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Abstract. In this study, we use deep learning models with
advanced variants of recurrent neural networks, specifi-
cally long short-term memory (LSTM), gated recurrent unit
(GRU), and bidirectional LSTM (BiLSTM), to simulate
large-scale groundwater level (GWL) fluctuations in north-
ern France. We develop multi-station collective training for
GWL simulations, using dynamic variables (i.e. climatic)
and static basin characteristics. This large-scale approach can
incorporate dynamic and static features to cover more reser-
voir heterogeneities in the study area. Further, we investi-
gated the performance of relevant feature extraction tech-
niques such as clustering and wavelet transform decompo-
sition to simplify network learning using regionalised in-
formation. Several modelling performance tests were con-
ducted. Models specifically trained on different types of
GWL, clustered based on the spectral properties, performed
significantly better than models trained on the whole dataset.
Clustering-based modelling reduces complexity in the train-
ing data and targets relevant information more efficiently.
Applying multi-station models without prior clustering can
lead the models to preferentially learn the dominant be-
haviour, ignoring unique local variations. In this respect,
wavelet pre-processing was found to partially compensate
for clustering, bringing out common temporal and spectral
characteristics shared by all available GWL time series even
when these characteristics are “hidden” (e.g. if their ampli-
tude is too small). When employed along with prior cluster-
ing, using wavelet decomposition as a pre-processing tech-

nique significantly improves model performances, particu-
larly for GWLs dominated by low-frequency interannual to
decadal variations. This study advances our understanding of
GWL simulation using deep learning, highlighting the im-
portance of different model training approaches, the poten-
tial of wavelet pre-processing, and the value of incorporating
static attributes.

1 Introduction

Understanding the large-scale hydrological functioning of
a hydrological system is the best approach for grasping a
global view of water reserves and implementing appropri-
ate long-term management strategies (Kingston et al., 2020;
Massei et al., 2020; Muñoz-Carpena et al., 2023). However,
this approach typically requires constructing a large-scale
hydrological model capable of capturing interactions over
large areas, while respecting hydraulic continuity across the
hydrological system. The model must be able to analyse and
test, for example, the effects of different modes of exploita-
tion or any other human interventions, as well as the effects
of climate change over the long term. Building a large-scale
model implies collecting and processing a massive database
to accurately capture all the geological, oceanic, climatic,
and anthropogenic forcings that drive groundwater flow. In
addition, the numerical, physics-based representation of all
hydrological processes occurring between the surface, sub-
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surface, and groundwater remains extremely complex, par-
ticularly in large-scale modelling (Paniconi and Putti, 2015).
For these reasons, although progress has been made in this
field, applications of physics-based models are still mainly
focused on aquifers in relatively small watersheds (Massei et
al., 2020; Muñoz-Carpena et al., 2023).

Under these conditions, data-driven tools have emerged as
a valuable, or complements, for capturing the complex in-
teractions across various spatio-temporal scales. These tools
leverage large datasets without relying on physical repre-
sentations of the non-linear processes linking climatic and
hydrological signals (Hauswirth et al., 2021). Instead, they
approximate these processes using simple weight matrices
that replicate observed hydrological signals, whether at the
scale of an aquifer or a river (Vu et al., 2023). Notably, the
application of artificial intelligence (AI) algorithms, espe-
cially deep learning (DL), is expanding in hydrological sci-
ences (Nourani et al., 2014, 2023; Rajaee et al., 2019), a
trend driven by increased computational resources and the
growing availability of global datasets covering hydrological
and catchment attributes (Addor et al., 2017; Kratzert et al.,
2023). Recent studies further highlight the potential of DL
for hydrological modelling (Fang et al., 2022; Klotz et al.,
2022; Kratzert et al., 2019, 2021; Nourani et al., 2021) and
forecasting (Jahangir et al., 2023; Momeneh and Nourani,
2022; Jahangir and Quilty, 2023; Vu et al., 2023).

Data-driven approaches have been widely applied to
rainfall-runoff modelling due to the availability of exten-
sive runoff data. However, their application in groundwa-
ter studies is more challenging. The high cost of installing
piezometers and the geological complexity of underground
reservoirs, which exhibit diverse hydrodynamic behaviours
across scales, make it difficult to obtain representative data.
Additionally, linking groundwater data to specific locations
is challenging, as aquifer delineation is more complex than
catchment delineation for surface water. Groundwater sys-
tems also respond more slowly to changes, often requiring
long-term data series, and are uniquely sensitive to human
activities, such as pumping, which differ from influences on
runoff, like river straightening or dam construction. Con-
sequently, deep learning (DL) applications in groundwater
modelling are generally limited to local scales, often using
single-station data for simulation or forecasting (Chidepudi
et al., 2023b; Bai and Tahmasebi, 2023; Vu et al., 2023).

In groundwater studies, the term “global models” is some-
times used to describe models trained on data from multiple
wells or stations. However, this can be misleading, as it im-
plies a broader scope than is usually intended. In the present
study, we use the term “multi-station approach” to more
accurately describe models that integrate data from vari-
ous wells alongside external input variables. Although some
studies have explored multi-station approaches for ground-
water level (GWL) simulations, they are typically limited to
forecasting or reconstruction using data from nearby wells.
For example, Vu et al. (2021) reconstructed GWLs at single

stations based on nearby station data, and Patra et al. (2023)
developed “global models” focused on GWL forecasting. In
another study, Gholizadeh et al. (2023) demonstrated the po-
tential of LSTM combined with static attributes to simulate
both streamflow and GWL.

