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Abstract. Climate forcing data accuracy drives performance
of hydrologic models and analyses, yet each investigator
needs to select from among the numerous gridded climate
dataset options and justify their selection for use in a partic-
ular hydrologic model or analysis. This study aims to pro-
vide a comprehensive compilation and overview of grid-
ded datasets (precipitation, air temperature, humidity, wind
speed, solar radiation) and considerations for historical cli-
mate product selection criteria for hydrologic modeling and
analyses based on a review and synthesis of previous studies
conducting dataset intercomparisons. All datasets summa-
rized here span at least the conterminous US (CONUS), and
many are continental or global in extent. Gridded datasets
built on ground-based observations (G; n= 20), satellite im-
agery (S; n= 20), and/or reanalysis products (R; n= 23) are
compiled and described, with focus on the characteristics
that hydrologic investigators may find useful in discerning
acceptable datasets (variables, coverage, resolution, accessi-
bility, and latency). We provide best-available-science rec-
ommendations for dataset selection based on a thorough re-
view, interpretation, and synthesis of 29 recent studies (past
10 years) that compared the performance of various grid-
ded climate datasets for hydrologic analyses. No single best
source of gridded climate data exists, but we identified sev-
eral common themes that may help guide dataset selection in
future studies:

1. Gridded daily temperature datasets improved when de-
rived over regions with greater station density.

2. Similarly, gridded daily precipitation data were more
accurate when derived over regions with higher-density
station data, when used in spatially less-complex ter-
rain, and when corrected using ground-based data.

3. In mountainous regions and humid regions, R precipi-
tation datasets generally performed better than G when
underlying data had a low station density, but there was
no difference for higher station densities.

4. G datasets were generally more accurate in representing
precipitation and temperature data than S or R datasets,
although this did not always translate into better stream-
flow modeling.

We conclude that hydrologic analyses would benefit from
guided dataset selection by investigators, including justifica-
tion for selecting a specific dataset, and improved gridded
datasets that retain dependencies among climate variables
and better represent small-scale spatial variability in climate
variables in complex topography. Based on this study, the au-
thors’ overall recommendations to hydrologic modelers are
to select the gridded dataset (from Tables 1, 2, and 3) (a) with
spatial and temporal resolutions that match modeling scales,
(b) that are primarily (G) or secondarily (SG and RG) derived
from ground-based observations, (c) with sufficient spatial
and temporal coverage for the analysis, (d) with adequate la-
tency for analysis objectives, and (e) that includes all climate
variables of interest (so as to better represent interdependen-
cies).
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1 Introduction

Hydrologists are faced with a dizzying variety of options
when selecting climate data for water resource analyses.
Climate drives hydrological processes, and accurate climate
forcing data are essential for meaningful water resource in-
vestigations and modeling. However, it is arguable that no
single source of climate data is universally appropriate, lead-
ing to a dearth of studies that make an effort to justify
their dataset selection. Over recent decades, while ground-
based observations from weather stations have decreased
(Sun et al., 2018; Strangeways, 2006), gridded datasets built
on ground-based observations, satellite imagery, and reanal-
ysis products have increased.

A well-maintained, long-term weather station, although
not error-free (Gebremichael, 2010; Strangeways, 2006),
provides direct, in situ point measurements for a location.
However, most hydrologic analyses address processes at lo-
cations and scales for which the point weather station data
may not be representative. Gridded datasets offer several ad-
vantages over point station data (Essou et al., 2016a): grid-
ded datasets are relatively easy to use, have uniform spatial
coverage, provide consistent coverage over time (avoids the
problem of non-reporting stations), and rarely have missing
data. Uniform grids with temporal consistency allow simple
averaging across a domain. However, gridded datasets of-
ten are not available in real time (i.e., data latency), which
might pose limitations for some hydrologic analyses (e.g.,
snowmelt and runoff forecasting as well as operational water
resource decision-making).

Many studies (29 of which are reviewed in Sect. 4 of this
article) have intercompared the accuracy of particular subsets
of these gridded climate datasets for various regions, settings,
and time frames across the globe with various insights and
conclusions. However, no cataloguing or synthesis of these
studies has been completed to date, presenting an impor-
tant knowledge gap that may hinder well-informed dataset
selection. To address this need, we completed a search of
“intercomparison” AND “gridded AND climate AND data”,
which yielded 202 documents using Scopus. Excluding “cli-
mate change” reduced this to 100 documents, and exclud-
ing “CMIP” produced 77 documents. Even with these filters,
most studies focus on a limited number of datasets, lack gen-
eralizable recommendations, and do not consider the func-
tional implications of dataset limitations on end users’ hy-
drologic analysis. The present study aims to provide a com-
prehensive compilation, overview, and considerations for se-
lection of gridded datasets with an emphasis on selection for
hydrologic modeling and analyses. Our focus is on histori-
cal datasets (not climate projections) at the conterminous US
(CONUS) to global extents.

2 Gridded dataset sources

Gridded historical climate datasets can be categorized as
ground-based (G), satellite-based (S), or reanalysis-based
(R) according to the sources of data and methods used in their
derivation. Many datasets integrate multiple data sources and
methods in deriving the dataset; in this article, the primary
data source/method for integrated datasets is listed first, fol-
lowed by secondary method(s) (e.g., SR, RG, and RSG). We
focus on gridded datasets available for five climatological
variables that are essential to hydrological analyses: precip-
itation (P ), air temperature (T ), atmospheric moisture (rel-
ative humidity, rh; specific humidity, sh; dew-point T , Tdp;
or vapor pressure, Vp), wind speed (u), and solar radiation
(Rs) or associated metrics (cloud cover, cc, or sky cover, sc).
Particular emphasis is on datasets that provide gridded P , a
highly variable and critical driver in hydrological analyses.
For more details, the reader is directed to an informative re-
view of global P datasets, including a discussion of these
dataset sources and estimation procedures (Sun et al., 2018).

Although the grid resolution of each data product is clear,
the support scale is generally vague. That is, the grid cen-
troid is often treated as a point, which is then interpolated or
regionalized to obtain area-averaged values at the scale of hy-
drologic model resolution (e.g., a hydrologic response unit –
HRU). However, if the gridded data represent grid-scale (e.g.,
4 km× 4 km) areal averages, this should be considered dur-
ing interpolation to the HRU scale. Scaling within and across
grid cells has been explored for gridded soil moisture (Hoehn
et al., 2017), but it remains an issue for gridded climate prod-
ucts. In this study, we mention this as a precaution but do not
offer scaling solutions.

2.1 Ground-based (G) datasets

Ground-based gridded datasets (Table 1) are derived directly
from observational data, typically from weather station net-
works. Various methods are used to interpolate data between
stations and may account for orographic effects, lake ef-
fects, and other mesoscale meteorologic phenomena. These
datasets benefit from direct application of data with relatively
well-defined biases and uncertainty inherited from the instru-
mentation characteristics and errors. For example, P data
collection has well-known errors at the station level from
sources such as wind, evaporation, wetting, splashing, site
location, instrument error, spatiotemporal variation in drop-
size distribution, and frozen vs. liquid P (Sun et al., 2018).
Interpolating these data to a grid adds additional uncertainty
to the extent to which station density inadequately captures
spatial variability in the climatic variable across the domain.
Minimum recommended station densities vary by physio-
graphic unit (e.g., mountains and plains) from one to four sta-
tions per 1000 km2 (WMO, 2008). Essou et al. (2017) noted
that most of the 316 watersheds in their comprehensive Cana-
dian study had less than one station per 1000 km2, indicating
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a wider global concern. Increased station density generally
improves gridded dataset quality, but it may be impractical to
adequately cover regions with complex topography, localized
convective storms, heat islands, blowing snow, or other mi-
crometeorological heterogeneity. For example, snow gauge
undercatch due to high wind speeds is an especially pro-
nounced phenomenon that challenges accurate characteriza-
tion of water storage in snow-dominated basins (Fassnacht,
2004; Panahi and Behrangi, 2020). Station density and cov-
erage also change over time as old stations are deprecated
or new stations added, complicating interpolation schemes
and often disproportionately diminishing coverage in remote
areas. Sun et al. (2018) noted that the number of global sta-
tions in the GPCC v7 dataset changed from 10 900 stations in
1901 to a maximum of 49 470 in 1970, decreasing to 30 000
in 2005, and decreasing again to only 10 000 in 2012. This
recent decline in station data not only impacts G datasets but
also S and R datasets that rely on station data in their dataset
development. Uncertainties associated with these temporal
changes in sampling density are further complicated by the
nonstationarity of climate and accelerated climate change in
recent decades.

2.2 Satellite-based (S) datasets

Satellite-based gridded datasets (Table 2) are derived from
various sensors aboard geostationary satellites (visible/in-
frared, IR, sensors) with rapid sampling frequency (30 min
or less) and low-Earth-orbit satellites (visible/IR; passive mi-
crowave, MW; and active MW) with a lower temporal sam-
pling frequency (Sun et al., 2018). Compared to G datasets,
S datasets provide spatially homogenous coverage (the en-
tire area within the coverage field has similar data density)
and temporally continuous records, but they are limited in
temporal coverage to the satellite era, with the first Televi-
sion and IR Observation Satellite (TIROS) launched in 1960.
Visible/IR methods detect cloud-top surface conditions and
correlate colder/brighter cloud tops to greater convection and
more P . Passive MW methods detect precipitation-sized par-
ticles, thereby providing a more-direct measure of P . Active
MW methods allow measurement of the instantaneous three-
dimensional structure of rainfall. Methods have been devel-
oped to merge these datasets to capitalize on the higher accu-
racy of MW methods and greater temporal frequency of vis-
ible/IR methods and increase overall product accuracy (Sun
et al., 2018).

A review by Maggioni et al. (2016) described satellite in-
struments and compared many of the algorithms used in cur-
rent satellite P datasets. They found that S datasets have a
larger overestimation bias in the warm season and a lower
positive bias in the cold season. Satellite datasets have high
probability of capturing warm-season convective events; as a
result, in the central US, for example, S datasets have better
agreement with ground-radar products than rain gauge sta-
tions, which can miss localized convective storms. Satellite-

based products tend to underestimate intense rainfall during
extreme hurricane events; S also tends to underestimate light
P at high elevations and overestimate P at low elevations in
regions of complex topography in northwestern Mexico and
the Appalachian Mountains, all of which may be attributed to
IR sensors’ lack of discrimination between raining and non-
raining clouds.

2.3 Reanalysis-based (R) datasets

Reanalysis-based gridded datasets (Table 3) are synthesized
from process-based climate models, often together with G
and/or S observational data, with the goal of generating grid-
ded datasets with spatially homogenous data density that
are temporally continuous. A precipitation forecast is gen-
erated from complex interactions of a priori predictions from
a physically based, dynamical process model (that can often
account for orographic effects in topographically complex re-
gions) and ingested observational data. Reanalysis systems
use various models, observational datasets, and assimilation
methods; can generate many climate variables with inter-
dependent variable consistency; and provide near-real-time
datasets with latency periods from hours to months. Accu-
racy of R methods may be limited by the changing avail-
ability of observational data and biases in observations and
models.

