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Abstract. Hydrological models are valuable tools for under-
standing the movement of water and contaminants in agricul-
tural catchments. They are particularly useful for assessing
the impact of landscape organization on pesticide transfers
and for developing effective mitigation strategies. However,
using these models in an operational context requires re-
ducing uncertainties in their outputs, which can be achieved
through data assimilation methods. In this study, we aim to
integrate surface moisture images into the PESticide and Hy-
drology Modelling at the catchment scale (PESHMELBA)
water and pesticide transfer model using data assimilation
techniques. Twin experiments are conducted on a virtual
catchment consisting of vineyard plots and vegetative filter
strips. We compare the performance of the ensemble Kalman
filter (EnKF), the ensemble smoother with multiple data as-
similation (ES-MDA), and the iterative ensemble Kalman
smoother (iEnKS) in jointly estimating vertical moisture pro-
files and van Genuchten soil water retention properties of all
soil horizons. Results indicate that the ES-MDA performs the
best in estimating surface moisture and saturated water con-
tents, while all methods show similar results for subsurface
moisture variables and parameters. Furthermore, we exam-
ine the sensitivity of the methods to observation error mag-
nitude, observation frequency, and ensemble size to establish
an effective assimilation setup. This study paves the way for
future operational applications of data assimilation in PESH-
MELBA.

1 Introduction

Understanding the transfer of water and pesticides is criti-
cally important for protecting aquatic and human life. To do
so, numerical simulations effectively support risk assessment
studies at the catchment scale. These studies particularly ben-
efit from distributed hydrological models as they can accu-
rately describe the relevant processes and transfer pathways
that influence pesticide fate (Gassmann et al., 2013; Dja-
belkhir et al., 2017; Branger et al., 2010; Rouzies et al., 2019;
Wendell et al., 2024).

Such hydrological models simulate several interacting
physical processes in order to properly capture the complex
reality of the field, such as surface and subsurface hydrolog-
ical transfer, sediment, and pollutants, among different units
of the catchment. They need large sets of input parameters,
potentially varying in space (such as soil hydraulic charac-
teristics, land cover, and atmospheric boundary conditions),
which may be hard to properly define. Uncertainties in pa-
rameters, such as in model structure, can thus result in sig-
nificant errors in model simulations (Liu and Gupta, 2007;
Fatichi et al., 2016; Herrera et al., 2022).

Data assimilation (DA) is an interesting approach used to
quantify and reduce these uncertainties. It consists of com-
bining complementary information from observations dis-
tributed in time and space and a numerical model while ac-
counting for uncertainties from both sources. Stochastic en-
semble methods derived from the Kalman filter (Kalman,
1960), such as the ensemble Kalman filter (EnKF; Evensen,
2003, 2009) or the ensemble smoother (ES; van Leeuwen
and Evensen, 1996), are broadly used in geophysics. They
consist of Monte Carlo algorithms and linear solutions of
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the estimation problem. Dimension reduction is performed
by approximating the state probability distribution by an en-
semble of vectors. Such approximation makes these meth-
ods particularly suitable for high-dimension problems (Katz-
fuss et al., 2016). Observations are integrated as they arrive,
either one at a time (filter) or in batches, within a tempo-
ral window (smoother). Although the EnKF and its variants
are based on the assumption of Gaussian statistics, they have
been successfully applied to nonlinear, non-Gaussian prob-
lems in many fields over the last few decades (e.g. Bertino
et al., 2003; Crow and Wood, 2003; Moradkhani et al., 2005;
Rochoux et al., 2014; Kurtz et al., 2016; Devers et al., 2020).

In many of these studies, DA is used to jointly correct
state variables and estimate model parameters. A classical
approach to performing joint estimation consists of augment-
ing the state vector by including the parameters to be es-
timated. Parameters are mostly unobserved, and their pos-
terior distributions are deduced from the covariances built
to perform DA between them and the state variables (Boc-
quet and Sakov, 2013). In hydrology, wrong parameter val-
ues are often identified as the dominant source of error (Hen-
dricks Franssen and Kinzelbach, 2008; Nie et al., 2011),
and joint estimation can significantly improve simulation ac-
curacy. Recent studies have demonstrated the potential of
joint estimation in groundwater flow or integrated surface–
subsurface hydrological models at the catchment or hills-
lope scale (e.g. Hendricks Franssen and Kinzelbach, 2008;
Baatz et al., 2017; Botto et al., 2018). Among them, Pasetto
et al. (2015) examine the potential of the EnKF in the inte-
grated surface–subsurface hydrological model CATHY (Pan-
iconi and Putti, 1994; Camporese et al., 2010) to estimate
the field of saturated hydraulic conductivity on a virtual hill-
slope. Xie and Zhang (2010) also demonstrate the EnKF’s
capability to estimate the runoff curve number empirical pa-
rameter in addition to various prognostic variables in the con-
ceptual hydrological SWAT model (Arnold et al., 1998). The
ES scheme’s capability to perform joint estimation is also
investigated as this scheme is easier to implement and less
computationally demanding than the EnKF. In Crestani et al.
(2013), the performances of the EnKF and the ES are com-
pared to deduce the spatial distribution of hydraulic conduc-
tivity using a groundwater flow and transport model. Bailey
and Baù (2012) also retrieve conductivity distributions based
on the ES, both on its original version and on an iterative
version. More recently, Emerick and Reynolds (2013a) in-
troduced the ensemble smoother with multiple data assimi-
lation (ES-MDA), an iterative scheme based on the ES that
allows the same observations to be assimilated several times.
This scheme has been shown to outperform both the EnKF
and the ES for parameter estimation in reservoir history-
matching problems (Emerick and Reynolds, 2013a, b). Cui
et al. (2020) also use the ES-MDA to estimate soil hy-
draulic parameters from Hydrus one-dimensional simula-
tions (Šimůnek et al., 1998) and water content observations.
These studies focus solely on parameter estimation, but the

ES-MDA scheme could easily be extended to joint estima-
tion in a hydrological modelling context.

Ensemble methods have also percolated into the vari-
ational DA community, which defines the data assimila-
tion problem as a cost function to be minimized. Ensemble
variational methods, such as the iterative ensemble Kalman
smoother (iEnKS; Bocquet and Sakov, 2013), have recently
been developed and have also demonstrated their ability to
solve joint estimation problems. The iEnKS for joint estima-
tion consists of iteratively minimizing a cost function that
depends on the augmented state. In contrast to classical vari-
ational problems, the cost function is defined in the ensemble
space, which limits the required computational effort. This
DA method has so far been tested on simple oceanic models
(Bocquet and Sakov, 2013) and atmospheric chemistry mod-
els (Defforge et al., 2018) and has been shown to outperform
the EnKF in some cases. In Bocquet and Sakov (2013), the
authors argue that this method may be able to successfully
deal with nonlinearities. The iEnKS has not yet been applied
to hydrological models, but it may be worth exploring for
dealing with the complex structures and physical processes
implemented in such models.

The above references show that there has been a wealth
of studies dedicated to DA in catchment-scale hydrologi-
cal models, both conceptual and physically based. However,
during the last decade, a novel approach to modelling has
been emerging in hydrology. This approach consists of build-
ing physically based and distributed models with a modular
structure, relying, for example, on flexible modelling frame-
works (Buytaert et al., 2008). Resulting models are then com-
posed of distinct code units representing various physical
processes that are coupled in the modelling framework. The
motivation behind this innovative philosophy is to provide
model structures that are flexible enough to evolve accord-
ing to the targeted application. Several tools already exist in
the hydrological field, and they show promising results for
risk assessment applications (Tortrat, 2005; Moussa et al.,
2010; Branger et al., 2010; Kraft et al., 2012; Rouzies et al.,
2019). However, these modular models are often character-
ized by a highly interactive structure and numerous parame-
ters, which complicates uncertainty quantification and reduc-
tion (Rouzies et al., 2023). As a result, the application of DA
to these models may lead to different results from those of
classical models, warranting an in-depth study and compari-
son of the available DA algorithms.