Furthermore, clustering methods have shown promise in
groundwater modelling, often used in hybrid models along-
side AI techniques such as self-organising maps (Nourani et
al., 2015, 2016; Wunsch et al., 2022b), K-means (Ahmadi
et al., 2022; Kardan Moghaddam et al., 2021; Kayhomayoon
et al., 2021, 2022; Nourani et al., 2023), and fuzzy C-means
(Jafari et al., 2021; Nourani and Komasi, 2013; Rajaee et al.,
2019; Zare and Koch, 2018). However, most of these stud-
ies focus on autoregressive approaches that depend on past
GWL data. The regionalisation of GWLs through clustering
and non-autoregressive DL models, which learn from com-
prehensive datasets with external variables, remains under-
explored. Multi-station approaches that integrate both static
and dynamic data or incorporate clustering have shown po-
tential for runoff modelling (Fang et al., 2022; Hashemi et al.,
2022; Klotz et al., 2022), but their utility for GWL simula-
tions across varied hydrogeological settings requires further
investigation.

To address these gaps, this study aims to provide a com-
prehensive evaluation of regional modelling approaches for
GWL simulations compared with local models, guided by
the following research questions:

a. How do generalised (multi-station) models compare
with specialised (single-station) models in simulating
GWLs?

b. Can wavelet pre-processing improve the performance of
models trained on data from multiple stations across dif-
ferent types of GWLs?

c. To what extent do static attributes or one-hot encoding
techniques enhance model generalisation across varied
GWL behaviours, and is their combined use more effec-
tive than individual applications? How do these models
compare to those trained on stations grouped by similar
spectral and temporal characteristics?

d. What are the key variables influencing model learn-
ing, particularly for capturing low-frequency variability
within high-frequency-dominated explanatory signals?

By investigating these questions, this study seeks to advance
the understanding of regional GWL modelling and to com-
pare multi-station and local approaches. This study focuses
on “simulation” rather than “forecasting” in the context of
DL applications in groundwater modelling, following the
framework developed by Beven and Young (2013), where
“simulation” aims to reproduce system behaviour without
observed outputs, and “forecasting” predicts future states
based on past observations. Our approach centres on simu-
lating GWL dynamics to improve understanding rather than
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forecasting future levels. To this end, we evaluate multi-
station models, incorporating static attributes and wavelet
pre-processing, and compare results with local models. All
experiments are conducted in a gauged setting, similar to Li
et al. (2022).

The remainder of this paper is structured as follows:
Sect. 2 presents the study area along with the datasets used,
and Sect. 3 outlines the methodology and experimental de-
sign. Section 4 assesses the models’ ability to capture varia-
tions in GWLs under different scenarios, followed by discus-
sions on result interpretability. Section 5 presents our main
conclusions and future perspectives.

2 Study area and data

The study area is approximately 80 000 km2 of northern
France, as depicted in Fig. 1. The available GWLs of climate-
sensitive wells (i.e. not strongly affected by human activities)
were obtained between 1968 and 2022 from the ADES (Ac-
cès aux Données sur les Eaux Souterraines) database (https:
//ades.eaufrance.fr/, last access: 8 September 2023; Winckel
et al., 2022). The dataset consists of 35 mixed, 23 inertial,
and 18 annual stations. All the wells considered in the study
are in unconfined aquifers. In addition, the GWL data were
clustered into three different types following the methodol-
ogy outlined by Baulon et al. (2022b), which is based on
spectral properties (i.e. characteristic timescales of variabil-
ity inherent to each cluster). These clusters are identified as
annual, mixed, and inertial, as depicted in Fig. 1. Specifically,
the first cluster exhibits a GWL pattern predominantly influ-
enced by the annual cycle, indicating an annual behaviour.
The second cluster, the mixed, shows characteristics of both
annual and interannual GWL variability. The third cluster,
the inertial, is mainly characterised by its low-frequency
GWL variability. In this study, low frequency refers to in-
terannual to decadal timescales; from now in this paper, the
term low frequency will be used to refer to such timescales.
A comprehensive list of all analysed wells, including their
identifiers, GWL types, and coordinates, is available in the
Supplement (Table S1).

We used the forcing data from ERA5, with a spatial res-
olution of 0.25°, to obtain the dynamic climate variables
(Hersbach et al., 2020). In particular, we extract seven at-
mospheric variables: 10 m zonal (W–E) u-wind component
(u10), 10 m meridional (S–N) v-wind component (v10), 2 m
air temperature (t2m), evaporation (e), mean sea level pres-
sure (msl), surface net solar radiation (ssr), and total precip-
itation (tp). These variables are among the most commonly
used inputs for hydrological and land surface models, repre-
senting atmospheric conditions, circulation, moisture fluxes
and radiative forcing (Kratzert et al., 2023). ERA5 is the best
available global reanalysis with the data available from 1940
and is generally considered adequate for capturing regional
and global hydrometeorological variations (Chidepudi et al.,

2024). Addressing the uncertainty issue of ERA5 is beyond
the scope of this paper and can be considered a complete
research work. ERA5 Reanalysis data have uncertainty re-
lated to potential regional biases; this and their use for hy-
drological modelling is still ongoing research. Particularly
in “large-sample hydrology”, precipitation is considered to
have more bias than temperature (Clerc-Schwarzenbach et
al., 2024). Nevertheless, studies conducted recently con-
cluded that ERA5 temperature and precipitation biases had
been consistently reduced compared to ERA-Interim and
were found to be quite accurate for hydrological modelling,
for instance, in the case of the conterminous US (Tarek et
al., 2020). Gualtieri (2022) highlighted that ERA5 uncer-
tainties are greatest in mountainous and coastal locations
(in the study presented herein, only 1 station out of 76 is
located within the 10–15 km from the coast). Finally, one
recent study concluded that the use of ERA5 precipitation
was recommended for all extra-tropical regions (Lavers et
al., 2022). Nevertheless, we evaluated different alternative re-
analysis products, such as the SAFRAN (Système d’Analyse
Fournissant des Renseignements Atmosphériques à la Neige)
reanalysis developed specifically for France (Vidal et al.,
2010). ERA5 and SAFRAN precipitation appeared to have
the same low-frequency timescales of variability as our GWL
time series, as displayed in Fig. 3 (this paper) and in Fig. 11
in Chidepudi et al. (2023b). ERA 5, then, is suitable for our
purpose.

