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Abstract. In the past decade, the scientific community has
seen an increase in the number of global hydrometeorolog-
ical products. This has been possible with efforts to push
continental and global land surface modelling to hyper-
resolution applications. As the resolution of these datasets
increases, so does the need to compare their estimates against
local in-situ measurements. This is particularly important
for Brazil, whose large continental-scale domain results in
a wide range of climates and biomes. In this study, high-
resolution (0.1 to 0.25°) global and regional meteorologi-
cal datasets are compared against flux tower observations
at 11 sites across Brazil (for periods between 1999-2010),
covering Brazil’s main land cover types (tropical rainfor-
est, woodland savanna, various croplands, and tropical dry
forests). The purpose of the study is to assess the quality
of four global reanalysis products [ERAS5-Land, GLDAS2.0,
GLDAS2.1, and MSWEPv2.2] and one regional gridded
dataset developed from local interpolation of meteorological
variables across the country [Brazilian National Meteorolog-
ical Database (referred here as BNMD)]. The surface meteo-
rological variables considered were precipitation, air temper-
ature, wind speed, atmospheric pressure, downward short-
wave and longwave radiation, and specific humidity. Data
products were evaluated for their ability to reproduce the
daily and monthly meteorological observations at flux tow-
ers. A ranking system for data products was developed based
on the Mean Squared Error (MSE). To identify the possible
causes for these errors, further analysis was undertaken to de-
termine the contributions of correlation, bias, and variation to
the MSE. Results show that, for precipitation, MSWEP out-

performs the other datasets at daily scales but at a monthly
scale BNMD performs best. For all other variables, ERAS-
Land achieved the best ranking (smallest) errors at the daily
scale and averaged the best rank for all variables at the
monthly scale. GLDAS2.0 performed least well at both tem-
poral scales, however the newer version (GLDAS2.1) was an
improvement of its older version for almost every variable
assessed. BNMD wind speed and GLDAS2.0 shortwave ra-
diation outperformed the other datasets at a monthly scale.
The largest contribution to the MSE at the daily scale for all
datasets and variables was the correlation contribution whilst
at the monthly scale it was the bias contribution. ERAS-Land
is recommended when using multiple hydrometeorological
variables to force land-surface models within Brazil.

1 Introduction

In regions that lack high-density meteorological monitoring
networks or have sporadic historical observations, gridded
weather products provide valuable historical references to aid
studies for many purposes, including water resources (Syed
et al., 2008; Vissa et al., 2019), flood forecasting and heat-
waves (Miralles et al., 2019), prediction of vegetation dy-
namics and agricultural yields (Tian et al., 2019), and cli-
mate change impacts (Wagner et al., 2007; Dullaart et al.,
2019; Terzago et al., 2020; Xi et al., 2021). These products
provide a method to integrate available weather station data
both temporally and spatially consistently, whilst taking into
consideration factors of influence such as topography, pre-
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vailing winds, and distance (Thornton et al., 2021). They are
becoming more readily available worldwide and are helping
with regional to global applications where ground-based ob-
servations are not available or more consistent temporally ex-
tensive datasets are needed (e.g., Soti et al., 2010; Hughes
and Slaughter, 2015; Gampe and Ludwig, 2017). However,
limitations in the forcing data can result in disinformation
which can lead to incorrect conclusions (Beven and Wester-
berg, 2011; Kauffeldt et al., 2013) and therefore the valida-
tion of such products is essential to ensure a fair and reli-
able assessment of model performance. Comparison studies
between these products and ground-based observations over
the study area is one way to validate and determine reliability
and suitability.

New efforts are being made to validate global data prod-
ucts for important hydrological applications. For example,
Sikder et al. (2019) tested three GLDAS versions and ERA-
Interim/Land products over South and Southeast Asia (the
Ganges-Brahmaputra-Meghna and Mekong River basins)
against discharge observations to determine which prod-
uct better describes the system. Gebrechorkos et al.‘(2020)
used rainfall observations to analyse the ability of two grid-
ded high-resolution datasets to detect climate variability and
droughts across East Africa, whilst Weber et al. (2021) com-
pared multiple gridded products against an Alpine observa-
tion centre to determine their capability for snow hydrologi-
cal modelling.

The selection of a gridded product is based on its suit-
ability for long-term hydrological applications, which re-
quire consistent meteorological forcing data spanning over
20 years or more. However, it is also important to com-
pare products in data-sparse areas whenever ground-based
observations are available to provide insight on the local-
to-regional uncertainties associated with the product. Higher
uncertainties potentially affect the ability to prepare for cli-
mate events by local or regional institutions. Furthermore,
increased data recording in areas with scarce availability
strengthens model representation of Earth system processes
(IPCC, 2012).

With centres such as the European Centre for Medium
Range Forecasts (ECMWF), and the National Aeronautics
and Space Administration (NASA) Goddard Space Flight
Center (GSFC)’s Global Modelling and Assimilation Office
(GMAO) producing openly available high-resolution global
gridded products using different techniques, it can be dif-
ficult to know which products may be better suited for
each application. Different products may excel in some ar-
eas over others due to the nature of their interpolation/re-
analysis method and the ground observations used. For ex-
ample, products like the ECMWF’s ERAS-Land (Mufoz-
Sabater, 2019) are developed from blending observations
with past short-range weather forecasts rerun with modern
weather forecasting models to produce many land-surface
flux variables. MSWEPV2.2 (Beck et al., 2019), however,
focuses only on precipitation data and combines satellite re-
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mote sensing data with multiple sources of reanalysis prod-
ucts, then bias corrects and weights between multiple nearby
observation gauges. Multiple studies have been undertaken
showing that different products provide contrasting results
depending on the environment or climate in question (Decker
et al., 2012; Wang and Zeng, 2012; Sikder et al., 2019; Beck
et al., 2021).

The global distribution of weather stations tends to be bi-
ased toward populated areas leaving large areas underrepre-
sented (Viana et al., 2021). For example, a study that utilised
7759 rain gauges across Brazil revealed that the Amazon
basin, which contains 70 % of the country’s freshwater, has
the lowest density of gauges, with only 724 (< 10%) in
the entire basin within Brazilian borders (combined states
of Acre, Amapd, Amazonas, Pard, Rond6nia, Roraima, and
Mato Grosso) (Filho et al., 2018). Places of ecological impor-
tance, such as large forests and savannahs, like the Amazon
and Cerrado, influence the hydrological cycle through a va-
riety of factors including; biodiversity, vegetation dynamics,
and root distribution (Oliveira et al., 2005; Diaz et al., 2007;
Bonal et al., 2016; Coe et al., 2016) despite low meteorolog-
ical station density. To address this, meteorological obser-
vation data from measurement stations such as flux towers
provide valuable insight into representative areas across the
country.

