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Abstract. Accurate estimation of snow water equivalent
(SWE) over high mountainous regions is essential to sup-
port water resource management. Due to the sparse distribu-
tion of in situ observations in these regions, weather forecast
models have been used to estimate SWE. However, the in-
fluence of horizontal resolution on the accuracy of the snow
simulation remains poorly understood. The objective of this
study is to evaluate the potential of the Weather Research
and Forecasting (WRF) model run at horizontal resolutions
of 9, 3, and 1 km to estimate the daily values of SWE over
the mountainous South Saskatchewan River Basin (SSRB) in
western Canada for a representative water year, 2017–2018.
Special focus is given to investigating the impact of the WRF
model grid cell size on accurate estimation of the peak time
and value of SWE across the watershed. Observations from
manual snow surveys show an accumulation period from Oc-
tober 2017 to the annual peak in April 2018, followed by
a melting period to the end of water year. All WRF simu-
lations underestimated the annual SWE. The largest errors
occurred in two conditions: at higher elevations and when
using coarser horizontal resolution. These biases reached up
to 58 kg m−2 (24 % relative error). The two higher-resolution
simulations capture the magnitude (and timing) of peak SWE
very accurately, with only a 3 % to 6 % low bias for 1 and
3 km simulations, respectively. This demonstrates that a 1 km
resolution may be appropriate for estimating SWE accumu-
lation across the region. A relationship is identified between
model elevation bias and SWE biases, suggesting that the
smoothing of topographic features at lower horizontal res-
olution leads to lower grid cell elevations, warmer tempera-

tures, and lower SWE. Overall, this study indicates that high-
resolution WRF simulations can provide reliable SWE values
as an accurate input for hydrologic modeling over a sparsely
monitored mountainous catchment.

1 Introduction

On average, almost 65 % of Canada’s landmass is covered
by annual snow cover for more than 6 months of the year
(ECCC, 2025). Melting snow in spring is a critical compo-
nent of the water cycle to determine water supplies and flood
risk; however, estimating the effect of snowmelt on flood-
ing depends on a reliable estimate of snow water equivalent
(SWE) (Dozier et al., 2016; Wrzesien et al., 2017; Vionnet et
al., 2020). SWE is defined as the product of snowpack depth
and bulk density and is a key environmental variable for un-
derstanding climate (Brown et al., 2019). It represents the
vertical depth of water that would be obtained if all the snow
cover melted completely (WMO, 2018). The value of SWE
shows the amount of liquid water which is produced from a
melting snowpack.

The distribution of SWE across space and time is espe-
cially important in northern regions and at high elevations.
This distribution determines how much water will be avail-
able during spring and summer runoff periods (Barnett et al.,
2005; King et al., 2020). Due to the sparse distribution of
in situ observations globally, regional weather forecast mod-
els have been used recently to estimate the amount of SWE
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(Klehmet et al., 2013; Wrzesien et al., 2017; Raparelli et al.,
2023). Reliable and accurate estimation of SWE has been
required to improve management and analyses of water re-
sources. It is also essential for other applications, includ-
ing global change analysis and risk assessment (Taheri and
Mohammadian, 2022). Although many studies have evalu-
ated temperature and precipitation simulations over North
America (Diaconescu et al., 2016; Xu et al., 2019; Holtz-
man et al., 2020), few studies have been performed region-
ally to validate the model estimation of the spatial and tem-
poral patterns in SWE (e.g., Alonso-González et al., 2018;
Mortezapour et al., 2020). There is ample evidence from pre-
vious studies that model horizontal resolution is one of the
key factors that should be improved to increase the accu-
racy of a simulated snowpack (Blöschl, 1999; Leung et al.,
2003). Regional climate simulations using a coarse horizon-
tal grid spacing typically underestimate the snowfall com-
pared to the observations. One specific example showed
that reducing the MM5 model (fifth-generation Penn State–
NCAR Mesoscale Model) grid spacing to 13 km led to an
improved estimation of the snowpack for the western United
States (Leung and Qian, 2003). Garvert et al. (2007) found
that a high-resolution mesoscale model is required to appro-
priately simulate the snowfall over a complex terrain and
to produce updraft and downdrafts that had a significant
impact on the snowfall patterns. WRF (Weather Research
and Forecasting) model simulations at 2 km grid spacing for
the Colorado Rocky Mountains are analyzed by Rasmussen
et al. (2011). The estimations are verified using Snowpack
Telemetry (SNOTEL) data. Their results show that the model
successfully simulated spatial and temporal patterns of SWE
over the region.

The Rocky Mountains in the USA and Canada stretch
from the northernmost part of western Canada to northern
New Mexico in the southwestern United States. The eastern
slopes of the Canadian Rocky Mountains make up a com-
plex region, and several factors such as season, vegetation,
and topography control the discharge of headwater streams
from high-elevation catchments to valley bottoms (Hauer et
al., 1997). Our study region comprises the eastern foothills
region of the Rocky Mountains and the mountain headwaters
region of the South Saskatchewan River Basin (SSRB) (see
Fig. 1) and it is more focused on the western SSRB region,
which includes mountainous areas of the SSRB. The SSRB
in western Canada is a major agricultural basin of Canada
with a semi-arid climate that is highly dependent on surface
water (Martz et al., 2007), which mainly comes from the
spring snowmelt (Tanzeeba and Gan, 2012). The SSRB is a
major sub-basin of the Nelson River Basin of Canada, rising
from the Rocky Mountains in the west and extending east-
ward through southern Alberta (Tanzeeba and Gan, 2012).
The watershed has a sub-humid to semi-arid continental cli-
mate. Temperatures can reach 40 °C during the summer and
−40 °C during winter (Martz et al., 2007). During the win-
tertime, precipitation is principally in the form of snow. Most

of the annual runoff (around 70 %) of the rivers in this re-
gion is supplied from the Rocky Mountains and the foothills
(Ashmore and Church, 2001). Annually SSRB accounts for
nearly 57 % of the total water allocated in Alberta. The sur-
face water supply in SSRB region mainly comes from the
spring snowmelt (Tanzeeba and Gan, 2012), which makes it
highly suitable to study the variability of SWE and its poten-
tial hydrologic impact.

The main objective of this paper is to evaluate the po-
tential of Weather Research and Forecasting (WRF) model
run at various resolutions to correctly simulate the daily val-
ues of snow water equivalent (SWE) over the SSRB region.
To pursue this objective, in situ observations of snow using
the Canadian historical Snow Water Equivalent (CanSWE)
dataset are used to evaluate the potential of WRF to detect
the variability in SWE. Particular attention is paid to investi-
gating the role of the WRF model’s grid cell size in the ac-
curate estimation of peak SWE timing and value across the
watershed. The impact of elevation has been also examined
by evaluating several statistical diagnostics.

