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Abstract. Multi-scenario, multi-model ensembles of hydro-
logical projections are widely used to describe possible fu-
tures of regional hydrology and inform adaptation strategies.
The Explore2 dataset is such an ensemble of river flow pro-
jections in Metropolitan France. It provides future simula-
tions for 1735 catchments with modeling chains composed of
different hydrological models forced by 36 regional climate
projections based on bias-adjusted EUROCORDEX simula-
tions. This study assesses the uncertainties of this ensemble
with QUALYPSO, a method specifically designed to deal
with incomplete ensembles and to disentangle and quantify
all uncertainty sources, including that due to internal vari-
ability.

Focusing on results obtained at the end of the century, this
study shows a strong agreement between modeling chains
towards decreases in low flows in a large southern part
of France for a high-emission scenario, and very uncer-
tain changes for the annual mean and high flows. Emission
scenario uncertainty is the dominant source of uncertainty
for low flows over the whole of France, and for mean an-
nual flows in southeastern France. The contribution of the
global and regional climate models is important for mean and
high flows, especially in rainfall-dominated areas. Regional
climate models contribute considerable uncertainty to low
flows, much more than global models. The contribution of
hydrological model uncertainty is large for low flows, mod-
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erate for mean annual flows, and small for high flows. For
all climate and hydrological indicators, internal variability is
often large and cannot be overlooked. It is often of the same
order and sometimes larger than the uncertainty on the cli-
mate change response.

1 Introduction

Hydrological projections for future climates are often based
on modeling chains driven by emission scenarios depicting
future emissions of greenhouse gases and aerosols. Model-
ing chains are composed of a global climate model (GCM)
to simulate global climate evolution for the chosen scenario,
a regional climate model (RCM) or statistical downscaling
method (SDM) to refine the simulation for a specific region,
a bias adjustment model (BAM) to adjust systematic errors
in the regional climate scenario, and a hydrological model
(HM) to assess hydrological impacts of projected climate
changes for the targeted river basin. Modeling chains made
of different scenarios or different models for each category
of models are expected to project different climate responses
to emission scenarios, i.e. different long-term evolutions of
climate or hydroclimatic variables. Multi-scenario, multi-
model ensembles of projections (MMEs) provide the oppor-
tunity to characterize the spread and the degree of agreement
between projections as well as the different sources of uncer-
tainty in the projections (Hawkins and Sutton, 2009; Lehner
et al., 2020; Evin et al., 2021).

Sources of uncertainty include uncertainty on future emis-
sions (i.e. scenario uncertainty), model uncertainty, and in-
ternal variability of the climate system (see, e.g., Hawkins
and Sutton, 2009). Future emissions of greenhouse gases and
aerosols for the coming decades are highly uncertain. They
will depend on a range of different socio-economic factors
and decisions around the world. In the Coupled Model Inter-
comparison Projects (CMIPs) designed to improve knowl-
edge on climate change and its impacts, climate projections
are produced for different emission scenarios (e.g. RCP and
SSP scenarios, Moss et al., 2010; Riahi et al., 2017).

Model uncertainty arises from model imperfections. Dif-
ferent models of the same natural system (e.g. climate mod-
els) simulate different responses to the same forcing sce-
nario. As shown by COordinated Regional Downscaling EX-
periments (CORDEX), where regional projections are ob-
tained from multiple combinations of GCMs and RCMs,
both GCMs and RCMs can have important contributions to
model uncertainty (Bichet et al., 2020; Evin et al., 2021;
Christensen and Kjellstrom, 2021). In MMEs obtained with
multiple HMs, a substantial contribution can also come from
HM uncertainty (Lafaysse et al., 2014; Chegwidden et al.,
2019; Lemaitre-Basset et al., 2021; Aitken et al., 2023). Sce-
nario uncertainty and model uncertainty make the climate re-
sponse uncertain for all climate or hydroclimatic variables.
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Additional uncertainty arises from climate internal vari-
ability (IV), resulting from the chaotic and nonlinear na-
ture of the climate system (Deser et al., 2012). IV in-
troduces erratic multiscale fluctuations to the climate re-
sponse, potentially causing unusual sequences of meteoro-
logical events, unusual years, or sequences of years. Un-
like scenario or model uncertainty, IV is irreducible. It de-
creases with temporal and/or spatial aggregation. IV is small
for temperature-related indicators but significant for precip-
itation and hydrology-related indicators (Hawkins and Sut-
ton, 2009; Lehner et al., 2020; Evin et al., 2021; Vicente-
Serrano et al., 2025). While it can be an important compo-
nent of the overall uncertainty in hydrological projections
(Lafaysse et al., 2014; Vidal et al., 2016; Chegwidden et al.,
2019; Alder and Hostetler, 2019), 1V is often overlooked in
impact studies. However, accounting for IV is crucial for de-
signing robust adaptation strategies, particularly in address-
ing extreme or atypical conditions.

The estimation of scenario uncertainty, model uncertainty
components, and internal variability is often performed by
applying Analysis of Variance (ANOVA) methods to large
MMEs that combine multiple models across different emis-
sion scenarios. However, this estimation faces two chal-
lenges:

— Filtering out IV fluctuations for climate response esti-
mation: Disentangling the climate response of a given
chain from stochastic fluctuations caused by IV is key
for a relevant uncertainty analysis. Estimating the cli-
mate response can be challenging, particularly for in-
dicators such as precipitation, where IV is significant
(Hingray et al., 2019). This difficulty arises because cli-
mate outputs blend the climate responses with chaotic
fluctuations from IV, which propagate through all the
subsequent models in the chain. If for a given GCM
multiple members are available and used for subse-
quent simulations, the climate response of a modeling
chain forced by this GCM can be estimated with the
multi-member mean of the simulations, and IV can be
estimated with the inter-member variability. However,
many hydrological studies rely on single-member and
time-slice GCM experiments. As a consequence, IV
cannot be properly filtered out and, when they are not
simply disregarded, stochastic fluctuations from IV are
often attributed to GCM uncertainty (see, e.g., Bosshard
et al., 2013; Vetter et al., 2017; Gangrade et al., 2020).

— Dealing with incomplete or unbalanced MMEs: MMEs
are often incomplete or unbalanced. This is usually the
case when climate projections are simulated by RCMs
since many GCM/RCM combinations are often missing
in GCM/RCM MMEs. At the same time, some mod-
els of a given model category (GCM, RCM) are often
over- or under-represented in MME:s (see, e.g., the large
EUROCORDEX MME assessed in Evin et al., 2021).
When MMEs are incomplete or unbalanced, uncertainty
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analysis cannot be performed with a naive ANOVA
approach, unless MMEs are subsampled to produce a
complete and balanced MME subset, but this can lead
to a dramatic waste of information (Tramblay and So-
mot, 2018; Christensen et al., 2019).

The “Quasi-Ergodic Analysis of Climate Projections
Using Data Augmentation” approach (QUALYPSO) was
specifically designed to address these two challenges (Evin
etal., 2019). Based on the quasi-ergodic assumption for tran-
sient climate projections (Hingray and Said, 2014), QUA-
LYPSO separates long-term climate responses from multi-
scale fluctuations caused by IV and applies an ANOVA to
the differences of the climate responses between future and
reference periods, a.k.a. climate change responses (CCRs).
This allows disentangling all uncertainty sources, including
IV. QUALYPSO can also be applied to incomplete and un-
balanced MMEs, providing thorough uncertainty analyses
even in those configurations, as is often the case for hydrocli-
matic ensembles derived from CORDEX experiments. QUA-
LYPSO has been used in various contexts, for regional cli-
mate projections in Europe (Evin et al., 2021), Africa (Bichet
et al., 2020) and for climate-related indicators in different
sectoral applications such as renewable energy (Bichet et al.,
2019) or hydrology (Lemaitre-Basset et al., 2021; Aitken
et al., 2023; Jeantet et al., 2023; Thirel et al., 2025).

The present study aims to characterize uncertainty com-
ponents in the Explore2 MME, a very large ensemble of cli-
mate and hydrological projections developed for France from
EUROCORDEX projections (Marson et al., 2024; Sauquet
et al., 2025a). The Explore2 MME was developed as part of
the Explore2 research project. This project, funded by the
French Ministry of Ecological Transition (MTECT) and the
French Biodiversity Agency (OFB), aims to support water
management adaptation for French rivers in the 21st cen-
tury (Sauquet et al., 2025a). To our knowledge, the Explore2
MME is the largest ensemble of hydrological projections
ever produced from regional climate experiments at the scale
of a country. Analyses conducted across numerous catch-
ments throughout an entire country are particularly valuable
for exploring how projected changes vary geographically, as
they reflect differences in hydroclimatic conditions, sensitiv-
ities, and regional climate shifts (Addor et al., 2014; Cheg-
widden et al., 2019; Aitken et al., 2023). This study leverages
the large Explore2 MME and the wide hydroclimatic diver-
sity in France to address the following questions:

— What are the projected future changes for different hy-
drological metrics in France and how much do the mod-
eling chains agree on the projections?

