenarios. However,
there remains a need to apply this methodology to other re-
gions to generalize these findings further.
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