In this work, we also included static attributes (Table 1
and Fig. 2) to assess whether such informative data would
help to better represent small differences between GWL time
series owing to different contexts (e.g. type of porosity, over-
all geological context, lithology, location). Static attributes
are available for different ranges of aquifer classes with dif-
ferent resolutions. We took the static attribute’s value corre-
sponding to each well’s location. Static attributes were ex-
tracted from the BDLISA (Base de Donnée des Limites des
Systèmes Aquifères) (https://bdlisa.eaufrance.fr/, last access:
19 July 2023) database, which provides point-scale informa-
tion. BDLISA is based on a mix of information from geolog-
ical maps, piezometric maps, and hydrochemistry at a scale
of 25 km. For our study, we kept information coming from
BDLISA at its original scale (25 km), which means aquifer
static attributes have a resolution of 25 km. This information
from BDLISA should be understood as a local–regional de-
scription of aquifers. Exact details of static attributes for each
GWL station can be found in Table S1.

The decision to include the relevant static attributes comes
from a trade-off between the transposability of models and
the availability of attributes, as we need to ensure that all
those variables are widely available at the required resolu-
tion. For instance, hydraulic conductivity might not be eas-
ily available everywhere, and high spatial heterogeneity that
would not be accounted for owing to available spatial reso-
lution may lead to inconsistent results (a 25 km resolution
might not be relevant when aquifers are highly heteroge-
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Figure 1. Clustering of GWL time series data (background layer: © OpenStreetMap contributors 2023. Distributed under the Open Data
Commons Open Database License (ODbL) v1.0.) based on the spectral statistical properties (Baulon et al., 2022b): station locations (top)
and representative GWL time series for each groundwater type (bottom).

Table 1. Summary of the static attributes used in the current study. A comprehensive explanation of all descriptions can be found at the URLs
provided in the third column.

Variable Description Possible values and details

Type of porosity Type of environment for a hydrogeological entity characterised
based on the level of porosity: porous, karstic, fracture, etc.

https://id.eaufrance.fr/nsa/353

Geological context at large scale Hydrogeological entity theme based on the different geological
formations: alluvial, sedimentary, volcanic, etc.

https://id.eaufrance.fr/nsa/348

Lithology Dominant rock types associated with the well location:
limestone, clay, etc.

https://id.eaufrance.fr/nsa/165

Coordinates latitude and longitude of the well location

All links in this table were accessed on 19 July 2023.

neous). Exploring the role of static attributes in more detail
would require much further work than what was conducted
in this study.

3 Methodology: from single-station to multi-station
training

3.1 Theoretical modelling background

In the present study, we explored the use of recurrent-based
deep learning models to simulate GWLs across multiple sta-
tions using different approaches as described in Sect. 3.2. We
apply three types of recurrent neural networks: long short-

term memory (LSTM; Hochreiter and Schmidhuber, 1997),
gated recurrent unit (GRU; Cho et al., 2014), and bidirec-
tional LSTM (BiLSTM; Graves and Schmidhuber, 2005),
alongside a wavelet pre-processing strategy (BC-MODWT).
Each of these methods is designed to process data that
changes over time, capturing patterns and dependencies that
occur over extended periods. In brief, LSTM has a single
memory cell and three gates (forget, input, and output) to
manage the flow of information. GRU simplifies this design,
with only two gates (reset and update), to increase computa-
tional efficiency by reducing the number of parameters com-
pared to LSTM. BiLSTM further optimises data analysis by
simultaneously processing sequences in both forward and
backward directions. These models are particularly good at
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Figure 2. Distribution of geological features by class.

identifying various patterns in data sequences, making them
ideal for simulating GWLs that change over time (Vu et al.,
2023).

We also explored the potential of wavelet decomposition
(BC-MODWT) to decompose the data into components of
varying frequencies (Fig. 3), from high to low, to provide
more detailed input to the DL models to better simulate the
GWLs. As explained in Chidepudi et al. (2023b), decompo-
sition depth (i.e. the choice of the number of components)
was constrained by the trade-off between (1) achieving a
sufficient high level of decomposition to ensure the low-
frequency variability is properly reached and (2) keeping the
number of coefficients affected by boundary conditions as
low as possible since these have to be ultimately removed
from the input time series. All input time series were decom-
posed using BC-MODWT, with a decomposition depth of 4
as in Chidepudi et al. (2023b). Figure 3 illustrates the de-
composition result for the precipitation time series. A four-
level decomposition efficiently extracted the first four so-
called wavelet details (tp_1 to tp_4), while the last fifth (so-

called smooth) tp_5 component remains of sufficiently low
frequency. It is visible that tp_5, almost invisible in the orig-
inal tp precipitation time series, corresponds well to the vari-
ability of the most inertial GWL types (Fig. 3, in red, with a
few months’ time lag with respect to tp).

3.1.1 Model training and evaluation

To maintain consistent comparison criteria across all meth-
ods evaluated in the study, Bayesian optimisation was used
for hyperparameter tuning. Details of the range of hyperpa-
rameters used are shown in Table 2. Furthermore, the range
of hyperparameters used for optimisation was standardised
across all methods, following the best practices outlined for
both standalone and wavelet-assisted models, as detailed in
Chidepudi et al. (2023b) and Quilty and Adamowski (2018).