Within this context, the objectives of this study are
twofold. First, we aim to propose first examples of a DA
framework in a process-oriented, modular model used for
risk assessment applications. Second, we propose a compar-
ison of three DA algorithms (namely the EnKF, the iEnKS,
and the ES-MDA) that are representative of the three main
types of DA ensemble methods: a filter, a hybrid variation-
al/ensemble smoother that is efficient over short data assim-
ilation windows, and an ensemble smoother that is efficient
over long data assimilation windows. For this purpose, we
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apply these DA schemes to the PESticide and Hydrology
Modelling at the catchment scale (PESHMELBA; Rouzies
et al., 2019) model. PESHMELBA aims to simulate differ-
ent landscape configuration scenarios and rank them in terms
of pesticide transfer mitigation. Such a model could thus
greatly benefit from joint estimation as it could contribute
to identifying consistent parameter distributions for scenario
exploration. In this paper, we focus on the joint estimation of
moisture variables and input parameters θsat (water content
at saturation) for different soil types by assimilating surface
soil moisture images. We do so on the basis of synthetic ex-
periments, and we compare the performance of the EnKF,
the ES-MDA, and the iEnKS. The outline of the paper is
as follows: after a short description of the PESHMELBA
model in Sect. 2.1, the different DA methods are introduced
in Sect. 2.2. The case study and the DA setup are presented
in Sect. 2.3 and 2.4. The capabilities of the tested methods
in retrieving variables and input parameters for both surface
and subsurface compartments are explored in Sect. 3.1. Sen-
sitivities to error prescription, ensemble size, and observation
frequency are investigated in Sect. 3.2.

2 Material and methods

2.1 Model description

The PESHMELBA model is a physically based and spatial-
ized model that simulates the transfer of water and pesticides
at the scale of small agricultural catchments (Rouzies et al.,
2019). It is designed to compare different landscape manage-
ment scenarios and to identify an optimal configuration re-
garding pesticide transfer mitigation. As PESHMELBA aims
to assess the impact of landscape composition, the hydro-
dynamical impact of various landscape elements, such as
vegetative filter strips (VFSs), hedges, or ditches, is explic-
itly simulated in model units that interact with each other.
PESHMELBA meshing is based on the landscape organiza-
tion as one mesh element represents one landscape feature.
As a result, physical process representation and coupling are
adapted to this heterogeneous, element-scale meshing.

In this study, we use a version of PESHMELBA that simu-
lates surface/subsurface hydrological fluxes within vineyard
plots, VFSs, and river reaches. The discretization of each
landscape element and the physical processes integrated in
this code version are summarized in Fig. 1. Each plot or VFS
is simulated as a single column of soil discretized vertically
into numerical cells of heterogeneous thickness. Each soil
column is composed of one or several soil layers, also called
soil horizons, which are characterized by distinct hydrody-
namical behaviours. Within a time step, vertical infiltration
is solved on each column in the catchment, using the one-
dimensional Richards equation for flows in variably saturated
porous media (Richards, 1931). Once vertical infiltration has
been solved, the overland flow is sequentially computed from

ponding height resulting from solving the Richards equation.
Overland flow toward downstream elements is simulated us-
ing a pseudo-one-dimensional kinematic wave (Lighthill and
Whitham, 1955). Channel flow routing in the river is also
simulated using a kinematic wave approximation in a net-
work of reaches with trapezoidal sections. For both overland
and channel flows, a finer time step is used compared with
that for vertical infiltration calculations. Finally, at the end of
the time step, subsurface lateral flows in the saturated zone
between plots or VFSs are calculated based on Darcy’s law
(Darcy, 1857). Lateral saturated exchanges between water ta-
bles and the river are computed from Miles’ equation (Miles,
1985) adapted by Dehotin (2007). As a result, PESHMELBA
is able to simulate the hydrological variables and their dy-
namics in three dimensions.

All physical processes are integrated in PESHMELBA in
independent code units. The different code units are coupled
in the OpenPALM coupler (Fouilloux and Piacentini, 1999;
Buis et al., 2006) that ensures variable exchanges and syn-
chronization. It is worth emphasizing that PESHMELBA’s
final structure is characterized by strong interactions, non-
linearities, and threshold effects. It makes any attempt at
DA particularly challenging and justifies studying several ap-
proaches in depth in order to identify the most appropriate
one.

2.2 Data assimilation methods

The following sections introduce the ensemble Kalman fil-
ter, the ensemble smoother with multiple data assimilation,
and the iterative ensemble Kalman smoother with multiple
data assimilation. These methods aim to estimate the proba-
bility density function (PDF) of a state vector conditional on
available observations. In this case study, we aim to estimate
three-dimensional moisture profiles and some input parame-
ters of the PESHMELBA model. The corresponding system
state vector at time tk with k ∈ {1, . . .,K} is denoted xk ∈ Rn
in what follows. We assume available observations of mean
moisture in the top 5 cm of the soil, and the corresponding
observation vector at time tk is denoted yo

k ∈ R
p.

The model Mk→k+1 : Rn→ Rn propagates the state vec-
tor from time tk to time tk+1 (Eq. 1), and Hk : Rn→ Rp is
the observation operator that maps the state variable space
onto the observation space at each time step (Eq. 2):

xk+1 =Mk→k+1(xk)+ vk, (1)
yo
k =Hk(xk)+ zk, (2)

where vk and zk are the state error and the observation error
respectively. They are assumed to be unbiased and to follow
a Gaussian distribution:

vk ∼N (0,Pk), (3)
zk ∼N (0,Rk), (4)

where Pk ∈ Rn×n (resp. Rk ∈ Rp×p) is the model error co-
variance matrix (resp. observation error covariance matrix).
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Figure 1. Discretization of landscape elements and physical processes included in the PESHMELBA version of this study. The horizontal
black lines in the left and middle soil columns delimit the numerical cells, while the hatched areas represent the water tables. In these
columns, the different brown fillings delimit the different soil horizons.

In the case of joint estimation, the state vector xk is aug-
mented with the model parameters to be estimated, and the
model Mk→k+1 also includes an evolution law for the esti-
mated parameters in addition to the state dynamical evolu-
tion. As soil characteristics are not expected to change over
time at the scale of interest, we have chosen a persistence law
to represent the (non-)evolution of the parameters.

The DA methods introduced in the next sections are se-
quential and consist of an alternation of a forecast step and
an analysis step. During the forecast step, the model propa-
gates a background state xk−1 from tk−1 to tk , resulting in a
forecast state vector xf

k . This prior state is updated during the
analysis step based on the available measurements. The anal-
ysis results in a posterior state xa

k at time tk that becomes the
background for the next forecast step between tk and tk+1.
Accordingly, any given vector a or matrix A derived from
the forecast step is denoted af or Af in what follows, while it
is denoted aa or Aa if it is calculated at the analysis step. Al-
though they aim to solve the same problem derived from the
Bayes theorem, the methods tested in this study differ in the
time window that is considered in the forecast step and the
number of measurements simultaneously used in the analy-
sis step. The distinct approximations and assumptions they
are based on may lead to significantly different solutions that
are analysed in this study. Their common structure and char-
acteristics are summarized in Fig. 2.

