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Abstract. River bathymetry is important for accurate flood
inundation modelling but is often unavailable due to the
time-intensive and expensive nature of its acquisition. This
leads to several proposed and implemented approaches for
its estimation. However, the errors in estimations inherent in
these methods and how they affect the accuracy of the flood
inundation modelling outputs, has not been extensively re-
searched. Hence, to contribute, we investigate the sensitiv-
ity of flood predictions to the errors in river slope, width,
and bank-full flow used in two formulas — the Uniform Flow
and the Conceptual Multivariate Regression — for estimating
river bathymetry. In this study, we employed a Monte Carlo
framework to introduce random errors into these parameters
drawn from a normal distribution with zero mean and a stan-
dard deviation set to 10 % of their best estimates. Using this
process, we generated 50 simulated river bathymetries for
each parameter along with an additional 50 where the errors
were applied to all parameters simultaneously. The riverbeds
generated from these bathymetries were combined with to-
pographic LiDAR data to create model grids. Each grid was
used in the hydrodynamic model LISFLOOD-FP to simu-
late the 2005 flood event in the Waikanae River area of New
Zealand. We assessed the resulting flood inundation predic-
tions for their variability and sensitivity. The results indicate
that between two methods, the errors in the parameters in
the Uniform Flow formula are associated with greater uncer-
tainty in flood inundation depths and extents compared to the
Conceptual Multivariate Regression. Among the parameters,
the width errors correspond to the highest uncertainty, while
the slope errors correspond to the lowest.

1 Introduction

River bathymetry refers to the river depth measurement (Pan-
igrahi, 2014). It plays a crucial role in flood modelling be-
cause it determines when and where water leaves the river
channel and starts to flood overland (Cook and Merwade,
2009; Awadallah et al., 2022). Currently, hydrographic sur-
veys and remote sensing methods, especially swath beam
sonar and blue-green LiDAR, are prevalently employed to
obtain these river bathymetric data (Costa et al., 2009; Kinzel
et al., 2013; Dey et al., 2019). Multi-beam sonar is effective
but time-consuming, while blue-green LiDAR is faster but
does not work in sediment-laden or deep water, and both of
them are expensive (Bailly et al., 2010; Flener et al., 2012;
Bures et al., 2019). For these reasons, various approaches
have been proposed to estimate these data (Ghorbanidehno
et al., 2021; Aratjo and Hedley, 2023).

Dey et al. (2019) categorised these methods into two
groups. The first one assumes rivers with simple geometric
shapes like triangular (Gichamo et al., 2012; Saleh et al.,
2013; Bhuyian et al., 2015), rectangular (Trigg et al., 2009;
Saleh et al., 2013; Grimaldi et al., 2018), trapezoidal (Saleh
et al.,, 2013), or parabolic (Bhuyian et al., 2015) cross-
sections. Despite the fast and simple process, these assump-
tions might be significantly different from realistic rivers.
The other group applies more complex hydraulic (Price,
2009; Bhuyian et al., 2015) and geomorphological (Brown
et al., 2014) principles to create more realistic underwater
terrain. However, they require more data and heavy compu-
tation.
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Some studies build up formulas to estimate river
bathymetry based on river types. For instance, Lopez et al.
(2007) constructed an equation to estimate the discharge for
coarse-grained rivers. Rupp and Smart (2007) then devel-
oped this into an equation for estimating river depth. More
recently, machine learning methods have been used to esti-
mate river bathymetry. For instance, Bures et al. (2019) em-
ployed a DEM, flow discharge, Manning’s n, and support
from Random Forrest to model riverbed topography, while
a Deep Neural Network was used by Ghorbanidehno et al.
(2021) to map riverbed features from depth-averaged flow
speed data.

Neal et al. (2021) categorised four approaches to solve the
lack of bathymetric data in flood modelling cases. The first
method involves subtracting the estimated river bank-full
discharge from the total floodwater to simulate the “excess
discharge” on the floodplains without requiring bathymetric
data (Neal et al., 2012). However, it is expected to become
inaccurate over large and complex floodplains (Neal et al.,
2012; Sampson et al., 2015). The second method applied the
downstream hydraulic geometry (Leopold and Jr, 1953) to
estimate riverbed elevation. The relationship between river
width, depth, and bank-full discharge used in the method is
developed empirically from field observations across many
sites (Andreadis et al., 2013; Yamazaki et al., 2013; Gleason
and Smith, 2014; Grimaldi et al., 2018). This technique can
introduce uncertainties due to various complexities of differ-
ent rivers into the estimated river (Neal et al., 2021).

The third method applies the Manning’s n equation with
an assumption of uniform channel over long distances. The
formula considers river slope, width, discharge, and friction,
to estimate the river depth (Coe et al., 2008-07; Miguez-
Macho and Fan, 2012; Bréda et al., 2019). However, real-
world rivers are often different from uniform flow condi-
tions, which might cause the flood predictions to be larger
or smaller than expected (Neal et al., 2021). In the final
method, an observed water surface profile is used to esti-
mate the river bathymetry by applying gradually varied flow
equations (Garambois and Monnier, 2015; Bréda et al., 2019;
Andreadis et al., 2020). Despite high accuracy, it is resource-
intensive and obtaining the necessary data can be challenging
and expensive.

Regardless of any approaches to estimate the river bathy-
metric data, due to the inability to capture the randomness of
the real-world river systems, these estimations still contain
errors. These errors can cause the simulated river bathyme-
tries to deviate significantly from the actual ones. Conse-
quently, using these modelled river bathymetries to repre-
sent the rivers in flood inundation modelling can affect the
flood predictions. Currently, several studies have investigated
the errors in the estimated river bathymetry (Durand et al.,
2008; Lee et al., 2018; Moramarco et al., 2019; Kechnit et al.,
2024), but they have not considered how these estimations
with errors affect the flood model outputs.

Hydrol. Earth Syst. Sci., 30, 183-203, 2026

For instance, Durand et al. (2008) developed an ensemble-
based data assimilation approach for estimating river
bathymetry from water surface elevation measurements and
the LISFLOOD-FP hydrodynamic model. Using a Monte
Carlo-based framework, they also performed a sensitivity
analysis to assess how various error sources affected the es-
timated results. Their study found that errors in some input
factors for their approach, such as river roughness and flow
conditions, have greater influence than the water surface el-
evation measurement errors. However, this research did not
evaluate how the errors in these river bathymetric estimations
can affect flood model outputs with consideration of spatial
variability of input factors in the analysis.