FLUXNET is an international network of flux towers
where eddy covariance techniques are used to measure en-
ergy, water and carbon fluxes between the biosphere and at-
mosphere (Baldocchi et al., 2001); however, their distribu-
tion is highly biased towards North America and Europe.
This network of towers has provided opportunities to vali-
date gridded products (e.g. reanalysis products) over regions
with dense observational coverage, such as North America
(Decker et al., 2012) and China (Wang and Zeng, 2012).
However, comparatively less work has been undertaken in
regions with limited observational coverage, such as South
America; although there have been some efforts to compare
evapotranspiration products (derived from land surface mod-
els, reanalysis, and remote sensing) (Sorensson and Ruscica,
2018; Gomis-Cebolla et al., 2019; de Andrade et al., 2024).
The tower sites in this study are part of FLUXNET but no
attempt thus far has been made to comprehensively evaluate
gridded products using these locations. In this study, the eval-
uation is centred on core meteorological variables (Tables 2
and 3), as these represent the fundamental hydrometeorolog-
ical drivers used in land surface modelling and hydrological
applications. Flux-derived variables such as evapotranspira-
tion (i.e., latent heat flux) are not considered directly, but re-
main an important avenue for future work.

Here, the accuracy of one regional and four global high-
resolution gridded meteorological products are compared
over 11 ecologically diverse flux tower sites spanning mul-
tiple biomes across Brazil (Fig. 1, Table 1). Specifically,
the study aims to answer four questions. Firstly, which
high-resolution gridded product is the most accurate over-
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all when compared with local observation data? Secondly,
which product demonstrates the highest accuracy for each
variable when evaluated against observational data? Thirdly,
what are the dominant types of error associated with each
product when compared to observation data? And finally,
how do these errors vary spatially and seasonally?

2 Datasets
2.1 In-situ observations

Meteorological data were obtained from the 11 sites across
Brazil (Fig. 1, Table 1). These sites represent those for which
complete and quality-controlled meteorological forcing data
were available, including all variables required for the calcu-
lation of reference evapotranspiration (ETy) following FAO
methodology (Allen et al., 1998). Although additional towers
exist, such as CAX (Caxiuand, a tropical rainforest riverine
site in the state of Pard) and USE (Usina Santa Eliza, a sugar-
cane site in the state of Sdo Paulo), they were excluded from
this study due to insufficient coverage or data quality issues
that prevented them from meeting the thresholds required for
analysis.

The selected towers provide representation of Brazil’s
largest biomes, particularly the Amazon and Cerrado, as
well as croplands and grasslands/pastures. However, some
biomes, notably the Caatinga and Pantanal, are not repre-
sented in the present dataset due to the absence of suitable
flux tower data at the time of carrying out this study. This
omission is acknowledged as a limitation.

Conventional meteorological stations (INMET) were also
not used in this study. Importantly, some of the reanalysis
and blended products assessed (e.g., BNMD) incorporate IN-
MET station data in their development. Using flux tower
data, which are independent of INMET, allows for a more
objective evaluation of these products. This approach aligns
with established practice; for example, FLUXNET data have
been used in a similar manner for the evaluation of MSWEP
precipitation datasets because they remain fully independent
of the products under assessment.

Data from the flux tower sites cover periods ranging from
four to seven years, although not always overlapping. Vari-
ables include air temperature, precipitation, wind speed, air
pressure, longwave and shortwave radiation, and specific hu-
midity (Tables 2 and 3). These are the primary hydromete-
orological drivers used in land surface models and they un-
derpin the estimation of surface energy and water fluxes, al-
lowing for the calculation of evapotranspiration, which in
turn provides essential inputs for many hydrological models.
Where necessary, variables were converted to ensure unifor-
mity and comparability across sites, and additional variables
(e.g., specific humidity) were derived from recorded param-
eters such as vapour pressure, dew point temperature, and
relative humidity.
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2.2 Regional Products

Efforts have been made to produce high-resolution datasets
through interpolation of weather stations (Xavier et al.,
2016). The meteorological station network across Brazil
varies spatially and temporally with few data available be-
fore 1980. There has been a steady increase in weather sta-
tions and rain gauges over the last 40 years but with heavy
bias towards stations closer to densely populated areas such
as Sdo Paulo and Rio de Janeiro (Alvares et al., 2013; Filho
et al., 2018). These biases bring the quality of meteorologi-
cal datasets under scrutiny and a strong need for validation
especially over the more data poor areas. Gridded data prod-
ucts were selected based on their open access availability,
a spatial resolution of 0.25 x 0.25° or finer, and a daily or
sub-daily temporal resolution (Table 3) referred to here on as
high-resolution.

2.2.1 Brazilian National Meteorological Gridded
Database (BNMD)

A high-resolution gridded dataset developed from local in-
terpolation of meteorological variables across Brazil was re-
leased in 2016 spanning 1980-2013 (0.25 x 0.25°, daily) (the
Brazilian National Meteorological Database, referred here as
BNMD) (Xavier et al., 2016). The data were collected from
3625 rain gauges and 735 weather stations over this period
and quality control procedures were performed to identify
outliers based on Liebmann and Allured (2005). The nov-
elty of this dataset, at the time of this study, equates to fewer
reviews. Combine this with the rapid increase in stations/-
gauges over the 30-year period data has been made available,
questions can be raised surrounding its reliability, particu-
larly over less data rich areas such as the Amazon.

2.2.2 Global Land Data Assimilation System (GLDAS)
2.0 and 2.1

In 2004, NASA-GSFC and NCEP released a reanalysis
data product called Global Land Data Assimilation Sys-
tem (GLDAS) (Rodell et al., 2004). Since then, GLDAS
has been reprocessed leading to the updated release of
GLDAS2.0 in November 2019 and GLDAS2.1 in January
2020. GLDAS?2.0 data are products of the NOAH-3.6 LSM
forced using the Princeton meteorological forcing dataset
(Sheffield et al., 2006) producing a dataset from 1948-2014.
GLDAS2.1 is a direct update from GLDAS-1 where NOAH-
3.6 LSM is forced with combined forcing data including
Global Precipitation Climatology Project (GPCP) version 1.3
produced by NOAA with available data from 2000-present
(both datasets 0.25 x 0.25°, 3-hourly).

2.2.3 ECMWEF Reanalysis 5-Land (ERAS-Land)

In 2019, the European Centre for Medium Weather Fore-
casting (ECMWF) released ERAS5-Land (an upgraded form
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Figure 1. Map of Brazil split into its six major biomes showing the location of the study sites analysed in this paper and their measured
average monthly precipitation, air temperature, and incoming irradiance.
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Table 1. Summary of the abbreviated names, lat, lon, location, period of observation, vegetation type, elevation (abs), average temperature
(T), average monthly precipitation (precip) and references for the 11 flux tower sites analysed in this paper. All sites were provided directly

by the principal investigator*.