— How large is the IV compared to CCR uncertainty?

— How do scenario and model uncertainties contribute to
the CCR uncertainty?
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— What is the influence of individual models on projec-
tions (so-called main effects), and are there important
discrepancies between them?

— How do results vary by location and hydroclimatic con-
text?

Section 2 summarizes the different hydrological regimes
encountered in France, describes the Explore2 MME and
provides a summary of the climate and hydrological models
used to produce the MME. It also describes QUALYPSO, the
method used for the uncertainty analysis. Section 3 presents
projected changes and related uncertainties for different cli-
mate and hydrological indicators. Section 4 highlights the
key features of the various sources of uncertainty. Section 5
further discusses these results and some related aspects. Sec-
tion 6 concludes.

2 Data and methods
2.1 Hydrology of French rivers

France presents a large panel of hydrological regimes result-
ing from various physiographical contexts (e.g. geology, to-
pography, see Fig. 1a) but also from the large diversity of
regional climates (oceanic influences in the West, Mediter-
ranean in the South-East, Strohmenger et al., 2024). Catch-
ment regimes can be considered from a hydroclimatic per-
spective, as provided by the Budyko (1974) framework. The
Budyko model, which provides a simplified representation
of the mean annual water balance, allows for the analysis
of interactions between energy and water limitations and
their impact on catchment hydrology. More specifically, the
ratio between total precipitation (P) and potential evapo-
transpiration (PET) provides a humidity index that can be
used as a proxy for different types of interactions and var-
ious impacts on runoff. P/PET ratio values lower than one
characterize water-limited regions, where dry conditions pre-
vail and sensible heat fluxes are typically high. In contrast,
P/PET ratios greater than one denote energy-limited re-
gions, which are generally wetter and exhibit lower sen-
sible heat fluxes (Sposito, 2017). In France, most regions
are energy-limited, especially mountainous areas (Alps, Jura,
Vosges in the East, Pyrénées in the South, Massif Central in
the center, see Fig. 1b). Water-limited regions are found in
the South (Mediterranean region), in a large area northwest
of the Massif Central and in some small areas. As reported
by Gan et al. (2021) or Lemaitre-Basset et al. (2022), the pro-
jected evolution of hydrological changes can be interpreted
according to this distinction.

Hydrological regimes can also be classified based on the
seasonal cycle of inter-annual mean monthly discharges, fol-
lowing the work of Pardé (1933). Sauquet et al. (2024) pro-
pose seven regimes ranging from snow-dominated regimes
in mountainous areas to mixed regimes downstream and/or
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rainfall-dominated regimes in lowlands (Fig. lc, d). Snow-
dominated regimes are mainly characterized by a monthly
peak flow in spring due to snowmelt which can be par-
ticularly large for high-elevation mountainous catchments.
Three different snow-dominated regimes are considered: (1)
a regime with a dominant nival contribution (N) found in
the highest regions of the Alps, (2) a Nivo-Pluvial regime
(NP) observed at downstream locations, in mid-elevation
areas (e.g. Pyrénées, PreAlps regions) and in southeastern
France where Mediterranean events can be important, and
(3) a Pluvial-Nival (PN) regime mainly found in downstream
locations and low-elevation mountainous areas (Massif Cen-
tral, Vosges, Jura, Corsica).

Rainfall-dominated regimes present a seasonality mostly
derived from the seasonality of precipitation and evapotran-
spiration losses, with high flows in winter and low flows in
summer. The winter/summer contrast depends on the catch-
ment. It is very large in the Western and northeastern parts of
France, where catchments have a low storage capacity, large
in the North and the South-West, moderate in the Center and
in the East, and very small in regions where river stream-
flows are sustained all year long by important aquifers (e.g. in
the Paris Basin region). This diversity is represented by four
regimes: highly contrasted pluvial (HCP), contrasted pluvial
(CP), pluvial (P), and non-contrasted pluvial (NCP). Differ-
ent hydrological responses to climate change are expected
according to these regimes (e.g., Sauquet et al., 2024).

2.2 Explore2: a large climate and hydrological
multi-model ensemble

The Explore2 dataset, spanning the period 19762099, was
generated using various scenarios and models shown in
Fig. 2. A detailed description is provided in Sauquet et al.
(2025a). The 36 climate projections correspond to a sub-
set of the large CMIP5-EUROCORDEX ensemble (Jacob
et al., 2014, 2020) and have been obtained with three emis-
sion scenarios (10 with the RCP2.6, 9 with the RCP4.5,
and 17 with the RCP8.5, see Marson et al., 2024). It is
based on six CMIP5 GCMs (Taylor et al., 2011) downscaled
by nine RCMs. As summarized in Table 1, it considers 17
GCM/RCM combinations and is therefore incomplete (e.g.
not all GCMs have been used to force a given RCM); how-
ever, the selected projections ensure a diverse range of cli-
mate models and include at least two simulations for each
GCM and RCM. This selection enhances the robustness of
the uncertainty component estimates.

The BAM ADAMONT (Verfaillie et al., 2017) was ap-
plied to adjust climate projections for some systematic errors
using the meteorological reanalysis SAFRAN (Vidal et al.,
2010; Le Moigne et al., 2020) as the reference dataset. Ad-
justed climate projections are produced on a regular hori-
zontal 8 km grid covering Metropolitan France and part of
Switzerland. In this study, we focus on the 8981 grid points
that cover Metropolitan France. Reference evapotranspira-
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tion (ETO) is obtained from the Penman-Monteith formula
(Allen et al., 1998) with a parameterization for short grass.
The net radiation is derived from the Hargreaves equation
(Hargreaves and Samani, 1985).

Explore2 hydrological projections offer a “natural refer-
ence hydrology” as a foundation for future studies on water
allocation. Streamflow simulations are provided in the ab-
sence of any water management interventions — such as ab-
stractions, releases, or reservoir operations — thus represent-
ing natural flow conditions. In this study, we assess an en-
semble of hydrological projections obtained for 1735 sim-
ulation points with four HMs of different types (Table 2)
covering almost all the country, namely CTRIP, GRSD, OR-
CHIDEE and SMASH (Fig. 1). The Explore2 MME provides
hydrological simulations with nine HMs, but the five other
HMs cover only specific regions of France and for fewer
catchments (Sauquet et al., 2025a). SMASH and GRSD
HMs are conceptual “bucket” type models. CTRIP and OR-
CHIDEE are land surface models and physically based. No
single model provided discharge simulations for all simu-
lation points across the study area. Some simulation points
could not be reliably paired with their corresponding loca-
tions in the hydrographic network (or were excluded due to
large differences in simulated versus physical catchment ar-
eas). All HMs used the same meteorological forcings: the
reanalysis SAFRAN as the reference dataset for the period
1976-2005 and adjusted scenarios for historical and future
climate experiments. Calibration of each HM, if required,
was model-specific and carried out automatically or manu-
ally based on the expertise of the model developers. To as-
sess model performance, all HMs have been evaluated within
a standardized framework, focusing on their ability to repli-
cate various observed hydrological signatures for the current
climate (see Sauquet et al., 2025a, for evaluations).

We carried out our analyses for a selection of indicators
representative of projected changes in climate and hydrol-
ogy. Indicators considered in the present work are surface air
temperature (TAS), total precipitation (PR), reference evapo-
transpiration (ETO) at a seasonal scale (summer and winter),
annual maximum daily precipitation (RX1D), annual mini-
mum monthly flow (QMNA), mean annual daily discharge
(QA), and annual maximum daily discharge (QJXA).

2.3 Multi-model ensemble characterization with
QUALYPSO

To characterize how a given climate or hydrological indicator
is projected to change, we use the QUALYPSO method (Evin
et al., 2019). QUALYPSO focuses on the climate change
response (CCR) projected for the considered indicator. The
CCR projected by a given simulation chain defines, for any
future time, the absolute or relative difference of the long-
term climate response for this future time compared to the
reference period. The QUALYPSO method is implemented
in an R package (Evin, 2023) and was specifically designed
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Figure 1. (a) Physical Map of Metropolitan France. (b) P/PET ratio values indicating limiting conditions as estimated for the reference
period 19762005 from SAFRAN meteorological reanalyses. Ratios greater than one (green colors) indicate energy-limited regions and
ratios smaller than one (brown colors) indicate water-limited regions. (¢) The seven main hydrological regimes found in Metropolitan France,
classified according to the annual cycle of monthly discharges. They consist of four rainfall-dominated regimes: highly contrasted pluvial
(HCP), contrasted pluvial (CP), pluvial (P) and non-contrasted pluvial (NCP) and three snow-dominated regimes: Nival (N) , Nivo-Pluvial
(NP), Pluvial-Nival (PN). (d) Hydrological regimes estimated for the 1735 simulation points considered in this study. Estimation from
discharge time series simulated for the reference period 1976-2005 from SAFRAN meteorological reanalyses (Vidal et al., 2010). See

Sauquet et al. (2024) for details.