Moramarco et al. (2019) introduced a method based on the
entropy theory (Shannon, 1948) using channel slope, width,
bottom elevation, and a parameter from Alessandrini et al.
(2013) to model the river depths. These parameters were es-
timated using an algorithm that can minimise the observed
maximum surface velocity (Moramarco and Singh, 2010).
Similar to the Monte Carlo approach, for assessing uncer-
tainties from these parameter estimations, the authors cre-
ated 1000 river depths from 1000 combinations of parameter
values randomly selected from uniform distributions. Kech-
nit et al. (2024) later extended these techniques to estimate
river bathymetry and quantifying uncertainties in larger-scale
rivers. Nevertheless, none of these studies investigated how
uncertainties in such parameter estimations influence the
river depths as well as the flood inundation model outputs,
and they have not considered the spatial variability in their
analysis.

Lee et al. (2018) introduced a principal component geosta-
tistical method to produce fast bathymetry maps along with
the uncertainties. Nevertheless, without using Monte Carlo
framework, their research considered uncertainties arising
from velocity measurement errors by adding only four Gaus-
sian errors (0.025, 0.01, 0.05, and 0.1 m s_l) to the true val-
ues without full assessment of the implications of these er-
rors. Hence, their results might not be fully representative
for such uncertainties in river bathymetry estimations. Also,
their research did not consider how these uncertainties affect
the flood inundation model outputs.

Generally, these previous studies have addressed cer-
tain gaps in quantifying uncertainties in estimated river
bathymetry and show that errors can arise from various
sources. However, they have not assessed how the flood in-
undation model outputs would be affected by errors or uncer-
tainties in the river bathymetry. Additionally, their methods
did not consider spatial variability in factors used to estimate
river bathymetries and their results are not fully representa-
tive.

To fill these gaps, we quantified the uncertainty in flood
predictions due to errors in the estimated parameters used
in two formulas described in Rupp and Smart (2007) and
Neal et al. (2021), and validated by Pearson et al. (2023).
Within the Monte Carlo framework, we generated multiple
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realisations of river bathymetry, then used them to perform
a sensitivity analysis to evaluate the impacts of each pa-
rameter on flood predictions, individually and collectively.
We also considered the spatial variability in the analysis and
whether our number of simulations is large enough to repre-
sent our results. This work can contribute to studies of other
sources of uncertainty to adequately comprehend the uncer-
tainty in flood model outputs. In the next section, we describe
a method to explore relationships between the parameters
within those two formulas and show a process to examine
how errors in these parameters affect the flood predictions.

2 Methodology

In this section, we first introduce the study site, neces-
sary data, flood model, and explain the uncertainty propa-
gation process. Next, we define two formulas used for river
bathymetry estimation and describe a method to explore the
relationships between parameters and river bathymetry from
these two equations. We then show how to examine these re-
lationships based on the river of the study site. Finally, we
design a sensitivity analysis workflow to quantify the uncer-
tainty in the flood model outputs due to errors in the river
bathymetry estimations.

Our data and methodology were based on Nguyen et al.
(2025) where the uncertainty in flood predictions due to ar-
bitrary conventions in grid alignment was quantified. To ex-
plain, their research is also about how the uncertainty in the
process of generating the topographic data like DEM and
roughness length can propagate through the flood modelling
to the outputs. Hence, their data and methodology can be ap-
plied in our research.

Accordingly, we simulated the same flood event using the
LISFLOOD-FP flood model and applied a similar method to
generate topographic data. Moreover, a Monte Carlo frame-
work was also designed in our research to observe how
the uncertainty in estimated river bathymetries propagates
through the flood modelling to the outputs. To assess the un-
certainty, some similar measurements were used, some were
not because they did not provide further information, and
some were added to understand better the uncertainty. These
similarities will be mentioned in details in the sections below.

2.1 Study site and data source

Similar to Nguyen et al. (2025), the Waikanae River, located
on the West Coast of the Wellington Region in New Zealand,
was used in this paper. Its catchment covers around 149 km?
and spans from the Tararua Ranges to the West Coast. There
are recurring flooding issues at this study site that have influ-
enced the regions around the river.

In this study, we simulated a flood event with an 80-year
return period that occurred in Waikanae from 5 to 7 Jan-
uary 2005 and reached its peak on 6. Here, we focused on
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fluvial flooding from the Waikanae River. This allowed us
to observe how the uncertainty in the estimated river bathy-
metric data can impact the flood inundation model outputs.
Figure 1a depicts our site study extending about 7 km from
the Waikanae Water Treatment Plant gauge to the coast. Fig-
ure 1b show the flow information recorded at the gauge by
the Greater Wellington Regional Council (2005) and the tidal
data estimated by the NIWA Tide Forecaster (2005) respec-
tively.

Following the approach of Nguyen et al. (2025), the to-
pographic data — DEM and roughness length — in our pa-
per were generated by an open-source Python package, Ge-
oFabrics (version 0.9.4) developed by Pearson et al. (2023).
Specifically, the package sampled and interpolated LiDAR
point cloud data downloaded from OpenTopography (2013)
onto a 10 m square grid using Inverse Distance Weighted —an
interpolation method has been commonly used in flood mod-
elling (Ibrahim and Fritsch, 2022; Xing et al., 2022; Huang
et al., 2023). To represent the river in this process, since the
LiDAR only contains the water surface elevations, the esti-
mated riverbed elevation data were then obtained to be in-
cluded in the point cloud data by subtracting the estimated
river bathymetric data or river depths (see Sect. 2.3) from
these water surface elevations. The roughness length was
converted to Manning’s n using a conversion developed by
Smart (2018):

KH/6 (Zﬂ - 1)

n=¢§<1+g(1ng—1)) W

where z,, is roughness length, n is Manning’s n coefficient,
k is von Karman’s constant (0.41), and H is the flow depth
assumed as 1 m in this paper.

2.2 Flood model and explanation about uncertainty
propagation process

In this study, LISFLOOD-FP (Bates et al., 2010; Neal et al.,
2018), a 2D hydrodynamic model, was used to simulate the
January 2005 flood event because it is well known for its
computational efficiency and highly accurate flood model
outputs (Nguyen et al., 2025). Also, it was calibrated for the
Waikanae River in Nguyen et al. (2025). The DEM and Man-
ning’s n values, along with the flow information and tidal
data mentioned above were used as input into this model.