However, we made an important update to the model archi-
tecture by setting the number of layers to one for all models,
rather than optimising it. This decision was based on find-
ings from Fig. 4, which suggested that optimising the num-
ber of layers did not significantly improve performance, in
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Figure 3. Total precipitation (tp) and its wavelet components:
high (tp_1) to low frequency (tp_5) and GWL (in red).

Table 2. Hyperparameter details (modified and adapted from
Chidepudi et al., 2023b).

Hyperparameter Value considered

Sequence length 48
Dropout 0.2
Optimiser ADAM
Early stopping 50
Number of layers 1
Hidden neurons (10, 20, . . ., 100) by 10
Learning rate (0.001, 0.01) (log values)
Batch size (16, 32, . . ., 256) by powers of 2
Epoch (50, 100, . . ., 500)

line with recent studies in related fields like rainfall-runoff
modelling (Kratzert et al., 2019, 2021). Other adjustments
included reducing the number of initialisations to 10 and set-
ting the number of trials in the Bayesian optimisation to 30.
These changes were aimed at reducing the computational re-
quirements of our approach, making it more efficient without
significantly affecting the quality of our results, and are con-
sistent with recent studies (Wunsch et al., 2022a).

The intricacies and specific technical details of the archi-
tectures of these models are well documented in the existing
body of deep learning research applied to hydrological simu-
lations, as detailed in several studies (Chidepudi et al., 2023b,
2024; Fang et al., 2022; Kratzert et al., 2021; Li et al., 2022;
Vu et al., 2023).

To further interpret and decrypt the results, we used the
SHAP or Shapley Additive Explanations approach (Lund-

berg and Lee, 2017), which is an increasingly popular game-
centric approach for explaining the outcomes of deep learn-
ing models. SHAP explains how each input feature influ-
ences the model’s simulations. It does this by highlighting
two key aspects: the importance of each variable, where a
higher mean absolute SHAP value indicates a greater impact,
and the nature of that impact, whether positive or negative.

3.2 Experimental design

This section details the experimental design used to assess
the effectiveness of training models using data from all avail-
able stations. Our study uses different strategies to incorpo-
rate numerical and categorical data into the models. The aim
is to improve the accuracy of GWL simulations by exploring
ways of incorporating regional variability into the models.
The experimental setup is structured to test different mod-
elling strategies, as described below and visualised in Figs. 5
and 6.

1. Single-station or local models (models trained and
tested individually per station). These models are
trained and evaluated on data from individual stations.
As a baseline, their performance provides a benchmark
for evaluating the effectiveness of more generalised
models. This approach is dominant in developing data-
driven models for GWL simulations and is discussed in
detail in Chidepudi et al. (2023b, 2024). The optimal
hyperparameters for all standalone and wavelet models
in the single-station approach are presented in Tables S3
and S4.

2. Multi-station models (models trained and tested to-
gether on many stations). These models are trained us-
ing data aggregated from multiple stations and tested
with different input configurations. In the first config-
uration (NO), models are trained on all stations using
dynamic variables only, excluding static attributes and
one-hot encoding. In the second configuration (OHE),
models are trained using one-hot encoding to represent
individual station ID information as binary vectors to
ensure that the specific information is obtained from
collective training. Li et al. (2022) also showed that
one-hot vector (one-hot encoding using basin ID) could
produce similar results to using catchment attributes in
gauged basin scenarios. One-hot encoding serves as an
alternative to incorporating static attributes directly into
the model (Table 3). In the third configuration (STAT:
static attributes and dynamic variables), models include
both static attributes (e.g. latitude, longitude) and dy-
namic variables as inputs, with categorical variables en-
coded similarly to one-hot encoding but represented in
separate columns for each unique value or class (Ta-
ble 4). In the fourth configuration (STAT_OHE), we
combine static attributes, one-hot encoding for well
IDs, and dynamic variables to provide a comprehensive
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Figure 4. Comparison of performance of single-layer DL models (a, c, e) and multiple-layer DL models (b, d, f) with respect to single-station
models as a reference. SA represents standalone models, while Wav represents wavelet-assisted models.

dataset for model training. In other words, it is a combi-
nation of the two input strategies above. The covariates
and input shapes for various multi-station approaches
are summarised in Fig. 5, and the exact shapes of 3D
tensors are provided in Table S5.

In addition to these configurations, we investigated the
performance of multi-station models trained on GWLs with
similar spectral statistical properties. This approach assesses
the effectiveness of models tailored to specific GWL be-
haviours compared to more generalised models using the
aforementioned strategies. For validation purposes, in this
study, the Kling–Gupta efficiency (KGE; Gupta et al., 2009)
is preferred over the Nash–Sutcliffe efficiency (NSE) and
other metrics because it offers a more comprehensive evalu-

Table 3. Example of one-hot encoding based on different wells. The
ellipses denote the usual time series data of dynamic variables.

WELL Dynamic Well_ID_1 Well_ID_2 Well_ID_3
variables

1 . . . 1 0 0
2 . . . 0 1 0
3 . . . 0 0 1

ation by integrating three aspects of model error: correlation,
bias, and the ratio of standard deviations.

For the single-station approach, the data were split into
training (80 %) and testing sets (20 %) as described in

https://doi.org/10.5194/hess-29-841-2025 Hydrol. Earth Syst. Sci., 29, 841–861, 2025
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Figure 5. Construction of the different multi-station approaches for standalone and wavelet models and associated covariates (input features).