This paper is organized as follows. Section 2 includes the
details about the study region as well as an introduction to the
WRF model, ERA5, ERA5-Land, and the CanSWE dataset.
Section 3.1 analyzes the area-averaged temporal evaluation
of WRF SWE and quantifies bias and errors between WRF,
ERA5, ERA5-Land, and the CanSWE dataset throughout the
study period. Section 3.2 presents WRF SWE spatial evalu-
ations for individual stations using statistical metrics to pro-
vide insights into the probable impact of elevation on biases,
which is studied in Sect. 3.3. A summary and conclusions are
provided in Sect. 4.

2 Data and methodology

2.1 CanSWE dataset

In situ observation of SWE has been widely used in many
applications including water and flood forecasting, climate
studies, and evaluation of numerical weather prediction mod-
els. SWE can be measured manually or automatically as the
mathematical product of snow depth and density. The meth-
ods that are widely used to measure SWE include snow cores,
snow pits, and snow pillows (Elder et al., 1998; Andreadis
and Lettenmaier, 2006; Dixon and Boon, 2012). Snow pits
and snow courses are manual methods and rely on interpola-
tion to characterize snow depth. This may lead to some errors
if snow depth is variable (López-Moreno et al., 2011). How-
ever, snow pillows, measuring SWE by weighing the mass
of a snow column, are the most common automatic method
for continuous monitoring of SWE at a fixed location. They
provide valuable time series of snow, despite the fact that
they are spatially sparse and expensive to install and main-
tain (Johnson and Marks, 2004).
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The Canadian historical Snow Water Equivalent dataset
(CanSWE) combines manual (snow surveys) and automated
(includes snow pillows and passive gamma sensors) pan-
Canadian SWE observations (Vionnet et al., 2021). This
new dataset replaces the Canadian Historical Snow Survey
(CHSSD) dataset (Brown et al., 2019) by correcting the
metadata, removing duplicate observations, and controlling
the quality of the records. In Canada, the majority of in situ
SWE measurements are collected by provincial or territorial
governments and hydropower companies and their partners.
CanSWE dataset was compiled from 15 different sources and
includes SWE information for all provinces and territories
measuring SWE from 2607 locations across Canada over the
period from 1928 to 2020. More details on this dataset are
provided by Vionnet et al. (2021).

Table 1 shows the location of stations selected to evaluate
WRF model performance. Nine weather stations, equipped
with automated snow pillows, have been selected based on
the availability of daily SWE data with minimal data gaps
during the study period. These stations were located over the
area represented by the innermost WRF model domain. The
evaluation was conducted from 1 October 2017 to 1 Octo-
ber 2018, as the 2018 water year. Our preliminary investi-
gation shows that the 2018 water year had approximately
average SWE values during 1984 to 2021 according to the
CanSWE stations. Therefore, 2018 can be representative of
the region’s climate over the past 38 years. Statistical metrics
were considered to evaluate the model simulations against
CanSWE data: root mean squared error (RMSE), mean bias
(MB), mean absolute error (MAE), and standard deviation
(SD). The evaluation has been done for each station as well
as the aggregate of the stations by examining SWE time se-
ries and their annual and spatial distribution.

2.2 WRF model configuration

The Weather Research and Forecasting (WRF) model was
developed by the National Center for Atmospheric Research
(NCAR) to support both operational weather forecasting and
atmospheric research. Detailed documentation of the WRF
model can be found in Skamarock (2008). In this study, the
Advanced Research WRF (ARW) version 4.3.2 is used with
three one-way nested domains, each with progressively finer
horizontal resolution. The outer domain has a resolution of
9 km and covers most of western Canada (Fig. 1). The mid-
dle domain, with a resolution of 3 km, extends over British
Columbia and parts of Alberta. The innermost domain has
the highest horizontal resolution of 1 km and covers the west-
ern part of the southern Saskatchewan River Basin (Fig. 1).
This version of WRF runs with 38 vertical levels between the
Earth’s surface and a model top at 50 hPa, which is the same
for all domains. For the remainder of this paper, the WRF
simulations at 9, 3, and 1 km resolutions will be referred to as
WRF9K, WRF3K, and WRF1K, respectively. The initial and
lateral boundary conditions are derived from the 3-hourly

and 0.25° resolution ERA5 reanalysis (Hersbach et al., 2020)
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF). Simulation results are output at a 6 h time
step, which is aggregated to daily frequency for direct com-
parison with observations.

The physical parameterization schemes are selected based
on previous studies that employ the WRF model to evalu-
ate the simulation of terrestrial snow accumulation over the
Northern Hemisphere (e.g., Niu et al., 2011; Wrzesien et
al., 2015; Liu et al., 2017; Li and Li, 2021). In particular,
the Thompson et al. (2008) cloud microphysics scheme, the
rapid radiative transfer model longwave scheme (Mlawer et
al., 1997), the Dudhia shortwave scheme (Dudhia, 1989), the
Yonsei University planetary boundary layer scheme (Hong et
al., 2006), the modified Kain–Fritsch convective parameter-
ization for the outer domain (Kain and Fritsch, 1990, 1993;
Kain, 2004), and the Noah LSM with multi-parameterization
(Noah-MP) option (Niu et al., 2011) are used here. Previous
studies show that Noah-MP simulates snow more accurately
at finer resolution than previous versions of the Noah land
surface model (e.g., Wrzesien et al., 2015). Simulated values
were extracted at the nearest grid cell corresponding to the
location of each station, assuming that the in situ observation
is representative of a model gridded area. It is acknowledged
that such point comparisons of SWE are inherently challeng-
ing due to the heterogeneity in elevation, aspect, and land
cover (Cui et al., 2023). However, given the reasonably rep-
resentative station density within the innermost WRF domain
(Fig. 1), we attempt to mitigate these issues by also compar-
ing simulated and observed spatial mean SWE using a spatial
mean taken over all stations.

The evaluation of WRF results in the current study has
been focused on a discussion of the innermost domain that
includes the eastern foothills region of the Rocky Mountains
and the mountain headwaters region of the SSRB (Fig. 1).
We emphasize that this innermost domain is simulated at all
three resolutions; in other words, at each resolution the model
produces output over its entire domain, not just the outer part.

2.3 ERA5 and ERA5-L

The datasets used in this study also included ERA5 and
ERA5-Land (hereafter, ERA-L) to explore the consistency
of the ERA5 and ERA5-L reanalysis datasets in the SWE
estimation. As mentioned in Sect. 2.2, the 0.25° resolution
ERA5 reanalysis has been also used as the initial and lat-
eral boundary conditions for the WRF run. ERA5 is the fifth-
generation ECMWF atmospheric reanalysis (Hersbach et al.,
2020) and has a grid resolution of 31 km. This is higher res-
olution than in the older ERA-Interim of 80 km. ERA5 is
based on advanced modeling and data assimilation systems,
i.e., the Integrated Forecasting System (IFS) Cycle 41r2,
and combines large numbers of historical observations into
global estimates. It provides hourly fields for all variables.
ERA5 assimilates snow properties from several SYNOP sta-
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Table 1. Location of the stations from CanSWE in British Columbia and Alberta.