In LISFLOOD-FP, the formula to compute the water flow
QOcen at the interface index i + 1/2, between cells index i and
index i + 1, over a time step At is:

t ot t
Ry i1 ghﬂowAtscell,-+1/2Ax 2

CCHH_]/Z - 214t
gAm?lq, | |
[1 i+1/2

(M)
where ¢’ represents the flux at the time ¢, Ax denotes the
cell width, Sceyi and hpow are the water surface slope and
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Figure 1. Study site and data source (adapted from Nguyen et al., 2025): (a) Waikanae River in Wellington, New Zealand, (b) Waikanae
River flow discharge recorded by the (Greater Wellington Regional Council, 2005) and tidal data recorded by the (NIWA Tide Forecaster,
2005) for the flood event from 5 to 7 January 2005.

flow depth between cells (Bates et al., 2010). The flow for- (Shustikova et al., 2019):

mula here is displayed for the x direction, the y direction can s N - o

be obtained analogopsly. The cell water depth Agow i's up- A hi{ é'w QlC ;ll);] _ Qi}’c]llx + Qlce]ll; _ Qlc,e]lly

dated based on the discharge through the four boundaries of A 3 .
. . . t Ax

that cell as below, where i and j denote the cell coordinates

3)

To further expand on the description of uncertainty propaga-
tion through the model given in Sect. 1, we apply the follow-
ing chain for easier comprehension:
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Estimated river bathymetric data — riverbed eleva-
tions — topographic data (DEM and Manning’s n derived
from roughness length) generated by riverbed elevations
and LiDAR data — inputs to a flood inundation model
(LISFLOOD-FP in this study) — affects flood model out-
puts (extents, depths, etc.)

As indicated in the chain above, the estimated river bathy-
metric data that contain errors are used to calculate the
riverbed elevations (see Sect. 2.1). These riverbed elevations
are then used to represent the river in the topographic data.
After that, these topographic data are inputted into the flood
model as a discretisation of the floodplain and channel topog-
raphy to model the water flow. Here, in the flood model, the
river as represented in the topographic data controls when,
where, and how much the water leaves the channel and starts
to flood. Hence, the flood model outputs such as the flood
extents and flood depths are affected by how the river is rep-
resented. In the next section, we will describe how the river
bathymetric data are estimated.

2.3 Method to investigate formulas for river
bathymetry estimation

The depths were estimated at regular 10 m intervals along the
river with each point representing an average cross-sectional
depth (#). From now on, we will use the river bathymetry
as an interchangeable term for the river depth. Two formu-
las were used for this estimation - the Uniform Flow (UF)
(Neal et al., 2021) and the Conceptual Multivariate Regres-
sion (CMR) (Rupp and Smart, 2007). The CMR formula, de-
signed for coarse-grained rivers, was selected to match with
Waikanae River (Gyopari et al., 2014), and the UF formula
was chosen for its similar parameters and can be widely ap-
plicable. Both are designed in the GeoFabrics and can be pre-
sented through a general equation as below:

1
14+a
h=<Z§3> @)

The cross-section width (w) at bank-full river and river
slope (S) were estimated from LiDAR data as detailed in
Pearson et al. (2023). The river bank-full flow (Q) and river
Manning’s (n) were obtained from Henderson and Collins
(2018) at NIWA. For the « and 8 coefficients, the UF for-
mula used constant values of 2/3 and 1/2 respectively, while
the CMR formula, designed for coarse-grained rivers, ap-
plied 0.745 and 0.305 respectively with a constant value of
0.162 for Manning’s n. The exponents and value ranges of
each parameter are shown in Table 1 and some of them are
explained in Appendix A. In our research, we assumed the
errors in the estimated river bathymetries arising from the er-
rors in these parameters owing to estimation. Due to time-
consuming and complex nature of processing simulations
for river Manning’s n and coefficients o and 8, we focused
solely on the errors in the river slope, bank-full flow, and
width in this paper.
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Before Monte Carlo simulation process, we explore the re-
lationship between these parameters and the river bathyme-
tries estimated by the UF and CMR formulas. At first, the
mean value over the entire river section of each parameter
is calculated as seen in Table 1. We then increase the mean
value of each parameter, except for the river Manning’s n,
from 50 % to 200 % while keeping other parameters constant.
This method allows us to observe how the river bathymetries
from the two formulas are affected when a parameter is var-
ied. The result analysis of this part is mentioned in Sect. 3.1.

2.4 Method to evaluate relationships of bathymetry
and parameters in the formulas on the study site

We then make the findings of Sect. 2.3 more concrete by in-
vestigating how they play out along the Waikanae River. We
look at the best estimates of the parameters (slope, bank-
full flow, and width) and the Waikanae River bathymetry
along with the Monte Carlo simulations of their variances.
Here, we examine how each parameter and their combination
along with errors are correlated with the river bathymetry.
Specifically, we visualise the variation of each parameter
along the river and the resulting variation in river bathymetry.
We plot both the values as a function of location along the
river and scatter plots of their relationships. We also plot the
along-river bathymetries for the combined errors of all three
parameters. Three scatter plots depict the relationships be-
tween the variance of each parameter and these combined
river bathymetries. All of these visualisations and analysis
are provided in Sect. 3.2. In the next section, we detail how to
generate these simulated parameters and corresponding river
bathymetries and examine their variations on flood predic-
tions.

2.5 Monte Carlo simulation process

Figure 2 shows a Monte Carlo simulation process undertaken
in this study. To describe the framework in this figure, we di-
vide this section into two subsections. The first is about sim-
ulation process and the second is about statistical analysis.

2.5.1 Simulation process

At first, to generate multiple simulated parameters with the
same amount of errors, we used GeoFabrics package to
gather their best estimates along the river derived from Li-
DAR (river slope and width) and estimated by NIWA (river
bank-full flow). Due to no information about the sources of
errors, we assumed that their expected errors would be unbi-
ased and normally distributed with zero mean and a standard
deviation of 10 % of the best-estimated values. This 10 % was
chosen because: (i) many observed cross-sectional riverbed
elevations are within the simulated ensemble range (min-
max) of simulated riverbed elevations — calculated from the
simulated river bathymetric data (described in detail later in
this section) — as seen in Fig. 3; and (ii) with the same amount
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Table 1. The exponents of parameters in the Conceptual Multivariate Regression and Uniform Flow formulas (see Appendix A), and the value
ranges (minimum, maximum, and mean) of parameters along the Waikanae River — the river slope, bank-full flow, width, and Manning’s n —
used to explore their relationships with the river bathymetry in both formulas.

