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Abstract

Ten methods for estimating the loads of constituents in a river were tested using data from the River Don in North-East Scotland.
By treating loads derived from flow and concentration data collected every 2 days as a truth to be predicted, the ten methods were
assessed for use when concentration data are collected fortnightly or monthly by sub-sampling from the original data. Estimates
of coefficients of variation, bias and mean squared errors of the methods were compared; no method consistently outperformed
all others and different methods were appropriate for different constituents. The widely used interpolation methods can be
improved upon substantially by modelling the relationship of concentration with flow or seasonality but only if these relationships

are strong enough.

Introduction

Estimates of the loads of various constituents transported
by a river provide a measure both of the loss of con-
stituents from terrestrial ecosystems and of the environ-
mental impact of the river on the water body into which it
flows. Indeed, it is now incumbent on many countries to
obtain estimates of loads to ensure compliance with inter-
national treaties on the environment (PARCOM, 1988).
However, many of the methods used to estimate load
either have a high variance or are biased (Walling and
Webb, 1985; Ferguson, 1987). Understanding the reliabil-
ity of the potential estimation procedures, and their inter-
action with the data collection process, is crucial for
selecting the most appropriate method and for interpret-
ing load estimates already obtained.

The instantaneous load being carried by a river at any
time, #, is the product of two quantities, namely the flow of
the river, f{¢), and the concentration of the constituent of
interest in the water, ¢(¢). The total load, /, over a period
of interest, say from 0 to 7, can then be obtained by inte-
gration as

T
I = '[0 (D) f)dr.

Estimation of this quantity must be based on available
data. Whilst flow is generally measured frequently and in
many situations can be considered as a continuous record,
measurements of concentration are usually less frequent.

To formalise this situation, it is assumed that the problem
is to estimate load on the basis of N equally spaced obser-
vations of flow, f;, taken at times #, ¢=1... N, with
accompanying observations of concentration, ¢;, 1€ S ¢
{1 ... N}, at n <N such times. This lack of information
about the concentration can result in substantial errors in
estimates of the total load. Storms, a rapid snowmelt or a
short period of rain in a long dry period can quickly
change the rate of flow and the chemical composition of a
river. If the sampling is too infrequent, these events may
be missed, and, even with fairly frequent sampling, it is
difficult to sample a representative number of events.

Choice of method used to estimate load will always have
a major bearing on estimates derived from infrequently
sampled rivers. Though increasing the sampling frequency
will improve the estimation of load, to make the best use
of limited numbers of samples other sampling strategies
have been considered (Kronvang and Bruhn, 1996,
Thomas, 1985). Various methods have been suggested for
modelling and, hence, estimating chemical loads (Walling
and Webb, 1981 and 1985; Ferguson, 1987; Littlewood,
1995; Kronvang and Bruhn, 1996). These methods fall
into two categories: interpolation methods and methods
based on empirical models. The key features of these cat-
egories of methods are summarised below.

The interpolation methods assume that the data
collected are representative of the river at times which
are unrecorded. Walling and Webb (1985) discuss five
interpolation methods for estimating the load. These five
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methods are applications of standard statistical sampling
theory, and provide estimates of load as follows:

lA=K{2;c,-/nH2f,-/n} Wi

i€ ieS

I=K{Y afi/n w2
ieS

=K Z[‘E /n W3
ieS

lA=Kf{Zc,-/n W4
ieS

I =Kf zsciﬁ/n} > fi/n w5
ie ieS

where K is a constant which adjusts for units of measure-
ment, f is the mean discharge over all times #;, 1 =1.. N
and F; is the mean discharge between time # and the next
time at which concentration was measured. Methods W1
and W2 do not use the entire flow record; W1 assumes
concentration is independent of flow and gives biased esti-
mates if this assumption is violated, whilst W2 is unbiased
but has higher variance than W1. Methods W4 and W5 are
generalisations of W1 and W2 to use the complete flow
record, although other generalisations are also used
(Young ez al., 1988). Method W3 lies between W4 and W5
in both bias and variance.