Station name Abbreviation Latitude Longitude Elevation (m) Province

Wild Cat Creek 1 51.70 −116.63 2122 British Columbia
Skoki Lodge 2 51.54 −116.06 2120 Alberta
Floe Lake 3 51.05 −116.13 2090 British Columbia
Sunshine Village 4 51.08 −115.78 2230 Alberta
Three Isle Lake 5 50.63 −115.28 2160 Alberta
Little Elbow Summit 6 50.71 −114.99 2120 Alberta
Mount Oldum 7 50.49 −114.91 2060 Alberta
Lost Creek South 8 50.17 −114.71 2130 Alberta
South Racehorse Creek 9 49.78 −114.60 1920 Alberta

Figure 1. WRF model domains over western Canada and the terrain height for the inner domain. The outer boundaries of the 9 km (red),
3 km (yellow), and 1 km (green) domains are indicated by rectangles. Black squares indicate the location of CanSWE automated stations in
British Columbia and Alberta. The topography of the 1 km domain is shown magnified on the right with the CanSWE stations from Table 1
indicated by yellow circles (NCAR Command language version 6.6.2 was used to generate the figure; http://www.ncl.ucar.edu/, last access:
January 2025).

tions, and from the year 2004 onwards, it also uses Interactive
Multisensor Snow and Ice Mapping System (IMS) data over
the NH (Hersbach et al., 2020). On the other hand, ERA5-L
is the land component from ERA5 with a finer spatial resolu-
tion of 9 km. It is produced with the land model H_TESSEL
and without coupling the atmospheric module without data
assimilation (Muñoz-Sabater et al., 2021). These reanalysis
data are used to evaluate their SWE values and to understand
the role of resolution in SWE estimation over the region.

3 Results

3.1 Evaluation of the spatial mean SWE

The time series of daily SWE values from CanSWE, ERA5,
ERA5-L, and WRF simulations averaged over the inner do-
main of the SSRB are presented in Fig. 2. The results suggest
that, on average, improved resolution improves SWE esti-
mation. The seasonal cycle of SWE in observations shows
a clear accumulation period from 1 October to peak SWE
(648 mm) in late April and a melting period from late April

Hydrol. Earth Syst. Sci., 29, 887–902, 2025 https://doi.org/10.5194/hess-29-887-2025
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until late June. In general, this seasonal evolution of the
snowpack is well represented by the WRF simulations at
all three resolutions as well as the reanalysis ERA5 and
ERA5-L. However, in agreement with previous studies (e.g.,
Wrzesien et al., 2018), our results confirm that the reanaly-
sis products significantly underestimate mountain SWE. The
ERA5-L SWE at 9 km resolution performs worse than the
WRF9K simulation. The peak SWE occurs on the same day,
22 April, for all WRF resolutions and the CanSWE observa-
tions, indicating that the WRF model is conserving the pri-
mary details of the meteorological lateral boundary forcing
required for snow accumulation and melt. The two higher-
resolution simulations (3 and 1 km) capture the magnitude of
peak SWE very accurately, with only a 3 % to 6 % low bias
for WRF1K and WRF3K over the accumulation period, re-
spectively. This demonstrates that both simulations may have
value for providing accurate estimates of average SWE accu-
mulation across the study region. The disparity between the
CanSWE-SD and estimated-SD of each dataset highlights
their inconsistency (Fig. 2). The lowest SDs were associated
with WRF1K, which indicates a relatively smaller spread be-
tween the WRF1K and CanSWE dataset, suggesting relative
consistency and less variability in their values. The WRF9K
simulation displays a systematic low bias of about 108 mm
(31 %) in SWE throughout the accumulation period, suggest-
ing that either there is too little total precipitation reaching
the surface at this resolution, or a temperature bias is causing
a lower proportion of precipitation to fall as snow. We exam-
ined how temperature and precipitation affect SWE simula-
tions at different resolutions. Temperature values were very
similar across all three resolutions (Fig. 3a). However, the
WRF9K consistently showed lower precipitation values than
expected (Fig. 3b). This suggests that the underestimation of
precipitation, rather than temperature differences, is the main
cause of SWE bias in the lowest-resolution model. The WRF
simulations are configured using a 3-hourly ERA5 forcing at
the lateral boundary (i.e., the boundary of the 9 km domain).
Therefore, the fact that the WRF9K produces lower total ac-
cumulated precipitation than the two higher-resolution sim-
ulations over a mountainous region strongly suggests that
the cause is orographic enhancement of precipitation within
WRF. Interestingly, given that all three of our domains have
higher resolutions than ERA5 itself (27 km), this implies that
underestimated orographic enhancement may be contribut-
ing to a low bias in precipitation at high elevations in ERA5,
which in turn leads to a low bias in SWE (Fig. 2).

Figure 2 also shows that the WRF simulation at all three
resolutions estimates the melting period in two phases: a
rapid phase from April to early June and then a more grad-
ual phase until late June. Also, the difference in melt rate
between the two phases is most apparent at the lower resolu-
tions, indicating that melt processes may be more accurately
represented at higher resolution based on the melting rate.

Summary statistics for the melting and accumulation pe-
riod are shown in Fig. 4 for RMSE, MB, MAE, and SD over

the region. Generally, Fig. 4 suggests that there is tendency
for RMSE, MB, MAE, and SD to decrease at finer resolu-
tions. Following ERA5 with 27 km and ERA5-L with 9 km
resolution, the coarsest model run shows a high value for
RMSE, especially during the accumulation period. WRF9K
underestimates SWE values more than the other two finer
resolutions during both understudied periods, perhaps due to
the incapability of WRF9K to simulate the processes that are
responsible for snow redistribution and deposition in moun-
tainous areas that are characterized by heterogeneous snow
distribution. Lower error metrics in WRF3K and WRF1K
show the effect of the model’s scale on the estimation of
SWE, leading to biases in SWE simulation. The standard
deviation values indicate that, overall, the variance of the
estimation differs from the observations; however, there is
a trend of decreasing SD with finer resolution, such as in
WRF3K and WRF1K. The decrease in SD aligns with lower
MAE, RMSE, and bias in WRF1K SWE estimation.

3.2 Evaluation of spatially varying SWE

In this section, the representation of spatial heterogeneity of
SWE in the WRF simulations is evaluated by comparing ob-
served and simulated SWE at individual stations within the
inner domain. It is important to highlight that the point-to-
grid data comparison may introduce uncertainties in the ver-
ification results for individual stations. In this context, the
emphasis is on the spatial heterogeneity of SWE estimation
rather than asserting WRF’s accuracy in estimating SWE at a
specific point scale. To evaluate the SWE spatial variability,
time series for each individual station are depicted in Fig. 5.
Moreover, the elevation at each station and the estimated ele-
vation by WRF simulation at all three resolutions are sum-
marized in Table 2. Mostly at the stations on the leeward
side of the mountains, including the four southern stations,
there is an underestimation of SWE for all runs. At most sta-
tions, the WRF run with the finest resolution shows the best
performance. SWE experiences significant changes in both
space and time; therefore, the accumulation and the snow-
pack melting are variable because of the complex topogra-
phy. During the accumulation period, the difference is more
pronounced at each station. Comparison between Figs. 2 and
5 shows that aggregation of the stations may smooth the dif-
ferences between estimations and observations. This effect
that is previously introduced by Blöschl (1999) as aggrega-
tion filtering may be caused by the change of scale due to the
aggregation.