RCP [GCM RCM ‘BAM HM
RCP2.6 CNRM-CMS.LR ADAMONT CTRIP
RCP4.5 EC-EARTH
RCP8.5 g HadGEM2-ES > GRSD
IPSL-CMSA-MR
MPI-ESM-LR
NorESM1-M

Figure 2. Modeling chain: Emission scenarios (RCP), Climate models (GCM, RCM), Bias Adjustment Model (BAM) and Hydrological

Models (HM) considered in this study.
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Table 1. Unbalanced ensemble of EUROCORDEX GCM/RCM combinations used for Explore2 climate projections with the scenarios
RCP2.6 (x), RCP4.5 (+) and RCP8.5 (). Only one run was used for each GCM (member rlilp1 for all GCMs except for EC-EARTH
where the member r12ilpl has been used). All HMs were forced by all climate projections.

CNRM-CM3-| EC-EARTH
RCM '\ GCM

HadGEM2-ES| IPSL-CM5A- [MPI-ESM-MR| NorESM1-M

LR MR
ALADING3 % O
CCLM4-8-17 @ %
HadREM3-GAT-05 O ® ®
HIRHAMS O @

RACMO22E %

Sy

RCA4

RegCM4-6 ® ®

REMO % %
WRF381P O

Table 2. Names of the surface hydrological models, the associated number of streamflow simulation points and the corresponding reference.

Name #points  Reference

CTRIP 2024  Munier and Decharme (2022)

GRSD 3712  de Lavenne et al. (2019)

ORCHIDEE 3587 Huang et al. (2024)

SMASH 3821 Jay-Allemand et al. (2020); Huynh et al. (2024)

to tackle the main challenges of uncertainty partitioning in
unbalanced and incomplete MMEs. More information is pro-
vided in Appendix A, including an illustration of the different
steps in Fig. Al.

QUALYPSO aims to estimate, for any future time, the
CCR of each modeling chain, the mean CCR of the MME,
the dispersion between the CCRs of individual chains, the
sources of uncertainty explaining this dispersion, and the ad-
ditional potential dispersion in future realizations of climate
indicators that can result from IV.

2.3.1 Main assumptions

Following Hawkins and Sutton (2009) and Hingray and Said
(2014), QUALYPSO is based on two main hypotheses ex-
pressed as follows:

1. We consider that the projection of a simulation chain
i combines two components: the climate response and
interannual variability. For a future time 7, the climate
response corresponds to the long-term trend of the sim-
ulated projection. We hypothesize that it has a tem-
poral variation that is inherently gradual and smooth.
The high- to mid-frequency fluctuations in the simu-
lated projections are assumed to result solely from I'V.

Hydrol. Earth Syst. Sci., 30, 1023-1051, 2026

2. The CCR of a simulation chain i can be expressed as
a linear sum of the ensemble mean CCR and the main
effects of the different components of the chain (main
effects of the scenario s, GCM g, RCM r, and HM h).

The first assumption implies that it is reasonable to con-
sider a trend model to estimate the climate response of a
chain and, in turn, fluctuations due to IV (deviations from
the climate response). Hingray et al. (2019) have shown that
this assumption allows for providing more precise estimates
for all uncertainty components than those obtained with time-
slice approaches.

The additive and linear decomposition model of the sec-
ond assumption can be derived for any future time using a
fixed-effects ANOVA model (see Eq. A6 in the Appendix).
In the case of a complete MME, the main effect of a given
scenario or model is easily interpreted as the mean difference
between (1) the CCR of all the projections using this scenario
or model and (2) the mean CCR of the ensemble.

2.3.2 Estimation of the climate response

In QUALYPSO, the climate response of each modelling
chain is estimated by applying a trend model to the cor-
responding projection available for the period 1976-2099.
Different trend models can be considered (e.g., linear, poly-

https://doi.org/10.5194/hess-30-1023-2026
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nomial, splines). In this study, we consider cubic smooth-
ing splines (function smooth.spline in R R Core Team,
2022). For all indicators except temperature, the IV is rela-
tively large compared to the long-term trend, so the smooth-
ing parameter spar was set to 1.1 to reduce the model’s flex-
ibility. This prevents misattributing the low-frequency fluc-
tuations caused by IV to the climate response. For temper-
ature, we apply a lower smoothing parameter value of 1 to
provide more flexibility, in agreement with previous studies
(Evin et al., 2021).

2.3.3 Estimation of the climate change response and of
internal variability

The CCR of each chain is obtained by computing the differ-
ences in the climate response between future periods and the
reference period 1976-2005. Absolute changes are consid-
ered for temperature (in °C) and relative changes for the other
indicators (in %). IV contribution is assumed to be constant
over time, although this assumption could be relaxed as done
in Hingray and Said (2014). For a given chain i, we estimate
IV as the standard deviation of the annual deviations from its
climate response. [V varies from one chain to another. Here,
we use the IV averaged over the different simulation chains
to characterize the IV component of the MME.

2.3.4 ANOVA model

A fixed-effect ANOVA model is used to estimate the ensem-
ble mean CCR and the main effects of all scenarios and mod-
els belonging to the different model categories. The ANOVA
framework can also be used to estimate interaction terms
(e.g., GCM-scenario interaction effects, Northrop and Chan-
dler, 2014). For the sake of simplicity, we disregard them
in the present work. The estimation of our ANOVA model
(see Eq. A6) is carried out for each future time horizon ¢ us-
ing a linear model, where the least squares of the residuals
(denoted as € ¢ .5 (f) in Eq. A6) are minimized. For the es-
timation, QUALYPSO relies on the R function 1m provided
by the built-in stats package, a core statistical library in R
that can handle incomplete and unbalanced MMEs.

The CCR uncertainty of a given category (scenario uncer-
tainty, GCM uncertainty, RCM uncertainty, HM uncertainty)
is estimated by the variance of the main effects of all mod-
els (or scenarios) belonging to this category. The residuals
of the ANOVA model arise from the imperfect estimation
of the climate responses and the limitations of the additive
assumption. The residuals thus include potential interactions
between scenarios and models and/or between models of dif-
ferent categories (e.g. Hingray and Said, 2014; Evin et al.,
2021).

2.3.5 Characterization of the uncertainties

In the following, to characterize the CCR uncertainty of the
MME, we use the square root of the CCR uncertainty vari-
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ance, calculated as the sum of the uncertainty variances of the
different CCR uncertainty sources (scenarios, GCMs, RCMs,
and HMs) and the residual variance of the ANOVA model.
The CCR uncertainty is thus expressed in the unit of the con-
sidered indicator.

Results of QUALYPSO analyses will be summarized for
each climate and hydrological indicator using different met-
rics:

— The 5 %, 50 %, and 95 % quantiles of the ensemble of
CCR. They provide a quick overview of both the MME
mean CCR and its dispersion.

— The CCR uncertainty and the IV of the MME. The CCR
uncertainty quantifies the dispersion between projected
CCRs. IV indicates the non-predictable variability com-
ponent due to natural climate variability (by definition,
IV has thus no contribution to the CCR uncertainty). IV
is also presented as the standard deviation and expressed
in the units of the considered indicator. IV and CCR un-
certainty can thus be compared.

— The percentage variance contribution to CCR uncer-
tainty variance (in %) of each CCR uncertainty source
(scenario, GCM, RCM, HM) and unexplained CCR un-
certainty (residual variability, RV). This indicates the
relative importance of the different sources and the
dominant ones.

Note that the CCR uncertainty can be compared to the en-
semble mean CCR, also providing an indication of the over-
all spread of the CCR in relation to the mean change. If
the CCR follows a normal distribution (which is roughly the
case for the indicators considered here), 67 % of the simu-
lation chains would have CCR values in the interval [Q50-
CCRU, Q50+CCRU] on average, where Q50 is the median
CCR and CCRU is the CCR uncertainty. All these metrics
vary as a continuous function of future time. In the follow-
ing, we mainly present results obtained for the end of the
century (period 2071-2099).