Empirical models, referred to by some authors as
extrapolation methods* or rating curves, are usually based
on the linear relationship between log(concentration) and
log(flow). The observations are used to estimate the para-
meters in a model and the fitted model then predicts the
concentrations using flow data from other times. This pro-
cedure assumes that the relationship between the concen-
tration and the other variables is representative of their
relationship throughout the period of interest. In these
empirical models, problems can arise if the model is
extrapolated beyond the range of the data used to fit the
model, as may be required if no concentrations were mea-
sured at extreme events. Additionally, bias can arise if the
models describe the concentration-flow relationship incor-
rectly and the distributio= of flows used to estimate para-
meters differs from the distribution of flows to which the
model is applied for load estimation. Elaborations on the
basic theme have been made to incorporate features such
as seasonal effects and stratification according to flow
(Walling and Webb, 1981; Kronvang and Bruhn, 1996).

Assessments of methods for estimating loads have been
carried out using simulated data (Littlewood, 1995;

* The term empirical modelling rather than extrapolation methods has
been used. The problem of extrapolating beyond the range of the data

used to form the model is just one specific problem of these empirical
models and is an issue that needs to be addressed separately.
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Thomas, 1985), or using data from intensively sampled
rivers (Walling and Webb, 1981, 1982 and 1985; Kronvang
and Bruhn, 1996), or both (Ferguson, 1987). The simula-
tion route has the advantage that a wide range of situations
can be catered for, but it will tend to favour methods based
on models used to generate the data. Conversely, the use
of case studies provides the most realistic test but, by their
very nature, the number of such studies is limited and care
is required in understanding the reasons for results found.
What does emerge from these studies is that the choice of
method depends on the selection criterion and the charac-
teristics of river and constituent used or simulated.

In this paper, an extensive set of flow and concentration
measurements was used to test the ability of methods W4,
W5 and a range of empirical models to estimate total loads.
Loads are estimated for constituents whose correlations
with flow vary from being very weak to moderately strong.
By repeated random sub-sampling from the data available,
subsets were obtained whose sampling intensity for con-
centrations more closely matches that found in practice.
By estimating load for each subset, the differences in bias
and variability between the methods has been demon-
strated, to provide advice on which methods will be most
appropriate in other circumstances.

Method
THE DATA

Measurements of flow and concentration of various con-
stituents were taken for the River Don every two days, for
11.4 years from 1 August 1976 until 23 December 1987.
The recording site lay at Parkhill Bridge, just above the
tidal limit but within the boundary of Aberdeen City. The
1400 km? catchment area of this river in North East
Scotland includes part of the Cairngorm Mountains and is
composed mainly of areas of semi-natural moorland,
forestry and agriculture. Time series of nitrate, chloride,
phosphate, suspended solids and flow at the time of sam-
pling are shown in Figs. la to le. The nitrate and phos-
phate concentrations are reported on an elemental basis for
nitrogen (nitrate-N) and phosphorous (phosphate-P)
respectively. The graph of the flow series shows that flow
had a dynamic range and that many storms were recorded.
The four constituents, whose log-transformed concentra-
tions are plotted against log(flow) in Fig. 2, were chosen
for their very different characteristics. Nitrate had a posi-
tive correlation with flow and a very marked seasonal pat-
tern. Chloride had no clear relationship with flow; it also
had the lowest coefficient of variation. Phosphate had a
negative correlation with flow, whilst the majority of the
load of suspended solids was transported at very high con-
centrations at times of high flow.
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Procedure for comparing methods
of load estimation

This paper assesses different methods for estimating load
under the assumption that the flow was measured every
two days but that the concentrations were measured only
every 2 or 4 weeks. This reflects the common situation
where flow is measured at regular time intervals and at a
much greater frequency than for concentrations. Estimated
loads are then compared with the corresponding value cal-
culated using method W2 with all flow and concentration
data, which is treated as a truth to be predicted.