Name Lat(°N) Lon(°E) Location (State) Start End

K34 —2.60908 —60.2093 Manaus (AM) 1999 2006

K67 —2.85667 —54.9589  Tapajos (PA) 2002 2006

K77 —3.0119 —54.5365 Tapajos (PA) 2000 2005

K83 —3.017 —54.9707 Tapajos (PA) 2000 2004

CRA  —28.6034 —53.6736 Cruz Alta (RS) 2009 2014

FNS —10.774  —62.3374  Ji-Parana (RO) 1999 2002

RJA —10.0832 —61.9309 Jaru (RO) 1999 2002

PDG —21.6206 —47.63  Luis Antonio (SP) 2001 2003

VCP —21.5833 —47.602  Ribeirao Preto (SP) 2005 2009

BAN  —9.82442 —50.1591 Araguaia (TO) 2003 2006

USR —21.6371 —47.7903  Luis Antonio (SP) 2005 2008
Name Land Cover Elevation (m) Mean 7 (°C) Mean Monthly Precip (mm) Reference
K34 Tropical Rainforest 130 259 206  Aratjo et al. (2002)
K67 Tropical Rainforest 88 25.3 140  Rice et al. (2004)
K77 Cropland — Pasture 130 26.3 137  Sakai et al. (2004)
K83 Tropical Rainforest 153 25.9 125  Goulden et al. (2004)
CRA  Cropland (soybean) 432 18.3 144 Webler et al. (2012)
FNS Cropland — Pasture 306 24.8 138  Kirkman et al. (2002)
RIA Tropical Dry Forest 145 25.3 166  von Randow et al. (2004)
PDG Savanna 690 22.6 107 da Rocha et al. (2002)
VCP Cropland (Eucalyptus) 761 21.3 102 Cabral et al. (2010)
BAN  Woodland Savanna 120 26.3 136  Borma et al. (2009)
USR  Cropland — Sugarcane 552 21.6 94 Cabral et al. (2013)

* The site names are abbreviations used throughout this paper. K stands for Kilometre followed by a number which is the name of the access road to the site within
the Amazon. The other sites are abbreviations also regarding their location listed here: CRA — Cruz Alta, FNS — Fazenda Nossa Senhora, RJA — Rebio Jaru, PDG — P¢é
de Gigante, VCP — Votorantim, Fazenda Cara Preta, BAN — Bananal Island, USR — Usina Santa Rita.

of ERA-Interim) providing a higher resolution global land-
based dataset from 1981-present (0.1 x0.1°, hourly) (Mufioz-
Sabater, 2019) generated using Copernicus Climate Change
Service Information. The production of ERAS5-Land is the re-
sult of the tiled ECMWF Scheme for Surface Exchanges over
Land incorporating land surface hydrology (H-TESSEL).
The recent release sees it benefit from over a decade of devel-
opments in 4D-VAR data assimilation, core dynamics, and
model physics relative to GLDAS and ERA-Interim. As it
integrates a wide array of global observation data sources,
employs advanced data assimilation techniques, and bene-
fits from continuous improvements the quality would be ex-
pected to be higher than that of new regional datasets such as
ones produced by Xavier et al. (2016).

2.2.4 Multi-Source Weighted-Ensemble Precipitation
v2.2 (MSWEPv2.2)

Another recent dataset that garnered significant attention is
the Multi-Source Weighted-Ensemble Precipitation, version
2.2 (MSWEPv2.2) (Beck, et al., 2019). Although only pre-
cipitation data, it provides high temporal (3-hourly) and spa-
tial (0.1°) resolution based on gauges, satellites, and reanal-
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ysis with distributional bias corrections. The dataset merges
multiple observation, satellite and reanalysis data across the
globe and its predecessors have proven to provide reliable es-
timates for precipitation patterns globally dating from 1979-
2017 (Baez-Villanueva et al., 2018; Moreira et al., 2018; Al-
ijanian et al., 2019; Xu et al., 2019).

Table 3 provides a summary of the gridded products used
in this study with information about time periods covered,
temporal and spatial resolution, the meteorological variables
accessed and their references.

3 Methodology

This section describes the data manipulation necessary that
enabled us to quantify the differences between the gridded
products and observations.

3.1 Quality control

Flux tower data frequently contain gaps or periods with sub-

optimal data quality due to a variety of reasons (e.g. sen-
sor malfunction, drifting, calibration errors, power supply is-

Hydrol. Earth Syst. Sci., 30, 141-162, 2026
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Table 2. Availability of each variable for each flux tower site. The meteorological variables are; ws, wind speed, ta, air temperature, press,
atmospheric pressure, rgs, short wave radiation, par, photosynthetically active radiation (used to calculate rgs), rgl, long wave radiation, prec,
precipitation, ee, vapour pressure, dpt, dew point temperature, and RH, relative humidity. ee, dpt and RH variables were used to calculate

specific humidity.

Meteorological variables

Site ws ta press rgs par rgl prec ee dpt RH

K34 X X X X X X X

K67 X X X X X X

K77 X X X X X X X

K83 X X X X X X X

CRA X X X X X X

FNS X X X X X X X

RJA X X X X X X X

PDG X X X X X X

VCP X X X X X X

BAN X X X X X X

USR X X X X X X

Table 3. Summary of gridded data products used in this study™*.

Data Descriptor ~ Data Source Variables accessed Periods Temp.res. Spatialres. Reference
BNMD BNMD Prec, maxTa, minTa, rg, press, ws, RH  1980-2017  Daily 0.25x0.25 Xavier et al. (2016)
ERAS5-Land ERAS5-Land Prec, Ta, rg, rgl, press, ws, dpt 1981-2019  Hourly 0.1 x0.1 Muiioz Sabater (2019)
GLDAS2.0 GLDAS_NOAH25_3H 2.0  Prec, Ta, rg, rgl, press, ws, g 1948-2014  3-hourly 0.25x 0.25 Rodell et al. (2004)
GLDAS2.1 GLDAS_NOAH25_3H 2.1  Prec, Ta, rg, rgl, press, ws, ¢ 2000-2019  3-hourly 0.25x0.25 Rodell et al. (2004)
MSWEPvV2.2 MSWEP_v2.2_sh Prec 1979-2017  3-hourly 0.1x0.1  Beck etal. (2019)

* Refer to Table 2 for abbreviations. q refers to specific humidity. Note: temporal resolution was converted to the most coarse of the datasets — Daily. Monthly values were also generated.

sues). To address this, the selection of variables for each site
was guided by their data availability, consistency, and a re-
quirement for completeness, with more than 80 % data cover-
age achieved after infilling (Jung et al., 2024). Furthermore,
they were analysed for trends to identify potential measure-
ment drifts caused by instrumentation. Initial quality con-
trol and gap-filling procedures had already been conducted
by the principal site investigator. Despite this, remaining er-
rors related to faulty instrumentation were removed from
the dataset. Gaps in the seven meteorological variables were
subsequently filled using linear regression, prioritising vari-
ables from the same site that exhibited strong correlations
(R*>0.8), with the most robust correlations being utilised
first. Instruments logging similar measurements were pri-
marily used for gap filling. For example, most stations mea-
sured wind speed using both eddy covariance techniques and
an anemometer, logging almost identical measurements, yet
overlapped different periods of time. Similarly, there were
multiple instruments measuring temperature, shortwave and
longwave radiation, and humidity.