3 Climate change response, associated uncertainty, and
internal variability

In this section, we first present results for climate indicators
obtained from the MME composed of 36 Explore2 transient
climate projections by applying QUALYPSO to each of the
8981 grid points covering France. We next show the results
for three hydrological indicators, namely the annual min-
imum monthly flow (QMNA), the mean annual discharge
(QA), and the annual maximum daily discharge (QJXA).
These indicators can be considered representative of low
flows, mean discharge, and high flows, respectively. QUA-
LYPSO is applied to the MME for each of the 1735 simu-
lation points available for the four HMs. In this study, each
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MME is thus composed of 144 transient hydrological pro-
jections obtained with the four HMs forced by the 36 climate
projections. We present the changes projected at the end of
the century (2071-2099) with respect to the reference period
1976-2005. For each indicator, we show the mean projected
changes and the inter-model dispersion with the scenario
RCP8.5 which corresponds to greater changes in climatic and
hydrological variables. This section then shows how IV com-
pares to CCR uncertainty and what climate changes are pro-
jected for lower emission scenarios RCP2.6 and RCP4.5.

3.1 Climate change response projected in France

Figure 3 shows the 5 %, 50 %, and 95 % quantiles of the CCR
for the climate indicators, for the RCP8.5. These results con-
firm those reported in previous publications based on EU-
ROCORDEX ensembles (e.g. Jacob et al., 2014; Christensen
and Kjellstrom, 2020; Coppola et al., 2020; Evin et al., 2021;
Marson et al., 2024; Corre et al., 2025). Projected climate
change depends on the indicator, season, and region. It is
contrasted and uncertain.

Temperature is projected to increase significantly, espe-
cially in summer. Depending on the region, the median pro-
jected increase varies from 2.5 to 4.5 °C in winter and from
3.5 to 6 °C in summer. Summer warming is projected to be
much greater in mountainous areas (Alps, Pyrénées, Massif
Central, Vosges) and in the south, particularly in the South-
East. The dispersion between modeling chains is important.
The 5 %95 % interquantile range is around 1.5 °C in win-
ter, up to 4 °C in summer. The largest warming projected in
summer is greater than 7.5 °C.

In summer, precipitation is projected to significantly de-
crease, from —10 % to —40 % for the median CCR depend-
ing on the region. Although there is considerable dispersion
among the projections, they largely agree on the direction
of change. However, a few exceptions exist, notably in the
Rhoéne River valley and some eastern regions, where some
projections indicate a slight increase. The most extreme pro-
jections lead to very large decreases, —60 % on average over
France and up to —85 % in the South.

In contrast to summer, winter precipitation is mostly pro-
jected to increase (but less than the projected decrease in
summer). The median change is around 0% in the South,
South-East, and it exceeds 30 % over the northern half. The
inter-model dispersion remains significant, although it is less
pronounced than in summer. Models almost always agree on
the sign of the changes and, except in the South, even the 5 %
quantile projects slight increases.

The median reference evapotranspiration (ETO) is pro-
jected to increase, from 20 % to 30 % over most of France
(and slightly more in summer). If all models agree on the
sign of changes, the inter-model dispersion is large. In sum-
mer, the 5 % quantile ranges from 10 % to 20 % and the 95 %
quantile is larger than 40 %. In general, results roughly fol-
low those obtained for temperature, but spatial patterns of
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changes do not match the N-W, S-E gradients obtained for
temperature. The South-East and the mountainous areas do
not appear as hot spots of changes.

The median annual maximum daily precipitation is pro-
jected to increase. Projected increases vary a lot from one
location to another, from 0 % to 20 % in a large southern part
to (20 %, 30 %) in northern areas. Regardless of the region,
the inter-model dispersion is considerable. In the south, for
instance, models do not agree on the sign of the changes, and
the most extreme chains project decreases down to (—40 %,
—20 %) and large increases up to (40 %, 60 %).

3.2 Hydrological response to climate change projected
in France

The 5 %, 50 %, and 95 % quantiles of the CCR for the hy-
drological indicators, for the RCPS8.5 (Fig. 4) are contrasted,
uncertain, and depend on the region.

Low flows are mostly projected to decrease, from —10 %
in the North to (—60 %, —45 %) in the South for the median
CCR. While the inter-model dispersion is very large, projec-
tions agree on a decrease for most southern regions (with the
exception of the Alps). The driest chains lead to very large
decreases, greater than —60 % (except for a small area in
the North where they “only” reach —45 % to —60 %). Con-
versely, the most humid ones project large increases (40 % or
more) in the Center-North.

For median annual discharges, while slight increases are
projected (often less than 15 %) in the North, decreases (up
to —30 %) are projected in the South. With the exception
of the Pyrénées and the southern Alps, where most mod-
els project a decrease, modeling chains do not agree on the
sign of change. The inter-model dispersion is very impor-
tant. Large decreases are projected for the driest chains (up
to —75 % in the South-East) while large to very large in-
creases are projected for the most humid ones (up to 75 %
in the North).

Results for high flows are roughly similar. The median
high flow is projected to slightly increase (up to 15 %—-30 %)
in the North and to decrease in the South. Regardless of the
region, the inter-model dispersion is large, and models do not
agree on the sign changes. Large decreases are projected for
the driest chains (up to —75 % in the South) while large to
very large increases are projected for the most humid ones
(up to 75 % in the North). We refer to Tramblay et al. (2025)
for further analyses of projected high flows from the Ex-
plore2 dataset.

3.3 Uncertainty of the climate change response and
internal variability

Figures 5 and 6 compare the CCR uncertainty (CCRU) and
the internal variability IV for the climate and hydrological
indicators, respectively. Except for summer temperatures, IV
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Figure 3. 5%, 50 %, and 95 % quantiles of the climate change responses for seasonal temperature (TAS), precipitation (PR), reference

evapotranspiration (ET0) and annual daily precipitation maxima (RX1D) changes (2071-2099 relative to 1976-2005) in summer (JJA) and
winter (DJF) for the RCPS8.5.
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Figure 4. 5 %, 50 %, and 95 % quantiles of the climate change responses for low flow (QMNA), mean annual flow (QA), and high flow

(QJXA) changes (2071-2099 relative to 1976-2005) for the RCPS.5.

is large to very large and is often of the same order as, or
even greater than CCR uncertainty.

For seasonal temperature, year-to-year fluctuations around
the CCR are of the order of 1 °C (Fig. 5). IV is much lower
than CCR uncertainty in summer but similar in winter. Re-
sults for ETO are roughly similar (Fig. S5 in the Supplement).
IV is rather large, slightly smaller than CCR uncertainty in
summer, and slightly larger in winter.

For precipitation, IV is very large (> 30 %), much larger
than CCR uncertainty (between 10 % and 30 %), especially
in winter and along the Mediterranean sea (> 50 %, Fig. 5).
For maximum annual precipitation, IV is large (often greater
than 40 %, see Fig. S5 in the Supplement). It is also much
larger than CCR uncertainty (10 %—-20 %).

For the three hydrological indicators, IV is logically also
very large (Fig. 6). For annual flows, IV is larger than 30 %-
40 % in many regions. For low and high flows, it is higher
than 40 % almost everywhere (higher than 100 % for low
flows locally). It is often more than two times larger than
CCR uncertainty.

3.4 Projections for lower emissions
Figures S1 and S2 in the Supplement show the 5 %, 50 %,
and 95 % quantiles of the CCR projected for the climate

indicators, for the lower emission scenarios RCP2.6 and
RCPA4.5 respectively. For temperature and related indicators,
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changes projected with lower emission scenarios are gener-
ally smaller than those under RCP8.5, while exhibiting sim-
ilar spatial patterns. In contrast, projections for precipitation
and hydrological indicators do not necessarily lead to the
same conclusions. For these indicators, inter-model spread
remains substantial, with frequent disagreement among mod-
els regarding the sign of change. Moreover, the direction of
projected changes does not always align with those under
RCP8.5. For instance, under RCP2.6, winter precipitation
is projected to increase in the South-East, and some model
chains also indicate increases in summer.

This pattern is also observed in hydrological projections.
Changes projected for lower emission scenarios are not nec-
essarily smaller than changes projected for RCP8.5 (Figs. S3
and S4 in the Supplement). The mean annual flows are pro-
jected to increase everywhere in RCP2.6 and almost every-
where in RCP4.5. Low flows are still projected to decrease
(much less) for RCP4.5 but they are projected to increase for
RCP2.6, regardless of the region. Projected changes for high
flows are roughly the same for all scenarios.

4 Main uncertainty sources
This section provides key messages about the main sources

of uncertainty. They are not the same for the different climate
and hydrological indicators. Furthermore, they vary region-
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Figure 6. Uncertainty components for low flow (QMNA), mean annual flow (QA), and high flow (QJXA) changes (2071-2099 relative
to 1976-2005) for all emission scenarios. Climate change response uncertainty (CCRU) and internal variability IV (standard deviations

expressed in % for hydrological changes).

ally, and uncertainties in projected hydrological changes can
be interpreted according to the corresponding hydroclimatic
regimes.