The spatial distribution and extent of the SWE for each
WRF horizontal resolution are shown in Fig. 6a–f for the ac-
cumulation and melting period. As shown in Sect. 3.1, snow
accumulates in the mountains from October through April,
and snowmelt usually begins in May. The spatial variability
in SWE is influenced by various processes occurring across
different spatial scales. For example, spatial variability in
snow accumulation in mountainous regions may result from
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Figure 2. Temporal variation of SWE from CanSWE data, WRF model resolutions, ERA5L, and ERA5 over the SSRB region. The SWE
data are aggregated for all stations inside the innermost domain. The spikes in the graph correspond to snowfall events, indicating the
accumulation and subsequent melting of snow. The difference between CanSWE SD and the SD of each dataset is shown in the upper left.

Table 2. Observed elevation of each station vs. the estimated elevation by WRF. Average elevation bias is presented in percent.

Station number Elevation (m) Average elevation bias (in percent)

Observation WRF9K WRF3K WRF1K WRF9K WRF3K WRF1K

1 2122 2099 2372 2413 −1 6 6
2 2120 2500 2712 2225 8 12 2
3 2090 2086 2233 2218 0 3 3
4 2230 2199 2028 2164 −1 −5 −1
5 2160 2365 2479 2483 5 7 7
6 2120 2144 2163 2306 1 1 4
7 2060 2242 2345 2118 4 6 1
8 2130 2265 2156 2158 3 1 1
9 1920 1834 1894 1856 −2 −1 −2

the preferential deposition of snow in microscale topographic
depressions (Clark et al., 2011). Winds cause the redistribu-
tion of snow in the alpine zone, with scouring on the wind-
ward side of ridges and deposition on the leeward side (Clow
et al., 2012). Both periods show similar spatial distribution
of SWE; however, the impact of resolution is obvious. There
is a maximum in SWE value in all three simulations over
northern parts of the domain for both the accumulation and
melting period. During the accumulation period, WRF1K has
larger SWE values compared with WRF9K in most areas.

To show the errors of the estimates spatially, RMSE, bias,
MAE, and SD for each station are compared in Fig. 7 for
the accumulation and melting periods. This indicates a geo-

graphic sensitivity to bias and errors. Both rms and mean ab-
solute errors show that the estimates are more accurate in the
southern portion of the domain, where there is also a negative
bias. Result implies that during the melting period, model
horizontal resolution becomes critical and there is a substan-
tial SWE underestimation with coarser resolution. Large dif-
ferences in SD occurred during the melting season; however,
at most of the stations WRF1K performs better than the other
two resolutions. Factors such as snow drifting, wind scour,
and falling debris may also affect patterns and produce dif-
ferent melt rates during the melting period (Dressler et al.,
2006).

Hydrol. Earth Syst. Sci., 29, 887–902, 2025 https://doi.org/10.5194/hess-29-887-2025
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Figure 3. Temporal variation of 2 m temperature (a) and precipitation (b) from the three WRF model resolutions over the SSRB region for
the innermost domain.

Figure 4. SWE evaluation during the (a) accumulation period (1 October 2017–22 April 2018) and (b) melting period (23 April 2018 to
1 October 2018) over the inner WRF model domain using RMSE, MB, MAE, and SD.

https://doi.org/10.5194/hess-29-887-2025 Hydrol. Earth Syst. Sci., 29, 887–902, 2025
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Figure 5. Estimation of SWE using WRF compared to the CanSWE data for stations 1 to 9.

There are a number of factors that complicate SWE es-
timation spatially. Spatial variability of the environment,
including elevation, slope of the mountain, and boundary
roughness, changes continuously from place to place and
therefore greatly affects the SWE estimation (Blöschl, 1999;
Rice and Bales, 2010). In the following section, results are
analyzed to investigate the role of the terrain elevation in ex-
plaining the model errors and biases in SWE simulation.

To study the ability of the WRF model to estimate the date
and the value of peak SWE at each station, Table 3 and Fig. 8
evaluate the estimated peak SWE date and values, respec-
tively. Late April to early May 2018 is an approximate es-
timation of the peak SWE date over the region according to
the observations (Table 3). Across the nine stations there is an
approximately 2-week spread in the observed dates of peak
SWE between 18 April and 3 May, and the magnitude of the
peak appears to be unrelated to its date. The coarse resolu-
tion may affect the predicted peak SWE, which is the con-
sequence of averaging snow-free features into larger snow-

covered cells. WRF1K is in good agreement with CanSWE
for the date and value of peak SWE at most stations.

Although the timing of the peak SWE is quite similar
across all stations, there are differences in the estimated mag-
nitude of maximum SWE at each WRF resolution (Fig. 8).
For most stations, WRF underestimates the value of the peak
SWE; however, it tends to overestimate the value of the peak
SWE at the two northern stations.

3.3 The role of elevation

There are clear differences in the surface terrain height im-
posed as the lower boundary condition for the three res-
olutions of WRF (Fig. 9), which suggests a possible role
for elevation in the errors in simulated SWE. As is com-
mon, the spatial variability in elevation is more pronounced
in the highest-resolution simulation (Fig. 9c) and becomes
smoother with decreasing the spatial resolution (Fig. 9a, b).
In the northern portion of the domain, where the simulated
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Figure 6. Simulated mean SWE (kg m−2) during the accumulation (1 October 2017–22 April 2018) and melting (23 April 2018 to 1 Octo-
ber 2018) period for WRF9K (a, d), WRF3K (b, e), and WRF1K (c, f) over the inner model domain.
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Figure 7. Evaluation metrics for each station including RMSE (a, b), MB (c, d), MAE (e, f), and SD (g, h) for the accumulation (a, c, e) and
melting (b, d, f) period.

SWE estimates are less accurate, the elevation is higher and
more variable than the southern areas. Because of the larger
spacing of the data in WRF9K, the small-scale variability in
features may not be captured. A potential explanation for the
SWE biases is that WRF9K was not fine enough to resolve
the localized peaks in the mountainous topography that ex-
perience a cooler mean climate and, typically, higher mean
SWE.

Correlation analysis shows that the absolute grid cell ele-
vation is not correlated with SWE MB, RMSE, or MAE (not

shown); however, the elevation bias – the difference between
the station’s actual elevation and the elevation estimated by
the model in a grid cell – does appear to play a significant
role. Elevation bias shows a strong positive correlation with
MB at all resolutions (Fig. 10a), but an important finding is
that the correlation becomes weaker at higher resolutions. In
other words, when the elevation biases are large, they are a
better indicator of the bias in SWE, and when elevation bi-
ases are small, they do not contribute as much to SWE er-
rors. Therefore, it can be deduced that all WRF estimations
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Table 3. Comparison between the date of maximum SWE in CanSWE and anomalies in estimated peak SWE date by WRF at each station
during 1 October 2017–2018. The anomaly shows the number of days that peak SWE occurs before (denoted by a minus sign) and after
CanSWE.