3.2 Temporal averaging

Flux tower sites have different recording methods and tem-
poral resolutions. All observation and gridded datasets were

Hydrol. Earth Syst. Sci., 30, 141-162, 2026

converted to the coarsest common temporal resolution, the
daily scale, for analysis (BNMD, Table 3). As the gridded
datasets have no gaps, this was a straightforward forward or
backward averaging depending on the variable and averaging
method. Two-sample Kolmogorov-Smirnov (K-S) tests were
carried out on the observation data for each variable, where
full days (24 h) were used to create daily data and set as the
reference distribution. Samples were then tested against this
distribution using one less hour each iteration to determine
whether samples significantly deviated from the reference
sample. A minimum of 12h of data (50 % available) was
set as the threshold for daily conversion. This choice was
based on a sensitivity analysis in which stricter thresholds
(100 %, 90 %, 80 %, 70 %, 60 %) were tested. While higher
thresholds led to a reduction in the number of valid days
across sites, gains in accuracy were marginal when evaluated
against the reference mean and standard deviation. The 50 %
threshold therefore represented a pragmatic balance between
representativeness and data availability. Although systematic
biases cannot be fully excluded (e.g., from gaps clustering
during specific conditions), the analysis showed that daily
and monthly estimates were not significantly affected.

A similar averaging method was adopted to convert daily
data to monthly. However, due to a shortage of data avail-
ability, instead of using 100 % of days available in a month
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as the reference sample, 80 % or above was used to acquire
a more representative sample to test against. Evaluation of a
lower inclusion threshold (50 % of days in a month) demon-
strated that monthly means and standard deviations remained
consistent, supporting its use as a minimum conversion cri-
terion.

Precipitation was summed when converting to daily and
monthly. Rainfall does not follow a regular pattern or known
distribution, meaning taking anything less than all 24h of
available data would result in an under-prediction. There-
fore, only days with all hourly data available were converted
to daily. The same approach was taken converting daily to
monthly but, in some cases, resulted in a high loss of data.
To conserve data, each site was assessed uniquely looking at
the two-sample K-S test results and changes in the mean af-
ter using fewer days in the month to convert (i.e., rejected if
changes in the means and standard deviations were > 2 %).
A scaling factor was then applied to the monthly total de-
pending on the percentage of days missing to bring the total
to 100 %.

3.3 Wind Speed vertical interpolation

The height at which the measurement instruments are located
differ at each site. To compare data products to the observa-
tions, they are vertically interpolated to the height of the in-
strument at each site. The BNMD wind speed variable was
calculated by interpolating laterally from the nearest Brazil-
ian weather station which records wind speed over grass. The
ERAS5-Land 10 m wind speed product is produced for com-
parison against surface synoptic observation (SYNOP) sta-
tions, also above grass. GLDAS 10 m wind speed is adjusted
down from the model’s lowest level to 10 m, but it is unclear
whether this is over grass or different vegetation types. For
consistency, the same vertical interpolation method was used
for all data products. The wind speeds were interpolated up
the log-wind profile using grass as the vegetation type at the
height of the WMO weather station standard (30 cm) from
either 2 or 10 m depending on the data product.

3.4 Atmospheric Pressure

Atmospheric pressure is not provided as a variable in the
BNMD dataset; thus, it was estimated as a single continuous
value following the method outlined in the FAO Irrigation
and Drainage Paper No. 56 (based on data homogeneity and
availability). Incorporating this estimated value allowed for a
critical comparison of its performance relative to other mea-
sured variables, providing insight into whether the observed
variables performed better or worse than a single mean es-
timate. The atmospheric pressure variable was available for
comparison in the ERA5-Land and both GLDAS products.
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3.5 Specific humidity

Specific humidity was available for both GLDAS datasets
but needed to be calculated for ERA5-Land and BNMD.
ERAS5-Land water vapour pressure was calculated from the
dew point temperature variable and then converted to specific
humidity using pressure (Shuttleworth, 2012). For BNMD,
the vapour pressure at maximum and minimum temperatures
was calculated using the FAO method (Eq. 11, Allen et al.,
1998). These were then used with the relative humidity, and
estimated pressure to calculate specific humidity using ideal
gas laws (Bolton, 1980).

3.6 Decomposition of the Mean Squared Error

To quantify differences across variables, datasets, and tem-
poral scales, the Mean Squared Error (MSE) was calculated
for each variable-data product combination relative to the ob-
servational data at each site. The MSE is a single metric with
limited explanation about the source of the error, but it can
be decomposed into parts to acquire a better understanding
of contributions to the error (Gupta et al., 2009, Eq. 1).

MSE =2-05-00- (1 —r) + (05 — 00)> + (s — tto)> (1)

In Eq. (1), o and o, are the standard deviations of the sample
(gridded product) and observations, r is the linear correlation
between the sample and the observations, and s and u, are
the means of the sample and observations respectively. Writ-
ten like this the equation is seen to have three parts. The first
term is the correlation contribution to the MSE, the second,
the variation contribution or differences in standard devia-
tion, and the third term represents the bias contribution or
differences in means (Gupta et al., 2009). For a clearer visu-
alisation of the results, the individual error source to MSE
was scaled to the RMSE magnitude to conserve the units
for each variable (Iwema et al., 2017). Whilst the MSE is
beneficial when comparing products, quantifying the relative
contributions to the MSE provides valuable insights into the
reasons behind discrepancies between the observations and
the gridded products.

3.7 Performance ranking

The large volume of data, spanning five gridded products
over three decades of time series from seven variables across
multiple observation sites, presents significant challenges in
summarising the results into a coherent structure. For this
reason, a ranking system was used to ascertain which data
product for each variable performed best due to its simplic-
ity (Brunke et al., 2003). The MSE for each variable was
given a rank dependant on how many data products have that
variable recorded (for incoming longwave radiation this was
1-3; precipitation, 1-5; and all other variables 1-4, 1 being
the best performing/lowest MSE). This was carried out for
each site and then the ranks were averaged across all 11 sites
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to provide a single rank for each variable and each data prod-
uct. A product with the lowest MSE for a variable over all 11
sites would score a rank of 1. An overall average rank was
then given to each data product which only included ranks of
variables that were present for all products. This method of
ranking was performed for both the daily and monthly data.

3.8 Sensitivity to observational record length

To assess the influence of dataset length on performance met-
rics, a sensitivity analysis was carried out using subsets of
the longest flux tower records (K34, K77, CRA, and VCP).
For each site, shorter records of two and four years were ex-
tracted and compared against the full observational record.
Errors were evaluated as the percentage difference relative to
the observational mean (RMSE /), and the maximum and
minimum values across all gridded products were calculated.