4.1 Main uncertainty sources depend on the climate
indicator

Figure 7 shows the main uncertainty components for sea-
sonal temperature and precipitation changes and confirms the

https://doi.org/10.5194/hess-30-1023-2026

results obtained for Europe (e.g. Christensen and Kjellstrom,
2020; Evin et al., 2021). The relative contributions of the dif-
ferent uncertainty sources to CCR uncertainty depend on the
indicator and region.

For temperature projections, scenario uncertainty is by far
the main contribution for all seasons. A non-negligible con-
tribution of climate model uncertainty is found in summer. It
comes from GCMSs for coastal areas (Atlantic and Channel)
and from RCMs for mountainous areas and in the East.

Hydrol. Earth Syst. Sci., 30, 1023-1051, 2026
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For summer precipitation, the main contributions come
from RCMs and then from scenarios (between 20 % and
40 %). In winter, they mostly come from GCMs or from
RCMs in mountainous areas and in the Mediterranean re-
gion. Scenario uncertainty has a moderate contribution in the
North-East. For maximum precipitation, the main contribu-
tions come from GCMs and RCMs (Fig. S5 in the Supple-
ment).

For summer ETO, results closely follow those for summer
temperature (Fig. S5). However, the contribution of scenario
uncertainty is smaller, whereas the contribution of RCMs
becomes much larger (> 20 %—40 %). For winter ETO, the
contribution of scenario uncertainty is smaller to the benefit
of RCM uncertainty, which reaches up to 40 %—60 % in the
West.

With the exception of temperature, the contribution of
residual variability to CCR uncertainty is moderate to im-
portant, which means that a moderate to large part of the
CCR uncertainty cannot be explained by the additive effects
of scenario, GCM or RCM uncertainty. This is the case for
precipitation in both seasons, for instance. In summer, the
unexplained fraction of CCR uncertainty varies from 10 %—
20 % in the West to 20 %—40 % in the East. In winter, it varies
from 20 %—40 % in the East to 40 %—60 % in the South-East.
Evin et al. (2021) show that interactions between scenarios
and climate models can be important in France for winter
precipitation (see their Fig. S7). In particular, scenario/ GCM
and GCM/RCM interactions can partly explain this impor-
tant residual variability in the current study.

4.2 Main uncertainty sources depend on the
hydrological indicator

Figure 8 presents the main uncertainty components for hy-
drological changes. These results are generally consistent
with previous studies (e.g. Lafaysse et al., 2014; Chegwid-
den et al., 2019; Lemaitre-Basset et al., 2021; Aitken et al.,
2023). The extent to which each source of uncertainty con-
tributes to the spread in projected changes also depends on
the region and indicator.

For low flows, CCR uncertainty comes from emission sce-
narios, especially in southern France (> 40 %—60 %), from
RCMs, especially in the East (> 20 %—40 %), and to a lesser
extent from HMs in the North-West and in the Alps (> 20 %—
40 %). The uncertainty from GCMs is significantly lower
than that from RCMs. However, it remains notable in the
northern regions, at the expense of RCP uncertainty, espe-
cially in the energy-limited areas. In France, except in moun-
tainous areas, low flows occur in summer when snow and soil
moisture are depleted. They are mainly driven by soil pro-
cesses, evapotranspiration, and sometimes groundwater sup-
port. Low flows are thus controlled by the climate conditions
that determine the summer water budget and by the choice of
the HM.

Hydrol. Earth Syst. Sci., 30, 1023-1051, 2026

For mean annual flows, CCR uncertainty mostly comes
from RCMs, especially in the East (> 40 %—60 %), from
GCMs (everywhere except in the South-East), and from
emission scenarios in the southern half of France (> 20 %-
40 %). A non-negligible contribution of HMs is obtained in
the Paris Basin region (> 10 %—20 %).

For high flows, CCR uncertainty is predominantly at-
tributable to climate models, with GCMs and RCMs con-
tributing to a comparable extent. This substantial contribu-
tion can partly be explained by the considerable uncertainty
in projections of extreme precipitation (Fig. 3), but may also
reflect uncertainties in other climatic variables. High flows
are driven by a combination of factors, including the magni-
tude and spatiotemporal distribution of precipitation, as well
as antecedent hydrological conditions resulting from preced-
ing precipitation events (Tarasova et al., 2023). Using the
GRSD hydrological model, Tramblay et al. (2025) demon-
strate that projected changes in soil saturation exert an influ-
ence on high flows comparable to that of projected changes in
intense rainfall. In the current study, the pronounced sensitiv-
ity to hydrological model selection in eastern France further
supports the role of antecedent conditions in shaping high
flow responses.

The unexplained fraction of CCR uncertainty can also be
large for hydrological indicators. It varies from 10 %-20 %
in the South to 20 %—40 % in the North for low flows, mostly
between 20 %—40 % for mean annual flows, from 20 %—40 %
to more than 60 % in a number of sites for high flows (Fig. 8).

4.3 Main sources of uncertainty by hydroclimatic
regimes

The hydrology of French rivers is expected to undergo
marked changes in the coming decades, but the high uncer-
tainty surrounding future precipitation makes the nature of
these changes mostly unpredictable. However, the projected
increase in temperature is robust and, as a consequence, some
changes are very likely, especially for some specific hydro-
climatic regimes. As already shown by previous studies in
the area (e.g. Lafaysse et al., 2014; Vidal et al., 2016; Dayon
et al., 2018; Huang et al., 2022) and by additional Explore2
analyses (Sauquet et al., 2024), warming will profoundly
modify the hydrological regimes where discharges are sig-
nificantly influenced by snow accumulation and melt. Snow-
dominated regimes will shift to mixed regimes, while mixed
regimes will become predominantly rainfall-driven. As a re-
sult, snowmelt floods will occur earlier in the spring and be
less intense.

Figure 9 aggregates the different results shown in this
study by hydrological regime (obtained for the reference
period 1976-2005). As indicated above, median CCRs
(Fig. 9A) highlight more pronounced changes for low flows
than for mean and high flows. For low flows, strong decreases
are obtained across most hydrological regimes (around
—40 %), and scenario uncertainty emerges as the dominant
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Figure 7. Uncertainty components for summer and winter temperature and precipitation changes (2071-2099 relative to 1976-2005). Per-
centage contribution of uncertainty sources (scenario, GCM, RCM, residual variability RV) to the CCR variance (CCRV).

source of variability (Fig. 9B, first row), primarily due to
the strong dependence of evapotranspiration losses on tem-
perature, as previously discussed. There are two exceptions.
The first concerns catchments with a non-contrasted pluvial
(NCP) regime, where low flows are likely to remain sup-
ported by deep aquifer contributions regardless of the emis-
sion scenario. In this case, the main source of uncertainty
arises from climate models, but hydrological models (HMs)
also contribute due to their varying representations of deep
groundwater storage. The second exception involves catch-
ments with a nival (N) regime, where low flows typically
occur in winter due to a high proportion of solid precipita-
tion during this season (Fig. 1C). Under warmer conditions,
this proportion is expected to decrease, leading to increased
winter discharges. As HMs vary in their representation of
snow processes, HM uncertainty plays a particularly signifi-
cant role in this case.

For mean annual and high flows, the combined uncertainty
from GCMs and RCMs is relatively consistent across all
regimes. In contrast, the contributions of scenario and HM
uncertainties vary by regime. For mean annual discharges,
scenario uncertainty is minor in rainfall-dominated regimes

https://doi.org/10.5194/hess-30-1023-2026

but more significant in snow-dominated ones. HM uncer-
tainty is generally low, except in catchments where low flows
make up a substantial portion of the mean annual flow (i.e.,
P and PNC regimes). For high flows, scenario uncertainty
is negligible across all regimes. HM uncertainty, while also
similar across regimes, is more pronounced due to differing
representations of runoff generation in the models — particu-
larly in snow-dominated regimes, where high flows are pri-
marily driven by snowmelt.

A qualitative comparison between Figs. 1B, 4 and 8
shows that projected changes are only partially influenced
by whether catchments are water- or energy-limited. In the
South, the decrease of mean annual flows, which highly
depends on the interplay between precipitation and evapo-
transpiration, tends to be larger in water-limited areas. In
the North, mean annual flows tend to decline in water-
limited catchments, while they increase in energy-limited
ones. However, projected changes in high and low flows ap-
pear largely independent of the hydroclimatic regime. For ex-
ample, the significant reduction in low flows projected for the
South is widespread across different regimes. A notable ex-
ception is the case of high flows in the South, which tend to
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increase more in water-limited areas. Across most locations
and hydrological variables, the sources of uncertainty con-
tributing to CCR uncertainty are quite similar between water-
and energy-limited regimes, especially regarding HM uncer-
tainty. An exception occurs in the energy-limited catchments
of the North, where HM uncertainty is greater for projec-
tions of both low and mean annual flows compared to other
regions.