2.2.1 Ensemble Kalman filter

The ensemble Kalman filter (EnKF; Evensen, 1994) extends
the Kalman filter resolution of the Bayesian estimation prob-
lem to nonlinear, high-dimensional contexts. The state dis-
tribution is approximated by an ensemble of M state vectors
x(i), i ∈ {1, . . .,M}. Each vector is sequentially propagated
during the forecast step by applying the nonlinear model M
and updated during the analysis step using the current obser-
vations (see Fig. 2, left). This study is based on the ensemble
transform Kalman filter (ETKF; Bishop et al., 2001; Hunt
et al., 2007). At each time tk , we consider Xf

k ∈ R
n×M , the

matrix of normalized perturbations whose columns are ex-
pressed as

[Xf
k]i =

x
(i),f
k − xf

k
√
M − 1

, (5)

with

xf
k =

1
M

M∑
i=1

x
(i),f
k . (6)

During the analysis step, one looks for a state vector xa
k in the

affine subspace spanned by the anomalies: xf
k+Vec{x(1),fk −

xf
k, . . .,x

(M),f
k − xf

k}. The analysis is then expressed as

xa
k = x

f
k +Xf

kwk, (7)

where wk ∈ RM is a weight vector in the ensemble subspace.
The optimal weight vector is obtained from the Kalman filter
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Figure 2. Schematic view of one DA cycle for the EnKF (a), the ES-MDA (b), and the iEnKS (c). The lines depict trajectories for some
members of the ensemble, and the coloured envelop represents the ensemble uncertainty. The dots depict the available observations. The
black dots in the black window are the observations that are used for the current DA cycle, whereas the grey dots are unused observations.

equation:

xa
k = x

f
k +Kk[y

o
k −Hk(x

f
k)], (8)

where the Kalman gain Kk = Pf
kH
>

k (HkPf
kH
>

k +Rk)−1 is
computed with the forecast error covariance matrix ex-
pressed from the ensemble: Pf

k = Xf
kX

f>
k . Identification of

terms using the Sherman–Morrison–Woodbury formula al-
lows us to express the optimal weight vector wk in the en-
semble subspace:

wk = (IM +Yf>
k R−1

k Yf
k)
−1Yf>

k R−1
k δk, (9)

where δ is the innovation vector δk = yo
k −Hk(x

f
k) that con-

tains the observations and where Yf
k ∈ R

p×M contains the
observation normalized perturbations:

[Yf
k]i =

Hk(x
(i),f
k )− yf

k
√
M − 1

, (10)

with

yf
k =

1
M

M∑
i=1

Hk(x
(i),f
k ). (11)

The posterior ensemble of perturbations is generated so as to
be representative of the posterior uncertainty that can be fac-
torized as Pa

k = Xa
kX

aT
k . The analysis normalized anomalies

are then derived:

Xa
k = Xf

k(IM +Yf>
k R−1Yf

k)
−

1
2 . (12)

This leads to the following expression for the analysed mem-
bers x(i),ak , ∀i ∈ {1, . . .,M}:

x
(i),a
k = xf

k +Xf
k(wk +

√
M − 1[(IM +Yf>

k R−1Yf>
k )

−1
2 ]i). (13)

The ETKF is favoured for high-dimension problems as it al-
leviates the computational cost of the analysis. Indeed, most
of the algebraic calculations are performed in the ensemble
subspace, which is generally of a smaller dimension than the
state or observation space.

2.2.2 Ensemble smoother with multiple data
assimilation

The above section has introduced a filtering approach that is a
sequential scheme based on incremental updates of the state
vector x. For each update, the present system state PDF is
corrected by Eq. (12) using present observations only. In con-
trast, the ensemble smoother (ES; van Leeuwen and Evensen,
1996) aims to estimate a posterior distribution for the state
vector in an assimilation window [t1, . . ., tK ], relying on all
observations available in that window. First, the ensemble is
integrated over the whole assimilation window in a single
forecast step. The augmented state vector x is composed of
temporal trajectories for each state variable at each point of
the model grid along with input parameters. The same analy-
sis as for EnKF is then carried out, using all the observations
at the same time (see Fig. 2, middle). The state variable tra-
jectories are updated in space and time through space–time
covariances estimated from the ensemble (Crestani et al.,
2013).

More recently, Emerick and Reynolds (2013a) introduced
the ensemble smoother with multiple data assimilation (ES-
MDA), an “iterative version” that consists of iteratively per-
forming the ES-like sequence: ensemble model integration
over the whole assimilation window followed by an analy-
sis step. It should be noted that the number of iterations is
prescribed before launching the DA procedure and does not
depend on a convergence criterion. At iteration (j), the anal-
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ysis step from Eq. (12) is replaced by

Xa
(j) = Xf

(j)(IM +Yf>α−1
(j)R

−1Yf)−
1
2 , (14)

where the notation Xa
k (resp. Xf

k and Yf
k) for time tk has been

simplified to Xa (resp. Xf and Yf) and where the weight
α(j) is an inflation term for the observation error covari-
ance matrix R. Considering J , the predefined total num-
ber of iterations in the ES-MDA full scheme, the weights
α(j) ,j ∈ {1, . . .,J } must satisfy

J∑
j=1

1
α(j)
= 1. (15)

In this study, we set α(j) = J, ∀j ∈ {1, . . .,J } (Emerick and
Reynolds, 2013a; Cui et al., 2020).

The model integration at iteration (j+1) is then initialized
with the posterior distribution of parameters obtained from
the analysis at iteration (j). This scheme replaces a single
abrupt analysis by several smaller analyses.

2.2.3 Iterative ensemble Kalman smoother with
multiple data assimilation

As with the EnKF, the iEnKS alternates forecast and analysis
steps to perform incremental updates of the state. However,
in this fixed-lag smoothing context, each analysis aims to up-
date a state vector at time tk using observations between tk+1
and tk+L, where L is the length of the data assimilation win-
dow (DAW; see Fig. 2, right). Moreover, in contrast to the
EnKF and the ES-MDA, the iEnKS fundamentally belongs
to the category of variational methods. As such, the iEnKS
analysis step consists of minimizing a cost function deduced
from the Bayesian estimation problem formulation:

I(xa
k)=

1
2
‖ xa

k − x
f
k‖

2
Pf
k

+

L∑
l=1

1
2
‖ yk+l

−Hk+l ◦Mk→k+l(x
a
k)‖

2
Rk+l , (16)

where ‖ x‖2A = x
>Ax. Like the EnKF and the ES, the iEnKS

is an ensemble-based method, and the calculations rely on
M members: x(i), i ∈ {1, . . .,M}. X denotes the perturba-
tion matrix (see Eq. 5).

At time tk , the analysed state vector is expressed as an in-
cremental correction xa

k = x
f
k +Xf

kw, and the minimization
consists of finding the weight vector w∗ ∈ RM that mini-
mizes the cost function expressed in the ensemble subspace.
Again, the forecast error covariance matrix is expressed from
the ensemble: Pf

k = Xf
kX

f>
k , leading to the following expres-

sion for the cost function:

I(w)=
1
2
‖ w‖2+

L∑
l=1

1
2
‖ yk+l

−Hk+l ◦Mk→k+l(x
f
k +Xf

kw)‖
2
Rk+l , (17)

where ‖ w‖2 = wTw.
The minimization of the cost function I is performed in

the ensemble subspace by a Gauss–Newton algorithm:

w(j+1) = w(j)−A−1
(j)∇I(j)(w(j)), (18)

where (j) is the iteration index, A is an approximation of the
Hessian of I, and ∇ is the gradient operator. Such minimiza-
tion actually corresponds to a nonlinear update.

The approximated Hessian and the gradient are expressed
using the tangent linear of the operator transporting from the
ensemble space to the observation space

H ◦M : Yk+l,(j) = [Hk+l ◦Mk→k+l]
′

|xk,(j)
Xf
k.

In this study and as proposed in Bocquet and Sakov (2013),
this tangent linear operator is estimated using finite differ-
ences (“bundle” iEnKS version). Both A and ∇I are then
computed from the ensemble:

xa
k,(j) = x

f
k +Xf

kw(j), (19)

∇I(j) = w(j)−
L∑
l=1

αlYTk+l,(j)R
−1
k+l[yk+l

−Hk+l ◦Mk→k+l(x
a
k,(j))], (20)

A(j) = IM +
L∑
l=1

αlYTk+l,(j)R
−1
k+lYk+l,(j), (21)

where αl , l ∈ {1, . . .,L} values are inflation weights for the
observation error. As the ensemble size is generally rather
small, A(j) can be inverted using direct exact methods. As
with the ES-MDA, the iEnKS implementation chosen in this
paper allows each observation to be used several times. The
weights αl then merely measure the impact of each observa-
tion in the DAW. The sum of the weights for an assimilation
cycle respects

L∑
l=1

αl = 1. (22)

In Bocquet and Sakov (2014), a heuristic justification of this
MDA scheme is given. The reader should refer to this paper
for more details about this scheme. In this study, we choose
a uniform scheme so that αl = 1

L
, ∀ l = 1, ..,L.