Station Peak SWE date Peak SWE date anomaly (day)

CanSWE WRF9K WRF3K WRF1K

1 24 April −6 8 8
2 23 April 12 12 −1
3 25 April −3 −3 −3
4 23 April −1 −5 −1
5 25 April −3 7 −7
6 2 May −14 −9 −9
7 22 April 1 0 0
8 3 May −1 −15 −11
9 18 April −4 0 0

Figure 8. The anomalies in the WRF maximum SWE estimation for each station during 1 October 2017–2018. The anomaly shows how
much the value of SWE is estimated more or less at each resolution (1 to 9). The value of maximum SWE for CanSWE at each station is
shown in the upper right.

include uncertainties and biases in simulating SWE, and one
important source is biases in the grid cell elevation. On the
other hand, elevation bias is not significantly correlated with
the other understudied error metrics at any resolution; how-
ever, the value of the correlation coefficient becomes stronger
at finer resolutions. This implies that error likely depends on
atmospheric variables other than elevation. Previous research
highlighted measurement inaccuracies due to instrumenta-
tion sensitivities and equipment issues like ice bridging in
mountainous areas when using snow pillows (Dressler et al.,
2006). Therefore, additional perspectives could be consid-
ered in future work to better understand the mechanisms and
potential cause of uncertainties in SWE estimations over the
mountains.

4 Discussion and conclusions

The objective of this study is to evaluate the potential of the
high-resolution Weather Research and Forecasting (WRF)
model to detect the daily values of snow water equivalent
(SWE) over the South Saskatchewan River Basin (SSRB) in
western Canada. Three nested domains with fine horizontal
resolution of 9, 3, and 1 km are used. The Canadian historical
Snow Water Equivalent (CanSWE) dataset is used to evaluate
the potential of WRF to detect the spatiotemporal variability
in SWE. The evaluation was conducted from 1 October 2017
to 1 October 2018, as the 2018 water year, with average SWE
values during 1984 to 2021. Special focus is given to investi-
gating the role of the WRF model grid cell size in the accu-
rate estimation of peak SWE time and value across the wa-
tershed. Although it is acknowledged that the use of point
data for the evaluation of WRF gridded SWE is problematic
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Figure 9. Spatial distribution of terrain height for WRF9K (a), WRF3K (b), and WRF1K (c) during the 2018 water year.

Figure 10. Elevation bias against MB (a), RMSE (b), MAE (c), and SD (d) of SWE estimation.
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and introduces uncertainties because of scaling issues, we at-
tempt to mitigate these issues by using a spatial mean taken
over all stations. However, earlier studies also showed that
the small-scale SWE can be representative of the grid mean
value (e.g., Pan et al., 2003) for local SWE evaluation.

In general, our initial results over the averaged area show
that all WRF runs behave nearly similarly and show a high
value of correlation with CanSWE data, though there is a
slight difference between the accumulation and melting pe-
riod. All WRF estimations mainly tend to underestimate
SWE over the whole year, with the largest negative bias at
the coarsest resolutions. Results show that WRF fine resolu-
tion (at 3 and 1 km) significantly improves the simulations
of SWE during the year over an averaged area. The coarsest
run shows less accuracy during accumulation period, which
is likely caused by a systematic bias in accumulated pre-
cipitation at 9 km. The underestimated precipitation over the
mountainous regions at coarse resolutions has been shown by
Li et al. (2019). The WRF9K model shows large errors, pri-
marily because of its resolution limitations. At 9 km resolu-
tion, the model cannot accurately capture two key processes
in mountainous areas: snow redistribution and snow deposi-
tion. These processes are especially important in mountains
because snow distribution varies greatly over short distances
(Mott et al., 2018; Raparelli et al., 2023). Over the whole re-
gion, there is an obvious tendency for RMSE, MB, MAE, and
SD to decrease at finer resolutions, therefore decreasing the
horizontal grid spacing within WRF, leading to reliable SWE
estimates over the SSRB region. So, it can be concluded that
the accuracy of SWE is closely related to the horizontal reso-
lution. Earlier studies also revealed that there is a dependence
of snow estimation on NWP model resolution in capturing
the orographic processes over western Canada and the US
(Pavelsky et al., 2011; Schirmer and Jamieson, 2015; Wrze-
sien et al., 2015).

The spatial variability in SWE is influenced by various
processes including variability in snow accumulation that re-
sult from the preferential deposition of snow in microscale
topographic depressions. Evaluation of the SWE for indi-
vidual stations showed that there is less snow on the wind-
ward side of ridges and snow deposition on the leeward side.
Mostly on the leeward side of the mountains, there is an un-
derestimation of SWE for all WRF performances. There is
a maximum in the SWE value in all three simulations over
northern parts of the domain for both the accumulation and
melting period. Low temperatures and high cyclonic activity
over the northern part of the domain may cause long snow
duration and high values of SWE. Local characteristics of
each station, including the terrain and land cover character-
istics, as well as the interactions with the local wind, would
play a major role in SWE variability over the region.

Investigating the ability of the WRF model to estimate
the date and the value of peak SWE for each station reveals
that there is an approximately 2-week spread in the observed
dates of peak SWE between late April and early May, in ac-

cordance with the observations. Although the timing of the
peak SWE is quite similar across all stations, there are dif-
ferences in the estimated magnitude of maximum SWE at
each WRF resolution. At most stations, the value of the peak
SWE is underestimated, which is consistent with the findings
of previous studies (e.g., Jin and Wen, 2012; Wrzesien et al.,
2018; He et al., 2019); however, WRF1K is in good agree-
ment with CanSWE for the date and value of peak SWE.
Overall, WRF can also provide reliable data for peak SWE
date and value, especially at fine horizontal resolution.

Analysis of the role of elevation shows that elevation itself
does not show any correlation with MB, MAE, and RMSE;
however, the elevation bias shows a strong positive correla-
tion with MB at all resolutions, which becomes weaker at
higher resolutions and would be a better indicator of the bias
in SWE at coarse resolution. This result highlights an impor-
tant consideration when comparing point observations to out-
put from a model grid cell, namely that the agreement in ele-
vation between any individual station and the model’s mean
elevation in a grid cell will be closer, on average, for a 1 km
grid cell compared to a 9 km grid cell. This is because the
actual topography and associated elevation will typically be
much more variable over an area of 81 km2 than over 1 km2.
Another way to frame this is that an individual station is sig-
nificantly less representative of the actual variations in ele-
vation, precipitation, and SWE within a 9 km grid cell than
a 1 km grid cell, so one might find better agreement between
the model and a distributed network of stations within the
grid cell. Unresolved topography contributes to the inaccu-
rate SWE estimation at the coarse resolution. The bias in el-
evation, meaning the lower or upper mountains, affects the
condensation of water vapor, precipitation, and topography-
related temperature and therefore the amount of estimated
SWE over the region. An earlier study also showed that in-
creasing resolution in regional models resolves more small-
scale features (Xu et al., 2019) and therefore improves SWE
estimation. Apart from the influence of the elevation bias
on MB, it does not directly affect RMSE, MAE, and SD
at any resolution. Consequently, it is likely that the errors
are influenced by atmospheric variables other than elevation.
Therefore, additional perspectives could be considered in fu-
ture work to better understand the mechanisms and potential
cause of uncertainties in SWE estimations over the moun-
tains.