Hydrol. Earth Syst. Sci., 30, 1023-1051, 2026

5 Discussion

5.1 IV is substantial and should not be overlooked

Our results show that IV can be a substantial source of un-
certainty in hydrological projections and are in agreement
with most other analyses where IV has been considered (e.g.
Lafaysse et al., 2014; Vidal et al., 2016; Chegwidden et al.,
2019; Alder and Hostetler, 2019; Ye et al., 2024). The influ-
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ence of IV is strong when precipitation is a key driver and
is particularly pronounced for low and high flow projections
(Fig. 6). For the three variables considered here, IV is larger
than CCR uncertainty at the end of the century, and much
larger for projected periods that are not far (not shown).

Our results show that IV should not be overlooked or disre-
garded in hydrological impact studies. IV expresses the range
of possible future realizations around the climate response.
1V is likely to cause substantial deviations from the climate
response, potentially leading to unusual or critical years or
sequences of years. Disregarding IV could be detrimental for
interpretations and use of projections. It could prevent a fair
evaluation of the resilience and robustness of natural and an-
thropogenic systems to climate change, variability, and ex-
tremes (Doss-Gollin et al., 2019; Bonnet et al., 2020).
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5.2 A single or a few individual models can have a
large contribution to model uncertainty

As shown in Evin et al. (2021) for Europe, a large con-
tribution of GCM (resp. RCM) uncertainty to CCR uncer-
tainty is often due to a single or a small number of indi-
vidual GCM models (resp. RCM models). This can be eas-
ily identified from the maps of the main effects obtained for
each individual model. For summer temperature, for instance
(Fig. 10), the large RCM contribution comes mainly from
the higher warming signature of HadREM3-GA7-05 and
the lower warming signature of WRF381P. For winter pre-
cipitation (Fig. 11), the important GCM uncertainty comes
mainly from the “wet signature” of IPSL-CM5A-MR; the
large RCM contribution in mountainous areas comes mainly
from the large differences between four RCMs (RACMO22E
and RCA4 are much drier than HIRHAMS and WRF381P).

A large contribution of a specific climate model to the
CCR uncertainty in climate projections frequently leads to
similar contributions for other climate or hydrological in-
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dicators. For example, the deviating signals produced by
HadREM3-GA7-05 and WRF381P for projected changes of
summer temperature are reflected in similar divergent pat-
terns for changes in summer ETO (Fig. S8 in the Supplement)
and low flows (Fig. S12 in the Supplement).

A single or a small number of HMs can also lead to a
large contribution of HM uncertainty to CCR uncertainty.
As shown by the maps of the main effects obtained for each
individual HM (Fig. 12), the important HM uncertainty ob-
tained for mean annual flows in the Paris Basin region (low-
land area around Paris) is mainly due to the “more humid”
(or “less dry”) signature of ORCHIDEE. For high flows, the
important HM uncertainty in the North-East is mainly due to
CTRIP. HM main effects vary more regionally (or by regime)
for low flows than for mean and high flows. Higher uncer-
tainty for low flows might be expected where more complex
processes are involved (e.g. snowmelt for the nival regime,
groundwater-river exchange for the non-contrasted pluvial
regime) and are represented differently by the different HMs.
High flows are mostly driven by precipitation and are more
easily represented by HMs when similar antecedent condi-
tions are simulated.

Note that the main effects of the different model cate-
gories often have different spatial scales. Spatial patterns of
the main effects of GCMs are mostly large scale, present-
ing smooth variations, whereas those of RCMs and HMs, of-
ten conditioned by local topography for RCMs or by specific
physiographic features for HMs, are more local, often de-
picting rough variations. The spatial variation of these main
effects can be related to the effective resolution of the cor-
responding models, which is often larger than the resolution
provided by the simulations (Klaver et al., 2020).

Models with very large main effects compared to the other
ones can thus be identified using ANOVA approaches. These
deviating models inflate the corresponding uncertainty com-
ponent. As large uncertainties may dampen important in-
formation about future changes, it is important to exam-
ine these deviating models carefully and understand the rea-
sons behind their atypical behavior. If the models deviate for
the wrong reasons (numerical artifacts, bugs, model inade-
quacy), a reasonable choice could be to discard them from
the MME. Large deviations by a single model can also indi-
cate that other models are overlooking or oversimplifying a
key process that could become critical under future climate
conditions. This raises concerns about model transferability,
particularly for models based on empirical or highly param-
eterized approaches.

In Explore2, recommendations were provided to help end
users select or filter available projections for a catchment.
Diagnostic assessments were carried out for all catchments
to evaluate the performance of surface hydrology and hydro-
geological models when driven by the SAFRAN reanalysis
(Sauquet et al., 2025a). These diagnostics complement the
uncertainty analysis and aim to support the selection of a
subset of models for prospective studies, rather than to rank
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them. Users are encouraged to consult summary sheets at
different spatial scales, from local to regional, and to make
choices based on their specific needs. Model selection can
then depend on intended data use (e.g., streamflow only or
additional variables) and on each model’s ability to deliver
the required variables at the desired locations.

5.3 Uncertainty contributions depend on projection
lead time

CCRs and related uncertainties depend on the future period.
Results obtained for other future periods, specifically 2020-
2050 (near future) and 2040-2070 (mid-century), are pre-
sented in Evin et al. (2024). As the analysis focuses on the
CCR of projections, the dispersion between the main effects
of the different models in each category is almost zero for
the near future and increases with projection lead time, for
all emission scenarios. The uncertainty of each model cate-
gory and, in turn, total CCR uncertainty thus also increases
with projection lead time. As a consequence, CCR uncer-
tainty tends to be much lower than IV in the near future.

To highlight how results vary over time throughout the
21st century, a summary sheet was created for all stations in-
cluded in the project, detailing projected changes and associ-
ated uncertainties. This summary sheet facilitates the identi-
fication of key sources of uncertainty, notably including sub-
stantial contributions from individual models to the overall
model-related uncertainty. Furthermore, it provides a com-
prehensive depiction of the range of potential future projec-
tions, capturing both systematic changes in climate response
and stochastic variations arising from internal climate vari-
ability. For illustrative purposes, the summary sheet devel-
oped for the Seine catchment at Bazoches-Les-Bray is pre-
sented in Fig. 13. It summarizes the different results shown
above, notably:

— Panels A and B: A decrease in low flows and an increase
in high flows under the scenario RCP8.5 (panel A), with
an overall agreement of the MME (80 % of the CCR
exhibiting the same sign for the projected changes).

— Panel C: A dominant contribution of IV to the total un-
certainty (defined as the sum of CCR uncertainty and
V).

— Panels D-F: Individual models can have a large con-
tribution to the corresponding component of the CCR
uncertainty. For example, the GCM IPSL-CM5A-MR
leads to higher projected changes for high flows (panel
D, last column); the HM ORCHIDEE exhibits a “more
humid” (or “less dry”’) signature for mean annual flows,
and the HM CTRIP shows a “more dry” (or “less hu-
mid”) signature for high flows (panel F).
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Figure 10. Main effects (i.e. deviations from the ensemble mean) of individual climate models for summer temperature changes (2071-2099
relative to 1976-2005). (A) GCMS. (B) RCMs.

https://doi.org/10.5194/hess-30-1023-2026 Hydrol. Earth Syst. Sci., 30, 1023-1051, 2026



1040 G. Evin et al.: Uncertainties in local hydroclimatic projections

CNRM-CM5-LR EC-EARTH HadGEM2-ES

ALADIN63 HadREM3-GA7-05 RACMO22E

[%]
<30 24 18 12 6 0 6 12 18 24 >30

Figure 11. Main effects of individual climate models for winter precipitation changes (2071-2099 relative to 1976-2005). (A) GCMS. (B)
RCMs.
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Figure 12. Main effects of individual HMs (CTRIP, GRSD, ORCHIDEE and SMASH) for low flow (QMNA), mean annual flow (QA), and

high flow (QJXA) changes (2071-2099 relative to 1976-2005).

5.4 Some model limitations must be acknowledged

Explore2 projections are obviously not free of limitations,
partly due to model imperfections. Some known limitations
are reported here.

5.4.1 Climate models

GCM/RCM chains are powerful simulation tools that pro-
vide physically coherent climate scenarios at regional scales.
However, the compatibility between a RCM and its forcing
GCM is not always guaranteed (McSweeney et al., 2015).
GCM/RCM discrepancies exist in the large-scale EURO-
CORDEX projections for summer, mainly due to differences
in the representation of aerosols (Boé et al., 2020) and at-
mospheric physics (Taranu et al., 2023). The consequential
effect on solar radiation may impact the reference evapotran-
spiration ETO used in our study, particularly through its ef-
fect on surface temperature (Schumacher et al., 2024). In Ex-
plore2, this inconsistent radiation effect was clearly identi-
fied for some GCM/RCM combinations (Ribes et al., 2022;
Marson et al., 2024) that were thus discarded from the Ex-
plore2 ensemble.