Parameters Slope (5) Flow (Q) Width (w) Manning’s n (n)

Exponents — CMR 0.175 0.573 0.573 0.573

Exponents — UF 0.3 0.6 0.6 0.6

Minimum values along the river 0.3 (m kmfl) 145.2 (cumec) 19.4 (m) 0.162 (for CMR) & 0.0377 (for UF)
Maximum values along the river 7.2 (m km_l) 146.2 (cumec) 99.6 (m) 0.162 (for CMR) & 0.0436 (for UF)
Mean values along the river 4.0 (m km™!) 146.1 (cumec) 35.6 (m) 0.162 (for CMR) & 0.0433 (for UF)

GSTAT
R package

Simulations of errors

—— Best estimated errors of parameters

— Measures of variations in flood predictions =

1. Coefficient of variation

2. Proportion of each cell being flooded

0 . ;
Simulated error g, ~ N(O, €rror gm) E Error g = 10% x LiDAR-estimated width (w) —
_{ Simulated error .. ~ N[0, erro @ : L EXror gope = 10% X | LiDAR-estimated slope (5) | 3. Flooded areas
simulated error rp,, ~N(0, errory, g Error pow = 10% % | NWA-estimated flow (Q) _| 4. RMSE metric
o Best estimated £
Variogram g, parameters 2
£
Monte Carlo @
simulation .
Point cloud Uncertainty map)
‘ January-2005 flow & tide data ‘
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Simulated Width = w  + simulated error g, Uniform Flow LDAR data Python DEM LISFLOOD-FP PYT— Statistical
r _ . (UF) Estimated ' (flood model) P Analysis
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Simulated Flow = Q  + simulated error gy, Multivariate . :
Regression oughness
anning’s n
(CMR) length 8

Compare variations in flood predictions and their impacts

using (1) — (4) and quartile deviation

Figure 2. Process to quantify uncertainty in flood predictions using river bathymetries estimated by the Conceptual Multivariate Regression
and Uniform Flow formulas, with associated error distributions in parameters: river slope, bank-full flow, and width.

of errors, we can then compare the influences of those errors,
between datasets, on the flood model outputs. Although we
do not know what the true errors are in these parameters,
these assumed but reasonable ones from the Monte Carlo
framework can still meaningfully indicate how the estimated
bathymetric data can affect the flood model outputs. In fu-
ture research, the measured errors can apply the framework
already built in this study to compare and confirm the results.

Within the process of generating the simulated errors for
each parameter, we spatially model the variation of the errors
along the river with a Gaussian variogram. This was imple-
mented using Gstat, an open-sourced R package developed
by Pebesma (2004), Griler et al. (2016). The Gaussian vari-
ogram was chosen because it smoothly represents how errors
might vary over space, ensuring that points closer to each

Hydrol. Earth Syst. Sci., 30, 183-203, 2026

other along the river have more similar errors. This is par-
ticularly suitable for river slope, bank-full flow, and width,
which tend to change gradually rather than abruptly along
the river.

Next, this variogram was employed to generate 50 uncon-
ditional simulations of these errors from a normal distribu-
tion with a zero mean and a standard deviation equal to the
expected error. Each simulation is different along the river
but with the same characteristics of the variogram. 50 realiza-
tions of each parameter were then generated by adding these
simulated errors to the corresponding best estimated param-
eter. This quantity was chosen for time efficiency as testing
with a larger number we found that using more representa-
tions did not considerably impact the results.

https://doi.org/10.5194/hess-30-183-2026
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Figure 3. Observed cross-sectional, best estimated (from GeoFabrics of Pearson et al., 2023), and simulated riverbed elevations at the
Waikanae River. The best estimates and simulations of riverbed elevations computed using the Uniform Flow formula are in the first column:
(a) slope, (c) bank-full flow, (e) width, and (g) combined. The ones calculated using the Conceptual Multivariate Regression formula are
in the second column: (b) slope, (d) bank-full flow, (f) width, and (h) combined. The color shading represents multiple simulated riverbed
elevations (span of simulations).
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Here, we selected the normal distribution because we as-
sumed our parameters from the estimations and measure-
ments provide the most accurate values, making them the
most probable. Moving further from them, the probability of
errors should decrease. Additionally, we presumed the errors
can be both negative and positive, balanced around zero. Be-
sides, the lack of information about the true errors led us to
use unconditional simulation. This method provides a wide
range of errors to understand better their relationships with
the river bathymetries and how they impact flood predictions.

Subsequently, 400 realizations (eight datasets of 50 sim-
ulations) of the river bathymetries were created in total: 50
representing the variation in each of the three parameters
(river slope, bank-full flow, and width) and additional 50 us-
ing the combined variations in the three parameters times
the two formulas (UF and CMR) used for calculation. Next,
these simulated river bathymetries were then subtracted from
the LiDAR-estimated water surface elevations to obtain the
simulations of riverbed elevations. Eight datasets of these
simulated river data were organised and presented in the Ta-
ble 2.

Similar to Durand et al. (2008), Moramarco et al. (2019),
Kechnit et al. (2024), and especially Nguyen et al. (2025),
our research also applied a Monte Carlo framework to gener-
ate 50 DEMs and 50 Manning’s n maps from those 50 simu-
lated riverbed elevations and LiDAR data from OpenTopog-
raphy (2013) using the method described in Sect. 2.1 for each
dataset. These 50 DEMs and 50 Manning’s n maps are the
same except for the river locations due to the use of 50 dif-
ferent simulated riverbed elevations. Hence, we only focus
on analysing the variation in the simulated river bathymet-
ric data used to generate these riverbed elevations instead of
those simulated topographic data (see Sect. 3.2). The DEMs
and Manning’s n maps that include the simulated river bathy-
metric data, along with the January 2005 flow and tidal data
mentioned in Sect. 2.1, were then used in the LISFLOOD-FP
flood model to produce 50 maximum water depths (MWDs)
and 50 maximum water surface elevations (MWSEs) for fur-
ther statistical analysis.

2.5.2 Statistical analysis

To assess the uncertainty in flood predictions, we measured
the variability in these simulated MWDs by computing their
mean (mMMWDs) and standard deviation (sdMWDs) to cal-
culate the coefficient of variation (covMWDs). The pro-
portion of simulations in which a given pixel was flooded
(pFs) were also computed to distinguish where was always
flooded, never flooded, and sometimes flooded through-
out these realizations. However, different to Nguyen et al.
(2025), mMWDs and sdMWDs were not considered in the
research due to no useful information.

The covMWDs and pFs were then mapped with probabil-
ity density functions for each set. Here, pixels with mMWDs
of 0.1 m or greater were classified as flooded and included
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in the analysis, while those of shallower than 0.1 m were ex-
cluded. Apart from that, the oceanic zone and river were also
removed to focus on the variations in the floodplains. Ad-
ditionally, we computed expected flooded area or expected
flood extent, a metric often employed by decision-makers,
for each simulation for comparison. The expected flood ex-
tents were calculated based on these pFs by multiplying the
area of one pixel (10m x 10 m) with number of pixels that
were always and sometimes flooded.