To the end, this study has shown that high-resolution WRF
can provide reliable and reasonable estimates of SWE val-
ues as input data for accurate hydrologic modeling, which is
required for runoff forecasts. The analysis presented in this
paper revealed that WRF’s high resolution can represent spa-
tiotemporal variability of SWE over the mountainous region,
and it is expected to be helpful for flood forecasting in moun-
tainous regions. However, further work is needed to remove
the biases and capture the accurate value of SWE over west-
ern Canada.

https://doi.org/10.5194/hess-29-887-2025 Hydrol. Earth Syst. Sci., 29, 887–902, 2025



900 S. Sabetghadam et al.: The importance of model horizontal resolution

Code availability. The scripts for the analysis in this paper are
available at https://github.com/ssabetgh/NCL-scripts (last access:
February 2025; DOI: https://doi.org/10.5281/zenodo.14884649, Sa-
betghadam, 2025).

Data availability. All raw data can be provided by the correspond-
ing author upon request.

Author contributions. SS performed the simulations, executed the
numerical evaluations, and wrote the first draft of the manuscript.
CF and AE reviewed and edited the manuscript. All authors jointly
discussed the methodology, interpreted the results, and improved
the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We greatly acknowledge Neha Kanda from the
University of Waterloo for her technical support in this work. We
also acknowledge the support from Canada1Water. Additionally,
we thank SOSCIP for providing the compute allocation, as well as
SciNet and Compute Canada for their provision of the Niagara re-
sources, which were essential for our computational analysis.

Review statement. This paper was edited by Hongkai Gao and re-
viewed by Zhenhua Li and two anonymous referees.

References

Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely
sensed snow observations into a macroscale hydrology model,
Adv. Water. Resour., 29, 872–886, 2006.

Ashmore, P. and Church, M.: The impact of climate change on
rivers and river processes in Canada, Geological Survey of
Canada Bulletin, 555, 58, https://doi.org/10.4095/211891, 2001.

Alonso-González, E., López-Moreno, J. I., Gascoin, S., García-
Valdecasas Ojeda, M., Sanmiguel-Vallelado, A., Navarro-
Serrano, F., Revuelto, J., Ceballos, A., Esteban-Parra, M. J., and
Essery, R.: Daily gridded datasets of snow depth and snow water
equivalent for the Iberian Peninsula from 1980 to 2014, Earth
Syst. Sci. Data, 10, 303–315, https://doi.org/10.5194/essd-10-
303-2018, 2018.

Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts
of a warming climate on water availability in snow-dominated
regions, Nature, 438, 303–309, 2005.

Blöschl, G.: Scaling issues in snow hydrology, Hydrol. Process., 13,
2149–2175, 1999.

Brown, R. D., Fang, B., and Mudryk, L.: Update of Canadian
Historical Snow Survey Data and Analysis of Snow Water
Equivalent Trends, 1967–2016, Atmos. Ocean, 57, 149–156,
https://doi.org/10.1080/07055900.2019.1598843, 2019.

Clark, M. P., J. Hendrikx, A. G. Slater, D. Kavetski, B. Anderson,
N. J. Cullen, T. Kerr, E. Orn Hreinsson, and R. A. Woods.: Rep-
resenting spatial variability of snow water equivalent in hydro-
logic and land-surface models: A review, Water. Resour. Res.,
47, W07539, https://doi.org/10.1029/2011WR010745, 2011.

Clow, D. W., Nanus, L., Verdin, K. L., and Schmidt, J.: Evaluation
of SNODAS snow depth and snow water equivalent estimates
for the Colorado Rocky Mountains, USA., Hydrol. Process., 26,
2583–2591, 2012.

Cui, G., Anderson, M., and Bales, R.: Mapping of snow
water equivalent by a deep-learning model assimi-
lating snow observations, J. Hydrol., 616, 128835,
https://doi.org/10.1016/j.jhydrol.2022.128835, 2023.

Diaconescu, E. P., Gachon, P., Laprise, R., and Scinocca, J. F.: Eval-
uation of precipitation indices over North America from various
configurations of regional climate models, Atmos. Ocean., 54,
418–439, 2016.

Dixon, D. and Boon, S.: Comparison of the SnowHydro snow sam-
pler with existing snow tube designs, Hydrol. Process., 26, 2555–
2562, 2012.

Dozier, J., Bair, E. H., and Davis, R. E.: Estimating the spatial
distribution of snow water equivalent in the world’s mountains,
WIRES Water , 3, 461–474, 2016.

Dressler, K. A., Fassnacht, S. R., and Bales, R. C.: A Comparison
of Snow Telemetry and Snow Course Measurements in the Col-
orado River Basin, J. Hydrometeorol., 7, 705–712, 2006.

Dudhia, J.: Numerical study of convection ob-
served during the winter monsoon experiment us-
ing a mesoscale two-dimensional model, J. Atmos.
Sci., 46, 3077–3107, https://doi.org/10.1175/1520-
0469(1989)046<3077:NSOCOD>2.0.CO;2, 1989.

ECCC: Canadian Environmental Sustainability Indicators: Snow
cover, https://www.canada.ca/en/environment-climate-change/
services/environmental-indicators/snow-cover.html, last access:
12 January 2025.

Elder, K., Rosenthal, W., and Davis, R. E.: Estimating the spatial
distribution of snow water equivalence in a montane watershed,
Hydrol. Process., 12, 1793–1808, 1998.

Garvert, M. F., Smull, B., and Mass, C.: Multiscale Mountain waves
influencing a major orographic precipitation event, J. Atmos.
Sci., 64, 711–737, 2007.

Hauer, F. R., Baron, J. S., Campbell, D. H., Fausch, K. D., Hostetler,
S. W., Leavesley, G. H., Leavitt, P. R., McKnight, D. M., and
Stanford, J. A.: Assessment of climate change and freshwater
ecosystems of the Rocky Mountains, USA and Canada, Hy-
drol. Process., 11, 903–924, https://doi.org/10.1002/(SICI)1099-
1085(19970630)11:8<903::AID-HYP511>3.0.CO;2-7, 1997.