As shown in this study, the downscaling step (i.e., the
RCM uncertainty) is a major source of uncertainty. Alter-
native downscaling approaches are also possible, one very
popular approach using empirical statistical models based
on statistical relationships identified between large scale at-
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mospheric features and regional indicators (Lafaysse et al.,
2014; Erlandsen et al., 2020; Benestad et al., 2025). Artifi-
cial intelligence methodologies have also emerged as an al-
ternative for this downscaling step, namely super-resolution
techniques (Passarella et al., 2022). It can be expected that
these independent downscaling methods will produce sim-
ilar results if they are all equally skillful. In practice, they
exhibit different strengths and weaknesses and often project
different regional climate changes (see, e.g., Rastogi et al.,
2025). In this study, the uncertainty range due to the down-
scaling step would probably be larger if simulations using
these alternative methods had been included in the MME.

5.4.2 Bias Adjustment Models

In Explore2, climate projections were adjusted using ADA-
MONT (Verfaillie et al., 2017) and CDF-t (Michelangeli
et al., 2009) methods. For consistency and simplicity, this
study focuses exclusively on ADAMONT-adjusted projec-
tions. On the one hand, adjusted projections from CDF-t
are only available on a daily time scale and cannot be used
to force HMs with hourly meteorological inputs (e.g., OR-
CHIDEE, CTRIP). On the other hand, the contribution of
BAM uncertainty to CCR uncertainty for temperature and
precipitation was found to be much smaller than for other
sources of uncertainty (Evin et al., 2024).
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Figure 13. Climate Change Responses and Uncertainties in Explore2 projections of low flow (QMNA), mean annual flow (QA), and high
flow (QJXA) changes for the Seine catchment at Bazoches-Lés-Bray. (A) Relative changes (%) for each scenario: median CCR (colored
line), dispersion (quantiles 5 % and 95 %) of the CCR (central colored band), envelop curves of interannual fluctuations around the CCR due
to Internal Variability (light colored band). (B) Agreement on the sign of the projected change. Triangles point upwards (resp. downwards)
if more than 80 % of the CCR are positive (resp. negative). (C) Fraction of total uncertainty CCRV(¢) + IV (in variance) explained by the
different sources of uncertainty. (D-F) Main effects of GCMs, RCMs and HMs.
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Compared to other studies (e.g Alder and Hostetler, 2019;
Senatore et al., 2022; Lafferty and Sriver, 2023), the uncer-
tainty due to BAMs is likely underestimated in Explore2 as
only two similar approaches relying on quantile mapping
were considered. Two critical issues associated with BAMs
can potentially influence the realism of some features of pro-
jected scenarios. They are related to the strong hypotheses
that are needed: (1) for the adjustment of high and extreme
precipitation values, and (2) for the application of the meth-
ods in modified climates (transferability assumption). Indi-
vidual BAMs may also present specific limitations. For ex-
ample, the adjustment applied by ADAMONT is conditional
on the weather regimes from the GCMs, which are not nec-
essarily those of the RCMs (Boé et al., 2020).

5.4.3 Hydrological Models

Similarly, HM uncertainty might be underestimated in this
study. Including more HMs tends to increase the spread of
hydroclimate projections, as shown in Explore2 results for
French sub-regions using 6-9 HMs (e.g., Evin et al., 2024,
for the Loire basin). HMs provide a simplified representa-
tion of catchment characteristics and hydrological processes,
which vary widely in space and time. A broad range of mod-
els exists globally, offering different perspectives on future
hydrology. Our findings highlight the importance of using a
diverse set of HMs to better capture this range. The optimal
number of HMs remains an open question. It likely depends
on the hydroclimatic context and may require as much diver-
sity as climate models.

Model diversity does not guarantee the relevance of hydro-
climate projections and must also represent a wide variety of
hydrological processes that are accounted for. In this study,
for instance, HMs are not suitable for catchments with impor-
tant glacier coverage (found in some high-elevation alpine
catchments) or with strong surface-groundwater interactions,
particularly in the case of karstic basins. The transferability
of HMs in a modified climate context is also not guaranteed.
For instance, with the exception of ORCHIDEE, Explore2
HMs do not account for the rising effect of CO; on vegetation
physiology, and in turn, on evapotranspiration and land hy-
drology (Vicente-Serrano et al., 2022; Lemaitre-Basset et al.,
2022). Accounting for this effect makes ORCHIDEE simu-
late lower evapotranspiration losses and higher runoff (not
shown). Finally, as indicated in Sect. 2, streamflow projec-
tions from the Explore2 dataset are based on “natural” hy-
drology and do not account for human influences such as wa-
ter management infrastructure, water usage, or land use, all
of which will clearly affect future hydrological conditions.

5.4.4 Characterizing uncertainty sources
Our uncertainty analysis is not free of limitations. A criti-

cal step is the estimation of the climate response for each
projection, as the reliability of this estimation directly influ-
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ences the relevance of all subsequent results. However, es-
timating the climate response can be challenging for certain
indicators, particularly when interannual variability is high
(e.g., annual precipitation maxima) and/or when indicators
frequently reach a bound (such as zero, which may occur for
low flows).

A time-series approach such as QUALYPSO is generally
expected to yield more precise climate response estimates
than a time-slice approach (Hingray et al., 2019). In this
study, the climate responses are estimated using cubic splines
with ad hoc smoothing parameters. Alternative trend models
and/or smoothing choices could also have been considered
(e.g. Scherrer et al., 2024). Selecting an appropriate specifi-
cation is not straightforward and requires careful judgment,
often involving a degree of expertise and subjectivity. Here,
the choice was guided by previous studies (Evin et al., 2021)
and further validated through visual inspection across numer-
ous pixels and catchments.

As highlighted in our results, residual variability in the
ANOVA model remains large for some indicators, suggest-
ing the presence of important interactions between differ-
ent sources of uncertainty. In particular, GCM/RCM inter-
actions may play an important role (Evin et al., 2021), poten-
tially linked to the GCM/RCM compatibility issue discussed
above.

6 Conclusion

Explore2 projections reflect the current state of scientific
knowledge on climate change and natural hydrology for
Metropolitan France. They have been produced for a large
number of stations along French rivers using a variety of hy-
drological models from a large ensemble of bias-adjusted re-
gional climate projections.

We use QUALYPSO to assess how a specific climate or
hydrological indicator is expected to change. This method,
designed to tackle the main challenges of uncertainty parti-
tioning in multi-model multi-scenario ensembles, leverages
the very large Explore2 dataset, which is based on the rich
but incomplete and unbalanced EUROCORDEX ensemble.
Although the configuration is complex to work with, QUA-
LYPSO enables the characterization of projected climate
change responses (CCRs) across various climate and hydro-
logical indicators. Specifically, it provides insights into the
mean and the dispersion of the CCRs obtained from differ-
ent modeling chains. Moreover, it facilitates the estimation
of all sources of uncertainty — scenario, GCM, RCM, and
HM uncertainties — as well as potential additional dispersion
in future changes arising from internal variability. Lastly, it
enables the identification of the main effects associated with
each model within each model category, providing a clearer
understanding of how individual models compare and where
the primary sources of uncertainty arise. The key takeaways
from our analysis are as follows.
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France is projected to experience warming, with greater
temperature increases expected under higher future green-
house gas emissions. It is also projected to warm more in the
summer, especially in southern France, and in mountainous
areas in the winter. Warming will lead to an increase in poten-
tial evapotranspiration everywhere, particularly in the sum-
mer. In contrast, the future patterns of seasonal precipitation
are more uncertain. For the RCP8.5, models mostly agree on
a decrease in summer precipitation in the South and an in-
crease of winter precipitation in the North. Annual maxima
of daily precipitation are projected to increase, particularly in
a large northern half of France. For all precipitation indica-
tors, the inter-model dispersion is large and climate models
often disagree on the direction of the projected changes.

The future of French river hydrology is primarily shaped
by the projected warming and the uncertain future of precip-
itation. For hydrological regimes sensitive to temperatures,
larger greenhouse gas emissions will lead to larger hydrolog-
ical changes. For water-limited regimes in southern France,
both annual discharges and low flows are projected to de-
crease. As shown by Sauquet et al. (2025a), snow-dominated
catchments will evolve into mixed regimes, while mixed
regimes will shift toward rainfall-dominated systems. For al-
most all catchments, the increased potential for evapotran-
spiration should intensify the severity of low flow periods.
This increase should be smaller for catchments with snow-
dominated or non-contrasted pluvial regimes. Low flows are
expected to rise due to altered snowpack dynamics in the
first case, while in the latter, they should remain supported
by deep aquifer contributions.