To compare the sampling properties of the methods of
load estimation, 1000 sequences of data were generated as
follows. The recorded concentrations and flows were split
into 14- or 28-day blocks. One sample was selected at ran-
dom from each block. From these sub-samples of concen-
trations, but using the flow from every second day,
estimates of the total loads were found using each differ-

ent method. This gave a total of 1000 estimates for each
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Time series of a) flow, b) nitrate-N, ¢) chloride, d) phosphate-P and ¢) suspended solids.

chemical for each method from which three sampling
properties, namely coefficient of variation, bias and root
mean squared error were obtained and expressed as a per-
centage of total load over the entire period. Use of 1000
simulations allowed sufficiently accurate estimation of
these summary statistics to show up even quite small dif-
ferences, but did not enable determination of whether the

~ differences were a general result, or were due solely to the
particular period for which data were available.

To derive estimates of variability which included a com-
ponent for between-year variation, a jack-knife was per-
formed by groups (Miller, 1974); the entire procedure
described above was repeated with each of the 11 full years
of data dropped in turn. Variation between pseudo-values
across years was used to derive the standard errors pre-
sented, whilst standard errors of difference between
methods were derived from differences between pseudo-
values corresponding to the same years. This approach
allowed inferences to be drawn beyond the particular years
in question, although there are no empirical statements
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Fig. 2. Graphs showing the relationship between flow and a) nitrate-N, b) chloride, c) phosphate-P and d) suspended solids.

which can be made about the extension of these results to
other rivers.

Development of empirical models

The two most promising of the interpolation methods, W4
and W5, were compared with estimates derived from some
simple log linear models,

log(c;)) = ap + arxyi + agxzi + . . .+ Am¥mi t &

The residual term, &, was assumed to come from a nor-
mal distribution with expectation zero and variance o2
The coefficients, az, £ = 1. .. m, were estimated from the
sample data only and used to predict the log concentration
at other times. Whilst the regression models provide unbi-
ased estimates of log(¢;), £=1. .. N, it was estimates of ¢;,
i ., that were needed to estimate the load. Naive back-
transformation of the log concentrations resulted in a neg-
ative bias in the estimated concentrations (Ferguson,
1986). Therefore, the estimates of concentration were re-
scaled, assuming the lognormal model, by

¢; = exp(6” / 2) exp(log(c;)),
where 62 is the residual mean square of the model and
log(¢j) is the estimated log concentration.
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The simplest models included a regression on the log of
the flow, i.e. m =1, x1;= log(f;), or seasonality described
by a sine curve, i.e. m =2, x;= sin(27;/365), xy;=
cos(2mt;/365) with time, #;, recorded in days. Further
models tested are described below. Many other candidates
could have been tested: non-linear relationships between
log(concentration) and log(flow) or a less constrained sea-
sonal pattern (Miller and Hirst, 1998) provide alternative
ways of handling the systematic parts of the model, whilst
correlations in the residuals can be handled using time
series models (Gurnell and Fenn, 1984) or one-dimen-
sional kriging. However, it seems likely that these more
complicated models would require more frequent data
than generally available, and so were not tested.

Taking account of the order of the
observations

The correlation between concentrations measured over
short time periods can be large but, when using only
log(f;) as the explanatory variable, no account is taken of
the order of the measurements. One possibility is to
smooth the sequence of estimated concentrations (or log
concentrations) prior to estimating the load. This will also



remove some of the extreme values caused by extrapola-
tion. Smoothing used a weighted, moving average of the
estimated log concentrations, thus:

10§(c;) = 0.25 X log(c;_;) + 0.5 X 1og(c;) + 0.25 X 1og(c;.,)

Another possibility is to use some measure of the previ-
ous flow as a regressor, partly to account for hysteresis,
which can have an important effect on the concentration
(Hirst, 1992). The mean log(flow) for the eight days prior
to day ¢, g; calculated as

& = (log(fi-4) +log(f;—3) +log(f;-2) + log(fi-1)) / 4

was therefore included in some models. Calculating g; in
this way was somewhat arbitrary and other values could
clearly be used, although the chosen method was found to
have some benefits.