Table 4. Example with static attributes of numeric and categorical types.

WELL Dynamic Static_1 Static_2 Category_1 Category_2 Category_3
variables (latitude) (longitude) (alluvial) (sedimentary) (mountainous)

1 . . . 5.1 9.5 1 0 0
2 . . . 2.8 10.8 0 1 0
3 . . . 5.4 9.2 0 0 1

Chidepudi et al. (2023b). Furthermore, to facilitate hyperpa-
rameter tuning, the last 20 % of the training data were used
as a validation set. For the multi-station approach, the train–
test split was also performed at each station, following the
same procedure as the single-station approach. However, the
data from all stations were then collectively combined dur-
ing the training. The rationale behind the specific train–test
split is to ensure that the models capture the multi-annual to
decadal variability in observed GWLs. To achieve this, data
spanning a minimum of 34 years (1970–2014) were used for
training, while data spanning the most recent 8.66 years (Jan-
uary 2015–August 2023) were reserved for testing. The test-
ing period was chosen to be the most recent years, allowing
for an evaluation of the model’s performance on the latest
available data. The specific dates and periods used for train-
ing and testing at each station are detailed in Table S2.

Our methodology for comparing single-station and multi-
station approaches, both with and without prior cluster-
ing based on spectral properties, is consistent with the re-
search conducted in rainfall-runoff modelling by Hashemi
et al. (2022), where the catchments were divided into five
subsets according to hydrological regimes. This comprehen-
sive experimental design aims to identify the most effective
strategies for using multi-station data in the simulation of
groundwater level variations. Detailed hyperparameters for

all the multi-station standalone and wavelet models can be
found in Tables S6–S9.

4 Capabilities, performances, and interpretability of
multi-station approaches

4.1 Different strategies for multi-station approach

All models tested in the case of this study performed more
or less equivalently and eventually yielded very satisfactory
results. This can be attested by the performance compari-
son shown in Fig. 4 (comparison of the three model types in
single-station mode) and by comparing Fig. 7 (GRU multi-
station) with Figs. A1 (LSTM multi-station) and A2 (BiL-
STM multi-station). We finally decided to favour the GRU ar-
chitecture, owing to its recognised computational efficiency
over more traditional LSTM-based architectures (Cho et al.,
2014; Cai et al., 2021; Chidepudi et al., 2023b, 2024)

Figure 7 shows the results of different GRU model config-
urations for simulating GWLs. The first row shows the per-
formance of the standalone GRU model for different GWL
categories, while the second row shows the wavelet-assisted
GRU results.

Several observations can be made from Fig. 7. Wavelet
pre-processing generally improves model performance, espe-
cially in the inertial GWL category, where cumulative distri-
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Figure 6. Comparison of different approaches adopted in the cur-
rent study: single station (top), multi-station without clustering
(middle), and multi-station with clustering based on spectral prop-
erties (bottom). (Background layer: © OpenStreetMap contributors
2023. Distributed under the Open Data Commons Open Database
License (ODbL) v1.0.)

bution functions (CDFs) are steeper and shifted to the right,
indicating a higher proportion of simulations with high per-
formance. This is in line with previous findings as already
reported in our previous works (Chidepudi et al., 2023a,
2024). This demonstrates the wavelet decomposition abil-
ity to extract “hidden” inertial dynamics features which fa-
cilitate their assimilation by the model in the learning pro-
cess. In other words, the improvement attributed to wavelet
pre-processing becomes more pronounced as we move from
annual to mixed and then further to inertial behaviour. This
is because in the case of annual-type GWL, the dominant
variability (annual cycle) is already well expressed in sev-
eral input variables (e.g. t2m, msl, ssr). In the case of mixed-
and inertial GWL types, the dominant low-frequency vari-
ability, while also present, is barely expressed, almost “hid-
den”, in the input data and becomes prominent in GWL due

to the low-pass filtering action of aquifers (Baulon et al.,
2022a; Schuite et al., 2019). Wavelet decomposition allows
the unravelling of such hidden information, helping the neu-
ral networks to reach it for enhanced learning. This is illus-
trated in Fig. 3 with the low-frequency component of pre-
cipitation (tp5) matching the variations of one inertial-type
GWL (in red, with a few months’ lag time), whereas it is
masked by other higher-frequency components in the origi-
nal precipitation time series (tp). The combination of static
attributes and OHE gives competitive results, particularly in
the inertial category, demonstrating the effectiveness of this
method without the need for prior clustering of GWL be-
haviour. Multi-station models, when trained separately for
each GWL cluster, generally outperform those trained on
aggregated data. This is reflected in higher KGE values for
cluster-specific models, suggesting a better representation of
the unique characteristics of each GWL type. However, this
advantage diminishes for mixed GWLs, which are the major-
ity in the study area. Although single-station models perform
best for all GWL types, some multi-station models approach
or match their performance, highlighting their potential for
regional-scale GWL simulations. For the annual GWL cat-
egory, models trained on mixed GWL data without wavelet
pre-processing and relying solely on static attributes do not
show significant performance improvements, suggesting that
static features alone may not adequately represent the dy-
namic nature of groundwater behaviour.

Figures 8–10 show the best GWL simulations obtained of
different types (annual, mixed, and inertial) for single and
multi-station models. For those particular cases, both ap-
proaches perform similarly and lead to good performance.
However, the single-station modelling seems to perform best
for inertial GWL type for training by simple visual assess-
ment, and it is clear from the comparison of KGE values of
all stations (Fig. 7) that the more specialised single-station
models generally gave the best results overall, although not
significantly. This is more specifically true for inertial GWL,
where regional model performances reach the same level as
single-station models. While single-station models perform
well, multi-station models are valuable when single-station
modelling is impractical due to data limitations or compu-
tational requirements. For instance, for inertial types where
the length of training data might be an issue (e.g. Chidepudi
et al., 2024), the performance of the wavelet multi-station
models was completely comparable to single-station mod-
els (Fig. 7, wavelet models/inertial types), showing that in
the case of data limitation, the regional approach seems to
compensate for the lack of temporal depth of available time
series.