Whatever the climate and/or hydrological indicator, the
dispersion of the CCR between modeling chains is large. The
main sources of uncertainty depend, however, on the indi-
cator. Scenario uncertainty has the greatest impact in snow-
dominated regimes — where snowpack dynamics are crucial
— and in water-limited regions or seasons, such as Mediter-
ranean areas or during summer low flows, where evapotran-
spiration losses play a key role. As climate projections are
very uncertain, the choice of the climate model is very im-
portant for mean annual flow projections, especially for the
rainfall-dominated regimes. In contrast to the choice of the
GCM, the choice of the RCM also matters for low flows. The
choice of the HM can be important. It is high for low flows,
moderate for annual discharge, and low but not negligible for
high flows.

A significant contribution of GCM (or RCM or HM) un-
certainty to CCR uncertainty is often attributed to one or a
few individual models within each category. Determining the
main effects of each model can offer valuable insights that
can guide future model evaluations, improvements, or adjust-
ments.

Explore2 highlights slow and long-term changes in differ-
ent hydroclimatic indicators. Additionally, natural variability
is an inherent characteristic of all hydroclimatic indicators.
Our results confirm that IV can be substantial compared to
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CCR uncertainty. As a result, it may lead to significant de-
partures from the climate response, potentially giving rise to
anomalous or critical years or multi-year periods. IV is fre-
quently overlooked in hydrological impact studies. Our re-
sults confirm that IV can be large and should be carefully
considered to ensure the robustness of adaptation studies.

While Explore? is the largest ever produced MME of hy-
drological projections from regional climate projections and
at the scale of a country, it must not be over-interpreted and
needs to be presented as it truly is. The Explore2 MME is
conditional on scenarios and models chosen and available at
the time the project was carried out. Models are imperfect
representations of real systems and necessitate various sim-
plifications. A probabilistic approach to characterize the en-
semble would not be relevant. Despite its size, the Explore2
ensemble may not encompass the exact climate evolution that
will occur in the coming decades. The chance of encounter-
ing unexpected climate events remains, and the possibility
for climate surprise must be acknowledged.

Appendix A: QUALYPSO

This appendix provides additional details about the key steps
of the approach for an application on an ensemble of hydro-
logical projections or climate projections (in that case, the
effect EH;, () of the HMs is irrelevant hereafter). Figure Al
provides an illustration of these different steps for one pixel
and one catchment. The different steps can be summarized
as follows:

— Estimation of the climate response C R;(t) of each pro-
Jection: As discussed in Sect. 2, a key stage in the anal-
ysis is the estimation of the climate response for each
projection Y;(¢). We used a trend model based on cu-
bic splines applied to the transient projections available
over the entire simulation period. For each projection,
the smooth trend predicted by the cubic spline corre-
sponds to the climate response CR; (¢).

— Estimation of the climate change response CC R;(t) of
each projection: In line with current practice, absolute
changes are considered for temperature (Eq. Al) and
relative changes for the other indicators (Eq. A2). These
changes are relative to the reference period (1976—
2005), using the climate response estimated for its cen-
tral year (i.e. tref = 1990):

CCR; (1) = CR; (t) — CR; (tref), (A1)
CCR; (1) = CR; (1) — CR; (tref) ’ (A2)
CRi (tref)

with ¢ the central year of the future period considered,
tref the central year of the reference period, CR; the cli-
mate response of the projection i and CCR; the corre-
sponding climate change response.
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— Estimation of the internal variability: We assumed that

the internal variability of a projection is constant over
time (in variance). For each projection i and each time
horizon ¢, we first consider the differences between the
raw projection Y;(¢) and the climate response CR; () as
follows:

Di(t) = Y:(1) — CR; (1), (A3)
_ Y1) —CR;()
D) = R ad)

depending on whether we are considering absolute or
relative changes, respectively. Internal variability is then
estimated by the time variance of these differences
D; (1), throughout the period under consideration:

IV; = Var{D; (1)}. (A5)

Estimation of the ensemble mean and the main effect of
each scenario/model: For a given emission scenario s,
the climate change response CCR; () of a projection i
obtained with a simulation chain composed of a GCM
g,an RCM r, and an HM £ is assumed to be the sum of
the individual main effects, as follows:

CCR;(2) = M (t) + ESs (1) + EG, (¢) + ER, (1)
+EHy(¢) + 6s,g,r,h(l‘)y (A6)

where M(t) is the ensemble mean for a future period
t,and ES;(¢), EG,(7), ER, (¢), EH, (7) are, respectively,
the main effect of the RCP scenario s, the GCM g, the
RCM r, and the HM h and where € ¢ ;5 (¢) is the resid-
ual term, i.e. the part of the CCR that is not explained
by the sum of the individual main effects. This estima-
tion is carried out for each future time horizon ¢ using
a linear model, where the least squares of the residu-
als € ¢ 4 (¢) are minimized, as implemented by the R
function 1m of the library stats.

In a complete ensemble of projections, the main effect
of a model is easily interpreted as the mean difference
between (1) the CCR of all the projections using this
model and (2) the mean CCR of the ensemble. By con-
struction, the sum of the main effects of the different
models belonging to a given category of models is zero
(Eq. A7):

D ESs(t) =) EGg(t) =) ER,(1)
s g r

=Y EH,(1) =0. (A7)
h

Estimation of the different sources of uncertainty: The
internal variability of the ensemble is estimated by the
average standard deviation of the fluctuations around
the CCR, i.e. the square root of the ensemble mean of
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the internal variability variances estimated for the N
projections of the ensemble:

(A8)

For a future time horizon ¢, the uncertainty associated
with the emission scenarios and the uncertainties associ-
ated with each model category (GCM, RCM, and HM)
correspond to the variance of the corresponding main
effects. For example, GCM uncertainty is estimated by
the variance of the main effects EGg (¢), g = 1...Ng, es-
timated for the N, GCMs considered. Finally, the resid-
ual variability RV(¢) is the variance of the residuals
€s5,g.1,h @®).

The total uncertainty variance CCRV(¢) of the CCR is
obtained as the sum of the residual variability and the
variance of each model category:

CCRV (1) = Var(ES; (1)) 4+ Var(EGg (1))
+ Var(ER, (1)) 4+ Var(EH}, (1))
+RV(1), (A9)

and CCRU(?) = «/CCRV(¢) is the corresponding stan-
dard deviation. These different estimates can be used to
estimate the fraction of the total uncertainty resulting
from each source of uncertainty:

FV,(t) = Var,(¢)/CCRV(?), (A10)

where FV, (¢) is the fraction of total uncertainty vari-
ance CCRV(t) explained by the source of uncertainty
associated with x (here x = scenario, GCM, RCM, HM,
or RV).
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Figure Al. Illustration of the QUALYPSO for (a) summer temperature and (b) winter precipitation, for one pixel corresponding to the city
of Paris and (c) for the mean annual streamflow, for the Seine catchment at Bazoches-les-Bray. From left to right, for a simulation chain i:
Y; (¢) is the raw projection, CR; (¢) is the corresponding climate response obtained with a cubic smoothing spline, CCR; (¢) is the climate
change response which, by construction, is equal to zero for t = 1990, M (¢) is the estimated ensemble mean (black curve) and M (t) +ES; ()
adds the estimated main effect for each of the RCP scenario s (colored curves), EGg (), ER,(t) and EHy, (¢) are the main GCM, RCM and
HM effects, respectively (see legend in Fig. 13), FV(2085) shows the contributions to the CCRV in 2085 (i.e. the contributions to the total
variance of climate change responses), D;(¢) are the annual deviations from the climate response as a result of interannual variability, and
CCRV(z) + IV shows the contribution of each source of uncertainty to the total uncertainty.
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Code and data availability. The QUALYPSO approach is imple-
mented in an R package available on CRAN (https://CRAN.
R-project.org/package=QUALYPSO, Evin, 2023). The codes used
to produce the analyses and figures shown in this study
are shared on GitHub and are available at https://github.com/
guillaumeevin/Explore2/ (last access: 5 February 2026; DOI:
https://doi.org/10.5281/zenodo.18576224, Evin, 2026). Summary
sheets of the uncertainties are available on the following data-
verse repository: https://doi.org/10.57745/3LPSEN (Evin, 2025).
The Explore2 dataset is associated with the following digital ob-
ject identifier https://doi.org/10.57745/YHMBHC (Sauquet et al.,
2025b). The hydrological data can be downloaded in netCDF file
format through the open platform for French public data dedicated
to the Explore2 project (https://entrepot.recherche.data.gouv.fr/
dataverse/explore2, last access: 5 February 2026) and the DRIAS-
Eau website (https://www.drias-eau.fr/, last access: 5 February
2026). SAFRAN is available at https://meteo.data.gouv.fr/datasets/
6569b27598256cc583c917a7 (last access: 5 February 2026).
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