Reducing extrapolation

Any empirical model will have only limited predictive
value outside the range of the data used to determine the
functional form and to estimate parameters. This is par-
ticularly a problem when trying to predict concentrations
at high flows. Moreover, the problem is worse if a variable
correlated with flow, such as seasonality, is included in the
model, as this may increase the variance of the estimate of
the flow coefficient. The approach adopted to reduce the
impact of extrapolation was to treat as cut-off values the
maximum, fp,y, and minimum, f,, of the flows corre-
sponding to measured concentrations. For prediction pur-
poses, any flows above fy,,, were replaced by fu,s, and any
flows below f,,;, were replaced by f,,;». Such an approach
introduces some bias into the model but it will also reduce
the extra variance caused by extrapolation.

Methods to be compared

The ten methods compared fall into three categories:
interpolation methods, log linear models, and log linear
models with additional smoothing or cut-offs. Units of
measurement are time, 4, flow, m3s!, and concentration,
mgl. Taking K = 0.03156 gives estimates, /, of mean
annual load, £7 y1.

INTERPOLATION METHODS

1 [ = Kf{z ¢/ n} W4

ies

2) i=Kf{2qf;/n}/{§f,-/n} W5

1€

Methods for estimating loads transported by rivers

EMPIRICAL MODELS

Estimation was based on the equation

N
I = K{Z &fi/ N}
i=1

where Z; is the measured concentration where this exists

and the estimated concentration with bias correction else-
where.

Log-linear models
3) Flow only:

log(¢;) = a0 + a1 log(f}) + &, Ml
4) Seasonality fitted as a sine curve:

log(c;) = ag + ay sin(271;/365) +

ay cos(2mt;/365) + g, M2
5) Flow plus previous flow:
log(ci) = ag + ay log(f}) + a2 8i + &, M3

6) Flow, previous flow, seasonality and linear
time trend:log(c;) = ap + a1 log(f)) + a2 g; +
a3 sin(27t;/365) + a4 cos(2m;/365) + a5 1, + & M4

Log-linear models with additional smoothing or cut-offs

7) M1 with smoothing over time of the estimated

log concentrations. SM1
8) Ml with cut-offs for flow for extrapolation. CM1
9) M4 with smoothing over time of the estimated

log concentrations. SM4
10) M4 with cut-offs for flow for extrapolation. CM4

Results

Estimates of bias and sampling variation, presented as
coefficients of variation, CV, relative to the corresponding
true loads, are given in Table la and b, for fortnightly and
monthly sampling of the water chemistry respectively. The
positive correlations between methods within years meant
that the standard errors of differences were about 40% of
those which would have been calculated ignoring this cor-
relation, although for suspended solids the added variabil-
ity led to reduced correlation between methods. Note also
that standard errors of difference (sed) for bias depended
much less on sampling frequency than did those for CV.
The bias and variance of the estimated loads have been

combined to form mean squared errors, which are pre-

sented after dividing by the true load as relative root mean
squared error (RRMSE) (Table 2a and b). Again, the cor-
relation between methods within years was least for sus-
pended solids.

The relative merits of the methods of estimation are
summarised by element below. All of these results were
remarkably consistent across sampling frequencies. Actual
loads for nitrate-N, chloride, phosphate-P and suspended
solids calculated using the 48-hour sample data were
2.054, 14.396, 0.0339 and 10.86 £Ty™! respectively.
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Table 1. Coefficient of variation (CV) and bias, with standard errors from the jack-knife in parentheses, presented as a percentage of
the actual total load transported by the river, for each of the ten methods and the four chemicals using (a) fortnightly sampling and
(b) monthly sampling. Also given are the mean pairwise standard errors of differences, together with the mean ratios of paired stan-
dard errors of differences to standard errors of differences calculated ignoring the pairing.