Reanalysis datasets have been found to better capture win-
ter P resulting from large-scale systems than summer P with
a greater influence of localized convective storms (Mass-
mann, 2020; Beck et al., 2019). Similarly, Beck et al. (2017b)
confirmed the conclusions of several other studies (Barrett et
al., 1994; Xie and Arkin, 1997; Adler et al., 2001; Ebert et
al., 2007; Massari et al., 2017) which demonstrated that re-
analysis underperformed MW- and IR-based datasets in the
tropics and outperformed them in colder regions (> 40° lati-
tude). Reanalysis demonstrated reduced bias compared with
S datasets, with greater ranges of bias among all datasets
in areas with complex topography (the Rockies, Andes, and
Hindu Kush) and arid regions (the Saharan, Arabian, and
Gobi deserts) (Beck et al., 2017b).

2.4 Integrated products

Inherent limitations of individual data sources (G, S, or R)
can be reduced by merging other data sources with com-
plementary advantages to reduce errors or biases. Some re-
analysis datasets are used independently or merge multiple
reanalysis products (denoted by R in Table 3). Reanalysis
datasets commonly ingest ground-based observational data
(RG), satellite data (RS), or both (RSG). Some S datasets
also integrate G data (denoted by SG in Table 2), reanaly-
sis data (SR), or both (SRG) to enhance accuracy and re-
duce bias. Several data sources, such as CHIRP, CMORPH,
IMERG, PERSIANN, and TMPA, offer multiple products
with increasing data source complexity, often with increased
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Table 1. Summary of ground-based (G) gridded datasets.

Dataset name Data
source

Variables Spatial
resolution

Temporal
resolution

Spatial
coverage

Temporal
coverage

Latency Data format Reference (data availability)

BEST GR T 0.25°, 1° monthly Land
Global

1753–NP
1850–NP

months NetCDF Rohde and Hausfather (2020)
(https://berkeleyearth.org/data/)

CPC G P 0.25° 24 h Land 1948–NP 1 d NetCDF Chen et al. (2008), Xie et al. (2007)
(https://ftp://cpc.ncep.noaa.gov/precip/CPC_
UNI_PRCP/GAUGE_CONUS/)

CPC Unified G P 0.5° 24 h Land 1979–NP 1 d NetCDF Chen et al. (2008)
(https://ftp://cpc.ncep.noaa.gov/precip/CPC_
UNI_PRCP/GAUGE_CONUS/)

CRU TS v4.6 G P , T 0.5° monthly Land 1901–2021 irregular NetCDF Harris et al. (2020)
(https://data.ceda.ac.uk/badc/cru/data/cru_ts/
cru_ts_4.06/data)

Daymet G P , T , Vp, Rs 1 km 24 h CONUS 1980–NP CY NetCDF Thornton et al. (2021)
(https://thredds.daac.ornl.gov/thredds/catalog/
ornldaac/2129/catalog.html)

EMDNA GR P , T 11 km 24 h N Amer 1979–2018 – NetCDF Tang et al. (2021)
(https://gwfnet.net/Metadata/Record/
T-2020-11-25-i1Fwxi32sBMU2GDhUZ6gAJEg)

GLDAS GS P , T , sh, u, Rs 0.125° 3 h Global 2000–NP 2 months NetCDF Rodell et al. (2004)
(https://hydro1.gesdisc.eosdis.nasa.gov/
opendap/GLDAS/)

GPCC v7 G P 0.25, 0.5,
1.0, 2.5°

monthly Land 1891–2020 – NetCDF Schneider et al. (2017, 2016)
(https://opendata.dwd.de/climate_environment/
GPCC/html/fulldata-monthly_v2022_doi_
download.html)

GPCC-FDD G P 1.0° 24 h Land 1982–2020 – NetCDF Schamm et al. (2014)
(https://opendata.dwd.de/climate_environment/
GPCC/html/fulldata-daily_v2022_doi_
download.html)

gridMet G P , T , sh, u, Rs 4 km 24 h CONUS 1979–NP 60 d NetCDF Abatzoglou (2013)
(https://www.northwestknowledge.net/metdata/
data/)

Livneh G P , T , u 0.0625° 24 h CONUS 1915–2011 – NetCDF Livneh et al. (2013)
(https://psl.noaa.gov/thredds/catalog/Datasets/
livneh/metvars/catalog.html)

nClimGrid G P , T 48.3 km 24 h CONUS 1951–NP 1 d NetCDF Durre et al. (2022)
(https://www.ncei.noaa.gov/data/
nclimgrid-daily/archive/)

NDFD 1 da

NDFD 7 da
G T , Tdp, u, sc 5 kmb 3 hb

6 h
CONUS 2003–NP NRT GRIB2 Glahn and Ruth (2003)

(https://vlab.noaa.gov/web/mdl/ndfd-grid-data)

NLDAS-2 GR P , T , sh, u, Rs 0.125° 1 h N Amer 1979–NP 4 d GRIB, NetCDF Xia et al. (2012a, b)
(https://hydro1.gesdisc.eosdis.nasa.gov/data/
NLDAS/)

PRISM G P , T , rh 4 km 24 h CONUS 1895–NP 1 year ASCII,
NetCDF,
GeoTIFF

Daly et al. (2008)
(https://prism.oregonstate.edu/explorer/)

RTMA G P , T , Tdp, u, cc 2.5° 1 h CONUS 2006–NP NRT GRIB2 De Pondeca et al. (2011)
(https://www.nco.ncep.noaa.gov/pmb/
products/rtma/)

Santa Clara G P , T 0.125° 24 h CONUS 1949–2010 – ASCII,
NetCDF

Maurer et al. (2002)
(https://www.engr.scu.edu/~emaurer/gridded_
obs/index_gridded_obs.html)

TopoWx GR T 0.8 km 24 h CONUS 1948–2017 – NetCDF Oyler et al. (2015)
(https://www.scrim.psu.edu/resources/topowx/)

UDEL G P , T 0.5° monthly Land 1900–2014 – NetCDF Matsuura, K. and National Center for Atmo-
spheric Research Staff (2023)
(https://psl.noaa.gov/data/gridded/data.UDel_
AirT_Precip.html)

Data source: G – ground-based observations (with interpolation); S – satellite; R – reanalysis. Variables: P – precipitation; T – air temperature; rh – relative humidity; sh – specific humidity; Tdp - dew-point T ; Vp – vapor pressure; u – wind speed; Rs –
solar radiation; sc – sky cover; cc – cloud cover. Spatial resolution: 1.0° latitude= 111 km; 1.0° longitude= 111 km at 0° latitude and 85 km at 40° latitude. Spatial coverage: CONUS – conterminous US; N Amer – North America; Land – global land
surfaces only (not ocean surfaces); Global – global land and ocean surfaces. Temporal coverage: NP – near present. Latency: NRT – near-real time; CY – available each calendar year; “–” – static dataset. Data format: NetCDF – Network Common Data
Form; ASCII – American Standard Code for Information Interchange; GRIB – Gridded Binary; GeoTIFF – Georeferenced Tagged Image File Format. a NDFD provides 1–7 d lead-time forecasts. b NDFD spatial resolution changes to 2.5 km and 1 d
forecast temporal resolution changes to 1 h after 19 August 2014. All links listed in the table were last accessed on 29 November 2024.
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Table 2. Summary of satellite-based (S) gridded datasets.

Dataset name Data Variables Spatial Temporal Spatial Temporal Latency Data format Reference
source resolution resolution coverage coverage (data availability)

CHIRP v2 SR P 0.05° 24 h Land, < 50° 1981–NP 2 d GeoTIFF Funk et al. (2015)
(https://data.chc.ucsb.edu/products/CHIRP/)

CHIRPS v2 SRG P 0.05° 24 h Land, < 50° 1981–NP 1 month GeoTIFF Funk et al. (2015)
(https://data.chc.ucsb.edu/products/CHIRPS-2.0/)

CMORPH v1 S P 0.07, 0.25° 0.5, 24 h < 60° 1998–NP 5–6 months NetCDF Joyce et al. (2004), Xie et al. (2017)
(https://www.ncei.noaa.gov/data/cmorph-high-
resolution-global-precipitation-estimates/;
https://noaa-cdr-precip-cmorph-pds.s3.
amazonaws.com/index.html)

CMORPH BLD v1 SG P 0.25° 24 h < 60° 2003–NP 1 month GRIB, NetCDF Sun et al. (2016)
(ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_
V1.0/BLD/)

CMORPH-CRT v1 SG P 0.07, 0.25° 0.5, 24 h < 60° 1998–2015 – GRIB, NetCDF Joyce et al. (2004), Xie et al. (2017)
(ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_
V1.0/CRT/)

GPCPDAY/MON SG P 0.5° 24 h Global 2000–2021 – NetCDF Huffman et al. (2023)
(https://measures.gesdisc.eosdis.nasa.gov/data/
GPCP/)

GPCP-1DD v1.2 SG P 1.0° 24 h Global 1996–2015 – NetCDF Huffman et al. (2001)
(https://rda.ucar.edu/datasets/ds728.3/
dataaccess/)

GPM SG P 0.1° 0.5 h < 60° 2014–NP 24 h HDF5, NetCDF Hou et al. (2014)
(https://gpm1.gesdisc.eosdis.nasa.gov/data/)

GSMaP v5/6 S P 0.1° 1 h < 60° 2000–NP 30 min ASCII, GeoTIFF Ushio et al. (2009), Kubota et al. (2020)
(https://sharaku.eorc.jaxa.jp/GSMaP/)

IMERG Early v7 S P 0.1° 0.5 h Global 2000–NP 4 h HDF5, NetCDF Tan et al. (2019), Huffman et al. (2020a, b)
(https://gpm1.gesdisc.eosdis.nasa.gov/data/
GPM_L3/GPM_3IMERGHHE.07/)

IMERG Late v7 S P 0.1° 0.5 h Global 2000–NP 14 h HDF5, NetCDF Tan et al. (2019), Huffman et al. (2020a, b)
(https://gpm1.gesdisc.eosdis.nasa.gov/data/
GPM_L3/GPM_3IMERGHHL.07/)

IMERG Final v7 SG P 0.1° 0.5 h Global 2000–NP 3.5 months HDF5, NetCDF Tan et al. (2019), Huffman et al. (2020a, b)
(https://disc.gsfc.nasa.gov/datasets/GPM_
3IMERGHH_07/summary?keywords=
%22IMERG%20final%22)