In summary, wavelet-assisted GRU models are particularly
effective, especially for low-frequency dominated GWL be-
haviour, and multi-station models designed for specific GWL
types (i.e. training over specific pre-clustered datasets) gen-
erally outperform generalised models. The multi-station ap-
proach is sensitive to the dominant GWL type in the training
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Figure 7. CDF comparison of KGE values of the GRU with different approaches and GWL types.

Figure 8. Results with wavelet-assisted GRU in the annual type of GWLs through (a) single-station and (b) multi-station models trained on
the annual type of GWLs with static attributes and OHE.
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Figure 9. Results with wavelet-assisted GRU in the mixed type of GWLs through (a) single-station and (b) multi-station models trained on
the mixed type of GWLs with static attributes and OHE.

Figure 10. Results with wavelet-assisted GRU in the inertial type of GWLs through (a) single-station and (b) multi-station models trained
inertial type of GWLs with static attributes and OHE.
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dataset, with the best results identified in models trained for
the predominant mixed GWL type. To address the issue of
models learning dominant behaviour in the collective train-
ing of multi-station approaches, future investigations may in-
volve generating synthetic time series with randomised am-
plitude changes of constituting frequencies to increase the
dataset while balancing all the important behaviours. This
could also help in understanding the influence of the size of
the dataset on using multi-station approaches.

4.2 Understanding GWL simulations through SHAP
interpretability

This section deals with a deeper understanding of the sim-
ulations from the insights obtained from the SHAP analy-
sis on the model’s interpretability. Here, we investigated the
key contributing factors for GWL simulations in different ap-
proaches that were previously evaluated above in terms of
accuracy.

Figure 11a shows the SHAP representative summary plot
for the standalone models using a single-station approach.
These plots highlight the influence of different variables/at-
tributes on the final simulation. In particular, the distribution
of data points on the SHAP diagram indicates either a pos-
itive (right side on the x axis) or negative (left side on the
x axis) impact on the output variable. In contrast, the colour
scale indicates the range of feature values in which red rep-
resents large values, and blue represents small ones of the
corresponding feature. Features (input variables) are organ-
ised from the most to the least influencing, from top to bot-
tom, based on each feature’s mean absolute SHAP values.
For instance, in Fig. 11a, total precipitation (tp) is the most
influencing feature on the GWL output, and the large feature
values on the right (red) correspond to a positive influence on
GWL (high GWL with high total precipitation). On the left
side, negative tp SHAP values indicate lower precipitation
values contributing to the low GWLs.

From the analysis of Figs. 12 and 13, several notable pat-
terns emerge regarding the contribution of different variables
to GWL simulations using standalone models and those with
wavelet pre-processing and the impact of clustering as well
as pre-clustering based on spectral statistical properties.

In single-station standalone models, SHAP analysis shows
that certain variables consistently influence GWL simula-
tions, although their order of importance can change. Total
precipitation (tp) emerges as the key factor, with surface net
solar radiation (SSR) occasionally overtaking tp in impor-
tance, particularly in mixed GWL clusters. This is especially
evident in models trained on clusters, along with static fea-
tures, or one-hot encoding (OHE). Nonetheless, tp and SSR
are the primary drivers in these simulations.

In multi-station standalone models without clustering, tp
and SSR lead in importance among all variables, followed
by wind speed at 10 m (v10), evaporation (e), and air temper-
ature close to the ground (2 m temperature, t2m), which vary

in their influence. Notably, v10 plays a bigger role in mod-
els in multi-station approaches. When models are trained on
clusters, evaporation becomes more significant, yet the im-
pact of clustering on variable importance is generally minor.

The spectral statistical characteristics (amplitude of high
and low frequencies) were used for the pre-clustering of
GWLs. These characteristics are related to the filtering of the
input signal by the physical properties of the hydrological
system. This highlights the importance of pre-clustering in
capturing the physical characteristics of basins and suggests
that it may be preferable to cluster based on these properties
rather than relying on static attributes, especially when the
relevance of static attributes is uncertain.

SHAP analyses show that standalone models maintain
similar variable importance rankings even after cluster-
ing with static attributes and OHE. However, wavelet pre-
processing shifts the importance towards dynamic compo-
nents, reducing the contributions of static features or OHE.
When clustering is combined with wavelet pre-processing,
low-frequency precipitation components emerge as key con-
tributors, improving model performance.

When models are trained after clustering, low-frequency
components (e.g. tp_5, t2m_5) are prioritised in mixed and
inertial clusters: components not seen without clustering.
Annual types prioritise relevant frequencies (1 to 3), con-
sistent with single-station model patterns. The addition of
static attributes to the OHE does not significantly alter the
contributions, suggesting a dominance of dynamic variables
after decomposition. Also, differences among multi-station
approaches after clustering are minimal for both standalone
and wavelet models.

Wavelet pre-processing performs a similar function to pre-
clustering based on spectral properties by revealing infor-
mation across all frequencies, including low-amplitude fre-
quencies that may be obscured. The order of best approaches
is based on the results: wavelet and pre-clustering, followed
by pre-clustering only, then wavelet only, and finally stan-
dalone, highlighting the effectiveness of this approach.