a Concentration measured once per fortnight

Method Nitrate Chloride Phosphate Suspended Solids
CV(%) Bias(%) CV(%) Bias(%) CV(%) Bias(%) CV(%) Bias(%)
W4 0.78(0.08) —6.42(1.86) 0.72(0.06)  —0.92(0.65) 5.25(0.99)  16.96(3.05) 4.94(0.50) —44.83(2.87)
W5 1.82(0.27) 1.03(0.33) 1.42(0.21)  —0.09(0.22) 6.46(0.75) 0.38(0.43) 17.97(1.81)  -1.27(2.33)
Ml 1.82(0.30) 2.53(0.99) 1.11(0.12)  -0.14(0.34) 4.62(0.44)  —3.83(1.26) 7.15(0.70) -16.86(2.79)
M2 0.95(0.11) -0.73(1.21) 0.86(0.07) 1.28(0.42) 4.17(0.60) 8.54(3.50) 5.74(0.47) -37.11(2.78)
M3 1.67(0.29) 0.22(0.75) 1.20(0.13)  -0.88(0.34) 4.64(0.48)  —2.69(1.26) 17.03(3.34) 14.20(4.65)
M4 1.52(0.25) -0.35(0.73) 1.10(0.10)  -1.10(0.30) 4.70(0.46)  -2.01(1.16) 15.21(2.73) 9.23(4.08)
SM1 1.65(0.26) 1.51(0.91) 1.07¢0.11)  -0.21(0.31) 4.60(0.44)  -2.72(1.25) 6.45(0.56) -22.59(3.19)
CM1 1.76(0.26) 2.37(0.89) 1.11(0.11)  -0.15(0.34) 4.61(0.43) -3.71(1.19) 7.14(0.65)  —18.16(3.20)
SM4 1.38(0.22) ~0.04(0.79) 1.02(0.09)  —0.90(0.31) 4.39(0.43)  -2.10(1.15) 5.70(0.69) -20.85(2.33)
CM4 1.50(0.24) —0.32(0.74) 1.09(0.10)  —-1.07(0.30) 4.67(0.46)  —1.98(1.15) 12.73(3.45) 2.72(6.61)
Mean sed 0.17 0.75 0.07 0.38 1.64 1.88 3.86
Mean sed ratio (.52 0.54 0.44 0.44 0.60 0.74 0.72
b Concentration measured once per month
Method Nitrate Chloride Phosphate Suspended Solids
CV(%) Bias(%) CV(%) Bias(%) CV(%) Bias(%) CV(%) Bias(%)
W4 1.32(0.14) -6.39(1.79) 1.09(0.10)  —0.98(0.60) 7.95(1.63)  16.47(3.23) 7.100.52) —44.34 (2.76)
W5 2.92(0.35) 0.97(0.48) 2.09(0.19)  -0.15(0.17) 9.31(1.20)  -0.12(0.96)  24.98(2.18) 0.04 (1.93)
Ml 2.95(0.49) 2.75(1.02) 1.69(0.13)  —0.19(0.40) 6.58(0.57)  —4.17(1.26) 9.84(1.12) -17.55 (2.30)
M2 1.57(0.19) —0.85(1.20) 1.31(0.09) 1.33(0.39) 6.33(0.95) 9.33(3.97) 7.1000.46) —39.42 (2.68)
M3 2.76(0.40) 0.34(0.79) 1.82(0.149)  -0.92(0.37) 6.84(0.50)  -2.78(1.24) - 25.80(7.83) 17.51 (7.64)
M4 2.50(0.34) -0.31(0.67) 1.68(0.11)  -1.19(0.27) 6.96(0.54)  —1.83(1.25)  23.46(6.64) 12.17 (6.57)
SM1 2.69(0.42) 1.64(0.90) 1.62(0.12)  —0.27(0.36) 6.58(0.59)  —-2.99(1.24) 8.43(0.80) —23.84 (2.89)
CM1 2.79(0.38) 2.41(0.82) 1.67(0.12)  —0.21(0.38) 6.54(0.58)  -3.91(1.14) 9.74(1.09) -19.86 (3.43)
SM4 2.30(0.30) —0.02(0.73) 1.55(0.10)  —0.98(0.29) 6.42(0.48)  —2.07(1.24) 8.09(1.46) -21.89 (2.13)
CM4 2.44(0.29) -0.24(0.70) 1.65(0.11)  —1.12(0.32) 6.85(0.50) -1.77(1.24) 18.29(7.10) 0.73(11.66)
Mean sed 0.25 0.82 0.10 0.69 1.84 4.16 6.12
Mean sed ratio  0.53 0.59 0.56 0.55 0.63 0.79 0.84
Nitrate Chloride