MSWEP v2.2 SRG P 0.1° 3 h Global 1979–NP 3 h NetCDF Beck et al. (2017a, 2019)
(https://www.gloh2o.org/mswep/)

NSRDB SG P , T , rh, u, Rs 4 km 1 h CONUS 1998–2021 – HDF5 Sengupta et al. (2018), Buster et al. (2022)
(https://nsrdb.nrel.gov/data-sets/
how-to-access-data)

PERSIANN SR P 0.25° 1 h < 60° 2000–NP 1 h NetCDF Sorooshian et al. (2000)
(https://persiann.eng.uci.edu/CHRSdata/
PERSIANN/)

PERSIANN-CCS S P 0.04° 1 h < 60° 2003–NP 1–2 d NetCDF Hong et al. (2004)
(https://persiann.eng.uci.edu/CHRSdata/
PERSIANN-CCS/0

PERSIANN-CDR SG P 0.25° 24 h < 60° 1983–NP 1 month NetCDF Ashouri et al. (2015)
(https://www.ncei.noaa.gov/data/
precipitation-persiann/access/2023/)

SM2RAIN-ASCAT S P 0.1° 24 h Land 2007–2021 – NetCDF Brocca et al. (2014)
(https://zenodo.org/records/7950103)

TMPA-3B42 v7 SG P 0.25° 3 h < 60° 2000–2019 – NetCDF Huffman et al. (2007), Gebremichael et al. (2010)
(https://disc2.gesdisc.eosdis.nasa.gov/opendap/
TRMM_L3/TRMM_3B42_Daily.7/)

TMPA-3B42RT v7 S P 0.25° 3 h < 60° 1998–2019 – NetCDF Huffman et al. (2007), Gebremichael et al. (2010)
(https://disc2.gesdisc.eosdis.nasa.gov/opendap/
TRMM_RT/TRMM_3B42RT.7/)

Data source: G – ground-based observations (with interpolation); S – satellite; R – reanalysis. Variables: P – precipitation; T – air temperature; rh – relative humidity; u – wind speed; Rs – solar radiation. Spatial resolution: 1.0° latitude= 111 km; 1.0°
longitude= 111 km at 0° latitude and 85 km at 40° latitude. Spatial coverage: CONUS – conterminous US; N Amer – North America; Land – global land surfaces only (not ocean surfaces); Global – global land and ocean surfaces. Temporal coverage: NP
– near present. Latency: “–” – static dataset. Data format: NetCDF – Network Common Data Form; HDF5 – Hierarchical Data Format 5; ASCII – American Standard Code for Information Interchange; GRIB – Gridded Binary; GeoTIFF – Georeferenced
Tagged Image File Format. All links listed in the table were last accessed on 29 November 2024.
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Table 3. Summary of reanalysis-based (R) gridded datasets.

Dataset name Data
source

Variables Spatial
resolution

Temporal
resolution

Spatial
coverage

Temporal
coverage

Latency Data format Reference
(data availability)

20CR R P , T , rh, u,
Rs

1.0° 3, 24 h Global 1836–2015 – NetCDF Compo et al. (2011)
(https://psl.noaa.gov/thredds/
catalog/Datasets/20thC_ReanV3/
miscSI/catalog.html)

CERA-20C R P , T , rh, u 0.125° 24 h Global 1901–2010 – NetCDF Laloyaux et al. (2018)
(https://apps.ecmwf.int/
archive-catalogue/?class=ep
(last access: 1 March 2023, no
longer available online after 1 June
2023)

ERA-20C R P 125 km 3 h Global 1900–2010 – GRIB Poli et al. (2016)
(https://thredds.rda.ucar.edu/
thredds/catalog/aggregations/g/
ds626.0/5/catalog.html)

ERA5 R P , T , rh, u,
Rs

0.25° 1 h Global 1979–NP 6 d GRIB, NetCDF Hersbach et al. (2018, 2020)
(https://thredds.rda.ucar.edu/
thredds/catalog/files/g/ds633.0/
catalog.html)

ERA-Interim RS P , T , rh, u,
Rs

0.75° 3 h Global 1979–NP months GRIB Dee et al. (2011)
(https://thredds.rda.ucar.edu/
thredds/catalog/catalog_ds627.0.
html)

EWEMBI v1.1 RG P , T , rh, u,
Rs

0.5° 24 h Global 1976–2013 – NetCDF Warszawski et al. (2014)
(https://data.isimip.org/10.5880/
pik.2019.004)

GRASP R P , T 1.125° 24 h Global 1961–2010 – ? Iizumi et al. (2014) (available upon
request)

GSMaP RNL RG P 0.1° 24 h < 60° 2001–2013 – NetCDF Kubota et al. (2007), Iguchi et
al. (2009)
(https://thredds-x.ipsl.fr/
thredds/catalog/FROGs/
GSMAP-gauges-RNLv6.0/
catalog.html; https://thredds-x.
ipsl.fr/thredds/catalog/FROGs/
GSMAP-nogauges-RNLv6.0/
catalog.html)

GSMaP-std v6 RG P 0.1° 24 h < 60° 2001–2013 – NetCDF, Geo-
TIFF

Ushio et al. (2019), Kubota et
al. (2020)
(https://sharaku.eorc.jaxa.jp/
GSMaP/)

HydroGFD RSG P 0.5° 3 h Global 1979–NP 5 d NetCDF Berg et al. (2018, 2021)
(https://doi.org/10.5281/zenodo.3871707,
Berg et al., 2020)

JRA-55 R P 0.56° 3 h Global 1958–NP days GRIB Kobayashi et al. (2015), Harada et
al. (2016)
(https://thredds.rda.ucar.edu/
thredds/catalog/catalog_ds628.0.
html)

MERRA R P , T , sh, u;
Rs

0.67°× 0.5°;
1.0°× 1.25°

1 (6 h?);
3 h

Global 1979–2016 – HDF Rienecker et al. (2011)
(https://gmao.gsfc.nasa.gov/
reanalysis/MERRA/)

MERRA-2 RSG P , T , sh, u 0.625°× 0.5° 1 h Global 1980–NP 2 months NetCDF Gelaro et al. (2017), Reichle et
al. (2017)
(https://goldsmr4.gesdisc.
eosdis.nasa.gov/data/MERRA2/
M2T1NXFLX.5.12.4/)

NASA POWER RS P , T , Rs 0.625°× 0.5°,
1.0°

24 h Global 1980–NP 14 h–3 months ASCII, CSV,
NetCDF, Geo-
TIFF

Zhang et al. (2009)
(https://power.larc.nasa.gov/
data-access-viewer/)

NCEP CFSR RS P , T , sh, u,
Rs

0.3, 0.5, 1.0,
1.9, 2.5°

6 h Global 1979–2011 – GRIB Saha et al. (2010), Decker et
al. (2012)
(https://thredds.rda.ucar.edu/
thredds/catalog/files/g/ds093.0/
catalog.html)

NCEP CFS v2 RS P , T , sh, u,
Rs

0.2, 0.5, 1.0,
2.5°

6 h Global 2011–NP NRT–days GRIB Saha et al. (2014)
(https://thredds.rda.ucar.edu/
thredds/catalog/files/g/ds094.0/
catalog.html)

NCEP NARR RG P , T , rh, u,
Rs

32 km 3 h N Amer < 50° 1979–NP months GRIB Mesinger et al. (2006)
(https://thredds.rda.ucar.edu/
thredds/catalog/files/g/ds608.0/
catalog.html)
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Table 3. Continued.

Dataset name Data
source

Variables Spatial
resolution

Temporal
resolution

Spatial cover-
age

Temporal cov-
erage

Latency Data format Reference
(data availability)

PGMFD v2.1 RG P , T , rh, u,
Rs

0.5° 24 h Global 1901–2012 – NetCDF Sheffield et al. (2006)
(https://data.isimip.org/search/simulation_
round/ISIMIP2a/product/InputData/
climate_forcing/princeton/)

PGF v3 RG P , T 0.25° 3 h Global 1948–2012 – NetCDF Sheffield et al. (2006)
(https://hydrology.soton.ac.uk/data/pgf/)

S14FD R P , T 0.5° 24 h Global 1958–2013 – NetCDF Iizumi et al. (2017)
(https://search.diasjp.net/en/dataset/
S14FD)

WFDEI R P , T , rh, u,
Rs

0.5° 3 h Global 1979–2016 – NetCDF Weedon et al. (2014)
(https://thredds.rda.ucar.edu/thredds/
catalog/files/g/ds314.2/catalog.html)

WFD-20C R P , T , rh, u,
Rs

0.5° 6 h Global 1901–2016 – NetCDF Weedon et al. (2011)
(https://data.isimip.org/search/
simulation_round/ISIMIP2a/product/
InputData/climate_forcing/watch-wfdei/;
https://www.data.gov.uk/dataset/a83 eef6d-
30d3-479d-90b3-40c09c26d42c/watch-
forcing-data-wfd-20th-century-tair-air-
temperature-1901-2001)

WRF CONUS404 R P , T , rh, u,
Rs

4 km 1 h CONUS 1980–2021 – NetCDF Liu et al. (2017), Rasmussen et al. (2023)
(https://www.sciencebase.gov/catalog/
item/6372cd09d34ed907bf6c6ab1; https:
//app.globus.org/file-manager?origin_id=
39161d64-419d-4cc4-853f-f6e737644eb4&
origin_path=%2F)

Data source: G – ground-based observations (with interpolation); S – satellite; R – reanalysis. Variables: P – precipitation; T – air temperature; rh – relative humidity; sh – specific humidity; u – wind speed; Rs – solar radiation. Spatial resolution: 1.0°
latitude= 111 km; 1.0° longitude= 111 km at 0° latitude and 85 km at 40° latitude. Spatial coverage: CONUS – conterminous US; N Amer – North America; Land – global land surfaces only (not ocean surfaces); Global – global land and ocean surfaces. Temporal
coverage: NP – near present. Latency: “–” – static dataset. Data format: NetCDF – Network Common Data Form; HDF5 – Hierarchical Data Format 5; ASCII – American Standard Code for Information Interchange; GRIB – Gridded Binary; GeoTIFF –
Georeferenced Tagged Image File Format; CSV – comma-separated values; ? – unknown. All links listed in the table were last accessed on 29 November 2024.

latency and different spatial and temporal resolutions. Each
dataset follows a different workflow in developing the in-
tegrated product; in general, the primary method (in this
article, the first abbreviation letter) is enhanced somewhat
sequentially with various interpolation or bias correction
schemes using the secondary dataset(s).