The analysis showed that all subset errors deviated by less
than 10 % from those obtained using the full observational
record. This indicates that performance metrics are robust to
record length within the range tested. Full results are pre-
sented in the Supplement (Figs. S3-6).

4 Results

In this section, precipitation and air temperature are analysed
separately due to their fundamental importance in hydrologi-
cal and climatological studies. These two variables exert sig-
nificant influence on ecosystem dynamics and are the more
widely used in model validation and environmental monitor-
ing. The remaining variables are discussed collectively for
brevity, as they primarily serve to complement the analysis
of temperature and precipitation.

The methods outlined in Sect. 3 were applied to five prod-
ucts at 11 observation sites for seven meteorological vari-
ables, at both daily and monthly timescales. An example of
the results is shown in Fig.‘2, which illustrates monthly air
temperature at the BAN site. The visual representation of the
MSE components allows for a clearer interpretation of the
performance of each dataset. In Fig. 2a, the partial contri-
butions to the MSE are colour-coded and plotted as stacked
columns, where the total column height reflects the total
MSE, scaled to the RMSE. The column height differences
across products facilitate direct comparison of their perfor-
mance.

To further understand these results, Fig. 2b offers addi-
tional context, illustrating the key sources of error presented
in Fig. 2a. For example, the large bias contributions for the
BNMD and GLDAS2.0 datasets are attributed to consistent
overpredictions of observed data with higher mean temper-
atures. Despite this, the seasonality of both datasets aligns
closely with observations, resulting in a lower contribution
from variability errors. In contrast, the GLDAS2.1 dataset
displays higher variability error, likely due to overprediction
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during the hot months and underprediction during the cooler
periods, though it has a smaller bias contribution due to a
similar overall mean with the observation data. The ranking
scores in Table 4 complement these visualisations (Figs. 3
and 4) by providing a comprehensive comparison of the MSE
for each dataset and variable, averaged over the 11 flux tower
sites and presented alongside an overall ranking across all
variables.

4.1 Precipitation

Precipitation data from all five gridded datasets were sta-
tistically analysed at both daily and monthly temporal res-
olutions, allowing for a comprehensive comparison across
scales. MSWEPvV2.2 consistently performed the best at the
daily scale, while GLDAS2.0 exhibited the poorest perfor-
mance at both daily and monthly resolutions. However, when
considering monthly precipitation, BNMD demonstrated the
best overall performance among the compared products (see
Sect. 5.2).

Figures 3 and 4 illustrate the partial contributions to the
MSE for each dataset at daily (Fig. 3) and monthly (Fig. 4)
scales, providing insight into the sources of error across sites.
At the daily scale (Fig. 3), the primary contributor to the
MSE is the correlation error, particularly at sites such as RIA
and K34, where variability errors are also prominent. Inter-
estingly, bias contributes very little to the total MSE on a
daily basis. However, this pattern shifts at the monthly scale
(Fig. 4), where bias plays a much larger role. For instance,
in the northern Amazonian sites (K67, K77, and K83), the
ERAS5-Land dataset consistently overpredicts monthly rain-
fall, resulting in large spikes in the bias component of the
MSE (see Sect. 5.3).

Another key observation is the variability contribution,
which is notably high at sites RJA and USR. While most
datasets capture the total rainfall during dry months, they
tend to overpredict rainfall during the wet season, increasing
the variability error. Although MSWEPv2.2 generally out-
performs the other datasets, it did not perform consistently
across all sites. For example, at the daily scale, MSWEPv2.2
had the poorest performance at K83, where timing discrepan-
cies during the wet season led to high correlation errors. Sim-
ilarly, at the monthly scale, MSWEPv2.2 performed worst
at BAN, where overpredictions during peak wet months re-
sulted in higher bias and variability contributions to the MSE.

4.2 Air Temperature

Air temperature was analysed across four of the gridded
datasets. ERAS5-Land performed best whilst GLDAS2.0 per-
formed least well at both daily and monthly scales (Table 4).
The ranking scores of 1 and 1.09 indicate that ERAS5-Land
had the lowest MSE when compared with every other dataset
across all sites at the monthly scale and all sites except one
(CRA) at the daily scale respectively. The monthly BNMD
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Figure 2. Air temperature at site BAN, (a) partial contributions to the MSE for each gridded dataset, and (b) the monthly time series of all
gridded datasets for air temperature over the operation period of the flux tower (observation data in bold).

dataset performed equally as poorly as GLDAS2.0 meaning
the ranking system is unable to identify which dataset reflects
the in-situ observations least well. Correlation error has the
largest contribution to the MSE for the daily datasets with the
bias contribution also having some influence (Fig. 3). How-
ever, as found with precipitation, moving from the daily to
monthly scale, the greatest source of error shifts across all
datasets and sites from the correlation contribution to the bias
contribution (Fig. 4).

Both the BNMD and GLDAS2.0 datasets consistently
overpredict air temperature explaining the bias contributions
for both monthly and daily datasets. Although performing
well overall, the monthly GLDAS2.1 dataset had the largest
variability contributions which are explained by overpredict-
ing temperatures in the hotter months and underpredicting
them in the cooler months (K34, K67, K77 and BAN). The
ERAS5-Land dataset followed the mean of the observation
data most closely but varied in either overpredicting or un-
derpredicting temperature at different sites.

4.3 Other Meteorological Variables

Besides precipitation and temperature, five other meteorolog-
ical variables were analysed: wind speed, pressure, down-
ward shortwave and longwave radiation fluxes, and specific
humidity. Among these, wind speed exhibited the poorest
performance in GLDAS?2.0 across both temporal resolutions,
whereas ERA5-Land demonstrated the highest accuracy at
the daily scale and BNMD at the monthly scale. Substantial
bias errors are evident at site FNS across all datasets, with
gridded datasets underpredicting observation data by means
ranging 45 %-75 %. At site CRA, a high degree of variability
and bias contributes to the MSE, with datasets underestimat-
ing observed values from 2009 to 2013. However, from 2013
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to 2014, the observed wind speed declines uncharacteristi-
cally, leading to an overestimation by the gridded products.

ERAS-Land proved to have the lowest MSE on average
whilst GLDAS2.1 performed worst at both temporal reso-
Iutions when analysing pressure. It is worth noting that the
ranking did not change between daily and monthly scales for
pressure as performance consistency was unaffected between
daily and monthly datasets. The errors associated with pres-
sure are heavily dominated by the bias contribution (Figs. 3
and 4). Contributions to the variability error are visible for
BNMD as pressure was estimated at a constant value using
the elevation of the site following the standard FAO method
(Allen et al., 1998). BNMD’s relatively low MSE when com-
pared to other datasets tells us that estimating a single value
for pressure can sometimes more accurately reflect the ob-
servation data. The large consistent biases at sites K67 and
RJA are due to an overprediction and underprediction of 23
and 19 hPa on average, respectively, for all datasets.