M2, the method which modelled the effect of seasonality
alone, gave the best estimates of load for nitrate. For both
sampling frequencies, M2 had CVs that were significantly
(p<0.01) lower than those for all other methods except W4.
Whilst W4 was the least variable method, the large negative
bias led to W4 having the largest RRMSE. The three
methods based on M1, involving flow alone, had significant
positive bias (p<0.05) relative to all other methods except
WS5. The use of smoothing improved methods M1 and M4
with respect to both bias and variance, whereas the intro-
duction of a cut-off was considerably less effective.
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Estimates of load were generally better for chloride than
for any other chemical, with most values of RRMSE lying
between 1 and 2%. The methods based on M1, using the
simple regression of log(concentration) on log(flow), all
had little bias, whereas M3 and the methods based on M4
all showed negative bias. The least variable methods again
were W4 followed by M2, the latter being the only method
to show positive bias. This bias in M2 gave it one of the
greatest values of RRMSE, whereas the smallest values of
RRMSE occurred for W4 along with M1 and its adapta-
tions.



Phosphate

Phosphate was negatively correlated with flow, hence the
methods which did not include flow, W4 and M2, both
had substantial positive bias. W5 had the minimum bias
but a CV that was significantly (p<(.05) greater than all
other methods except W4. After discounting these three
methods, there was less to choose between the remainder.
M3 and M4 had significantly less bias than M1 (p<0.05),
but similar CVs. This, combined with the small but
significant benefits of cut-off and smoothing, led to SM4
having the smallest RRMSE, followed by CM4, for both
sampling intervals.

Table 2. Relative root mean square error, with standard
errors in parentheses, presented as a percentage of the
actual total load transported by the river, for each of the
ten methods and the four chemicals using (a) fortnightly
and (b) monthly sampling. Also given are the mean pair~
wise standard errors of differences, together with the mean
ratios of paired standard errors of differences to standard
errors of differences calculated ignoring the pairing.

a  Concentration measured once per fortnight

Method Nitrate Chloride Phosphate Suspended
Solids
W4 6.46(1.85) 1.17(0.49) 17.74(3.02)  45.10(2.80)
W5 2.08(0.34) 1.42(0.21) 6.46(0.75)  18.11(1.80)
Ml 3.11(0.94)  1.12(0.11) 5.99(0.95)  18.30(2.46)
M2 1.20(0.50)  1.54(0.35) 9.49(3.12)  37.55(2.74)
M3 1.68(0.41)  1.49(0.21) 5.35(0.73)  22.10(5.08)
M4 1.56(0.25)  1.55(0.25) 5.1000.58)  17.73(4.12)
SM1 2.23(0.76)  1.09(0.11) 5.33(0.81)  23.49(3.00)
CM1 2.95(0.82) 1.11(0.10) 5.90(0.89)  19.51(2.90)
SM4 1.38(0.25)  1.35(0.25) 4.86(0.61)  21.61(2.23)
CM4 1.54(0.23) 1.52(0.24) 5.06(0.57)  13.01(5.28)
Mean sed 0.83 0.26 1.37 3.53
Mean sed
ratio 0.78 0.69 0.58 0.71
b  Concentration measured once per month
Method Nitrate Chloride Phosphate Suspended
Solids
w4 6.53(1.76) 1.47(0.36) 18.26(3.46)  44.90 (2.69)
W5 3.08(0.45)  2.10(0.19) 9.29(1.21)  25.00 (2.16)
M1 4.02(1.00) 1.70(0.12) 7.78(0.90)  20.13 (1.88)
M2 1.78(0.40) 1.87(0.30) 11.26(3.60)  40.06 (2.64)
M3 2.77(0.52)  2.04(0.14) 7.38(0.72)  31.05(10.48)
M4 2.51(0.33)  2.06(0.14) 7.19(0.64)  26.31 (8.77)
SM1 3.14(0.76)  1.64(0.11) 7.21(0.81)  25.29 (2.63)
CM1 3.68(0.77) 1.68(0.12) 7.61(0.85)  22.13 (3.12)
SM4 2.29(0.33)  1.84(0.14) 6.73(0.64)  23.34 (1.81)
CM4 2.44(0.29)  2.00(0.18) 7.07(0.60)  18.23 (9.92)
Mean sed 0.77 0.23 1.57 5.89
Mean sed
ratio 0.71 0.83 0.58 0.75