To examine variations in flood predictions of the eight
datasets, side-by-side boxplots were applied to visualise the
distributions of flood extents and those of covMWDs. We
compared the magnitude of their variations using the quar-
tile deviation metric which was also employed by Nguyen
et al. (2025). In our research, we went further than Nguyen
et al. (2025) by validating each flood simulation - MWSE
with the observed data. Due to the lack of a thorough map of
measured flood levels or satellite-based water surface eleva-
tions, we used the observed flood levels under point format
provided by Wallace (2010). The Root Mean Square Error
(RMSE) metric was harnessed for these validations. Loca-
tions of the observed data where the flood model predicted
to be dry across all the simulations were removed to ensure
the RMSE focuses only on predicted flooded regions and to
avoid skewing the RMSE. We then visualised the distribution
of RMSEs across simulations through side-by-side boxplot
for comparison.

3 Results

In this section, we showcase the findings from investigating
the relationships between the bathymetry and parameters in
two formulas, followed by the results from evaluating how
these findings playing out with the study site, the Waikanae
River. We then illustrate the results from comparing varia-
tions in flood predictions across eight datasets.

3.1 Findings from investigating formulas for river
bathymetry estimation

Figure 4 shows the relationships between the river
bathymetry and three parameters — river slope, bank-full
flow, and width. As seen in Fig. 4a, a steeper river is prone
to be shallower. This inverse relationship is mathematically
represented in both formulas, where the slope appears in the
denominator. Physically, when the river width and flow do
not vary, and the sediment effects are not considered, it is ex-
pected that in steeper sections, the water tends to flow faster
and spend less time interacting with the riverbed. Therefore,
its force has a smaller impact on the river bathymetry.
Figure 4b shows that a deeper river tends to have larger
flow. This proportional relationship can be explained mathe-
matically in both formulas, where the flow is in the numera-
tor. Physically, it can be understood that, in the river sections
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Table 2. Dataset descriptions of simulated river bathymetries estimated by the Uniform Flow and Conceptual Multivariate Regression for-
mulas with errors in parameters: river slope, bank-full flow, and width.

No. Dataset names

(Parameter — formula)

Descriptions

1 Slope — UF

50 simulated river depths/riverbed elevations estimated by the Uniform Flow formula when the
simulated errors selected from N (0, errorgjope) were added into the LiDAR-estimated slope

2 Flow — UF

50 simulated river depths/riverbed elevations estimated by the Uniform Flow formula when the
simulated errors selected from N (0, errorgoy) were added into the NIWA-estimated flow

3 Width — UF

50 simulated river depths/riverbed elevations estimated by the Uniform Flow formula when the
simulated errors selected from N (0, erroryiq,) were added into the LiDAR-estimated width

4 Combination — UF

50 simulated river depths/riverbed elevations estimated by the Uniform Flow formula when the
simulated errors selected from N (0, errorggpe), N (0, errorgoy ), and N (0, erroryide) were
simultaneously added into the LiDAR-estimated slope, NIWA-estimated flow, and
LiDAR-estimated width respectively

5 Slope — CMR

50 simulated river depths/riverbed elevations estimated by the Conceptual Multivariate
Regression formula when the simulated errors selected from N (0, errorgjope) were added into
the LiDAR-estimated slope

6 Flow — CMR

50 simulated river depths/riverbed elevations estimated by the Conceptual Multivariate
Regression formula when the simulated errors selected from N (0, errorg,, ) were added into
the NIWA-estimated flow

7 Width - CMR

50 simulated river depths/riverbed elevations estimated by the Conceptual Multivariate
Regression formula when the simulated errors selected from N (0, errory;qn) were added into
the LiDAR-estimated width

8 Combination — CMR

50 simulated river depths/riverbed elevations estimated by the Conceptual Multivariate
Regression formula when the simulated errors selected from N (0, errorgjope), N (0, errorgow ),
and N (0, errory;qm) were simultaneously added into the LiDAR-estimated slope,
NIWA-estimated flow, and LiDAR-estimated width respectively
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Figure 4. Formula investigation: relationships between (a) river slope, (b) bank-full flow, and (¢) width with river bathymetries estimated
by the Uniform Flow and Conceptual Multivariate Regression formulas. Each plot shows how the river bathymetries are correlated with
increasing the mean value of a parameter (see Table 1) from 50 % to 200 % while keeping others constant.

where the river width and slope do not vary, and the sediment
influences are not considered, the increased flow has greater
water force, which is correlated with a higher impact on the
river bathymetry than smaller flow.
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Figure 4c depicts that wider river is likely to be shal-
lower. It can be comprehended that in wider river sections,
where the river slope is unchanged, the constant water vol-

ume spreads out and reduces its force which has a smaller im-
pact on the river bathymetry. This inverse relationship is also
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presented in both formulas, where the width is positioned in
the denominator.

Based on the coefficients of variation, the variations in the
river bathymetries are more strongly correlated with the vari-
ations in the width than the flow, and much more than the
slope. Physically, the width can control the water distribu-
tion on the riverbed, which is strongly connected to the im-
pact magnitude of the water force on the river bathymetry.
Meanwhile, although higher flow increases the water force, it
does not control water distribution as effectively as the width
does, which has less correlation with the river bathymetry.
The slope is primarily associated with the flow velocity rather
than the water distribution, so its changes are much less cor-
related with the changes in the river bathymetry.

Mathematically, the width and flow have the same higher
exponents in both formulas (0.6 for UF, 0.573 for CMR)
compared to the slope (0.3 for UF, 0.175 for CMR). This
highlights why variations in the width and flow have stronger
correlations with the river bathymetry. Additionally, with
width in the denominator and flow in the numerator, flow
variability is slightly less correlated with the variability in
the river bathymetry than width variability.

Apart from that, in Fig. 4, the river bathymetry estimated
by the CMR formula is generally greater than that estimated
by the UF formula. This difference arises from many fac-
tors, but mainly from the friction and its exponent in this
case. The mean friction along the river used for the UF for-
mula (0.0432) is lower than the constant friction (0.162) in
the CMR formula. Also, its exponent in the UF formula
(0.6) is higher than in the CMR formula (0.573). However,
when considering other factors, for instance, if the width
continues to increase and the slope or flow decreases, the
river bathymetries estimated by both formulas can converge,
switch positions, and then diverge again. Besides, based on
the CoVs, for the same amount of variation in the parame-
ters, the river bathymetries estimated by the UF formula have
higher variability than that estimated by the CMR formula.
To explain, the exponents of the slope (0.3), flow (0.6), and
width (0.6) in the UF formula are higher than in the CMR
formula (0.175, 0.573, 0.573, respectively).

