Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 3, issue 3
Hydrol. Earth Syst. Sci., 3, 429–438, 1999
https://doi.org/10.5194/hess-3-429-1999
© Author(s) 1999. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Hydrol. Earth Syst. Sci., 3, 429–438, 1999
https://doi.org/10.5194/hess-3-429-1999
© Author(s) 1999. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  30 Sep 1999

30 Sep 1999

An experimental evaluation of the solute transport volume in biodegraded municipal solid waste

H. Rosqvist1,* and D. Bendz2 H. Rosqvist and D. Bendz
  • 1Department of Civil and Environmental Engineering, Royal Institute of Technology, SS-100 44, Stockholm, Sweden.
  • 2Department of Water Resources Engineering, Lund University, S-211 20, Lund, Sweden.
  • *e-mail address for corresponding author: hakan.rosqvist@sbbs.se

Abstract. A large undisturbed sample (3.5 m3) of 22-year-old, biodegraded solid waste set up to estimate the volume fraction participating in the transport of solutes through the waste material. Altogether, five tracer tests were performed under ponding and sprinkling conditions, and under steady-state and transient conditions. The experimental break through curves (BTCs), which indicated a non-equilibrium transport of the solute by early peaks and long right-hand tails, were used to parameterize log-normal solute travel time probability density functions. The expected solute travel times (i.e. the median solute travel times) were assessed and the corresponding fraction of the experimental volumes active in the transport of solutes was estimated. The solute transport volume fractions defined by the median solute travel times were estimated to vary between 5 and 10% of the total experimental volume. Further, the magnitudes of the solute transport volume fractions defined by the modal (peak) solute travel times were estimated to vary between 1 and 2% of the total experimental volume. In addition, possible boundary effects in terms of rapid flow along the wall of the experimental column were investigated.

Publications Copernicus
Download
Citation