The minimization takes place until a convergence crite-
rion is reached. Then, the analysed members x(i),ak , ∀i ∈

{1, . . .,M} are deduced at time tk using the minimized vector
w∗ and the associated state vector xa

k:

x
(i),a
k = xa

k +
√
M − 1[Xf

kH
−

1
2 ]i . (23)

This way, the iEnKS offers to perform the nonlinear update
of the state as in standard variational DA (Carrassi et al.,
2018).
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2.3 Case study

In this study, we aim to investigate the accuracy and the
robustness of the aforementioned DA methods in a simula-
tion exercise based on PESHMELBA. To do so, we perform
synthetic (or twin) DA experiments on a simplified, virtual
catchment. DA experiments are conducted on the Morcille-
like virtual catchment described in Rouzies et al. (2023).
This size-limited catchment is inspired from the La Mor-
cille catchment, situated in the Beaujolais vineyard region
east of France. A comprehensive description of the setup can
be found in their study, and its main characteristics are re-
ported in what follows. The virtual catchment is composed
of 10 vineyard plots, 4 VFSs, and a portion of river that de-
limits two hillslopes. All soil columns are 4 m deep. They are
vertically discretized into 25 numerical cells whose thickness
ranges from 0.05 m at the top to 1 m at the bottom. Three soil
units (SUs), mainly sandy, compose the catchment, in accor-
dance with the soil composition of the La Morcille catch-
ment. Each soil type is made up of the vertical succession of
three or four soil horizons. Each soil horizon is characterized
by its own hydrodynamical behaviour that results in distinct
sets of parameters. Figure 3 summarizes the scenario com-
position, the different SUs, and their vertical constitution.
Vineyard plots and VFSs from the same SU are parameter-
ized identically except for the first soil horizon. The first soil
horizon is chosen to extend to the first 15 cm in VFSs, while
it can vary on vineyard plots. Its main parameters are set in
order to account for the effect of increased soil structuring
and dense vegetation that mitigate surface runoff on VFSs.
This way, the saturated hydraulic conductivity, the ponding
height, and the roughness are increased compared with vine-
yard plots.

Vineyard plot and VFS pressure profiles are initialized
considering hydrostatic equilibrium and initial water table
levels that are consistent with field data for the given time pe-
riod. Realistic rain and potential evapotranspiration forcings
that correspond to a typical winter period in the area are used.
Except for atmospheric forcings, all boundary conditions are
zero fluxes. Two vegetation types are set in this scenario. A
vineyard cover is considered on plots, while a permanent,
mature grassland is parameterized on VFSs. Root depth and
root density are supposed to be constant all over the simula-
tion for both of them, while the leaf area index (LAI) evolves
over the simulation period for vineyard cover. LAI remains
constant on grassland.

The full scenario results in 128 parameters whose nomi-
nal values and meaning are described in Appendix A. Some
input parameters may seem redundant from one soil hori-
zon to another, but we explicitly distinguish between sev-
eral horizons in order to prepare setups that include pesticide
transfers. In such an application, parameters will need to vary
from one horizon to the other.

As a reference for result interpretation, Fig. 4 shows an ex-
ample of nominal time series of moisture at different depths

(surface, intermediate, and deep). At the surface, soil mois-
ture dynamics are strongly driven by rain forcings all over
the simulation. In contrast, moisture varies significantly only
after 1200 h of simulation at 0.2 m depth, when stronger rain
events occur. Finally, at 4 m depth, the system is not affected
by the dynamics from superficial cells or climate forcings. It
remains in a steady state that corresponds to the presence of
a water table, leading to a constant moisture value.

2.4 DA setup

As this study focuses on twin experiments, we use synthetic
images that mimic satellite moisture data in the top 5 cm.
Such data are supposed to come from the synergistic use
of optical and radar signals from Sentinel-1 and Sentinel-2
satellites (Bousbih et al., 2018), which in turn can be con-
verted into maps of surface soil moisture in agricultural areas
(El Hajj et al., 2017; Gao et al., 2017). The synthetic images
are generated from a “true” reference run of PESHMELBA
and are perturbed with Gaussian, non-biased noise. Observa-
tion errors are supposed to be uncorrelated in time and space,
and the standard deviation for error is set to 0.02 cm3 cm−3

at the first step. It should be noted that this approximate
for observation error is underestimated compared with val-
ues found in Bousbih et al. (2018). In this paper, the authors
conducted experiments on cereal crops. To our knowledge,
similar experiments on vineyards have not been performed
yet. Observation error for such soil cover may differ greatly,
and sensitivity to the observation error magnitude is thus in-
vestigated in this study. We assume a time series is available
for mean moisture in the top 5 cm for each vineyard plot and
VFS in the catchment. The observation operator H is accord-
ingly built as a matrix so as to relate each observation to the
weighted mean of moisture over the six numerical cells that
compose the top 5 cm of the soil column:

θ5 cm =

∑6
j=1θjdzj∑6
j=1dzj

, (24)

where θj and dzj are the soil moisture and the thickness of
numerical cell j respectively.

For the sake of simplicity, we consider that the input pa-
rameters are the only sources of uncertainty in the model.
The ensemble is initialized by independently perturbing the
128 input parameters. Perturbations are set according to each
input parameter PDF. Such a PDF has been defined from field
measurements, the literature, and expert knowledge in a pre-
vious study (Rouzies et al., 2023). They are detailed in Ap-
pendix A.

Joint estimation is performed in order to estimate both ver-
tical moisture profiles and relevant uncertain input parame-
ters. The global sensitivity analysis of PESHMELBA in this
case study showed that parameters that influence moisture
profiles the most are mainly θs (water contents at saturation)
for the different soil horizons (Radišić et al., 2023). The aug-
mented state vector thus includes these 14 parameters for
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Figure 3. (a) Composition and spatial distribution of SUs in the virtual catchment. VFSs are bounded with the dashed green line, while
the remaining mesh units are vineyard plots. (b) Details of SU constitution in terms of succession of soil horizons on vineyard plots. SU
constitutions for VFSs are the same except for the surface horizon that is 15 cm deep.

Figure 4. Soil moisture time series for the nominal simulation on plot 10 at the surface (top), 0.2 m depth (middle), and 4 m depth (bottom).
Rain forcings are shown in the top black histogram, while the position of plot 10 in the catchment is denoted by a red line in the top-left
pictogram. The soil composition of plot 10 is shown in the soil columns depicted on the right, with red stars showing the corresponding
depths.

both surface and deeper soil horizons, and a bias is added
to their PDFs when generating the initial ensemble.

For the iEnKS, the number of Gauss–Newton iterations in
the cost function minimization is set to three, which, from ex-
perience, can limit the cost and is considered enough (Eq. 18
being solved exactly). A preliminary sensitivity study also
allowed us to set the iEnKS optimal DAW length L so as
to assimilate observations by a batch of five. Similarly, from
preliminary trials, the number of iterations is set to three for
the ES-MDA.

The nominal scenario consists of a 78 d simulation with
6 d observation frequency, a standard deviation for observa-
tion error equal to 0.02 cm3 cm−3, and an ensemble size of
50 members. Then, a series of experiments is set up in order
to assess the robustness of the DA methods and to test their
sensitivity to the (1) observation error magnitude, (2) obser-
vation frequency, and (3) ensemble size. To do so, each factor
(observation error magnitude, observation frequency, and en-
semble size) is varied individually, while the others are set up
to nominal values. Tested values are reported in Table 1.
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Table 1. Scenarios explored to assess the sensitivity of DA methods to the (i) observation error (standard deviation), (ii) frequency of
observation, and (iii) ensemble size. Nominal values are in bold.