3 Considerations for use of gridded dataset for
hydrologic analyses

The gridded datasets summarized in Tables 1, 2, and 3 span
0.8 to 278 km spatial resolutions, 0.5 to 720 h (monthly) tem-
poral resolutions, 0.02 (30 min) to 365 d latencies, CONUS
to global spatial coverage, and 10- to 271-year periods
of record, starting as early as 1753 (Fig. 1). Differences
have emerged in the representation of G, S, and R datasets
across many of these categories. G datasets have the finest
spatial resolutions (1 km) and longest periods of record
(> 240 years) and tend to have the longest latency (aver-
age for G= 86 d, compared with S= 29 d and R= 36 d).
A greater proportion of G datasets have less-extensive spa-
tial coverage (CONUS to North American continental in this
study), whereas S and R datasets were typically global in
extent. S datasets start no earlier than 1979 and comprise
no greater than a 45-year period of record (through 2023).
More R and S datasets have finer temporal resolution than G
datasets, with average resolutions of 10 h for R and 9 h for S
compared with 158 h for G.

No single best source of gridded climate data exists. Many
characteristics of gridded datasets influence the best prod-
uct for a given application or research question. We highlight
several of the most important considerations in differentiat-
ing among the many possible gridded datasets. Most of these
characteristics are detailed for each gridded dataset in Ta-
bles 1, 2, and 3.

3.1 Variables and interdependencies

Hydrological investigations typically begin with selecting
datasets for each important climate variable. Tables 1, 2,
and 3 summarize the variables included in each gridded
dataset. Datasets that include all climate variables of interest
may inherently represent appropriate interdependencies or
cross-correlations among the variables. For example, periods
of time with P are associated with cloud cover; decreased
Rs; and, often, higher humidity. Other types of dependency-
related dilemmas may also occur in gridded datasets. Cold-
air drainage can invert the minimum T (Tmin)–elevation
relationship in montane foothills, and daily Tmin may not
equal daily average Tdp in semiarid regions (Tmin decoupled
from 100 % rh), thus invalidating an assumption of com-
monly used schemes to spatially interpolate gridded Tdp data
(McEvoy et al., 2014). Often the accurate representation of
these interdependencies is important in hydrologic analyses.
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Figure 1. Distribution of (a) spatial resolution, (b) temporal resolution, (c) latency, (d) period start date, (e) period of record, and (f) spatial
coverage for assessed ground-based (G), satellite-based (S), and reanalysis-based (R) gridded precipitation data sources. x-axis labels are the
upper limits of each categorical bin, exclusive of other bins. The abbreviations used in the figure are as follows: CONUS – conterminous US;
N AMER – North America; LAND – global land surfaces only (not ocean surfaces); GLOBAL – global land and ocean surfaces.

3.2 Coverage

Gridded datasets have a range of spatial and temporal ex-
tents. All datasets summarized in this article span at least
the CONUS, and many are continental or global in extent.
General guidelines by the World Meteorological Organiza-
tion require a 30-year minimum period of record to reason-
ably represent climate variability. Non-stationarity of climate
makes it even more important to consider whether longer pe-
riods representing climatic trends or periods more heavily
weighted toward recent data are preferable for a given hydro-
logic study. Periods of record may be dictated by investiga-
tions focused on specific events or periods, such as studies of
the hydrologic effects of wildfire or other disturbance events,
calculations of the recurrence interval of a flood of a given
severity, or studies assessing hydrologic responses over spe-
cific periods.

3.3 Resolution

The spatial and temporal resolution of the dataset should be
adequate to represent the variability in the climate variable
given the representational scale of the hydrologic model. The
simulated spatial and temporal resolution of evapotranspira-
tion (ET), runoff, and other hydrological elements in hydro-
logic models can be relatively fine (< 1 km, subdaily), and
model resolution is increasing in ways that capitalize on in-
creasing computational power, process understanding, and
data availability (Melsen et al., 2016). Hydrologic model out-
put resolution and uncertainty are often limited by the spa-

tial and temporal resolution of climate datasets. As such, the
resolution of gridded climate datasets should be an impor-
tant criterion to consider, especially in mountainous areas
within complex terrain driving spatial heterogeneity in cli-
mate variables. Some gridded datasets sacrifice the represen-
tation of extremes, both wet and dry, to better represent mean
climatic conditions. Alternatively, increased temporal resolu-
tion may come at the cost of reduced spatial resolution. Cre-
ation of spatially continuous and consistent gridded response
surfaces can result in point data extremes being smoothed
during interpolation. Gridded data interpolation schemes can
also influence the representation of meteorologic variabil-
ity; for example, Daymet uses a strict T –elevation relation-
ship that limits its ability to represent T inversions relative
to PRISM, which includes “climatologically aided interpola-
tion” (McEvoy et al., 2014). Methods that create ensembles
of multiple gridded datasets often better represent mean con-
ditions across a domain at the expense of representing the
full range of possible conditions within the domain.

3.4 Format and accessibility

Data format and accessibility dictate how easily and effec-
tively a dataset can be accessed, processed, and analyzed for
a specific hydrologic application. Several common data for-
mats are described in Table A1. The data format must be
compatible with software and tools used in the hydrologic
analysis. Formats such as NetCDF and HDF5 are widely
used in climate research because they are consistent with
various processing tools and can efficiently store large mul-
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tidimensional datasets. Adequate metadata are essential for
understanding the dataset, including its origin, methodol-
ogy, and any processing it has undergone. Investigators may
consider the importance of datasets that can be compressed
without significant data loss, are interoperable with the other
datasets, and are freely available and easily accessible on-
line. Some datasets have application programming interfaces
(APIs) for automated data retrieval that can be useful.

3.5 Site and event characteristics

Preference may be given to datasets that reflect characteris-
tic spatial and temporal dimensions of climatic processes in
the domain, such as cool-air drainage patterns, orographic
or convective P events, lake effects, and effects of altitude.
Priority may be given to datasets that capture the most im-
portant aspects of climate variable magnitude and variability
at appropriate scales, including daily/seasonal/annual aver-
ages, extreme event (high or low) magnitudes, or event se-
quences (continuous dry days, CDDs; continuous wet days,
CWDs; etc.). For example, datasets with fine temporal reso-
lution (∼ 1 h) may be required to capture hydrological func-
tioning when P is dominated by high-intensity but short-
duration convective events. In hydrologic models, spatiotem-
poral scales are interdependent, and source data should be
considered in watershed delineation.

3.6 Process and model sensitivity and latency

Hydrologic processes are differentially sensitive to climatic
variables and characteristics. For example, a snowmelt runoff
modeling study may prioritize a dataset with accurate, fine-
spatial-resolution T and accurate Rs, whereas a small-basin
study of soil moisture or erosion dynamics may prioritize a
fine-scale P dataset that maintains a full range of extreme
events. A study focused on ET dynamics may prioritize a
dataset that includes T , rh, u, and Rs and maintains appropri-
ate inter-variable dependencies. Flood simulation may priori-
tize fine-temporal-resolution P data at a resolution matching
the domain heterogeneity. Long-term water balance studies
or large-scale river basin studies may prefer daily or monthly
datasets with coarse spatial resolution. Often, the selected
model formulation will constrain the required variables, their
characteristics, and the preferred data format.

Latency, or the time lag in dataset availability, may also
be an important consideration. Some modeling applications
may require real-time or near-real-time results. Other appli-
cations designed to analyze historical trends or prior condi-
tions can tolerate long data latency periods. Gridded datasets
may implement additional processing steps intended to in-
crease accuracy or resolution but that increase the latency
before data become available for use. In the gridded datasets
summarized in Tables 1–3, S datasets averaged the shortest
latency periods (29 d), followed by R (36 d) and G (86 d).

3.7 Time zone considerations

When using climate and other hydrologic data from different
sources, the data time period consistency is critical and too
often overlooked. Particularly for data in a “daily” format,
users must be cognizant of the zonal time period for each
dataset. Station data vary with respect to the reporting period
for G data (e.g., daily periods beginning at midnight, 07:00,
or 08:00 standard time or local time, i.e., with spring and
fall daylight savings time shifts). Gridded datasets may pro-
vide data for a standard time period (e.g., 24 h period from
00:00 GMT) or adjusted for a user-defined time zone. Hy-
drologic comparison datasets (e.g., streamflow) may be re-
ported for 24 h starting at midnight standard or local time or
for some other 24 h period. Mismatched datasets may lead to
systematic analysis errors.

4 Review of gridded dataset performance

Appropriate selection from among the many available grid-
ded meteorological datasets requires an understanding of
how these datasets impact hydrologic modeling. To assist
with the selection process, we conducted a thorough review
and synthesis of the recent (past 10 years) literature com-
paring gridded meteorological datasets, with specific con-
sideration of their influence on hydrologic modeling (Ta-
ble 4). Studies were selected that (a) compared multiple grid-
ded datasets, preferably including comparisons with differ-
ent resolutions, scales, spatial contexts (topography, climate),
goals, or hydrologic models; (b) compared the accuracy of
those datasets to observed meteorological data; and (c) com-
pared the performance of those datasets as forcing data for
hydrologic model(s) or analyses. Most studies assessed and
compared P datasets; some also assessed T datasets; and
very few assessed rh, u, or Rs datasets. This relates, in equal
measures, to the relative importance of P data in hydrologic
analysis; the relative complexity of representing P in gridded
datasets; and the relative availability of P , T , and other data
across G, S, and R datasets (Tables 1, 2, 3).

4.1 Humidity, wind, and solar radiation dataset
assessment

A total of 2 of the 29 studies summarized in Table 4 assessed
and compared humidity (rh, sh, Tdp, or Vp), wind speed (u),
and/or solar radiation (Rs, sc, or cc) to station data or their
effects on hydrologic analyses. Mourtzinis et al. (2017) as-
sessed and compared G gridded datasets for rh (Daymet, de-
rived from Vp, and PRISM derived from Tmin and Tmax) and
Rs (Daymet, G; NASA POWER, RS) to observed data from
45 stations in the US Midwest. They found good agreement
between daily Rs and station data (RMSE= 8 % for both
datasets), with 98 % of data within 15 % of the measured
data. However, daily rh agreement was poor for both Daymet
(RMSE= 13 %) and PRISM (RMSE= 18 %). Blankenau et
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Table 4. Summary of recent (10 years, 2014–2023) literature on gridded dataset comparisons for hydrologic modeling.