He, C., Chen, F., Barlage, M., Liu, C., Newman, A., Tang, W.,
Ikeda, K., and Rasmussen, R.: Can convection-permitting model-
ing provide decent precipitation for offline high-resolution snow-

Hydrol. Earth Syst. Sci., 29, 887–902, 2025 https://doi.org/10.5194/hess-29-887-2025

https://github.com/ssabetgh/NCL-scripts
https://doi.org/10.5281/zenodo.14884649
https://doi.org/10.4095/211891
https://doi.org/10.5194/essd-10-303-2018
https://doi.org/10.5194/essd-10-303-2018
https://doi.org/10.1080/07055900.2019.1598843
https://doi.org/10.1029/2011WR010745
https://doi.org/10.1016/j.jhydrol.2022.128835
https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/snow-cover.html
https://www.canada.ca/en/environment-climate-change/services/environmental-indicators/snow-cover.html
https://doi.org/10.1002/(SICI)1099-1085(19970630)11:8<903::AID-HYP511>3.0.CO;2-7
https://doi.org/10.1002/(SICI)1099-1085(19970630)11:8<903::AID-HYP511>3.0.CO;2-7


S. Sabetghadam et al.: The importance of model horizontal resolution 901

pack simulations over mountains?, J. Geophys. Res.-Atmos.,
124, 12631–12654, 2019.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., and Simmons, A.: The ERA5 global reanalysis, Q. J. Roy.
Meteor. Soc., 146, 1999–2049, 2020.

Hong, S. Y., Noh, Y., and Dudhia, J.: A new vertical dif-
fusion package with an explicit treatment of entrain-
ment processes, Mon. Weather Rev., 134, 2318–2341,
https://doi.org/10.1175/MWR3199.1, 2006.

Holtzman, N. M., Pavelsky, T. M., Cohen, J. S., Wrzesien, M.
L., and Herman, J. D.: Tailoring WRF and Noah-MP to im-
prove process representation of Sierra Nevada runoff: Diagnos-
tic evaluation and applications, J. Adv. Model. Earth. Sy., 12,
e2019ms001832, https://doi.org/10.1029/2019MS001832, 2020.

Jin, J. and Wen, L.: Evaluation of snowmelt simulation in the
Weather Research and Forecasting model, J. Geophys. Res.-
Atmos., 117, D10110, https://doi.org/10.1029/2011JD016980,
2012.

Johnson, J. B. and Marks, D.: The detection and correction of snow
water equivalent pressure sensor errors, Hydrol. Process., 18,
3513–3525, 2004.

Kain, J. S.: The Kain–Fritsch convective pa-
rameterization: an update, J. Appl. Meteo-
rol., 43, 170–181, https://doi.org/10.1175/1520-
0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.

Kain, J. S. and Fritsch, J. M.: A one-dimensional
entraining/detraining plume model and its appli-
cation in convective parameterization, J. Atmos.
Sci., 47, 2784–2802, https://doi.org/10.1175/1520-
0469(1990)047<2784:AODEPM>2.0.CO;2, 1990.

Kain, J. S. and Fritsch, J. M.: Convective parameterization
for mesoscale models: The Kain-Fritsch scheme, in: The
representation of cumulus convection in numerical models,
American Meteorological Society, Boston, MA, 165–170,
https://doi.org/10.1007/978-1-935704-13-3_16, 1993.

King, F., Erler, A. R., Frey, S. K., and Fletcher, C. G.: Applica-
tion of machine learning techniques for regional bias correction
of snow water equivalent estimates in Ontario, Canada, Hydrol.
Earth Syst. Sci., 24, 4887–4902, https://doi.org/10.5194/hess-24-
4887-2020, 2020.

Klehmet, K., Geyer, B., and Rockel, B.: A regional climate model
hindcast for Siberia: analysis of snow water equivalent, The
Cryosphere, 7, 1017–1034, https://doi.org/10.5194/tc-7-1017-
2013, 2013.

Leung, L. R. and Qian, Y.: The sensitivity of precipitation and snow-
pack simulations to model resolution via nesting in regions of
complex terrain, J. Hydrometeorol., 4, 1025–1043, 2003.

Leung, L. R., Qian, Y., Han, J., and Roads, J. O.: Intercomparison
of global reanalyses and regional simulations of cold season wa-
ter budgets in the western United States, J. Hydrometeorol., 4,
1067–1087, 2003.

Li, Y. and Li, Z.: High-Resolution Weather Research Fore-
casting (WRF) Modeling and Projection Over Western
Canada, Including Mackenzie Watershed, Arctic Hydrol-
ogy, Permafrost and Ecosystems, Springer, Cham, 815–847,
https://doi.org/10.1007/978-3-030-50930-9_28, 2021.

Li, Y., Li, Z., Zhang, Z., Chen, L., Kurkute, S., Scaff, L., and
Pan, X.: High-resolution regional climate modeling and projec-

tion over western Canada using a weather research forecasting
model with a pseudo-global warming approach, Hydrol. Earth
Syst. Sci., 23, 4635–4659, https://doi.org/10.5194/hess-23-4635-
2019, 2019.

Liu, C., Ikeda, K., Rasmussen, R., Barlage, M., Newman, A. J.,
Prein, A. F., Chen, F., Chen, L., Clark, M., Dai, A., and Dud-
hia, J.: Continental-scale convection-permitting modeling of the
current and future climate of North America, Clim. Dynam, 49,
71–95, 2017.

López-Moreno, J. I., Fassnacht, S. R., Beguería, S., and Latron, J.
B. P.: Variability of snow depth at the plot scale: implications for
mean depth estimation and sampling strategies, The Cryosphere,
5, 617–629, https://doi.org/10.5194/tc-5-617-2011, 2011.

Martz, L., Bruneau, J., Rolfe, J. T., Toth, B., Armstrong, R.,
Kulshreshtha, S., Thompson, W., Pietroniro, E., and Wag-
ner, A.: Climate change and water: SSRB final techni-
cal report, GIServices, University of Saskatchewan, Saska-
toon, Canada, https://www.parc.ca/wp-content/uploads/2019/05/
SSRB-2007-Climate_change_and_water.pdf (last access: Febru-
ary 2025), 2007.

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M.
J., and Clough, S. A.: Radiative transfer for inhomoge-
neous atmospheres: RRTM, a validated correlated-k model for
the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682,
https://doi.org/10.1029/97JD00237, 1997.

Mortezapour, M., Menounos, B., Jackson, P. L., Erler, A. R., and
Pelto, B. M.: The role of meteorological forcing and snow model
complexity in winter glacier mass balance estimation, Columbia
River basin, Canada, Hydrol. Process., 34, 5085–5103, 2020.

Mott, R., Vionnet, V., and Grünewald, T.: The seasonal snow cover
dynamics: review on wind-driven coupling processes, Front.
Earth. Sci., 6, 197, https://doi.org/10.3389/feart.2018.00197,
2018.

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C.,
Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harri-
gan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M.,
Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and
Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis
dataset for land applications, Earth Syst. Sci. Data, 13, 4349–
4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.

Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage,
M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., and Tewari,
M.: The community Noah land surface model with multiparam-
eterization options (Noah-MP): 1. Model description and evalu-
ation with local scale measurements, J. Geophys. Res.-Atmos.,
116, D12109, https://doi.org/10.1029/2010JD015139, 2011.

Pan, M., Sheffield, J., Wood, E. F., Mitchell, K. E., Houser, P.
R., Schaake, J. C., Robock, A., Lohmann, D., Cosgrove, B.,
Duan, Q., and Luo, L.: Snow process modeling in the North
American Land Data Assimilation System (NLDAS): 2. Eval-
uation of model simulated snow water equivalent, J. Geophys.
Res.-Atmos., 108, 8850, https://doi.org/10.1029/2003JD003994,
2003.