Observation error SD [cm3 cm−3] 0.001, 0.020, 0.040, 0.060, 0.080, 0.100, 0.120, 0.140, 0.160, 0.180, 0.200, 0.300, 0.400
Observation frequency [days] 1, 2, 3, 4, 5, 6, 8, 9, 10
Ensemble size [–] 20, 50, 100, 200, 500

The performances of the DA methods in the different se-
tups are assessed by computing the continuous ranked prob-
ability score (CRPS; Brown, 1974) on the moisture time se-
ries, on each vineyard plot, and the VFS at the surface and
at 0.2 and 4 m depths. The CRPS expresses the distance be-
tween the cumulative density function (CDF) of the proba-
bilistic forecast and the CDF of a reference. In this case, the
reference is the “true” run of PESHMELBA that is supposed
to be free of error. Its CDF is built using the Heaviside func-
tion, and the CRPS consists of building the quadratic distance
between the two functions:

CRPS(Y, θ̂ )=

∞∫
−∞

[FY (s)−H(s− θ̂ )]
2ds, (25)

where FY is the CDF of the one-dimensional ensemble of
moisture values Y, θ̂ is the deterministic value of moisture
from the PESHMELBA “true” run, and H(x) is the Heav-
iside function. It is a positive error criterion variable: the
closer it is to 0, the better is the ensemble forecast. The CRPS
is expressed in the same unit as the evaluated variable. It is
averaged over time/space in the case of a multidimensional
forecast Y. In this study, CRPS scores are estimated follow-
ing Hersbach (2000), and the corresponding formulation is
detailed in Appendix B. In order to better capture the im-
pact of DA on the simulation, we also use the continuous
ranked probability skill score (CRPSS), which is the ratio
between the CRPS of the analysis and the CRPS of the free
run (i.e. the unassimilated state):

CRPSS= 1−
CRPSDA

CRPSfree
, (26)

where CRPSDA (resp. CRPSfree) is the CRPS score of the
analysis (resp. the free run). When positive, the closer the
CRPSS is to 1, the more the DA process improves the es-
timation. When negative, the assimilation process degrades
the estimation compared with the free run.

As pointed out in Bocquet and Sakov (2014), it is crucial to
remind the reader that the performances of a DA scheme de-
pend on the metrics chosen to assess its quality. We chose the
CRPS because it rigorously generalizes the notion of mean
absolute error (MAE) to stochastic predictions. In addition,
the decomposition of the average CRPS can also provide in-
formation on the reliability and the resolution of the posterior
ensemble (Hersbach, 2000).

3 Results

3.1 Comparison of methods

3.1.1 Performances on moisture variable correction

The three DA methods are first tested on the nominal setup
presented in Sect. 2.4. Figure 5 compares the CRPS time se-
ries of moisture variables assimilated by the three DA meth-
ods with the free run simulation on plot 10. The evolution
of the CRPS for both the free run and the assimilated state
is highly correlated to the precipitation time series. Rainfall
events and the following recession periods lead to peaks in
the CRPS chronicle, showing an increased level of uncer-
tainty in the system in wet conditions. During the first three
assimilation cycles (up to 576 h), the iEnKS and the EnKF
decrease the error to a limited extent compared with the free
run. More precisely, in this first part of the simulation, the
corrections from their analysis steps have nearly no effect af-
ter each rainfall event that follows an analysis. Until 576 h,
the ES-MDA is then the only method that allows for a clear
reduction in the CRPS, during both rainfall events and dry
periods. The second part of the simulation is characterized
by longer and more intense rainfall events. In this time pe-
riod, all methods allow for an effective decrease in the model
error. Broadly speaking, the ES-MDA leads to lower CRPS
values and smaller discrepancies between dry and wet peri-
ods, showing comparable performances for both hydrologi-
cal regimes.

Unlike surface moisture estimation, the three methods ex-
hibit much more limited performances in the subsurface,
as shown in Fig. 6. At 0.2 m depth, the soil only reacts to
stronger rain events from 1200 h, once again leading to peaks
in the CRPS series within this time period. Again, the ES-
MDA performs the best in decreasing the error, although the
gain from the free run is much more limited than for surface
estimation. The iEnKS generally degrades the moisture esti-
mation, especially between 1000 and 1250 h. The iEnKS is
the only method that is characterized by moving DA win-
dows. During each analysis, the current state is corrected us-
ing the next L observations (L= 5 in this case). The change
in the model dynamics between the analysis time step and the
following observation time steps observed in the intermedi-
ary cell after 1200 h (see Fig. 4, middle) may explain such
poor correction of the state by the iEnKS.

In the deeper cell, the CRPS remains constant between
each analysis step (see Fig. 4, bottom). The EnKF and the
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Figure 5. Comparison of CRPS time series for the free run and the different DA methods on plot 10’s surface compartment. The position
of plot 10 is depicted by the red line in the top-right map, while the position of the surface cell in the associated soil column is depicted
by the red star. The rainfall chronicle is shown in the top histogram, while vertical grey lines correspond to times when surface moisture
observations are available.

ES-MDA also achieve a limited decrease in CRPS compared
with the free run, whereas the iEnKS once again degrades
the estimation. Note that from 1152 h, the iEnKS no longer
performs analysis because there are not enough observations
available in the DAW. The system is no longer corrected from
this moment onwards.

The average CRPSSs over the whole temporal period and
the whole catchment at the scrutinized depths are computed
for the three methods in order to quantitatively identify the
most appropriate DA method for the PESHMELBA model.
All methods significantly improve moisture estimation at the
surface, with CRPSSs being superior, with an average value
of 0.38. The ES-MDA almost always outperforms the EnKF
and the iEnKS at the surface and, to a lesser extent, at the sub-
surface (Fig. 7). Conversely, the EnKF significantly degrades
the state estimate in the middle cells for most of the HUs (Hy-
drological Units) (negative CRPSS value). In the deeper cell,
the ES-MDA also outperforms the EnKF on average (0.15
vs. 0.06), while the iEnKS leads to significantly increased
error compared to the free run. However, when looking lo-
cally, better CRPSSs are performed by the ES-MDA on 9 out
of the 14 UHs, which makes it impossible to generalize. In-
deed, the contribution of assimilation is much more limited
in the intermediary compartment, which is not observed and
not significant in the deep compartment.

3.1.2 Performances on parameter estimation

Performances on parameter estimation are also assessed, and
Fig. 8 shows the posterior PDFs of the estimated water con-
tents at saturation θs, while Table 2 summarizes the associ-
ated CRPSS values. Estimation of θs for surface horizons is
significantly improved by the three methods as CRPSS val-
ues exceed 0.58 in all cases. Still based on CRPSS values,
the EnKF and the ES-MDA perform the best. Results are less

clear-cut for the estimation of subsurface parameters. Indeed,
CRPSS values are far lower than for the surface, and the DA
process even degrades θs estimation for horizons 4, 7, and 6,
except for the iEnKS. For subsurface parameters, the iEnKS
tends to perform the best, although it once again achieves
limited performances compared with surface parameter esti-
mation. While the EnKF and the ES-MDA rely on the corre-
lation matrix to estimate unobserved parameters, the iEnKS
builds a cost function that explicitly relates to the input pa-
rameters. The full correlation matrix (not shown here) shows
that there is little to no correlation between the moisture in
the upper 5 cm and the parameters in the subsurface, which
may explain why the iEnKS performs better in such compart-
ments. Finally, for both surface and subsurface parameters,
the posterior PDF and the associated CRPSS values obtained
from the EnKF and the ES-MDA are quite close. It shows
that assimilating observations one by one or all at once, using
an ensemble-Kalman-filter-based method, leads to compara-
ble performances for parameter estimation, whereas signifi-
cant differences are noticed for variable correction.

3.1.3 Computational cost

The computational costs of the three methods are differ con-
siderably. The EnKF is the fastest method (277 CPU hours),
followed by the ES-MDA (558 CPU hours) and the iEnKS
(2143 CPU hours). Compared with the EnKF, both the ES-
MDA and the iEnKS perform incremental corrections, lead-
ing to higher computational costs. Furthermore, in the case of
the iEnKS, using an assimilation window of size L implies
that the model must be integrated up toM×L×jmax times
to perform each analysis. As PESHMELBA integration is the
most costly step in the assimilation process, the iEnKS com-
putational cost ends up being much more significant than for
the other methods.
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Figure 6. Comparison of CRPS time series for the free run and the different DA methods in the intermediary cell (0.2 m depth, a) and the
deeper cell (4 m depth, b) for plot 10. The position of plot 10 is depicted by the red line in the top-right map, while the position of the
cell in the associated soil column is depicted by the red star. The rainfall chronicle is shown in the top histogram, while vertical grey lines
correspond to time steps when surface moisture observations are available.

Figure 7. Distribution over the 14 HUs (Hydrological Units) of CRPSS averaged over time. The vertical line at a CRPSS of 0 highlights a
decrease in error compared with the free run (positive values) or an increase in error compared to the free run (negative values).