Reference (location) Dataset name Data
source

Spatial extent Temporal extent Analysis goals Hydrologic
model

Hydrologic outcomes

Ang et al. (2022)
(Southeast Asia)

APHRODITE
NCEP CFS v2
TMPA-3B42 v7
IMERG Final v6
ERA5
SA-OBS
CPC

G
RS
SG
SG
R
G
G

83 107 km2,
100–1700 m a.s.l.,
1354 mm yr−1 P

1985–2011 Compare P and T

datasets to gauge sta-
tions and evaluate Q

and ET performance

SWAT, daily,
0.25° grid

Good P (APHRODITE, ERA5,
TMPA, IMERG) and good T

(CPC, SA-OBS); TMPA and
IMERG P with SA-OBS T

provide reliable Q and ET

Beck et al. (2017b)
(global)

CHIRP v2
CMORPH v1
ERA-Interim
GSMaP v5/6
GridSat v1
JRA-55
MSWEP-ng v1.2
MSWEP-ng v2
NCEP CFSR
PERSIANN
PERSIANN-CCS
SM2RAIN-ASCAT
TMPA-3B42RT v7
CHIRPS v2
CMORPH-CRT v1
CPC Unified
GPCP-IDD v1.2
MSWEP v1.2
MSWEP v2
PERSIANN-CDR
v1r1
TMPA-3B42 v7
WFDEI CRU

SR
S
R
S
S
R
SR
SR
RS
S
S
S
S
SRG
SG
G
SG
SRG
SRG
SG
SG
RG

76 086 P stations; 9035
basins (< 50 000 km2)

P : 2000–2016,
Q: 2000–2012

Compare P datasets to
daily gauge stations and
evaluate daily Q perfor-
mance (via 3 d Nash–
Sutcliffe efficiency –
NSE)

HBV, daily,
conceptual

G best (CPC) but not transfer-
able to low-gauge-density ar-
eas; SRG next best, with direct
G correction (MSWEP); SR
best (MSWEP) among non-G-
corrected, followed by R (ERA,
MRA, NCEP) and then SR
(CHIRP)

Blankenau et al. (2020) GLDAS
NCEP CFS v2
NLDAS-2
gridMET
RTMA
NDFD 1 d
NDFD 7 d

GS
RS
GR
G
G
G
G

103 weather stations,
US, Guam, Puerto Rico

2013–2015 Calibrate ET0 Penman–
Monteith ET0

Overestimation of ET0 using
gridded datasets vs. using sta-
tion data (12 %–31 % median
bias)

Dembélé et al. (2020)
(West Africa)

TAMSAT v3
CHIRPS v2
ARC v2
RFE v2
MSWEP v2.2
GSMaP-std v6
PERSIANN-CDR
CMORPH-CRT v1
TMPA-3B42RT v7
TMPA-3B42 v7
JRA-55
EWEMBI v1.1
WFDEI CRU
WFDEI GPCC
MERRA-2
PGF v3
ERA5

SG
SRG
SG
SG
SRG
RG
SG
SG
S
SG
R
RG
RG
RG
RSG
RG
R

415 000 km2,
< 400 m a.s.l.

2000–2012 Calibrate daily Q and
monthly actual evapo-
ration (Ea), soil mois-
ture (Su), and terrestrial
water storage (St)

mHM, daily,
0.25° (28 km)
discretization

Different best-performing P

datasets for Q (TAMSAT,
CHIRPS, PERSIANN-CDR),
temporal Su (EWEMBI,
WFDEI GPCC, PGF), spa-
tial Su (MSWEP, TAMSAT,
ARC) temporal Ea (ARC,
RFE, GSMaP), and spatial Ea
(MSWEP, TAMSAT, MERRA-
2)

Essou et al. (2016a)
(CONUS)

MOPEX
Santa Clara
CPC
Daymet

G
G
G
G

424 basins
(66–10 325 km2),
5 climate regions

1980–2003 Compare among ob-
served climate data and
simulated Q

HSAMI, daily,
conceptual

Differences in P and T not
translated to differences in Q

Essou et al. (2016b)
(CONUS)

Santa Clara
ERA-Interim
NCEP CFSR
MERRA
NCEP NARR
WFDEI CRU
WFDEI GPCC

G
R
RS
R
RG
RG
RG

370 basins
(104–10 325 km2),
5 climate regions

1979–2003 Compare to ob-
served climate data
(Santa Clara) and Q

(MOPEX)

HSAMI, daily,
conceptual

Overall, global reanalyses good
proxies for observed P and T

data

Essou et al. (2017)
(Canada)

ERA-Interim
NCEP CFSR
MERRA
NRCan

R
RS
R
G

316 basins
(440–127 635 km2),
3 climate regions

1979–2010 Compare P and T

reanalyses to NRCan
and compare Q to
CANOPEX

HSAMI, daily,
conceptual

Better performance for reanaly-
sis than gridded for low station
density (one per 1000 km2)

Gampe and Ludwig
(2017)
(Italy)

MESAN
APGD
E-OBS
PERSIANN-CDR
MERRA-2
ERA-Interim
GPCC-FDD
ERA-20C

DRG
G
G
SG
RSG
R
G
R

12 100 km2,
0–3865 m a.s.l.,
500–1600 mm yr−1 P

1989–2008 Compare to observed
climate data

WaSiM, daily,
1 km resolution
(not used in this
study)

Recommend using an en-
semble, excluding datasets
with seasonal deviations
(PERSIANN, ERA-Interim,
ERA-20C)
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Table 4. Continued.

Reference (location) Dataset name Data
source

Spatial extent Temporal extent Analysis goals Hydrologic model Hydrologic outcomes

Gupta and Tarboton
(2016)
(western US)

MERRA
RFE v2

R
SG

1 000 000 km2 region 2009–2010 Compare downscaled
climate data to SNO-
TEL

UEB snowmelt
(SWE), 3 h,
120 m climate
downscale

Good SWE simulation
(NSE= 0.67); downscaling
limitations noted

Hafzi and Sorman
(2022)
(Türkiye)

CPC v1
MSWEP v2.8
ERA5
CHIRPS v2
CHIRP v2
IMERG Early v6
IMERG Late v6
IMERG Final v6
TMPA-3B42RT v7
TMPA-3B42 v7
PERSIANN-CDR
PERSIANN-CCS
PERSIANN

G
SRG
R
SRG
SR
S
S
SG
SG
S
SG
S
S

10 250 km2, 1130–
3500 m a.s.l.

2015–2019 Evaluate climate data
consistency and simu-
lated Q

TUW, daily, con-
ceptual

Most gridded P data poor but Q
simulation quite accurate; rec-
ommend calibrating Q model
with same gridded data used to
run simulation (not observed P

data)

Henn et al. (2018)
(western US)

H10
L15
PRISM-M
NLDAS-2
N15
Daymet

G
G
G
G
G
G

Western US (32–49° N,
105–125° W)

1982–2006 Intercompare spatial
patterns, interannual
variability, and multi-
year trends in P

Limited
comparison to
SWE and Q

Possible substantial uncer-
tainty from differences among
datasets (especially high
elevation and aridity)

Kouakou et al. (2023)
(West and Central
Africa)

ARC v2
CHIRP v2
CHIRPS v2
PERSIANN-CDR
MSWEP v2.2
TAMSAT v3
ERA5
JRA-55 Adj
MERRA-2 P-TOT
MERRA-2 P-COR
WFDEI CRU
WFDEI GPCC
CPC v1
CRU TS v4
GPCC v7

SG
SR
SRG
SG
SRG
SG
R
RG
RSG
RSG
RG
RG
G
G
G

68 basins
(1279–600 000 km2),
200–5000 mm yr−1 P

1984–2005 Evaluate P datasets,
monthly Q simulation

GR2M, monthly,
lumped

Best P from G datasets;
CHIRPS best for Q

Laiti et al. (2018)
(Italy)

E-OBS
MSWEP
MESAN
APGD
ADIGE

G
SRG
DRG
G
G

12 100 km2, 185–
3500 m a.s.l.

1989–2008 Assess hydrologic co-
herence of gridded data
for daily Q

HYPERstream+
SCS-CN, daily,
5 km grid

Best Q from higher-resolution
G datasets

Massmann (2020)
(CONUS)

CERA-20C
20CR
Livneh

R
R
G

168 basins 1900s–2010s Assess century datasets
for P and T (vs.
Daymet), Q simulation

HBV, daily,
conceptual

Quality decreases further back
in history; T better than P ; G
better than R

Mazzoleni et al. (2019)
(global)

CHIRP v2
CMORPH v1
PERSIANN
PERSIANN-CCS
SM2RAIN-ASCAT
TMPA-3B42RT v7
CHIRPS v2
CMORPH-CRT v1
GPCP1DD v1.2
MSWEP v2.1
PERSIANN-CDR
TMPA-3B42 v7
CPC Glob Unified
GPCC
GSMaP RNL
PFD
WFDEI CRU
WFDEI GPCC

SR
S
S
S
S
S
SRG
SG
SG
SRG
SG
SG
RG
RG
RG
RG
RG
RG

Eight basins,
200–6 150 000 km2,
tropical to temperate
climate zones

2007–2013 Compare P datasets for
Q simulation, assess P

density and model ef-
fects

HBV-96, daily?,
conceptual,
∼ 0.25° grid

No single best P dataset; basin
characteristics important; Q af-
fected by basin scale, human
footprint, and climate; S poor-
est, most variable; SG best in
tropical and arid temperate cli-
mates; RG best in temperate
and cold temperate climates
and densely gauged P basins;
different best P dataset in sub-
basins than outlet (distributed
model better than lumped)

Mei et al. (2022)
(Texas)

TMPA-3B42
NCEP CFSR
PRISM

SG
RS
G

535.76 km2,
176–548 m a.s.l.

1989–2009 Compare P data to
NOAA and modeled Q

in urban basin

SWAT, daily,
subbasins
∼ 21.4 km2

(∼ 4.6 km)2,
and ANN, daily,
lumped

Best P for PRISM; underes-
timated P for TMPA; better
performance for PRISM and
TMPA than CFR or gauge data
for Q; similar results for SWAT
and ANN with same P data

Meng et al. (2014)
(NE Tibetan Plateau)

TMPA-3B42 v6 SG 122 000 km2,
4000 m a.s.l.,
250–750 mm yr−1 P

1998–2008 Compare P to NCC
gauge and simulated Q

CREST, daily,
distributed, 1 km2

grid

TMPA daily P less than
monthly P ; TMPA unsatisfac-
tory for daily Q but acceptable
for monthly Q simulation
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Table 4. Continued.

Reference (location) Dataset name Data
source

Spatial extent Temporal extent Analysis goals Hydrologic
model

Hydrologic outcomes

Mourtzinis et
al. (2017)
(US Midwest)

Daymet
PRISM
NASA POWER

G
G
RS

45 stations in the US
Corn Belt

1980–2014
(12–35 years)

Compare ET0 calcu-
lated with station and
gridded data

FAO PM ET0 Poor ET0 related to poor rh, es-
pecially for PRISM

Muche et al. (2020)
(Kansas)

Daymet
PRISM
NLDAS
GLDAS

G
G
G
G

2988 km2, 252–
428 m a.s.l.