ERAS5-Land performed best again at the daily scale for
downward shortwave radiation fluxes whilst BNMD per-
formed worst. Surprisingly, ERA5-Land performed worst at
the monthly scale while GLDAS2.0 performed best. The cor-
relation contribution to the MSE dominated across all sites
at both daily and monthly scales, but as temporal resolu-
tion decreases, so does the correlation contribution, result-
ing in lower overall MSEs. Large bias contributions are ev-
ident at site K67 over both temporal resolutions as the grid-
ded datasets consistently overpredict the observation data by
around 40 W m~2. The observation data tend to have a down-
wards trend over the entire recording period resulting in an
increased bias towards the end of the time series when com-
paring to the gridded products.

Only three of the gridded data products and five sites have
measurements of downward longwave radiation leading to
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Table 4. Overall ranking scores for MSE. MSE is taken per variable per site and ranked (Tables S1-12). Ranks are then averaged for all sites
to produce an overall rank for daily and monthly data. Both the lowest (bold) value (i.e. best performance) and highest (italics) value (i.e.,
worst performance) in each row are identified. Dashed cells (=) indicate no data available. Ranking for precipitation incorporates the fifth

dataset MSWEPvV2.2 in its calculation.

Daily

BNMD ERAS5-Land GLDAS2.0 GLDAS2.1 MSWEPv2.2
Wind Speed (ms~!) 2.55 1.64 3.27 2.55 -
Air Temperature (°C) 3.36 1.09 3.64 1.91 -
Pressure (hPa) 2.18 1.82 2.82 3.18 -
Shortwave rdn in (W m~2) 3.55 1.36 236 2.73 -
Longwave rdn in (W m_z) - 1 2.2 2.8 -
Precipitation (mm) 2.04 2.62 3.42 2.33 1.6
Specific Humidity (kg kg_l) 4 1.18 2.45 2.36 -
Average Rank (exc. Longwave) 2.95 1.62 2.99 2.51 -

Monthly

BNMD ERAS5-Land GLDAS2.0 GLDAS2.1 MSWEPv2.2
Wind Speed (ms~1!) 1.91 2 3.36 2.73 -
Air Temperature (°C) 3.27 1 3.27 2.45 -
Pressure (hPa) 2.18 1.82 2.82 3.18 -
Shortwave rdn in (W mfz) 2.73 3 191 2.36 -
Longwave rdn in (W m_z) - 1 2.6 2.4 -
Precipitation (mm) 1.6 3.13 3.2 2.26 1.82
Specific Humidity (kg kg_l) 4 1.27 2.36 2.36 -
Average Rank (exc. Longwave) 2.62 2.04 2.82 2.56 -

its exclusion in the overall ranking across all variables in Ta-
ble 4. ERA5-Land performed best at all sites across both time
scales whilst GLDAS2.1 and 2.0 performed worst at the daily
and monthly scales, respectively. All datasets tend to under-
predict at every site, with contributions to all three compo-
nents of the MSE visible at both time scales. However, the
scale of the errors is not large, ranging between 1 %—7 % er-
ror across the spread of the data.

With regards to specific humidity, ERAS-Land outper-
formed the other gridded datasets again whilst BNMD had
the weakest performance at both time scales. BNMD’s large
biases are due to the estimation of vapour pressure from the
minimum and maximum temperatures and a constant esti-
mate for pressure (see Sect. 3.4). Biases associated with air
temperature for BNMD can therefore be expected to influ-
ence specific humidity estimates. Similarly, the variability
contributions to BNMD MSEs found at sites PDG, CRA,
VCP and USR are associated with the variability errors in
pressure as this was also utilised in the calculation.

The ranking scores were averaged for all shared variables
for BNMD, ERA5-Land, GLDAS2.0 and GLDAS2.1 across
both time scales. ERA5-Land performed best on average
whilst GLDAS2.0 performed worst at both monthly and daily
scales.
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4.4 Seasonality in Errors

Errors throughout the year can change if the datasets fail to
capture the correct range of seasonality. For example, dry
seasons may have low errors in precipitation because the
mean rainfall will be closer to 0. Figure 5 shows this be-
haviour across almost all sites for the best performing pre-
cipitation dataset, MSWEPv2.2. Similarly, biases may occur
if datasets overpredict temperatures in the warmer seasons
as seen in Fig. 6 at sites, BAN and FNS. It is clear from
Fig. 1 that seasonality changes with latitude and that sites
located further south have a higher range of temperature be-
tween seasons. This increased seasonality helps explain the
relatively large errors seen at sites CRA and USR in Fig. 6.
Comparing the error spread over the year between datasets
helps us determine which ones best predict the seasonality.
For example, take BNMD air temperature, the correlation
component’s contribution to the MSE increases in the sum-
mer months the more southerly the site, suggesting there is a
weakness in the datasets ability to predict seasons accurately.
Further graphical representations of this can be found in the
Supplement.
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Figure 3. Partial contributions to the MSE between each observation site and gridded dataset (x-axis) for each variable (y-axis) at the daily

scale. Precipitation includes MSWEPV2.2 errors.
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Partial contributions to decomposed MSE scaled to the RMSE (monthly)
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Figure 4. Partial contributions to the MSE between each observation site and gridded dataset (x-axis) for each variable (y-axis) at the monthly

scale. Precipitation includes MSWEPvV2.2 errors.
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5 Discussion

Five gridded data products (BNMD, GLDAS2.0,
GLDAS2.1, ERAS5-Land, and MSWEPv2.2) were eval-
uated with in situ measured meteorological variables across
multiple biomes in Brazil. The products were evaluated
against 11 flux tower stations for seven meteorological
variables (air temperature, wind speed, pressure, downward
shortwave and longwave radiation, and specific humidity).
Stations are located over a variety of different Brazilian
climates, and daily and monthly observational averages
(or totals) were compared against the gridded products.
The MSE and its components (scaled to the RMSE) were
calculated and intercompared among different products
using a ranking system. Three additional statistical metrics
(the correlation contribution, the variance contribution, and
the bias contribution) were also computed to provide further
insight into the cause of error.

5.1 Recommendations for overall product

It was found that ERAS-Land performs best overall for rep-
resenting multiple meteorological variables at both daily and
monthly scales. This finding is consistent with studies such
as Decker et al. (2012), and Wang and Zeng (2012) which
indicated that ERA-Interim (ERAS5-Land’s predecessor) gen-
erally outperformed other datasets when validated against 33
North American flux towers and 63 China Meteorological
Administration (CMA) weather observation stations over the
Tibetan Plateau, respectively. Similar results were reported
by Jiang et al. (2020), Pelosi et al. (2020) and Zandler et
al. (2020), who noted that ERAS’s advanced spatial and tem-
poral resolution contributed to superior representation of me-
teorological conditions. However, this study confirms that no
single dataset consistently outperforms others across all vari-
ables or temporal scales, aligning with the conclusions of
Decker et al. (2012) and Wang and Zeng (2012). Therefore,
the importance of regional validation on global products is
underscored.