3.2 Sensitivity of the methods to DA setup

In this section, the sensitivity of the different methods to ob-
servation error prescription, assimilation frequency, and en-
semble size is investigated. As the tested DA methods have
shown limited performance in retrieving subsurface moisture

from satellite surface moisture images, the analysis focuses
on surface moisture estimation, following several scenarios
(Table 1). Furthermore, as mentioned in the previous section,
the high computational cost of the iEnKS is prohibitive for
performing intensive exploration of the method in this case
study. Sensitivity analysis is then only performed for the two
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Figure 8. Empirical PDFs for estimated surface parameters for SU1 (top line), SU2 (middle line), and SU3 (bottom line). The first column
shows PDFs of surface θs on vineyard plots, while the second column refers to surface parameters on VFSs. The remaining columns represent
parameters for subsurface horizons. The true values of the parameters are indicated by the vertical black line in each plot.

Table 2. CRPSS values associated with parameter estimation for the
three DA methods. Positive values indicate a decrease in error com-
pared with the free run, while negative values indicate an increase
in error compared with the free run. For each line, the bold value
refers to the best estimate.

Horizon EnKF ES-MDA iEnKS

Surface

11 0.68 0.65 0.62
12 0.18 0.36 0.58
13 0.70 0.70 0.52
14 0.87 0.88 0.54
15 0.80 0.85 0.47
16 0.86 0.80 0.85

Subsurface

2 0.06 0.07 0.26
3 0.51 0.48 0.64
4 −0.47 −0.39 −0.14
6 −0.52 −0.48 0.28
7 −1.44 −1.35 −1.42
8 0.62 0.66 0.74
9 0.84 0.83 0.23

10 0.16 0.20 0.59

methods with the highest potential in this application, EnKF
and ES-MDA.

3.2.1 Observation error

The sensitivity to the observation error magnitude is tested
on a setup with a frequency of assimilation of 6 d (144 h)
and an ensemble size of 50 on a 78 d long simulation and
evaluated on averaged CRPSS (Fig. 9). As expected, for both
methods, the CRPSS is the highest for small observation er-
rors and regularly decreases for larger observation errors. In
the case of the EnKF, no significant correction of the state
can be obtained from error values higher than 0.1 cm3 cm−3.
In the case of the ES-MDA, moisture is noticeably corrected
for error values up to 0.2 cm3 cm−3.

3.2.2 Frequency of observation

The averaged CRPSS in the surface compartment for the
EnKF and the ES-MDA is also evaluated as a function of the
observation frequency (Fig. 10). The observation error mag-
nitude is set to 0.02 cm3 cm−3, and the ensemble size is set to
50. In the case of the EnKF, the CRPSS is relatively stable for
observation frequencies (meaning analysis frequencies) up to
72 h and decreases regularly for lower frequencies. ES-MDA
performances are rather stable for frequencies of observation
less than 144 h (6 d). Performances are slightly worse for fre-

Hydrol. Earth Syst. Sci., 30, 1–21, 2026 https://doi.org/10.5194/hess-30-1-2026



E. Rouzies et al.: Comparison of ensemble assimilation methods 13

Figure 9. CRPSS sensitivity to the standard deviation of the observation error for the surface cell with the EnKF and ES-MDA. The CRPSS
is computed as an average over the whole time series and over the whole catchment. The bold label and vertical dashed line denote the
nominal value of the observation error used in this case study.

quencies of 192 and 216 h (even if they are still higher than
the best-performing EnKF setup) and drop significantly if ob-
servations are available only every 240 h (10 d).

3.2.3 Ensemble size

While the observation error magnitude and the observation
frequency are intrinsic properties of the observation set in
practice, the ensemble size is a parameter of the DA setup
that can be tuned by the user. Its choice also critically impacts
the numerical cost of the data assimilation and should be cho-
sen to reach a satisfying trade-off between limited compu-
tational cost and sufficient accuracy of the analysis. In this
experiment, the sensitivity to the ensemble size is tested on
a scenario with an observation error of 0.02 cm3 cm−3 and
with a frequency of observations of 144 h (Fig. 11).

For both methods, the lower CRPSS value is reached for
an ensemble size of 20. The EnKF performances stabilize for
an ensemble size higher than 50 members, while 100 mem-
bers are necessary for the ES-MDA, partly due to its higher
state vector size that includes a temporal dimension.

4 Discussion

4.1 On the choice of the DA method

Results from the above section indicate that in this case
study, assimilating observations one at a time is sufficient
for estimating input parameters. However, integrating several
observations simultaneously is more efficient for correcting
moisture trajectories, particularly when using the ensemble
smoother with multiple data assimilation. The ES-MDA bet-
ter constrains the system as it incorporates information from
all observations and the system dynamics, making it espe-
cially effective in coping with nonlinearity, as noted by Em-
erick and Reynolds (2013a). The ES-MDA ensures that cor-
rections can propagate from observed to unobserved times,
particularly from rainy periods to inter-event periods, given
sufficient temporal correlations. In contrast, during the ini-

tial dry hydrological regime, saturated water contents (θs) are
unobservable, limiting the performances of the EnKF and the
iEnKS, which correct the augmented state vector at a specific
time. The global and iterative correction of the ES-MDA al-
lows the impact of accurate observations during wet periods
to extend to unobservable dry periods. In addition, although
the iEnKS demonstrates potential for parameter estimation,
it is clear that the additional computational cost for moisture
correction is not worth it. This is likely because the PESH-
MELBA modular approach results in the linear coupling of
the one-dimensional vertical Richards equation through lat-
eral Darcy’s law, rather than employing the nonlinear full
three-dimensional Richards equation. Such linear coupling
reduces the potential benefits of using iEnKS on highly non-
linear systems.

From the above, the ES-MDA is identified as the best com-
promise for assimilating moisture images for the joint esti-
mation of moisture profiles and θs parameters in the PESH-
MELBA model. The ES-MDA performs the best for mois-
ture correction and achieves performances comparable to
those of the EnKF for parameter estimation. This method
is also straightforward to implement and does not require
frequent interruptions of the calculation code to perform the
analysis. Additionally, although the ES-MDA is an iterative
method, its computational cost remains reasonable, as only a
few iterations are necessary to optimize its performances.

4.2 On the real-case DA implementation

The exploration of DA implementation scenarios (Sect. 3.2)
allows us to suggest some practical guidelines to best adapt
the setup to the PESHMELBA model. First, the quality of
assimilated data plays a crucial role: the results provide users
of moisture data obtained from Sentinel-1/Sentinel-2 syner-
gistic inversion with guidelines on the required quality of
future observations over vineyard cover. For example, one
could keep in mind that an error in observations less than
0.05 cm3 cm−3 with the EnKF (resp. 0.1 cm3 cm−3 with the
ES-MDA) will be required to reach significant improvements
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Figure 10. Comparison of the CRPSS sensitivity to observation frequency for the surface cell. The CRPSS is computed as an average over
the whole time series and over the whole catchment. The bold label and vertical dashed line denote the nominal frequency of the observation.
This value also corresponds to a realistic frequency of observation for surface moisture images used in this case study.

Figure 11. CRPSS sensitivity to the ensemble size for the surface cell. The CRPSS is computed as an average over the whole time series and
over the whole catchment. The bold label and vertical dashed line denote the nominal value of the ensemble size used in this case study.

(higher than 20 % compared with the free run) in surface
moisture estimation. Regarding the frequency of data, it is
set to 144 h on average for surface moisture images computed
from the Sentinel-1 and Sentinel-2 satellites. In this applica-
tion, this frequency is nearly optimal, all other factors being
equal, for maximizing the performances of the ES-MDA for
DA window lengths of around 3 months, as all observations
are integrated at the same time. In the case of the EnKF, a
frequency of 72 h would be necessary to optimize its perfor-
mances.

Finally, an ensemble size of 100 members is advised for
both methods to ensure a stable performance, as this size
is often chosen in studies that describe their DA experiment
setup in hydrology (Camporese et al., 2009; Nie et al., 2011;
Lei et al., 2020).