1983–2013 Compare to Global
Historical Climatology
Network (NOAA-
NCEI, 2018); calibrate
monthly Q and simu-
late daily Q

SWAT, daily,
subbasins
∼ 76.6 km2

(∼ 8.8 km)2

All monthly Q simulation sim-
ilar (except GLDAS)

Pokorny et al. (2020)
(Canada)

ANUSPLIN
NCEP NARR
ERA-Interim
WFDEI
HydroGFD

G
RG
RS
RG
RSG

1 400 000 km2 basin
(seven subbasins),
diverse climate regions

1984–2010 Compare P data aggre-
gations

– Spatial performance variations
for all gridded datasets; input
uncertainty reduced by some
aggregation, but information
lost as aggregation increased

Radcliffe and Mukun-
dan (2017)
(Georgia)

PRISM
NCEP CFSR

G
RS

44.7 km2 2003–2010 Assess P datasets for Q

simulation
SWAT, daily,
subbasins
∼1.4 km2

(∼1.2 km)2

CFSR better for P ; PRISM bet-
ter for Q (Note that PRISM
data do not appear to be time-
shifted.)

Raimonet et al. (2017)
(France)

SAFRAN
MESAN
E-OBS
WFDEI GPCC

RG
DRG
G
RG

931 stations;
10–10 000 km2;
diversity of climate,
topography, and eleva-
tion

1989–2010 Evaluate P datasets,
daily Q simulation

GR4J, daily,
conceptual,

High-resolution and reanalysis
Q performed better; essential to
account for high-resolution to-
pography

Ray et al. (2022)
(Texas)

Daymet v3
PRISM
IMERG Early v6
IMERG Late v6
IMERG Final v6
PERSIANN
PERSIANN-CCS
PERSIANN-CDR
CHIRPS v2

G
G
S
S
SG
S
S
SG
SRG

4300 km2, 111–
596 m a.s.l.

2000–2019 Assess P datasets for Q

simulation
SWAT, daily,
subbasins
∼ 50 km2

(∼ 7 km)2

Daymet, PRISM, and CHIRPS
best for Q

Setti et al. (2020)
(India)

IMD
TMPA-3B42RT
TMPA-3B42
NCEP CFSR

G
S
SG
RS

9056 km2, 152–
1600 m a.s.l.,
1140 mm yr−1 P

1998–2012 Assess P datasets for Q

simulation
SWAT, daily,
subbasins
∼ 211 km2

(∼ 14.5 km)2

Good P for all datasets; Q sim-
ulation (monthly calibration)
good for all (IMD best)

Shuai et al. (2022)
(Colorado)

PRISM
Daymet
NLDAS-2

G
G
G

53.2 km2 2016–2019
(PRISM shift 1 d)

Assess datasets for
P (seven stations); T

(four stations); and
simulated Q, SWE, and
ET

ATS, hourly,
0.005–
0.05 km2

resolution,
distributed

Small T difference (r >0.95);
strong P correction (r >0.9)
for PRISM 93 sites), Daymet
(one site), and NLDAS
(no sites); Q (hourly):
Daymet > PRISM > NLDAS.

Singh and Najafi
(2020)
(Canada)

NRCan
NCEP CFSR
GRASP
NCEP NARR
S14FD

G
RS
R
RG
DR

113 stations, three
basins:
46 600 km2,
2130–3700 m a.s.l.;
600 km2,
0–2000 m a.s.l.;
261 km2,
0.4–1584 m a.s.l.

1980–2010 Assess P and T covari-
ability

Raven, daily,
lumped/semi-
distributed

Cold bias for gridded T over
the Rockies vs. warm bias over
Prairies; NRCan (and S14FD)
best T

Tarek et al. (2020)
(N Amer)

ERA-Interim
ERA5

R
R

3138 basins in the US
and
Canada

1979–2018 Evaluate ERA5 vs. ob-
servations with empha-
sis on Q modeling

GR4J,
HMETS, daily,
conceptual

ERA5 improved over ERA-
Interim, with biases in the US
Southeast and the West Coast of
North America; translated into
Q skill, except in the eastern
US

Yang et al. (2014)
(China)

NCEP CFSR
APHRODITE
China-trend

RS
G
G

Two basins: 1098 km2,
366 km2

2000–2006 Calibrate daily Q simu-
lation

SWAT, daily,
subbasins
∼ 29 km2

(∼ 5.4 km)2

China-trend best; poor results
in areas with topographical in-
fluence on P

Zhu et al. (2018)
(NE China)

Fengyun
TMPA-3B42RT
TMPA-3B42
CMORPH BLD v1
CMORPH v1

SRG
S
SG
SG
S

12 385 km2,
172–1391 m a.s.l.,
776 mm yr−1 P

2006–2010 Evaluate five P datasets
with gauge P and simu-
lated Q

SWAT, daily,
monthly,
subbasins
∼ 459 km2

(∼ 21 km)2

Better P agreement from
Fengyun, TMPA-3B42, and
CMORPH BLD (all gauge-
adjusted); daily Q satisfactory
for Fengyun and TMPA-3B42;
model parameters only ap-
plicable for dataset used for
calibration

Reference (location): general region of study. Data source: G – ground-based observations (with interpolation); S – satellite; R – reanalysis; D – downscaling.
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al. (2020) compared six G datasets to 3 years of data at 103
weather stations across the US, Guam, and Puerto Rico. For
Vp, u, and Rs, performance was best for RTMA and NDFD
1 d forecasts and worst for NLDAS. High spatial resolu-
tion did not necessarily confer accuracy, as coarser GLDAS
(28 km) and NCEP CFS v2 (22 km) datasets outperformed
finer NLDAS (14 km). Bandaru et al. (2017) compared four
gridded datasets (three G and one RG) to observed monthly
data from five flux towers in the northwestern US and found
different results for humidity (Tdp) and Rs. For Tdp, perfor-
mance decreased in the following order: NCEP NARR (RG)
to PRISM to Daymet to NLDAS (G). Conversely, for Rs,
performance decreased in the following order: from NLDAS
to Daymet (both with negative bias) to NCEP NARR (pos-
itive bias). McEvoy et al. (2014) compared P , T , and rh
data from four G datasets to 14 stations in Nevada. Grid-
ded datasets, particularly Daymet, had difficulty represent-
ing cold-air drainage in this mountainous terrain; PRISM in-
corporates methods to represent inversions and performed
better across the 1-year comparison study. Finer resolution
(PRISM: 800 m; Daymet: 1 km) had less bias than coarser
resolution (PRISM and gridMet: 4 km) datasets. Also, the
common assumption that daily Tmin approximates Tdp (used
by Daymet) was unrealistic in this semiarid environment.

Current literature is too limited to provide a consensus for
humidity, u, or Rs gridded dataset selection. More studies
are needed, both to assess the accuracy of available humid-
ity, u, or Rs gridded datasets (Tables 1, 2, 3) and to assess
their impacts on hydrologic model performance. A key con-
clusion was that analyses in which rh, u, and Rs are primary
forcing variables (e.g., ET, airshed, snowpack, or surface soil
moisture dynamic analyses) would benefit from an assess-
ment of available dataset suitability (e.g., comparison of the
gridded dataset to reference, ground-based weather stations
in or around the study area) and a sensitivity analysis of the
model (how responsive is the response variable to the noted
gridded climate dataset uncertainty) prior to dataset selec-
tion. Hybrid data sources (station and gridded) need to be
considered regarding both model skill for simulating hydrol-
ogy and optimal model parameter sets, because effects of
mixing data sources are generally unknown. Dependencies
among climate variables (such as those discussed in Sect. 4.4
for P−T dependencies) may also be an important considera-
tion for humidity, u, and Rs and lead to prioritizing a gridded
dataset that represents covariances among variables of con-
cern. As such, methods to retain coupling of climate variables
in gridded datasets are needed.

4.2 Temperature (T ) dataset assessment

Accuracy and agreement of gridded datasets of air tempera-
ture (T ) at 2 m above the ground (Table 4), about crop canopy
height, were dependent on many factors, including the spa-
tial region of interest and topography. Essou et al. (2016b)
found that T data from six R datasets were generally com-

parable to station data in 370 basins across the CONUS.
Behnke et al. (2016) evaluated eight G datasets and found
gridded T data to be highly correlated (r>0.9) with station
data, although biased towards cooler T , across the CONUS;
the best dataset differed by region, and spatial resolution was
not an important factor. Massmann (2020) analyzed three
datasets (two R and one G) with long (century) periods of
record in 168 basins throughout the CONUS and found that
T datasets were generally adequate across the US but were
less adequate (lower daily rank correlation and higher long-
term bias) in the Rocky Mountains. In the Rockies, Shuai et
al. (2022) found a strong correlation (r>0.95) with measured
station data in Colorado for G datasets (PRISM, Daymet,
and NLDAS-2). In the US Midwest, Mourtzinis et al. (2017)
found good agreement (RMSE < 5 %) for both PRISM and
Daymet. Tercek et al. (2021) revealed a characteristic of G
datasets tending to underrepresent higher-elevation point lo-
cations (e.g., mountain tops), which corresponded to gridded
monthly maximum T data. McEvoy et al. (2014) found that
G datasets (PRISM, Daymet, and gridMet) in montane re-
gions underestimated inversion strength and Tmin in foothills.
As expected, datasets resulting from downscaling methods
were constrained by the inherent inaccuracies of the original
gridded T dataset (Gupta and Tarboton, 2016).

Several studies have specifically addressed the contribu-
tion of gridded T datasets to hydrologic model performance.
A consensus across many studies was that T dataset selec-
tion was less influential on hydrologic simulation accuracy
than P dataset selection (Dembélé et al., 2020; Essou et al.,
2016a; Mei et al., 2022; Shuai et al., 2022). Laiti et al. (2018)
evaluated five gridded daily T datasets covering a basin in
the Italian Alps, with elevations ranging from 185 to 3500 m.
They found that G datasets with higher resolution produced
the best streamflow (Q) simulation and also suggested that T

datasets from various sources (G, S, and R) can be used in-
terchangeably, with negligible impacts on simulation results.
The consensus from these nine studies (discussed in this sec-
tion and cited in Table 4) suggests that gridded T datasets can
generally be used interchangeably for hydrologic analyses in
most parts of the CONUS or globally, although differences
in hydrologic response may arise in areas of more complex
(i.e., mountain) topography.