There is a clear pattern when clustering is applied; without
clustering the high-frequency component of the 2 m temper-
ature (T2m_1) is dominant. Multi-station models show less
diversity in variable contributions than single-station models.
The exception is the Stat_OHE without clustering approach,
which uniquely captures low-frequency information from
T2m_5 and e_4. Otherwise, the static and NO approaches
gave similar results.

The influence of static attributes or OHE appears to be
minimal, possibly due to the high dimensionality introduced
by numerous dynamic and static attributes. This observa-
tion suggests that future research could investigate alterna-
tive methods, such as target encoding, to address this di-
mensionality issue. It is also true that deeper investigation
on the most relevant static attributes linked to hydrologic
response could be conducted. Yet the purpose of this study
was not to determine the forcing factors of GWL variations;
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Figure 11. SHAP summary plot examples for single-station models (a) and multi-station models with static attributes (b). The colour bar
shows the range of feature values, with red depicting larger values and blue referring to smaller ones.

in this aim, a more comprehensive evaluation of such links
would require specific approaches that have been undertaken
and presented in several previous works (Lee et al., 2019;
Heudorfer et al., 2019; Liesch and Wunsch, 2019; Haaf et
al., 2020; Giese et al., 2020). In some of our previous works
(albeit for the Normandy region only), the linkages between
GWL variability and potential forcing factors, such as the
thickness and lithology of surficial formations, aquifer thick-
ness, vadose zone thickness, upstream/downstream location
along the flow path, distance to the river, and presence of
karst, were investigated using dedicated approaches com-
bining multivariate analysis, clustering, and spectral analy-
sis of GWL time series (Slimani et al., 2009; El Janyani
et al., 2012, 2014). These studies showed that GWL dy-
namics could be related to some basin and aquifer proper-
ties, although these relationships remained rather complex.
In a recent study, Haaf et al. (2023) developed an innova-
tive methodological approach for modelling GWL at unmon-
itored locations using basin properties and machine learn-
ing on a daily time-step basis for alluvial aquifers with hy-
draulic conductivity that is quite high overall (median around
10−2 ms−1). Their models performed quite well in represent-
ing GWL variations at both intra- and interannual timescales
using physiographic, land cover and geological characteris-
tics. However, the amplitude of low-frequency, interannual
to decadal variability of the dataset used in their study was
much lower than what could be encountered in our monthly
time-step database. The specific type of aquifer that Haaf et
al. (2023) investigated likely explains their high sensitivity to
many surface processes. In our study, alluvial aquifers only
represented approximately 10 % of the GWL stations (8 over

76 stations) and were only of annual (3 stations) or mixed (4
stations) types. Almost all other wells were located in chalk
or limestones.

In the framework of our study, we decided to exclude char-
acteristics such as vadose or saturated zone thickness. Such
variables have been used in previous studies (El Janyani et
al., 2012, 2014; Haaf et al., 2023) and considered static (av-
eraged over long periods of time) to investigate the impact
of (hydro)geological and geomorphologic characteristics on
GWL behaviours. However, in our study, it was not rele-
vant to consider such characteristics as “static” since they are
linked to the varying GWL which we aim to simulate. Other
types of static characteristics reflecting the hydraulic prop-
erties of the aquifers, such as hydraulic conductivity, trans-
missivity, porosity, or storativity, were also discarded. While
informative in terms of hydrological knowledge, it is likely
that (1) their availability may not be guaranteed over large
areas, hence limiting their usefulness, and (2) their represen-
tativeness as numeric values might be questionable in con-
texts where spatial heterogeneity is high: in such cases, more
general qualitative descriptors such as “fissured” or “porous”
might be preferable, as using precise values of hydraulic con-
ductivity, etc., would likely make the models very sensitive
to hydraulic heterogeneity, which can not be accounted for
so precisely. In addition, in a recent and relevant study on
“entity-aware deep learning models with static attributes,”
Heudorfer et al. (2024) highlighted that the models devel-
oped did not actually show any entity awareness and even-
tually utilised static attributes as simple identifiers (almost
similar to the OHE approach presented herein), meaning that
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Figure 12. Top four important variables by cluster for standalone GRU models with different approaches. On the y axis, percentage of
stations for each variable within the cluster.

the models did not make use of relevant and precise (hy-
dro)geological information.

Although the added value of static variables was found
to be marginal in the present study, they may prove useful
in settings where no measurement is available. Further re-
search is required to determine their utility in simulating such
ungauged hydro systems. The approaches presented (except
OHE) may apply to ungauged aquifers but require valida-
tion in a pseudo-ungauged environment. The use of data from
multiple stations can enrich the dataset, improving the repre-
sentation of groundwater systems and the robustness of the
models. This multi-station approach also allows the model to
be applied to areas without GWL monitoring, thereby cap-
turing regional dynamics. However, single-station modelling

remains important for understanding local interactions. The
choice of method should, therefore, be guided by research
objectives, data availability, and the hydrogeological context.
Where clustering results in too many groups, future studies
should consider fine-tuning the general model for each clus-
ter, following the approach of Anderson and Radić (2022).

5 Concluding remarks

This study has explored different multi-station approaches
to GWL simulations with emphasis on the use of static
attributes, one-hot encoding, and the combination of both
while training on all available data or by training on each
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Figure 13. Top four important variables in regional GRU wavelet-assisted models trained with different approaches for different classes:
wavelet components of each variable are denoted by the numbers 1 to 5, where 1 represents highest frequency and 5 represents the lowest.