Methods for estimating loads transported by rivers

Suspended Solids

Suspended solids provided the hardest loads to estimate,
with most RRMSEs around 20% or more. No method
performed consistently well for bias and variance: those
methods which had the least bias had the highest values of
CV, and vice-versa. Since the majority of suspended solids
were transported when the flow was at an extreme high,
W4 and M2 were highly negatively biased, to the extent of
around —40%. Conversely, methods M3 and M4 both
showed positive bias. The introduction of smoothing and
a cut-off had little effect on M1 but had striking effects on
M4. Smoothing on M4 caused a highly significant
(p<0.001) change in bias from positive to negative, with a
compensating highly significant (p<0.005) decrease in CV
by a factor of nearly 3. The most variable methods were
W5, M3 and M4. The compensation between bias and
variance in estimating suspended solids was such that, for
RRMSE, after the poorest methods (W4 and M2) had
been discarded, there was little to choose between the
remainder.

Discussion

The aim of this paper has been to use the frequently sam-
pled chemical concentrations in the River Don to provide
a truth against which to assess sen methods of estimating
loads. The validity of extending the comparative sampling
properties from this simulation to estimates of mean
annual load depends primarily on two weak assumptions,
namely that the mean load at observation times is well esti-
mated by W2 and that the data span a representative range
of conditions experienced by the river during such a long
time period. Note that, in absolute terms, the sub-
sampling procedure will have led to under-estimates of
variability in load estimates since any two sub-samples will
have shared some concentration data. However, the inves-
tigations suggested the underestimation was quite small
and the comparison of methods remains valid since this
underestimation affects all methods equally. The use of
standard errors of difference based on the use of jack-
knifing by years allowed inferences to be drawn that are
not restricted to the years for which data were available,
although clearly the empirical results are still restricted to
the River Don.

The results for estimating loads on the River Don can
be summarised as follows.

1 Loads of some elements are much easier to estimate than
others. With fortnightly concentration data, chloride can
be predicted with a RRMSE of less than 2%, whereas
for suspended solids it is nearer 20%. This, of course,
reflects greater inherent uncertainty in the estimation of
loads of suspended solids and may call into question the
value of any method using concentration data collected
so infrequently.

2 If there is a negative correlation between concentration
and flow, ignoring this will give a positive bias (e.g.
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phosphate). If the correlation is pbsitive the bias will be
negative (suspended solids). Whether or not to model
this correlation depends on the balance between increas-
ing the variance by adding more parameters to the
model, and reducing the bias. If there is only a weak
relationship between concentration and flow (e.g. chlo-
ride), the biased method W4 may be best.

3 If there is a clear seasonal pattern (e.g. nitrate), this can
be modelled using a sine curve to improve prediction.

4 In some cases (e.g. phosphate), using a measure of pre-
vious flow may improve prediction.

5 Smoothing the estimated concentrations improves the
predictions for all chemicals except suspended solids.
The smoothing exploits the time series nature of the
data, reducing the variance but increasing the bias. It
fails with suspended solids because most of the load is
due to very high concentrations on a few occasions.

6 Reducing the effect of extrapolation by cutting off the
high and low flows gives a small improvement. The
effect is similar to that for smoothing described above,
i.e. reducing variance but increasing bias, and its
benefits are particularly noticeable for suspended solids.

7 The best model is different in each case, but large im-
provements are possible over the ‘standard’ method W5.

8 Changing the frequency with which water quality data
are available by a factor of two does little to change the
relative sampling properties of the methods assessed.