4.3 Precipitation (P ) dataset assessment

Precipitation (P ) datasets were less reliable than T datasets,
both with respect to their accuracy and their performance
forcing hydrologic models. P data often lack accuracy
and spatial variability in complex, mountainous topography
(Hafzi and Sorman, 2022; Henn et al., 2018) and need to
be gauge-corrected (Raimonet et al., 2017; Mazzoleni et al.,
2019; Laiti et al., 2018; Essou et al., 2017; Hafzi and Sorman,
2022). In mountainous regions and humid regions, R datasets
generally performed better than G in areas with a low sta-
tion density (less than one station per 1000 km2), but there
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was no difference in performance for higher station densities
(more than three stations per 1000 km2) (Essou et al., 2017).
Gampe and Ludwig (2017) and Essou et al. (2016b) found
that R datasets show a great potential to provide reasonable
P data in areas where the station location and density cause
high errors and uncertainty, especially at higher elevations
and in topographically complex regions. Ang et al. (2022)
found that P data from G (APHRODITE), SG (TMPA-3B42
and IMERG), and R (ERA5) datasets all performed well
(r>0.75) in a data-sparse region (less than three stations per
1000 km2) of Southeast Asia. Essou et al. (2016b) judged
that differences between R and observed G data across the
CONUS were small enough to allow direct use of R-based
P and T data for hydrologic modeling without bias correc-
tion. Satellite datasets corrected with either R or G datasets
increased P accuracy (Hafzi and Sorman, 2022). In hydro-
logic models, inputs of daily or hourly P are partitioned into
rain (liquid) and snow (solid) based primarily on T (daily
Tmin), but little information exists on the relative accuracy of
P for rain, snow, and rain–snow mixes. See Sect. 4.4 and 4.6
for P –T interactions and the estimation of the snow-water
equivalent (SWE).

The G methods provided the most accurate gridded P

data (Kouakou et al., 2023; Massmann, 2020), although
performance of G datasets deteriorate in gauge-sparse re-
gions (Beck et al., 2017b). With adequate station den-
sity, weather-station network data were superior at local
to regional scales (Tarek et al., 2020; Meng et al., 2014;
Yang et al., 2014). Datasets that directly integrated higher-
temporal-resolution gauge data performed best, with de-
creasing performance from those incorporating daily gauge
data (CPC Unified and MSWEP v1.2 and v2) compared with
5 d gauge data (CHIRPS v2), monthly gauge data (GPCP-
1DD v1.2, TMPA-3B42 v7, and WFDEI CRU), or a monthly
SG GPCP product (PERSIANN) (Beck et al., 2017b).

Global R datasets often were good proxies for P data (Es-
sou et al., 2016b). Massmann (2020) found that R datasets
were more appropriate for short-term P in the northwestern
US, with some difficulties in representing P in the southern
and eastern US. From a comparison of 18 gridded datasets,
Mazzoleni et al. (2019) found no single best P dataset. The
R datasets performed better than G datasets for a low sta-
tion density (less than one station per 1000 km2); otherwise,
little difference was observed (Essou et al., 2017; Tarek et
al., 2020). Gampe and Ludwig (2017) found that higher-
resolution P data performed better, but coarse-resolution
data provided a close representation of overall, longer-
term climate characteristics. Raimonet et al. (2017) demon-
strated the importance of accounting for the impacts of
high-resolution topography on P gridded data and that low-
altitude, less-complex topographies were less sensitive to the
choice of gridded dataset. Similar results were reported by
Laiti et al. (2018), who added that simple bias correction can-
not overcome P dataset deficiencies.

Overall, the literature suggests that the interaction of sta-
tion density and basin characteristics, primarily topography,
is of central importance and can drive performance. In re-
gions with a high station density (more than three stations
per 1000 km2), G datasets or those corrected using G data
(SG, RG, SRG, and RSG) perform similarly. However, in
areas with a lower station density (less than one station
per 1000 km2), at higher elevations, and in topographically
complex regions, R datasets perform better. Unadjusted S
datasets, without G or R correction, were generally the least
reliable. Other site and dataset considerations may also be
important for specific hydrologic modeling applications and
are discussed in the following sections.

4.4 P –T dependency

Climatological dependencies can exist between P and T .
Gridded datasets decouple P and T , which can cause prob-
lems with hydrologic simulation (Singh and Najafi, 2020).
For example, Singh and Najafi (2020) noted the failure of
gridded datasets to represent warm–wet dependencies in
north and southwest Canada and hot–dry dependencies in
the spring and summer seasons in the Canadian Prairies that
were present in the observed data. This led to inaccurate
modeling of hydrologic processes (rain–snow partitioning
and extreme events), which may be particularly important in
representing hydrological reality under a changing climate.
In response to this need for coupled P and T data, Raimonet
et al. (2017) suggested a process for dynamically calibrating
a conceptual hydrological model on meteorological datasets,
which was able to assess the consistency of the meteorolog-
ical datasets, including the covariance of P and T , as well
as improve streamflow simulation performance. Again, these
results suggest that methods to retain coupling of climate
variables in gridded datasets are needed.

4.5 Streamflow (Q) modeling

Not surprisingly, as noted above, Q was more responsive to
P than T (Dembélé et al., 2020; Essou et al., 2016a; Mei et
al., 2022; Shuai et al., 2022). Most gridded P datasets were
adequate for Q simulation at the monthly scale and at spatial
scales ranging from 3000 to 122 000 km2 (Ray et al., 2022;
Meng et al., 2014; Muche et al., 2020; Setti et al., 2020).
Some studies found that G-based P datasets were generally
better than S or R datasets for hydrological modeling (Ray
et al., 2022; Meng et al., 2014; Kouakou et al., 2023; Mass-
mann, 2020), especially for high-spatial-resolution datasets
(Laiti et al., 2018). In addition, hydrologic performance us-
ing G datasets was not affected by basin size, but the perfor-
mance of the G datasets did improve slightly as the weather
station density of their source data increased (Essou et al.,
2017). However, total basin size did not influence Q perfor-
mance (Tarek et al., 2020). In a study of eight large-scale
basins globally, Mazzoleni et al. (2019) found that Q simu-
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lation was affected by the basin scale, human footprint, and
climate: S datasets had the poorest performance and were
the most variable; SG datasets were the best performers in
tropical and arid temperate climates; and RG datasets were
the best performers in temperate and cold temperate climates
and within basins with densely gauged P .

In a study of nine gridded datasets applied with a con-
ceptual hydrologic model to simulate streamflow in 9053
basins (< 50 000 km2) worldwide, Beck et al. (2017b) found
that the MSWEP v2 P dataset provided consistently better
performance than other products across North America, Eu-
rope, Japan, Australia, New Zealand, and southern and west-
ern Brazil, whereas CHIRPS v2 performed better than other
products in Central America, and central and eastern Brazil,
but no one dataset performed best everywhere. They also
concluded, based on the good performance of CPC-United,
CHIRPS v2, and MSWEP v1.2 and v2, that the incorporation
of sub-monthly gauge data improved Q simulation.

Interestingly, the best P dataset was not always the best
for Q modeling (Yang et al., 2014), and lower P and T

performance did not always translate into lower Q perfor-
mance (Essou et al., 2016a; Hafzi and Sorman, 2022). Sim-
ilarly, Ang et al. (2022) found that S datasets corrected with
G observations had better Q performance than other G or R
datasets that performed similarly in comparison to observed
P data.

Datasets with the best representation of temporal dynam-
ics did not necessarily align with those with the best rep-
resentation of spatial patterns, with more hydrologic uncer-
tainty associated with misrepresenting spatial patterns than
temporal dynamics (Dembélé et al., 2020). Hafzi and Sor-
man (2022) found that most gridded P datasets had low per-
formance with respect to representing daily P over space and
time, but some still had accurate Q simulation. Mazzoleni et
al. (2019) found that the best P dataset for a basin outlet was
not necessarily the best for its subbasins, which reflects the
influence of scale and suggests a benefit to distributed hydro-
logic modeling over lumped modeling approaches.

Hydrologic model calibration approaches were also sen-
sitive to the selection of gridded dataset. Ray et al. (2022)
found that model parameter uncertainty decreased when cal-
ibrating the SWAT model using G-based P datasets. In addi-
tion, hydrologic models calibrated using one gridded dataset
did not work as well when applied using forcings from other
datasets (Zhu et al., 2018; Hafzi and Sorman, 2022).

Dependency between P and T did not appear to affect
Q simulation. Shuai et al. (2022) found that intermixing T

datasets among PRISM, Daymet, and NLDAS P datasets
had little effect on Q.

4.6 ET and SWE modeling

Few studies were found that compared the effects of grid-
ded datasets on the simulation of other spatially distributed
hydrologic variables, such as ET or SWE. Mourtzinis et

al. (2017) found that Daymet outperformed PRISM with re-
spect to calculating the FAO Penman–Monteith reference ET
(ET0) in the US Midwest. Although both were similar in
comparisons of P and T , ET0 bias was less for Daymet
(−4 mm) than for PRISM (+253 mm), and both had poor
agreement in the high and low ranges of measured ET0. Er-
rors were related to poor agreement with rh, especially for
PRISM. Similarly, ET0 was generally overestimated (relative
to ET0 from weather station data) by all six G datasets eval-
uated by Blankenau et al. (2020), with median biases from
12 % to 31 %, consistent with the overestimation of T , u, and
Rs and the underestimation of Vp. In a comparison of differ-
ent gridded datasets forcing ET simulation in SWAT, Ang et
al. (2022) found that using P from TRMM and IMERG with
T from a Southeast Asia observational network (SA-OBS)
outperformed other gridded datasets (P : Aphrodite, ERA5,
and NCEP CFS v2; T : CPC) in this tropical region. Poor per-
formance of gridded dataset P and T was credited to the poor
ET simulation. Shuai et al. (2022) found little difference be-
tween the simulation of ET from PRISM, Daymet, and NL-
DAS in Colorado and assumed that the similarity was related
to using the same Rs forcing. Shuai et al. (2022) also eval-
uated the effects of G datasets on SWE in Colorado. They
found that a fine spatial scale helped PRISM (0.8 km) and
Daymet (1 km) outperform NLDAS (12 km) with respect to
simulating spatial SWE, with the highest correlation from
PRISM. Gupta and Tarboton (2016) used spatially down-
scaled R datasets (MERRA data for T , rh, u, and Rs; RFE
v2 data for P ) and found good SWE simulation compared
to SNOTEL data (mean NSE= 0.67 across eight sites). Key
sources of discrepancies were from P and Rs data uncer-
tainty. These results indicate that accuracy in climate data
translated into accuracy in ET and SWE simulation and sug-
gest that all gridded data be scrutinized, as well as possibly
bias-corrected, before use in ET and SWE modeling.

4.7 P ensembles

Ensembles of gridded datasets have often been recommended
to account for gridded dataset uncertainty and better repre-
sent overall climatology (Gampe and Ludwig, 2017; Poko-
rny et al., 2020), although with some caveats. For exam-
ple, Gampe and Ludwig (2017) found that R data (compared
with station data) showed fewer consecutive dry days (CDDs,
P < 1 mm), more consecutive wet days (CWDs, P > 1 mm),
and a lower contribution of heavy-P events (i.e., more low-
but steady-P events) to annual P , which has the poten-
tial to impact hydrologic simulation (more infiltration, less
streamflow, greater baseflow, fewer floods, etc.). They rec-
ommended identification and removal of such nonrepresen-
tative datasets from ensembles. Pokorny et al. (2020) sug-
gested that data should be assessed in relation to the tar-
get hydrologic model’s spatiotemporal scale. Notably, en-
sembles dampen extreme events and decrease the frequency
of low-P /high-P events, which can lead to nonrepresenta-

https://doi.org/10.5194/hess-29-85-2025 Hydrol. Earth Syst. Sci., 29, 85–108, 2025



100 K. R. Mankin et al.: Review of gridded climate products

tive hydrological simulations (Pokorny et al., 2020). Laiti
et al. (2018) demonstrated a hydrologic coherence test (Hy-
CoT), essentially a metric-independent method of comparing
gridded datasets according to their performance in a hydro-
logic model, to exclude meteorological data less capable of
reproducing a hydrologic outcome.