4.3 On the limitations of the methods

Even if the different DA methods succeed in estimating sur-
face variables and parameters, the gain is limited to retrieving
subsurface variables and parameters. Moisture observations
only cover the top 5 cm, and none of the tested methods prop-
erly retrieve deeper values. In theory, both the iEnKS and the
ES-MDA, which are characterized by longer DAW lengths,
may have been able to capture the subsurface dynamics if

they had remained correlated to the surface dynamics. How-
ever, the correlation matrices extracted at some time steps,
such as those shown in Fig. 12, and for the whole time series
(not shown here) show that there are nearly no correlations
between the surface and the subsurface, even when consid-
ering potential time lags. In this case study, the composition
of each soil type with distinct horizons, as well as the verti-
cal discretization, which is much more refined at the surface
than at the subsurface, may explain the lack of correlation. It
should be noted that such a lack of correlation has also been
observed in Bonan et al. (2020) (in arid contexts only).

We conclude that assimilating observations of topsoil
moisture cannot properly correct subsurface variables or pa-
rameters. However, from the correlation matrix (Fig. 12), we
see that the moisture in a given soil horizon is highly corre-
lated to the moisture in this same soil horizon in other plots
that also contain this specific soil horizon. This means that
observations of a full soil column in some points in the catch-
ment may be sufficient to correct all plots with the same soil
type. This option must be further investigated, for example,
by assimilating measurements from electronic magnetic in-
terference that can provide punctual pseudo-observations of
soil moisture vertical profiles. In this case, we would need to
introduce a new observation error model since the moisture
profiles would be deduced from resistivity measurements.
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Figure 12. (a) Correlation matrix of the ensemble after 144 h of simulation in the free run. Vertical and horizontal lines delimit the numerical
cells from the same plot. The top and left colours indicate the soil type for each plot, while the bottom and right indices are the plot indices.
(b) Portion of the correlation matrix that relates to plot 10. Each square outlined in white refers to a numerical cell in the vertical profile of
plot 10. The top and left colours refer to the soil horizon for each numerical cell.

Figure 12 also highlights the absence of spatial correlations
between soil units of different soils, advocating the use of a
scheme with a local domain DA in the ES-MDA (Asch et al.,
2016) to alleviate the computational cost of this method that
uses high-dimension matrices.

5 Conclusions

In this study, we set a rigorous data assimilation framework
for a modular model that is specifically built for water qual-
ity management. The conducted experiments were aimed not
only at retrieving vertical moisture profiles but also at esti-
mating certain input parameters, based on synthetic surface
moisture satellite images. To do so, we implemented several
stochastic ensemble methods, namely the ensemble Kalman
filter, the ensemble smoother with multiple data assimila-
tion, and the iterative ensemble Kalman smoother. These
three methods are representative of the spectrum of available
ensemble methods (ensemble filters, hybrid ensemble/vari-
ational smoothers, and long-window ensemble smoothers).
They solve the DA problem differently, and, in particular,
they use the available observations in different ways. We
then assessed and compared their performances for joint es-
timation so as to choose the most appropriate method for the
PESHMELBA model.

Results of the comparison showed that all methods per-
formed well in retrieving moisture and parameters at the sur-

face, but the ES-MDA significantly outperformed the EnKF
and the iEnKS. The ES-MDA is indeed the only method that
can fully integrate the system dynamics in its analysis step.
Results for the subsurface, however, showed that all methods
failed in retrieving the rest of the vertical moisture profiles
and associated saturated water content parameters. The anal-
ysis of the correlation matrices showed that the surface and
the subsurface compartments are poorly correlated, mean-
ing that one should not expect surface moisture data alone
to improve moisture estimates in deeper compartments. Fur-
thermore, the results of analyses on the sensitivity to obser-
vation error, observation frequency, and ensemble size pro-
vided practical guidelines to implement an adapted DA setup
in future operational applications.

As the proposed setup has been shown to be limited in re-
trieving subsurface moisture, further research could extend
this study to multi-source data assimilation. For instance, the
joint assimilation of surface moisture images and punctual
observations of vertical moisture profiles obtained from elec-
tronic magnetic interference should be further investigated
to improve moisture estimation in deep soil compartments.
In addition, when setting up any stochastic DA experiment,
the ensemble must be generated so as to represent the model
error as accurately as possible. In this study, only the param-
eter values were considered a source of uncertainty, which is
certainly too simplistic. Future experiments should then inte-
grate uncertainty in initial conditions and climate forcings.
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Systematically taking into account and reducing the un-
certainties in risk assessment models is a major issue, espe-
cially when these models have an operational impact. This
study paves the way for further applications in risk assess-
ment models, even based on a complex structure, to assess
both water and pollutant transfers in agricultural landscapes.
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Appendix A

Table A1. Input parameter description, nominal values, and PDFs.

Input factor [units] Description Nominal value PDF

Soil parameters for horizons 11, 12, and 13

θs [m3 m−3] Saturated water content 0.34 N(0.34, 0.03)
θr [m3 m−3] Residual water content 0.04 TN(0.04, 9.3× 10−3, 0, 1)
Ks [m s−1] Saturated hydraulic conductivity 3.93× 10−5 LN(−10.16,−2.03)
hg [m] Air-entry pressure in VG retention curve −9.69× 10−2 N(−9.69× 10−2,9.69× 10−3)
mn Deduced parameter from VG n parameter 0.27 N(0.27, 2.7× 10−2)
Ko [m s−1] Matching point at saturation in modified MVG conductivity curve 2.86× 10−7 LN(−15.09,−3.02)
L Empirical pore-connectivity parameter −8.43 U(−10.11, −6.74)
bd [g cm−3] Bulk density 1.34 U(1.08, 1.61)

Soil parameters for horizons 14, 15, and 16

θs [m3 m−3] Saturated water content 0.34 N(0.34, 0.03)
θr [m3 m−3] Residual water content 0.04 TN(0.04, 9.3× 10−3, 0, 1)
Ks [m s−1] Saturated hydraulic conductivity 4.31× 10−5 LN(−10.11,−2.02)
hg [m] Air-entry pressure in VG retention curve −9.69× 10−2 N(−9.69× 10−2, 9.69× 10−3)
mn Deduced parameter from VG n parameter 0.27 N(0.27, 2.7× 10−2)
Ko [m s−1] Matching point at saturation in modified MVG conductivity curve 2.86× 10−7 LN(−15.09, −3.02)
L Empirical pore-connectivity parameter −8.43 U(−10.11, −6.74)
bd [g cm−3] Bulk density 1.34 U(1.08, 1.61)

Soil parameters for horizon 2

θs [m3 m−3] Saturated water content 0.34 N(0.34, 0.03)
θr [m3 m−3] Residual water content 0.05 TN(0.05, 0.01, 0, 1)
Ks [m s−1] Saturated hydraulic conductivity 8.64× 10−5 LN(−9.38, −1.88)
hg [m] Air-entry pressure in VG retention curve −3.29× 10−2 N(−3.29× 10−2, 3.29× 10−3)
mn Deduced parameter from VG n parameter 0.2 N(0.2, 2× 10−2)
Ko [m s−1] Matching point at saturation in modified MVG conductivity curve 2.28× 10−7 LN(−15.31,−3.06)
L Empirical pore-connectivity parameter −6.52 U(−7.82, −5.21)
bd [g cm−3] Bulk density 1.47 U(1.18, 1.77)

Soil parameters for horizon 3

θs [m3 m−3] Saturated water content 0.32 N(0.32, 0.03)
θr [m3 m−3] Residual water content 0.08 TN(0.08, 0.02, 0, 1)
Ks [m s−1] Saturated hydraulic conductivity 5.39× 10−5 LN(−9.85, −1.97)
hg [m] Air-entry pressure in VG retention curve −2.09× 10−2 N(−0.02, 2.1× 10−2)
mn Deduced parameter from VG n parameter 0.20 N(0.2, 2× 10−2)
Ko [m s−1] Matching point at saturation in modified MVG conductivity curve 7.47× 10−7 LN(−14.13,−2.83)
L Empirical pore-connectivity parameter −4.24 U(−5.08, −3.39)
bd [g cm−3] Bulk density 1.57 U(1.25, 1.88)