Overall the variation in the river width corresponds to the
largest variability in the river bathymetry followed by vari-
ations in the river flow and slope. Besides, in this case, the
UF formula generates shallower river than the CMR formula,
mainly due to the differences in the friction and its exponent.
However, the situation can change depending on how other
factors such as the slope, width, and flow alter. Additionally,
the UF river bathymetry is more sensitive to variations in
these parameters than the CMR river bathymetry.

The above findings are based on the variation in the river
bathymetry when a parameter is changed while others remain
constant. Also, we have not considered other factors such as
sediment load in this analysis. Hence, these results should
not be used to fully reflect the real-world river systems. In the
next section, we will observe the changes of these parameters
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and their simulations along the Waikanae River and how they
are correlated with the changes in the corresponding river
bathymetries to see if the results match with the findings in
this section.

3.2 Findings from evaluating relationships of
bathymetry and parameters in the formulas on the
study site

In this section, we first analyse Fig. 5 by dividing the dis-
tance between Waikanae River Treatment Plant gauge (up-
stream) and the coast into two parts — from the river upstream
to 1000 m downstream (upstream reach) and from 1000 m
downstream to the coast (downstream reach). Based on this,
we focus on analysing the upstream reach of the slope (first
row of Fig. 5), flow (second row), width (third row), and
combined (forth and fifth rows) datasets. We then compare
the two formulas in the upstream reach and then in the down-
stream reach. After this, Fig. 6 will be examined.

For the slope dataset, Fig. 5a-b indicate that, in the up-
stream reach, the Waikanae river becomes gentler when it
also deepens. In this case, despite variability of other param-
eters (i.e. river width and flow) along the river, the relation-
ship between slope and bathymetry still aligns with findings
in Sect. 3.1. Their simulations also follow this trend as seen
in Fig. 5c.

For the flow dataset, in the upstream reach of Fig. Sd-e,
when the Waikanae River becomes deeper, its flow shows
only a slight increase, from 145.196 to 146.194 cumecs, with
the highest value remaining constant for the next 6000 m
downstream. This implies that the bathymetry along this river
is not strongly correlated with the bank-full flow. However,
in Fig. 5f, the simulated rivers slightly deepen when the sim-
ulated flow increases. This pattern is still consistent with ob-
servations from Sect. 3.1, even though other simulated pa-
rameters (i.e. river width and slope) vary along the river.

For the width dataset, in Fig. 5g-h, in the upstream reach,
the Waikanae River width resembles a reversed version of its
bathymetry, showing an inverse relationship. In this situation,
in spite of variations of other parameters (i.e. river slope and
flow), the relationship of the river width and bathymetry still
follows the results found in Sect. 3.1. Their simulations also
indicate this trend in Fig. 5i.

For the combined dataset, Fig. 5j—m show the same pat-
terns as what we found above when analysing each parame-
ter dataset. Specifically, in the upstream reach, the simulated
bathymetries and bank-full flows are not strongly correlated
with each other. Apart from that, the simulated river slopes
decrease as the simulated bathymetries increase. Finally, the
shapes of the simulated river widths are reserved versions of
the simulated river bathymetries, showing their inverse rela-
tionship.

Between two formulas, in the upstream reach of Fig. 5b,
e, h, and j, the river bathymetries estimated by the UF are
lower than the CMR formula mainly due to the difference
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Figure 5. Relationships between simulated Waikanae River slopes, bank-full flows, widths, and bathymetries estimated by the Conceptual
Multivariate Regression and Uniform Flow formulas. First row: (a) simulated slopes, (b) corresponding bathymetries, and (c) their relation-
ships. Second row: (d) simulated bank-full flows, (e) corresponding bathymetries, and (f) their relationships. Third row: (g) simulated widths,
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in the friction and its exponent, as explained in Sect. 3.1.
However, in the downstream reach, both formulas generate
shallower rivers in which the UF bathymetries are greater
than the CMR bathymetries. This is where the river slope
decreases 80 % from about 0.001 to about 0.0002mm™!. Si-
multaneously, its width increases up to 400 % from approxi-
mately 20 to around 100 m.

Furthermore, in the downstream reach, given the flat ter-
rain, the increase in width outweighs the decrease in slope.
Mathematically, the slope and width are in the denomina-
tor of both formulas, indicating their inverse relationships
with the river bathymetries. Moreover, the slope drop (within
80 %) and its exponents (0.3 and 0.175 for the UF and CMR
formulas) are much smaller than the width increase (within
400 %) and its exponents (0.6 and 0.573 for the UF and CMR
formulas). Consequently, the river bathymetries are affected
by the increase in the river width than the decrease in the
slope. Besides, as mentioned in Sect. 3.1, when the width
starts increasing and the slope keeps decreasing, the river
bathymetries of both formulas first converge, then diverge,
with the UF bathymetries eventually exceeding the CMR
bathymetries.

Figure 6 shows the variations in the simulated bathyme-
tries across the spatial domain when the associated error dis-
tributions with the same percentage standard deviation were
added into the slope, flow, and width both individually and
simultaneously. In both formulas, the ranges of coefficients
of variations increases between the slope, flow, and width
datasets. It indicates that the variation in the river width is as-
sociated with the largest variability in the river bathymetries,
followed by the river flow and slope. Moreover, the colours
of the UF-formula river bathymetries are darker than those of
the CMR-formula ones. This demonstrates the UF-formula
bathymetries exhibit larger variability than those from the
CMR formula. These all results are consistent with the find-
ings in Sect. 3.1.

Overall, in the upstream reach, despite a slight rise in the
simulated bathymetries when the simulated flow increase,
they are not strongly correlated with each other. Along this
distance, the simulated river becomes deeper as their slopes
become gentler. The simulated river widths are opposite ver-
sions of the simulated bathymetries, demonstrating their in-
verse relationship. Despite the simultaneous variability along
the river of these parameters, their relationships with the
bathymetry are still consistent with the findings in Sect. 3.1.
In the downstream reach, the river becomes shallower when
it widens with a mild drop in the slope. Besides, for both
formulas, the variation in the river width corresponds to the
largest variability in the river bathymetries, followed by the
river flow and slope. The UF-formula river bathymetries have
more variations than the CMR-formula ones across three pa-
rameters. In the next section, we investigated how these vari-
ations in the bathymetries affect the flood predictions.

