Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 3, issue 2
Hydrol. Earth Syst. Sci., 3, 177–185, 1999
https://doi.org/10.5194/hess-3-177-1999
© Author(s) 1999. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Hydrol. Earth Syst. Sci., 3, 177–185, 1999
https://doi.org/10.5194/hess-3-177-1999
© Author(s) 1999. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

  30 Jun 1999

30 Jun 1999

A differentiation method for separating a mixture of suspended particle size distributions

H. Q. Wang, J. P. Dupont, R. Lafite, and R. Meyer H. Q. Wang et al.
  • Departement de Geologie Universite des Rouen UPRES A-CNRS 6143 76821 Moint-Saint-Aignan Cedex, France
  • e-mail of corresponding author: Huaqing.Wang@univ-rouen.fr

Abstract. A simple method is proposed to partition a mixture of two populations in suspended particle size data. The method, termed here "the differentiation method" is based on the function of the lognormal distribution. Suspended material in marine or estuarine situations often consists of difficult-to-interpret complex populations. The treatment of particle size data by the method described enables the confirmation of the lognormal law and also the demonstration of the occurrence of a combination of a number of populations which may not be distinguished by the classical Gaussian transformation or automatic methods. A simple combination of graphical and numerical techniques permits the decomposition and the easy determination of the various statistical parameters (median diameter, mean diameter, etc...). The method is applied to interpret observed size distributions of suspended particulate matter in the Seine estuary. The method enables the determination of the relative sizes of the constituent sub-populations that comprise the total suspended matter. In the example used to illustrate the method, particles are shown to be resuspended as a function of different hydrodynamic parameter.

Publications Copernicus
Download
Citation