Pavelsky, T. M., Kapnick, S., and Hall, A.: Accumulation and melt
dynamics of snowpack from a multiresolution regional climate
model in the central Sierra Nevada, California, J. Geophys. Res.-
Atmos., 116, D16115, https://doi.org/10.1029/2010JD015479,
2011.

https://doi.org/10.5194/hess-29-887-2025 Hydrol. Earth Syst. Sci., 29, 887–902, 2025

https://doi.org/10.1175/MWR3199.1
https://doi.org/10.1029/2019MS001832
https://doi.org/10.1029/2011JD016980
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2
https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2
https://doi.org/10.1007/978-1-935704-13-3_16
https://doi.org/10.5194/hess-24-4887-2020
https://doi.org/10.5194/hess-24-4887-2020
https://doi.org/10.5194/tc-7-1017-2013
https://doi.org/10.5194/tc-7-1017-2013
https://doi.org/10.1007/978-3-030-50930-9_28
https://doi.org/10.5194/hess-23-4635-2019
https://doi.org/10.5194/hess-23-4635-2019
https://doi.org/10.5194/tc-5-617-2011
https://www.parc.ca/wp-content/uploads/2019/05/SSRB-2007-Climate_change_and_water.pdf
https://www.parc.ca/wp-content/uploads/2019/05/SSRB-2007-Climate_change_and_water.pdf
https://doi.org/10.1029/97JD00237
https://doi.org/10.3389/feart.2018.00197
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.1029/2010JD015139
https://doi.org/10.1029/2003JD003994
https://doi.org/10.1029/2010JD015479


902 S. Sabetghadam et al.: The importance of model horizontal resolution

Raparelli, E., Tuccella, P., Colaiuda, V., and Marzano, F. S.: Snow
cover prediction in the Italian central Apennines using weather
forecast and land surface numerical models, The Cryosphere, 17,
519–538, https://doi.org/10.5194/tc-17-519-2023, 2023.

Rasmussen, R., Liu, C., Ikeda, K., Gochis, D., Yates, D., Chen,
F., Tewari, M., Barlage, M., Dudhia, J., Yu, W., and Miller, K.:
High-resolution coupled climate runoff simulations of seasonal
snowfall over Colorado: a process study of current and warmer
climate, J. Climate., 24, 3015–3048, 2011.

Rice, R. and Bales, R. C.: Embedded-sensor network design for
snow cover measurements around snow pillow and snow course
sites in the Sierra Nevada of California, Water Resour. Res., 46,
W03537, https://doi.org/10.1029/2008WR007318, 2010.

Sabetghadam: The importance of model hori-
zontal resolution_codes_data, Zenodo [code],
https://doi.org/10.5281/zenodo.14884649, 2025.

Schirmer, M. and Jamieson, B.: Verification of analysed and fore-
casted winter precipitation in complex terrain, The Cryosphere,
9, 587–601, https://doi.org/10.5194/tc-9-587-2015, 2015.

Skamarock, W. C.: A description of the advanced research WRF
version 3, Tech. Note, 1–96, 2008.

Taheri, M. and Mohammadian, A.: An Overview of Snow Water
Equivalent: Methods, Challenges, and Future Outlook, Sustain-
ability, 14, 11395, https://doi.org/10.3390/su141811395, 2022.

Tanzeeba, S. and Gan, T. Y.: Potential impact of climate change on
the water availability of South Saskatchewan River Basin, Cli-
matic Change, 112, 355–386, 2012.

Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.:
Explicit forecasts of winter precipitation using an improved
bulk microphysics scheme. Part II: Implementation of a new
snow parameterization, Mon. Weather Rev., 136, 5095–5115,
https://doi.org/10.1175/2008MWR2387.1, 2008.

Vionnet, V., Fortin, V., Gaborit, E., Roy, G., Abrahamowicz, M.,
Gasset, N., and Pomeroy, J. W.: Assessing the factors gov-
erning the ability to predict late-spring flooding in cold-region
mountain basins, Hydrol. Earth Syst. Sci., 24, 2141–2165,
https://doi.org/10.5194/hess-24-2141-2020, 2020.

Vionnet, V., Mortimer, C., Brady, M., Arnal, L., and Brown,
R.: Canadian historical Snow Water Equivalent dataset (Can-
SWE, 1928–2020), Earth Syst. Sci. Data, 13, 4603–4619,
https://doi.org/10.5194/essd-13-4603-2021, 2021.

WMO: Guide to instruments and methods of observation: Vol-
ume II – Measurement of Cryospheric Variables, 2018th edn.,
World Meteorological Organization, Geneva, WMO-No., 8, 52
pp., ISBN 978-92-63-10008-5, https://articles.unesco.org/sites/
default/files/medias/fichiers/2024/11/8_II-2023_en.pdf (last ac-
cess: February 2025), 2018.

Wrzesien, M. L., Pavelsky, T. M., Kapnick, S. B., Durand, M. T.,
and Painter, T. H.: Evaluation of snow cover fraction for regional
climate simulations in the Sierra Nevada, Int. J. Climatol., 35,
2472–2484, 2015.

Wrzesien, M. L., Durand, M. T., Pavelsky, T. M., Howat, I. M.,
Margulis, S. A., and Huning, L. S.: Comparison of methods to
estimate snow water equivalent at the mountain range scale: A
case study of the California Sierra Nevada, J. Hydrometeorol.,
18, 1101–1119, 2017.

Wrzesien, M. L., Durand, M. T., Pavelsky, T. M., Kapnick, S. B.,
Zhang, Y., Guo, J., and Shum, C. K.: A new estimate of North
American mountain snow accumulation from regional climate
model simulations, Geophys. Res. Lett., 45, 1423–1432, 2018.

Xu, Y., Jones, A., and Rhoades, A.: A quantitative method
to decompose SWE differences between regional climate
models and reanalysis datasets, Sci. Rep.-UK., 9, 16520,
https://doi.org/10.1038/s41598-019-52880-5, 2019.

Hydrol. Earth Syst. Sci., 29, 887–902, 2025 https://doi.org/10.5194/hess-29-887-2025

https://doi.org/10.5194/tc-17-519-2023
https://doi.org/10.1029/2008WR007318
https://doi.org/10.5281/zenodo.14884649
https://doi.org/10.5194/tc-9-587-2015
https://doi.org/10.3390/su141811395
https://doi.org/10.1175/2008MWR2387.1
https://doi.org/10.5194/hess-24-2141-2020
https://doi.org/10.5194/essd-13-4603-2021
https://articles.unesco.org/sites/default/files/medias/fichiers/2024/11/8_II-2023_en.pdf
https://articles.unesco.org/sites/default/files/medias/fichiers/2024/11/8_II-2023_en.pdf
https://doi.org/10.1038/s41598-019-52880-5

	Abstract
	Introduction
	Data and methodology
	CanSWE dataset
	WRF model configuration
	ERA5 and ERA5-L

	Results
	Evaluation of the spatial mean SWE
	Evaluation of spatially varying SWE
	The role of elevation

	Discussion and conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