Hydrol. Earth Syst. Sci., 30, 183-203, 2026

3.3 Comparison of variations in maximum water
depths

The variations in covMWDs using the eight datasets are pre-
sented in Fig. 7 with their quartile deviations for compari-
son. We observed that, in both formulas, the slope dataset
exhibits the smallest variability in the covMWDs, followed
by the flow, width, and combination datasets. Furthermore,
across all parameters, the UF-formula datasets have higher
variability in the covMWDs than the CMR-formula datasets.

The order of variation magnitudes between datasets is
visible in Fig. 8, especially in the green zoomed in im-
ages. Specifically, in both formulas, more locations with
covMWDs less than 1.5 % are found in the slope dataset than
in the flow, followed by the width, and then the combination
datasets. The covMWDs larger than 1.5 % are mainly ob-
served at the edges of the flood extents around midstream and
tend to decrease closer to the river. It is also clear in these fig-
ures that the datasets using the CMR formula have more lo-
cations with covMWDs below 1.5 % than those using the UF
formula. For the combination dataset, in the green zoomed-in
image, we can see that the colours of covMWDs of the CMR
formula are darker than those of the UF formula. These or-
ders of variation magnitudes in flood depths between datasets
follow those in the river bathymetries found in Sect. 3.1 and
3.2.

To explain, between parameter datasets, the small vari-
ability in the river bathymetry corresponding with the vari-
ation in the river slope does not significantly affect the water
spreading into the floodplain, unlike the variations in the river
bank-full flow and width. The impacts of all these variations
become more apparent in floodplains farther from the river,
especially at flood boundaries in midstream, where the water
has less direct connection with the river. Between two formu-
las, because the variations in the UF-formula river bathyme-
tries are higher than the CMR-formula ones as seen in Fig. 6,
the variations in the flood depths of the UF-formula datasets
are also higher than the CMR-formula datasets.

3.4 Comparison of variations in flood extents

Figure 9 shows a comparison of flood extents between the
eight datasets. In both formulas, the slope datasets have the
smallest variability in the flood extent followed by the flow,
width, and the combination datasets. The order of these vari-
ation magnitudes in flood extent between datasets align with
those in the river bathymetries, as noted in Sect. 3.1 and 3.2.
The blue zoomed-in images in Fig. 10 can visualise these
flood extent differences.

The locations flooded less than 100 % of the time increase
between the slope, flow, width, and combination datasets as
seen in the blue zoomed-in images of Fig. 10. To explain, the
bathymetry determines the water volume the river can hold,
which influences how much water can exceed the riverbank
and extend in the floodplain. Hence, with the same amount
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Figure 6. Variations in the simulated Waikanae River bathymetries due to associated error distributions in parameters: the Conceptual
Multivariate Regression formula — (a) slope, (¢) bank-full flow, (e) width, and (g) combined; the Uniform Flow formula — (b) slope, (d) bank-
full flow, (f) width, and (h) combined.
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Figure 7. Distributions of coefficients of variations of maximum water depths (covMWDs) for eight datasets (slope-, flow-, width-, and

combination-CMR and -UF datasets).

of flood water from the January 2005 event, a small variation
in the river bathymetry can result in a small variation in the
flood extent and vice versa. This demonstrates the order of
variation magnitudes in flood extents between datasets fol-
lows that in the river bathymetries.

Between the two formulas, the blue zoomed-in images
highlight a location surrounding the river upstream to 1000 m
downstream where the UF-formula river bathymetries are
lower than the CMR-formula ones, resulting in greater flood
extent here in the UF-formula datasets. This leads to that, in
the UF-formula datasets, the flood extent variation appears
not only in locations already totally flooded in the CMR-
formula but also in new regions that are never flooded in the
CMR-formula datasets. Consequently, there are more varia-
tions in flood extent in the UF-formula datasets compared to
the CMR-formula datasets.

3.5 Comparison of variations in RMSEs

Figure 11 shows that, in both formulas, the variation in RM-
SEs of the slope dataset is the smallest, followed by those
of flow, width, and combination datasets. In addition, the
variations in RMSEs of the UF-formula datasets are larger
than the CMR-formula datasets. These trends correspond to
the order of variations in river bathymetries as mentioned in
Sect. 3.1 and 3.2.

The blue and red dashed lines represent the RMSEs for the
CMR and UF formulas when using the LiDAR-derived and
NIWA-estimated parameters without adding any errors. Each
line stands in the middle of boxplots of each formula, demon-
strating that these parameters still contain some errors deviat-
ing the results from the true predictions. Apart from that, we
also noted the UF-formula RMSEs are slightly higher than
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the CMR-formula ones. To explain, the CMR is developed
for coarse-grained rivers like the Waikanae River, leading to
lower RMSEs than the UF formula. In contrast, the UF for-
mula was not developed for any specific river types, which
may contribute to its slightly higher RMSE. However, these
small differences in RMSEs between the datasets using two
formulas highlight a broad applicability of the UF formula
on rivers without categorising their types.

4 Discussion

Our research went a step further than previous studies (Du-
rand et al., 2008; Lee et al., 2018; Moramarco et al., 2019;
Kechnit et al., 2024) to quantify the uncertainty in flood pre-
dictions due to the errors in the estimated river bathymetry. In
this research, we applied the Monte Carlo method to generate
a large number of simulations to capture the typical variabil-
ity in the flood predictions and included spatial variability
in our method. Moreover, we not only considered associated
error distributions in parameters collectively, but we also per-
formed a sensitivity analysis to assess the impact of each pa-
rameter. Hence, for situations where we lack the river bathy-
metric data and cannot collect or measure them for flood
modelling, the formulas in this study can be used with the
Monte Carlo assessment here that shows the sensitivity and
understanding of the limitations and uncertainties involved.
Furthermore, the analysis framework in this research can be
applied to a wide range of formulas, such as those that also
consider the sediment impacts, that are used to estimate river
bathymetries to represent rivers in the flood modelling. Fu-
ture research about this can help to answer which formula
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Figure 8. Variations in January 2005 maximum flood depths based on simulated Waikanae River bathymetries estimated by parameters with
associated error distributions: the Conceptual Multivariate Regression formula — (a) slope, (¢) bank-full flow, (e) width, and (g) combined;
the Uniform Flow formula — (b) slope, (d) bank-full flow, (f) width, and (h) combined.
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Figure 9. Distributions of flood extent for eight datasets (slope-, flow-, width-, and combination-CMR and -UF datasets).

contributes the most to the uncertainty in flood model out-
puts.