5.2 Recommendations for each variable

At the daily scale, ERAS-Land was found to be the
most accurate for all variables except precipitation, where
MSWEPvV2.2 aligned more closely with observations. This
finding is supported by multiple other studies which demon-
strated that MSWEDP exhibited strong precipitation represen-
tation, particularly in data-scarce regions (Alijanian et al.,
2019; Xu et al., 2019), including South America (Moreira et
al., 2019). At the monthly scale, analysis shows that ERA5-
Land best represents pressure, air temperature, longwave ra-
diation, and specific humidity, while BNMD performs best
for wind speed and precipitation. Comparisons can be drawn
between this study and Decker et al. (2012), who despite
comparing previous versions of some of the products anal-
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ysed here (ERA-Interim, ERA-40 and GLDAS1.0), they con-
cluded ERA-Interim outperformed the other products across
most variables. As mentioned above, ERA-Interim also per-
formed well when compared to CMA measurements across
the Tibetan Plateau (Wang and Zeng, 2012). The dataset
achieved the best performance at both daily and monthly air
temperatures whilst also demonstrating low biases and high
correlations in other variables, such as precipitation. Given
that ERA-Interim is the predecessor of ERAS5-Land, with
many parallel techniques used in dataset production, similar
performance can be expected in this study.

To provide a clearer understanding of the absolute devi-
ations between observations and best-performing product, a
time series comparison for air temperature and windspeed
at site PDG are presented in Fig. 7. This example offers a
visual interpretation of a small section of Fig. 3 while ad-
dressing the need for absolute metric comparisons. The time
series reveals that ERAS-Land consistently underestimates
wind speed by approximately 0.5 ms~!, while showing only
minor deviations in air temperature. Such performance is rea-
sonable for a gridded product, highlighting its strength in
capturing seasonal trends.

Surprisingly, however, GLDAS (version 1) performed best
in both daily and monthly precipitation in Wang and Zeng’s
(2012) study, while its successor, GLDAS2.0, ranked worst
at both time scales in this analysis. This discrepancy implies
that individual datasets may not perform consistently on a
global scale and may exhibit superiority over others depend-
ing on regional and climatic contexts.

The outperformance of BNMD over MSWEPv2.2 when
the temporal resolution becomes coarser, suggests that de-
spite capturing daily patterns less well, BNMD captures the
overall seasonality better than MSWEPv2.2. One explana-
tion could be that BNMD has a greater correlation error but
lower errors in variation and bias at the daily scale. When
both datasets are “smoothed out” with the decrease in tem-
poral resolution, BNMD’s correlation error drops the overall
MSE more than MSWEP.

Both products use an extensive network of rain gauges to
create the gridded product but employ different methods of
interpolation (as well as inevitably a few different sources).
It is with interest that they outperform each other at different
scales as this demonstrates that different approaches to the
creation of data products could prove suitable depending on
the concerning temporal scale.

Meanwhile, GLDAS2.0 outperformed other datasets only
for downward shortwave radiation at the monthly scale, con-
sistent with results from Decker et al. (2012) and Wang
and Zeng (2012), where GLDAS (version 1) excelled in so-
lar radiation on other continents. The GLDAS2.0 product
is forced using the Global Meteorological Forcing Dataset
from Princeton University, which combines incoming short-
wave radiation from NCEP reanalysis (Kalnay et al., 1996)
and NASA Langley surface radiation budget data (Cox et al.,
2017), using monthly data. This could explain GLDAS2.0’s
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Figure 5. Partial contributions to the MSE averaged by month over all operational observation years for MSWEPV2.2 precipitation across
all sites. Sites are in descending order from distance from equator.
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all sites. Sites are in descending order from distance from equator.
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superiority at the monthly scale, as the monthly signal from
the forcing datasets is effectively conserved.

5.3 Dominant types of error

Analysis reveals that the dominant sources of error vary sig-
nificantly depending on the variable and time scale, reflecting
the complexity of accurately capturing different meteorolog-
ical factors (Figs. 3 and 4). At finer time scales (e.g., daily),
correlation error emerges as the largest contribution for most
variables, including precipitation, air temperature, solar radi-
ation, and thermal radiation. This is likely because these vari-
ables fluctuate quickly over time, making it challenging for
models to maintain alignment with observed temporal pat-
terns. Conversely, errors associated with bias contribute the
most to pressure and specific humidity, likely due to the sta-
ble nature of these variables and the potential accumulation
of systematic offsets. Wind speed displays a more balanced
distribution of error contributions from both correlation and
bias, possibly reflecting the variable’s high sensitivity to lo-
cal topographic and atmospheric conditions, which can vary
across sites. This finding mirrored observations by Decker et
al. (2012) who acknowledged that the correlation contribu-
tion was more prominent at the daily and sub-daily scales.
When shifting to a coarser time scale (e.g., monthly),
the dominant error contributions shift as well. Specifically,
the relative contribution of bias increases across all vari-
ables, while correlation contributions decrease aligning with
Decker et al. (2012) who also noticed this shift. This is antic-
ipated, as temporal averaging at a monthly scale reduces the
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impact of time lags inherent in correlation errors, effectively
smoothing out short-term discrepancies and highlighting sys-
tematic biases. Such changes underscore the importance of
temporal resolution in model evaluations, as daily errors may
understate or overstate the importance of correlation and bias
depending on the analysis period.

For instance, the bias associated with wind speed might
stem from assumptions made during vertical interpolation
across datasets. In particular, assumptions about atmospheric
stability or wind profile shape could introduce systematic er-
rors that manifest as bias, especially at coarser time scales.
Pressure, being relatively stable, may not capture short-term
fluctuations as errors but instead reveal a tendency for over-
prediction or underprediction that surfaces as a steady bias.
Specific humidity, which depends on pressure, is similarly
prone to bias errors due to its sensitivity to any pressure-
related inaccuracies.

These findings highlight the need to consider both tempo-
ral scale and variable characteristics in future model develop-
ment and error correction approaches. Such detailed break-
downs offer a clearer understanding of the nuances in model
performance, which could guide targeted improvements for
specific variables and time scales.

5.4 Variation in error by location and seasonality

Results demonstrate a clear seasonal component in the errors
for precipitation (e.g. Fig. 5, see Supplement Fig. S1) and
shortwave radiation (see Supplement Fig. S2), with lower
errors during dry seasons and increasing during wetter sea-

https://doi.org/10.5194/hess-30-141-2026



J. R. C. Brown et al.: Evaluation of high-resolution meteorological data products 157

sons. Precipitation errors are expected because larger rainfall
amounts naturally increase the potential for error. Solar radi-
ation error could be associated with increased cloud cover as
it follows a similar pattern and are more difficult to replicate
in modelled systems such as LSMs.