Soil parameters for horizon 4

θs [m3 m−3] Saturated water content 0.28 N(0.28, 0.03)
θr [m3 m−3] Residual water content 0.07 TN(0.07, 0.02, 0, 1)
Ks [m s−1] Saturated hydraulic conductivity 3.11× 10−5 LN(−10.40,−2.08)
hg [m] Air-entry pressure in VG retention curve −5.99× 10−2 N(−6× 10−2, 6× 10−3)
mn Deduced parameter from VG n parameter 0.23 N(0.23, 0.02)
Ko [m s−1] Matching point at saturation in modified MVG conductivity curve 1.47× 10−6 LN(−13.45, −2.69)
L Empirical pore-connectivity parameter −0.14 U(−0.17, −0.11)
bd [g cm−3] Bulk density 1.53 U(1.22, 1.84)

Soil parameters for horizon 6

θs [m3 m−3] Saturated water content 0.35 N(0.35, 0.04)
θr [m3 m−3] Residual water content 0.01 TN(0.01, 9.3× 10−3, 0, 1)
Ks [m s−1] Saturated hydraulic conductivity 2.16× 10−5 LN(−10.77, −2.15)
hg [m] Air-entry pressure in VG retention curve −6.60× 10−2 N(0.07, 6.60× 10−3)
mn Deduced parameter from VG n parameter 0.13 N(0.13, 1.3e-2)
Ko [m s−1] Matching point at saturation in modified MVG conductivity curve 3.19× 10−7 LN(−14.97, −3.00)
L Empirical pore-connectivity parameter 9.66 U(7.72, 19.31)
bd [g cm−3] Bulk density 1.59 U(1.27, 1.91)
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Table A1. Continued.

Input factor [units] Description Nominal value PDF

Soil parameters for horizon 7

θs [m3 m−3] Saturated water content 0.32 N(0.32, 0.03)
θr [m3 m−3] Residual water content 0.01 TN(0, 9.31× 10−3, 0, 1)
Ks [m s−1] Saturated hydraulic conductivity 9.60× 10−6 LN(−11.57, −2.31)
hg [m] Air-entry pressure in VG retention curve −7.18× 10−2 N(−0.07, 7.18× 10−3)
mn Deduced parameter from VG n parameter 0.08 N(0.08, 7.5× 10−3)
Ko [m s−1] Matching point at saturation in modified MVG conductivity curve 1.67× 10−7 LN(−15.63, −3.13)
L Empirical pore-connectivity parameter −10 U(−12, −8)
bd [g cm−3] Bulk density 1.66 U(1.33, 1.99)

Soil parameters for horizon 8

θs [m3 m−3] Saturated water content 0.42 N(0.42, 0.04)
θr [m3 m−3] Residual water content 0.01 TN(0, 9.3× 10−3, 0, 1)
Ks [m s−1] Saturated hydraulic conductivity 3.98× 10−6 LN(−12.45, −2.49)
hg [m] Air-entry pressure in VG retention curve −0.30 N(−0.30, 3.02× 10−2)
mn Deduced parameter from VG n parameter 0.08 N(0.08, 8× 10−3)
Ko [m s−1] Matching point at saturation in modified MVG conductivity curve 9.72× 10−8 LN(−16.17, −3.23)
L Empirical pore-connectivity parameter 10 U(8, 12)
bd [g cm−3] Bulk density 1.54 U(1.23, 1.85)

Soil parameters for horizon 9

θs [m3 m−3] Saturated water content 0.33 N(0.33, 0.03)
θr [m3 m−3] Residual water content 0.08 TN(0.08, 1.92× 10−2, 0, 1)
Ks [m s−1] Saturated hydraulic conductivity 3.05× 10−5 LN(−10.41, −2.08)
hg [m] Air-entry pressure in VG retention curve −6.71× 10−2 N(−6.71× 10−2, 6.71× 10−3)
mn Deduced parameter from VG n parameter 0.26 N(0.26, 0.03)
Ko [m s−1] Matching point at saturation in modified MVG conductivity curve 3.36× 10−7 LN(−14.93, −2.99)
L Empirical pore-connectivity parameter 0.42 U(0.34, 0.84)
bd [g cm−3] Bulk density 1.46 U(1.17, 1.75)

Soil parameters for horizon 10

θs [m3 m−3] Saturated water content 0.32 N(0.32, 0.03)
θr [m3 m−3] Residual water content 0.06 TN(0.06, 0.02, 0, 1)
Ks [m s−1] Saturated hydraulic conductivity 2.38× 10−5 LN(−10.67, −2.13)
hg [m] Air-entry pressure in VG retention curve −3.56× 10−2 N(−3.56× 10−2, 3.56× 10−3)
mn Deduced parameter from VG n parameter 0.18 N(0.18, 0.02)
Ko [m s−1] Matching point at saturation in modified MVG conductivity curve 3× 10−7 LN(−15.04, −3.01)
L Empirical pore-connectivity parameter 1.05 U(0.84, 2.09)
bd [g cm−3] Bulk density 1.62 U(1.30, 1.95)

Vegetation parameters for vineyard

Manning [s m−1/3] Manning’s roughness 3.3× 10−2 T(2.5× 10−2, 3.3× 10−2, 4.1× 10−2)
Zr [m] Rooting depth 2.62 U(2.10,3.14)
F10 Fraction of the root length density in the top 10 % of the root zone 0.37 U(0.3, 4.44× 10−1)
LAImin Min LAI value 0.01 U(8× 10−3, 1.2× 10−2)
LAImax Max LAI value 2.5 U(2, 3)
LAIharv LAI value at harvest time 0.01 U(8× 10−3, 1.2× 10−2)

Vegetation parameters for VFZ

Manning [s m−1/3] Manning’s roughness 0.2 T(0.1, 0.2, 0.3)
Zr [m] Rooting depth 0.9 U(0.72, 1.08)
F10 Fraction of the root length density in the top 10% of the root zone 0.34 U(0.27, 0.40)
LAI Constant LAI value 5 U(4, 6)

River parameters

hpond [m] Ponding height in the river bed 0.01 U(8× 10−3, 1.2× 10−2)
di [m] Distance between the river bed and the limit of impervious saturated zone 1.5 U(1.2, 1.8)
Ks [m s−1] Saturated conductivity of the river bed 2.38× 10−5 LN(−10.67, −2.13)
Manning [s m−1/3] River bed Manning’s roughness 7.9× 10−2 T(6.1× 10−2, 7.9× 10−2, 9.7× 10−2)

Plot and VFS parameters

hpond [m] Ponding height on vineyard plot 0.01 U(8× 10−3, 1.2× 10−2)
hpond [m] Ponding height on VFZ 0.05 U(0.04, 0.06)
adsorpthick [m] Mixing layer thickness 0.01 U(5× 10−3, 1.5× 10−2)
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Appendix B: Evaluation of the CRPS

Assuming an ensemble of M moisture values Y1,. . . ,YM
sorted from the smallest to the largest so that

Yi ≤ Yj , for i < j, (B1)

and so that θ̂ is the deterministic reference value, the CRPS
for the ensemble is evaluated as follows (Hersbach, 2000):

CRPS=
M∑
i=0

αip
2
i +βi(1−pi)

2, (B2)

where pi = 1
M

, and αi and βi are defined as follows:

0< i <M αi βi

θ̂ > Yi Yi+1−Yi 0
Yi+1 > θ̂ > Yi θ̂ −Yi Yi+1− θ̂

θ̂ < Yi 0 Yi+1−Yi

. (B3)

The cases where i = 0 and i =M only apply to the CRPS
when the reference value θ̂ is an outlier, meaning it is less
than Y1 or more than YM . In this case, Table B3 must be
modified with the following:

Outlier αi βi

θ̂ < Y1 0 Y1− θ̂

YM < θ̂ θ̂ −YM 0

. (B4)

Code availability. The PESHMELBA model is an open-source
model coded in Python (version 2.7.17) and Fortran 90 and em-
bedded in the OpenPALM coupler (version 4.3.0). The code
for the OpenPALM coupler is available from http://www.cerfacs.
fr/globc/PALM_WEB/user.html#download (Buis et al., 2006) af-
ter registration. The exact version of PESHMELBA, as well
as Python (version 3.7) and Bash scripts used for data as-
similation, is provided in the following Zenodo repository:
https://doi.org/10.5281/zenodo.6782073 (Rouzies et al., 2022).
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