In our research, we enhance the applicability of our find-
ings by using the UF formula which is not constrained by
specific observed data and applicable across a wide range
of river types. Our results, based on the slight differences
in the RMSEs between the datasets using the CMR and the
UF equations, suggest the general applicability of the UF for-
mula without the need of river categorisation. However, be-
cause we have only compared the UF formula with the CMR
developed for coarse-grained rivers, comparisons with other
formulas and approaches are still needed to confirm the ap-
plicability of the UF formula.

The results of our research can help the data collection
process in which the parameters that have the greatest impact
(specifically river flow and width) should be focused on mea-
suring if resources are limited. Meanwhile, the parameter as-
sociated with the lowest influence (river slope) can be depri-
oritised. Nevertheless, due to the time-intensity and complex-
ity, we have not explored the errors in the river Manning’s n
as well as o and B coefficients. Furthermore, the Waikanae
River bank-full flow is not strongly correlated with the vari-
ability of the bathymetry along the river as it stays nearly
constant. This is based on the fact that the Waikanae River
sections in our paper were not joined by major tributaries.
Hence, future studies should investigate the errors associated
with these factors and perform a thorough sensitivity analysis
to better support the data collection process.

In practice, different rivers will have different characteris-
tics. Hence, it is necessary to generalise this study by consid-
ering a wide range of rivers for comparison and confirmation
for the results found here. Accordingly, further research fo-
cusing on many rivers with diverse features is recommended.
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Due to the lack of information about the sources of errors,
the expected errors in our research were assumed to be unbi-
ased and normally distributed with zero mean and a standard
deviation of 10 % of the best-estimated values. Hence, differ-
ent realistic sources of errors should be considered to com-
pare their impacts on the flood predictions. However, owing
to the time intensity and complexity, this issue should be re-
searched in another study.

Nguyen et al. (2025) analysed how the grid resolution in-
fluences on the flood predictions, which was not considered
in our study. The change in grid size can cause a significant
change in the river bathymetry and flood results. To cap-
ture the river structure with high accuracy, the grid resolu-
tion should provide several grid cells across the river. This
ensures the river is well resolved for flood modelling. Ac-
cordingly, a further study about this is essential for better un-
derstanding.

Using the UF and CMR formulas with the best estimated
parameters to obtain the river bathymetry can overcome the
time-intensive and expensive nature of its acquisition. How-
ever, it contains the errors which can affect the flood pre-
dictions as our paper analysed above. Currently, without us-
ing Monte Carlo framework, a freeboard is often added to
the flood level for addressing such uncertainty. It typically
considers deviations in flood estimate, construction toler-
ances, and natural factors not accounted for in the calcula-
tions (Ministry for the Environment, 2024). However, this
technique does not account for variations in flood extents,
as demonstrated in Sect. 3.4 in this research, which can be
influenced by the estimated river bathymetry. This suggests a
future investigation to improve the effectiveness of this tech-
nique.
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Figure 10. Variations in January 2005 flood extents based on simulated Waikanae River bathymetries estimated by parameters with associated
error distributions: the Conceptual Multivariate Regression formula — (a) slope, (c¢) bank-full flow, (e) width, and (g) combined; the Uniform
Flow formula — (b) slope, (d) bank-full flow, (f) width, and (h) combined.
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compared to the January 2005 observed flood levels. The RMSEs were calculated using the method described in Sect. 2.5.2.

On the other hand, although applying the Monte Carlo
framework to quantify this uncertainty is fully comprehen-
sive, its requirement of a large amount of simulations can be
seen as a computationally expensive problem. Due to this,
the uncertainty quantification is not normally considered in
the flood risk management. Hence, a more computational ef-
ficient method is essential. Machine learning approach, well-
known for its more effective process to obtain the comparable
results, is a good candidate which needs further investigation.

5 Conclusions

Our research focused on quantifying the uncertainty in flood
predictions due to the errors in parameters used to estimate
the river bathymetries. We applied LISFLOOD-FP flood
model within a Monte Carlo method to generate multiple
flood simulations for the January 2005 Waikanae River flood
event for analysis. We performed a sensitivity analysis on
three estimated parameters (river slope, flow, and width) and
two formulas (the UF and CMR formulas) to assess their er-
ror impacts on the flood predictions individually and collec-
tively through the estimated river bathymetries.

We found that, among three parameters, the uncertainty
in flood model outputs, when the errors were added into the
river width, is higher than when the errors were added into
the river flow, followed by the river slope. The combination
of all of them was found to have the highest uncertainty. Be-
tween two formulas, the uncertainty in the flood predictions,
especially in the flood depths and extents, when using the UF
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formula for estimating the river bathymetric data, is larger
than using the CMR formula.

It is recommended that, instead of developing from
scratch, the Monte Carlo framework used for the sensitivity
analysis in this research should be applied to benchmark var-
ious formulas used to estimate the river bathymetries to rep-
resent rivers in flood modelling. Further study is necessary
to confirm the broad applicability of the UF formula without
river categorisation. Moreover, based on our results, the data
collection process should focus on measuring the parame-
ters (river width and flow) that have more significant impacts
on the flood predictions if the resources are limited. Addi-
tionally, further investigations should also include the river
Manning’s n, and « and 8 coefficients to perform a thorough
sensitivity analysis.

Apart from that, we suggested another study to be im-
plemented on many rivers with different features. In addi-
tion, further research should consider how different realistic
sources of errors affect the flood predictions. Also, the im-
pacts of grid resolution on the estimated river bathymetry and
on the flood predictions should be focused in future study.
Currently, to cover such uncertainty, a freeboard is often
used, but it fails to cover the variation in the flood extent, and
thus a further study is recommended to improve its effective-
ness. Lastly, there is a need for simpler and faster methods
than the Monte Carlo framework such as machine learning
approaches to be included in flood risk management.
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Appendix A: Explanation about parameter exponents

The exponents mentioned in Sect. 2.2. are exponents of each
parameter after being processed from the original « and .
Specifically, for the UF formula, with @ =2/3 and 8 = 1/2,
it can be processed as below:

nQ s TE] nQ 0.6
hz(wsm) ‘i’h:(wso.s)

0.6 H0.6
PR (A1)

w0-6503
Hence, the exponents of the slope (), bankfull flow (Q),
and width (w) for the UF formula are 0.3, 0.6, and 0.6. For
the CMR formula, with & = 0.745 and 8 = 0.305, it can be
changed as below:

e 0.573
‘ ? 140.745 ( ?
h= (_n ) S h= (_n )
w §0-305 w §0-305

0.573 0.573
n""Q
& h= w0-573 §0.175 (A2)
Hence, the exponents of the slope (5), bankfull flow (Q), and
width (w) for the CMR formula are 0.175, 0.573, and 0.573.
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