Speculating on the latitudinal impact on error proves chal-
lenging, as no clear patterns emerge. This does not imply
that latitude lacks influence; rather, other factors, such as the
dominant vegetation type, may obscure potential trends. No-
tably, the correlation contribution in air temperature does ap-
pear to be affected, with errors generally increasing with dis-
tance from the equator. It is acknowledged that larger sam-
ple sizes typically yield more robust correlations; however,
in this study the number and distribution of flux tower sites
are constrained by data availability. As such, while sample
size may play a role, the focus is on evaluating the relative
performance of gridded products against independent obser-
vations, rather than quantifying the effect of sample size on
correlation strength but is an intriguing avenue for further in-
vestigation.

5.5 Methodological and instrument limitations

While analysis incorporated quality-controlled observational
data, inherent limitations in flux tower measurements, such
as instrument errors and episodic operation, remain a con-
cern. As highlighted by Hollinger and Richardson (2005),
flux tower data can deteriorate over time, which may intro-
duce discrepancies when comparing these observations to
gridded products, and, in this study, all data that was inside
the scope of the variability was kept.

In addition to these instrument-related issues, the spatial
coverage of flux tower data across Brazil is itself a constraint.
The 11 sites included in this study represent those for which
complete, high-quality data were readily available, covering
important biomes (namely the Amazon and Cerrado) both
natural and agricultural. However, some biomes, notably the
Caatinga and Pantanal, are not represented in the present
dataset due to the absence of suitable flux tower data. This
omission is acknowledged as a limitation of the study, while
highlighting an important direction for future work.

Conventional meteorological stations (INMET) were not
incorporated for similar reasons. At least one of the gridded
products evaluated (BNMD) already assimilates INMET sta-
tion data. Using these stations would have reduced the inde-
pendence of our evaluation. By relying on flux tower data,
which remain independent of the gridded products, the study
provides a more objective benchmark. Nevertheless, this de-
cision reduced the number of available sites and may have
limited representativeness.

Additionally, reanalysis and interpolation methods dif-
fer among datasets, introducing unique biases. For instance,
MSWEP and BNMD utilise distinct approaches to rain gauge
data interpolation, resulting in varied precipitation accuracy
depending on the region and scale. BNMD dataset is based
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on the spatial interpolation of a network of meteorological
stations, generally installed at a height of 1.5 m in a standard
WMO grass-covered area (Xavier et al., 2016). Vertical in-
terpolation of air temperature was not undertaken due to the
complexity of modelling sub-canopy temperature gradients
and the absence of sufficient high-resolution vertical profile
data. As a result, temperature discrepancies may have arisen,
particularly with BNMD, where air temperatures at ground
level were likely higher than those at forest canopy height,
contributing to the observed overestimation.

Another limitation arises from the mismatch between
point-based flux tower observations and grid-cell values from
coarse-resolution products. While such mismatches can in-
fluence point-to-pixel comparisons, particularly at daily time
scales, spatial harmonisation through interpolation or down-
scaling was not applied. Previous studies have shown that
interpolation accuracy is highly variable and often lacks
consistent geographic patterns. For example, Hofstra et
al. (2008) demonstrated this for European climate datasets,
and Xavier et al. (2016) reported similar challenges when
evaluating interpolation methods across Brazil. These find-
ings indicate that harmonisation may not systematically im-
prove agreement with observations and could introduce ad-
ditional biases. For this reason, the focus of this study
was placed on evaluating the temporal performance of grid-
ded against independent, high-quality point observations, ac-
knowledging that spatial representativeness remains a con-
straint.

Moreover, the spatial resolution of datasets appears to
limit accuracy at daily time steps, where smaller-scale vari-
ability is more critical. However, this limitation becomes
less prominent at monthly scales, as shown by Decker et
al. (2012) and Wang and Zeng (2012), supporting the finding
that temporal resolution can mitigate some spatial resolution
discrepancies.

Finally, although the observation data are constrained in
coverage, the variables analysed represent the primary hy-
drometeorological drivers used in land surface modelling,
flux estimation, and evapotranspiration calculations. Their
evaluation remains directly relevant to hydrological mod-
elling applications, even if spatial representativeness is in-
complete.

The analysis is centred on these core meteorological vari-
ables rather than flux-derived quantities such as latent heat
flux (evapotranspiration), which are not evaluated. This fo-
cus is deliberate, as gridded evapotranspiration products are
themselves modelled outputs that combine meteorological
forcing with additional model parameterisations, introduc-
ing further layers of uncertainty and would require a sepa-
rate methodological framework, including validation against
flux-derived ET based on energy balance closure. By eval-
uating the fundamental meteorological drivers directly, the
study isolates the first-order controls of land-atmosphere ex-
change and provides a more practical assessment of the in-
put data quality underpinning hydrological and land surface
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modelling applications. In addition, it paves the way for the
development or improvement of other models to calculate,
for example, evapotranspiration using validated meteorolog-
ical inputs. Their omission reflects the present study’s focus
on fundamental drivers of hydrometeorological modelling,
while still providing a foundation for examining how errors
in meteorological drivers may propagate into derived flux
products.

6 Implications and conclusions

This study evaluated five high-resolution meteorological data
products (four global and one regional) against 11 flux tower
observations across Brazil revealing that no single data prod-
uct consistently performs best across all variables and time
scales. However, higher spatial and temporal resolution prod-
ucts (ERAS5-Land and MSWEP) generally outperform the
lower resolution counterparts (GLDAS2.0, GLDAS2.1 and
BNMD) at the daily scale. As an overall product, the ERAS-
Land dataset outperformed the others at both daily and
monthly time-steps.

Decomposition of the MSE provided critical insights into
the primary sources of error for each variable, underlining
correlation error as the most significant contributor for vari-
ables with high temporal variability, such as air temperature
and precipitation, especially at finer temporal resolutions.
This decomposition analysis is instrumental in guiding data
product selection for model applications, as it reveals how
error sources shift with variable and temporal scale, helping
users weigh the importance of bias, variability and correla-
tion error depending on the application goals.

Spanning multiple climatic zones with high-quality ob-
servational data across varied time periods, this study offers
valuable insights into the robustness and applicability of each
data product. The findings support the use of high-resolution
reanalysis products, such as ERA5-Land and MSWEDP, to en-
hance model predictive power; however, site-specific valida-
tion remains essential for optimal performance before dataset
selection. In the absence of observational data or when time
constraints limit validation efforts, studies like this, that vali-
date gridded datasets across diverse climatic regions, become
critical.

Moreover, the results emphasise the need for careful con-
sideration of dataset characteristics and application context
when selecting a gridded data product. For instance, in ap-
plications like evapotranspiration modelling for agriculture,
datasets that perform well in the dry season may be prefer-
able (Blankenau et al., 2020). Conversely, for studies assess-
ing long-term ecosystem responses, data products that ex-
hibit stable performance over extended periods may be more
suitable (Schymanski et al., 2015). Bias correction methods
and data processing steps not covered in this study may fur-
ther influence dataset performance, suggesting avenues for
future research. This study, alongside others, highlights that
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cautious, context-specific dataset selection is essential for re-
liable applications in environmental and climate modelling.
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