4.8 Latency

The latency with which gridded datasets become avail-
able for use may be a critical factor in gridded dataset se-
lection. Few studies have assessed latency effects. Hafzi
and Sorman (2022) found that some real-time datasets that
were available with short latency (e.g., 1 h lag, PERSIANN-
CSS with 0.04°) sacrificed accuracy compared with coarser,
longer-latency datasets, such as IMERG Late v6 (14 h lag,
0.1°), MSWEP v2.8 (a few months lag, 0.1°), and CHIRPS
v2 (1-month lag, 0.05°).

5 Conclusions

This study summarized characteristics, primary references,
and data availability of 63 gridded datasets from a CONUS
to a global extent to assist with dataset selection by hydro-
logic investigators. Our review of information from 29 recent
(past 10 years) intercomparison studies spans a wide range
of gridded datasets, study settings and scales, and hydrologic
modeling objectives. Readers are referred to these studies for
a wealth of detail on their results and recommendations; we
encourage a particular focus on studies with similar climatic
setting and hydrologic objectives to the planned investiga-
tion. From this review and synthesis, we formulated interpre-
tations and, where appropriate, guidelines that are outlined in
the following.

No single gridded climate dataset or data source was
universally superior for hydrologic analyses. Several com-
mon themes arose among the 29 studies reviewed. Grid-
ded daily temperature (T ) datasets improved when derived
from greater station density, although they were relatively
interchangeable in hydrologic analyses. Gridded daily pre-
cipitation (P ) data were more accurate when derived from
higher-density station data, when used in spatially less-
complex terrain, and when corrected using ground-based (G)
data. In mountainous or humid regions, reanalysis-based (R)
gridded datasets generally performed better than G gridded
datasets when the underlying station density was low; how-
ever, when station densities were higher, there was no dif-
ference. Ground-based (G) gridded P datasets generally per-
formed better than satellite-based (S) or R datasets, although
better P and T datasets did not always translate into bet-
ter streamflow modeling. Hydrologic analyses would bene-
fit from advances in creating gridded datasets that retain cli-
mate variable interdependencies and better represent climate
variables in complex topography. The caveat that some stud-

ies were insensitive to using independent sources of P and
T may not be a good rationale for ignoring possible cross-
correlations between climate variables. Rather, this result
may point to the insensitivity of hydrologic models that do
not necessarily capture spatiotemporal process interactions
within a watershed. Use of hybrids of gridded datasets and
station data for a particular region remains a topic for further
investigation, as there can be substantial differences between
data at a particular station and the corresponding grid cell
data.

Hydrologic studies rarely defend their selection of a par-
ticular dataset to address research questions, but investigators
should justify their selection of a particular gridded dataset
with full consideration of both the climatologic setting and
the hydrologic analysis type and objectives. Via a thorough
review of the recent literature, this study provides general
consensus recommendations for dataset selection, although
characteristics of a given hydrologic analysis or study may
warrant more specific selection processes and criteria. The
authors’ overall recommendations to hydrologic modelers
are to select the gridded dataset (from Tables 1, 2, and 3)
(a) with spatial and temporal resolutions that match modeling
scales; (b) that are primarily (G) or secondarily (SG and RG)
derived from ground-based observations, especially in areas
of high topographic relief; (c) with sufficient spatial and tem-
poral coverage for the analysis; (d) with adequate latency for
analysis objectives; and (e) that includes all climate variables
of interest, so as to better represent interdependencies.

Hydrol. Earth Syst. Sci., 29, 85–108, 2025 https://doi.org/10.5194/hess-29-85-2025



K. R. Mankin et al.: Review of gridded climate products 101

Appendix A

Table A1. Summary of different data formats, descriptions, and processing approaches for gridded climate datasets using programming
languages and software.

Data format
name

Description

NetCDF
(Network Com-
mon Data
Form)

The NetCDF format was first developed in the 1980s by researchers at the Unidata Program Center at the Univer-
sity Corporation for Atmospheric Research (UCAR). Since then, it has undergone several revisions and updates
to address technology and user requirement changes. The latest version, NetCDF-4, includes support for com-
pression, chunking, and parallel input/output (I/O), as well as new data types and features for handling large and
complex datasets. NetCDF files are widely used in the atmospheric and climate science communities and are sup-
ported by many software packages. They include metadata that describe the file’s contents and allow easy data
access. NetCDF is a self-describing format, meaning the metadata are embedded within the file. This makes shar-
ing and using the data more accessible, as the metadata travel with the data. NetCDF files can be read and written
using a variety of software packages, including Python, R, and MATLAB.
The NetCDF format can be accessed and manipulated using a variety of software packages, including the follow-
ing:
– NetCDF software library – a library of programming functions for working with NetCDF files in C, Fortran, and
other programming languages;
– NetCDF4-Python – a Python package that provides access to NetCDF files using the NetCDF-4 library;
– RNetCDF – an R package that provides access to NetCDF files using the NetCDF library;
– Panoply – a Java-based application for visualizing and analyzing NetCDF files.
Some tutorials on working with NetCDF files include the following:
– Unidata NetCDF (https://www.unidata.ucar.edu/software/netcdf/),
– NetCDF4-Python (https://github.com/Unidata/netcdf4-python),
– RNetCDF (https://github.com/mjwoods/RNetCDF,
https://cran.r-project.org/web/packages/RNetCDF/RNetCDF.pdf).

HDF5
(Hierarchical
Data Format 5)

The HDF5 format was first introduced in 1997 by the National Center for Supercomputing Applications (NCSA)
at the University of Illinois Urbana-Champaign. Since then, it has become a widely used format for scientific data,
including climate data. HDF5 has undergone several revisions and updates, including supporting compression,
chunking, parallel I/O, and new features for managing large and complex datasets. HDF5 is a flexible and efficient
format that can handle various data types, including climate data. HDF5 files are portable across platforms and can
be accessed using a variety of programming languages, including Python, R, and MATLAB. However, HDF5 can
be more complex to work with than other formats, and the metadata are not always embedded within the file itself,
making it harder to share and use the data.
The HDF5 format can be accessed and manipulated using a variety of software packages, including the following:
– HDF5 software library – a library of programming functions for working with HDF5 files in C, C++, Fortran,
and other programming languages;
– h5py – a Python package that provides access to HDF5 files using the HDF5 library;
– rhdf5 – an R package that provides access to HDF5 files using the HDF5 library;
– HDF Compass – a graphical tool for exploring and editing HDF5 files.
Some tutorials on working with HDF files include the following:
– HDF Group HDF5 (https://support.hdfgroup.org/documentation/hdf5/latest/_getting_started.html),
– Python h5py (https://docs.h5py.org/en/stable/),
– R hdf5r (https://cran.r-project.org/web/packages/hdf5r/hdf5r.pdf).

ASCII
(American
Standard Code
for Information
Interchange)

ASCII is a simple text format that has been in use for decades. While there have been no significant changes to
the format, technological advances have made working with large datasets in ASCII format easier. ASCII files are
easy to read and write but can be less efficient for storing large datasets. ASCII files can be opened and edited
using any text editor, but additional processing may be required in other software packages.
Some tutorials to handle simple text files include the following:
– Python CSV (https://realpython.com/python-csv/),
– R readr (https://readr.tidyverse.org/articles/readr.html),
– MATLAB import data function (https://www.mathworks.com/help/matlab/ref/importdata.html).
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Table A1. Continued.

Data format
name

Description

GRIB
(Gridded
Binary)

The GRIB format was first introduced in the 1980s by the WMO to standardize the exchange of weather and
climate data. Since then, it has undergone several revisions and updates to address technology and user requirement
changes. The latest version, GRIB2, includes support for new data types and features for encoding and compressing
data, which can make them more compact than other formats. However, GRIB files can be more complex than other
formats and may require specialized software to read and write.
The GRIB format can be accessed and manipulated using a variety of software packages, including the following:
– ECMWF GRIB API – a software library for working with GRIB files developed by the European Centre for
Medium-Range Weather Forecasts (ECMWF);
– PyGRIB – a Python package that provides access to GRIB files using the ECMWF GRIB API;
– R package “gribtools” – a package that provides tools to manipulate, read and write GRIB files;
– wgrib2 – a command-line tool for manipulating and converting GRIB files.
Some tutorials on working with GRIB files include the following:
– ECMWF GRIB API (https://ftp.sunet.se/mirror/archive/ftp.sunet.se/pub/mac/fink/grib_api_ref.pdf),
– Python PyGRIB (https://jswhit.github.io/pygrib/),
– R rNOMADS (https://cran.r-project.org/web/packages/rNOMADS/rNOMADS.pdf).

GeoTIFF
(Georeferenced
Tagged Image
File Format)

The GeoTIFF format was first introduced in the 1990s to include georeferencing information in TIFF image files.
Since then, it has become a widely used format for storing and analyzing spatial data, including climate data. Geo-
TIFF has undergone several revisions and updates, including the addition of support for new coordinate systems
and projections and new features for managing large and complex datasets. GeoTIFF files include spatial informa-
tion, making them useful for storing and analyzing climate data that are geographically referenced. GIS software
packages widely support them and include metadata describing the coordinate system, projection, and other data
attributes. However, GeoTIFF files can be larger than other formats and may require specialized software to read
and write.
The GeoTIFF format can be accessed and manipulated using a variety of software packages, including the follow-
ing:
– GDAL (Geospatial Data Abstraction Library; can be accessed using Python, R, and other programming lan-
guages) – a software library for reading and writing geospatial data, including GeoTIFF files;
– R package “raster” – a package that provides tools to manipulate, read, and write GeoTIFF files in R;
– QGIS – a free and open-source GIS software package that includes tools for working with GeoTIFF files;
– ArcGIS: a proprietary GIS software package that includes tools for working with GeoTIFF files.
Some tutorials to help understand working with GeoTIFF files include the following:
– GDAL/OGR (https://gdal.org/tutorials/raster_api_tut.html),
– Python Rasterio (https://rasterio.readthedocs.io/en/latest/topics/index.html),
– QGIS (https://docs.qgis.org/3.16/en/docs/training_manual/index.html).

All links listed in the table were last accessed on 29 November 2024.
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