In this paper, estimated loads have been compared with a
‘true’ load but, clearly, this is not usually possible. Indeed,
when only limited concentration data are available, a sys-
tematic study based on that data alone may prove poor at
discriminating between the methods available. Instead, it
may be better to reach a decision about which method to
use based on knowledge about the river, the constituent,
the data available, results of case studies such as this and
results based on simulations.

The criterion used for choosing the best method for load
estimation will depend on the trade-off between bias and
variance. For a method based on an empirical model, the
variability of estimated load during a short period will be
greatly reduced by fitting the model to data from both
before and after that period, although this can cause bias
if the water quality is subject to long-term trends.
Choosing the length of data sequence for parameter esti-
mation is, thus, a direct choice between bias and variance.
Where the primary interest is to estimate the change in
load over time, the method with the minimum variance
will be optimal provided it can be assumed that the bias
will remain constant. Conversely, if the total load from
several rivers is to be estimated, it may be more important
to have an unbiased estimate for each river as the CV for
the combined load will be less than the CV for the indi-
vidual loads.
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Conclusions

This case study reinforces the view that no single method

is consistently best for estimating total loads. Each indi-

vidual case requires separate consideration. The best

method will depend on:

¢ the element for which the load is to be estimated;

* the river in which the measurements were taken;

¢ the number and frequency of samples;

« the flow/concentration relationship in the observed data;

« the difference in distribution of the flow when both flow
and concentration were observed and when only flow
was observed;

* the objective behind estimating the load.

Acknowledgement

Thanks are due to the Scottish Environmental Protection Agency
for the use of their data and to Dr. A. Edwards, MLURI, for
comments on the methods used and draft texts. Estimation of
errors using the jack-knife by years was suggested by a referee.
This work was funded by the Scottish Office Agriculture,
Environment and Fisheries Department.

References

Ferguson, R.I., 1986. River loads underestimated by rating
curves. Wat. Resour. Res., 22, 74-76.

Ferguson, R.I., 1987. Accuracy and precision of methods for esti-
mating river loads. Earth Surface Process and Landforms, 12,
95-104.

Gurnell, A.M. and Fenn, CR., 1984. Box-Jenkins transfer func-
tion models applied to suspended sediment concentration-dis-
charge relationships in a proglacial stream. Arctic Alpine Res.,
16, 93-106.

Hirst, D., 1992. A new technique for the analysis of continuously
monitored water-quality data. 7. Hydrol., 134, 95-102.

Kronvang, B. and Bruhn, A.J., 1996. Choice of sampling strat-
egy and estimation method for calculating nitrogen and phos-
phorus transport in small lowland streams. Hydrol. Processes,
10, 1483-1501.

Littlewood, 1.G., 1995. Hydrological regimes, sampling strate-
gies, and assessment of errors in mass load estimates for
United Kingdom rivers. Environ. Internat., 21, 211-220.

Miller, J.D. and Hirst, D.]J., 1998. Trends in concentrations of
solutes in an upland catchment in Scotland. Se¢i. Total
Environ., 216, 77-88.

Miller, R.G., 1974. The jackknife—a review. Biometrika, 61, 1-15.

PARCOM, 1988. Principles of the comprehensive study on river-
ine inputs. Annex 9, Tenth Meeting of the Paris Commission,
Lisbon, 15-17 June 1988.

Thomas, R.B., 1985. Estimating total suspended sediment
yield with probability sampling. War. Resour. Res., 21,
1381-1388.

Walling, D.E. and Webb, B.W., 1981. The reliability of sus-
pended sediment load data. In: Erosion and Sediment
Transport Measurement, JAHS Publ. No. 133, 177-194.



- ~ Methods for estimating loads transported by rivers

‘ Wallmu, D.E. and Webb, B.W., 1982. The design of sampling ~ Young, T.C., DePinto, J.V. and Heidtke, T.M., 1988, Factors
-~ programs. for  studying cmhment nutrient - dynamics, ammmthnefﬁmmy of some estimators of ﬂuvmltml phos-
: PMMW egf tm fmmml Sympmmm o ﬂvdmlogiml . phmoul load, Wat. Resour. Res., 24, 1535-1540.

L 303