GWL type based on the clustering. Our results highlight the
potential of these approaches compared to the traditional
single-station approach with and without the use of BC-
MODWT. Key findings from this research highlight the ad-
vantages of clustering based on spectral properties, which
significantly improve the results of multi-station models, sur-
passing those of general models. As highlighted above, clus-
tering should be preferred over the use of static attributes,
as the use of static attributes alone may not be sufficient
to effectively distinguish different behaviours. Wavelet pre-
processing is very effective at extracting relevant information
at all timescales, allowing low-frequency dominated GWLs
to be handled with increased accuracy. The combination of
clustering and wavelet pre-processing produced the most ac-

curate simulations, indicating that wavelet pre-processing
likely captured key information needed for accurate mod-
elling.

The study also showed that a multi-station approach, with-
out clustering, should be used cautiously, as models tend to
adopt dominant behaviour, which may not always be desir-
able. In scenarios where wavelet pre-processing is not ap-
plied, the combination of static attributes and OHE demon-
strated promising results, particularly for GWLs dominated
by low-frequency variability. However, the minimal effect of
static attributes or OHE observed in wavelet-assisted models
may be due to the high-dimensional nature of these variables
(due to wavelet decomposition that increases the number of
covariates), suggesting a potential avenue for future research

https://doi.org/10.5194/hess-29-841-2025 Hydrol. Earth Syst. Sci., 29, 841–861, 2025



856 S. K. R. Chidepudi et al.: Training deep learning models with a multi-station approach

to explore alternative encoding strategies, such as target en-
coding. SHAP analyses consistently identified key contrib-
utors across models, with clustered models highlighting the
pivotal role of low-frequency components, especially precip-
itation and temperature, in achieving superior simulations for
inertial and mixed types of GWL.

In this article, we introduced the following question: “what
is the best way to leverage regionalised information?”. Our
results suggest that this is highly dependent on the specific
characteristics of the dataset, particularly the quantity and
types of static attributes. It is generally expected that a much
higher number of static attribute types would allow for a
much better improvement of the multi-station simulation ap-
proach. However, our findings indicate that the most signif-
icant improvements in multi-station simulation approaches
come from wavelet analysis and clustering techniques. The
inclusion of static attributes provides minor additional en-
hancements, which can be valuable but are not the primary
drivers of improvement. These findings align with those of
Heudorfer et al. (2024), who found no substantial improve-
ments using around 28 static features (including 18 environ-
mental and 10 time-series-based). Also, as pointed out by
these authors, employing static attributes for model train-
ing might be more relevant in applications involving larger
scales (i.e. a spatial case that compasses variety of geological
contexts as in continental or global) and/or more extensive
datasets. Moreover, one must remember that a trade-off must
be found between the number of static attributes required
and data availability, especially for applications at ungauged
sites. However, the use of static attributes and OHE yielded
similar results in the gauged scenario and proved efficient
in accounting for local station information, which aligns
with the findings of Heudorfer et al. (2024). On the other
hand, in the study presented herein, wavelet pre-processing
allowed for deciphering the “hidden” dynamic components
of GWL variability (i.e. by separating low-frequency varia-
tions from annual or intra-annual variability), which eventu-
ally corresponded to taking into account the influence of (hy-
dro)geological, geomorphological and physiographic prop-
erties. Ultimately, the latter, which varies across the study
region, operates a differential filtering effect of the input sig-
nals. Pre-clustering the dataset also yielded significant im-
provements that were even more noticeable when combined
with wavelet pre-processing. However, owing to its capabil-
ity of leveraging pre-processing the different frequency com-
ponents in the time series of the whole dataset, wavelet pre-
processing somehow acts in the same way as pre-clustering,
which consists of grouping inertial (i.e. low-frequency dom-
inated), mixed, and annual time series in different clusters.

In summary, although the study has led to a better under-
standing of GWL simulation approaches with limited static
attributes, further research is needed to explore the potential
influence of other physical basin properties, such as the thick-
ness of overlying formations, altitude, and distance from the
sea. It should also be pointed out that clustering can be a
source of information on the physical properties of the basin.
Indeed, the three groups determined in this study based on
spectral properties indirectly carry information on the modal-
ities of water transfer in the shallow formations and aquifer,
which are controlled by the hydraulic properties of the basin.
The study of the importance of using static data in groundwa-
ter modelling using deep learning tools needs to be extended
to cover level prediction at sites with no piezometers. The
insights gained here pave the way for future efforts to sim-
ulate GWLs in unmonitored or new locations, taking advan-
tage of the robustness offered by multi-station models while
recognising the value of single-station models for capturing
local-scale interactions. Finally, it is noticeable through our
study that the overall approach is compatible with a frugal
AI approach (keeping in mind that our datasets are very small
compared to classical big datasets from other fields like natu-
ral language processing): compact networks were tested and
preferred (one layer), and Bayesian optimisation was used in-
stead of grid search for hyperparameter tuning. In addition,
multi-station approaches pave the way for transfer learning,
reducing the need for specialised models and retraining new
models. The way forward is clear: to improve the GWL sim-
ulations efficiently, we may need to adopt a nuanced mix of
efficient input signal pre-processing, potentially new encod-
ing strategies or a more straightforward way like physics-
informed neural networks to incorporate all possible addi-
tional knowledge of the system, and possibly clustering. Yet,
we would recommend using advanced pre-processing over
clustering, which would allow for leveraging the same type
of information while preventing the dataset from being sepa-
rated and its size from being reduced.

Hydrol. Earth Syst. Sci., 29, 841–861, 2025 https://doi.org/10.5194/hess-29-841-2025



S. K. R. Chidepudi et al.: Training deep learning models with a multi-station approach 857

Appendix A: Results from LSTM and BiLSTM

Figure A1. CDF comparison of KGE values of the LSTM with different approaches and GWL types.

Figure A2. CDF comparison of KGE values of the BiLSTM with different approaches and GWL types.
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