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Figure S1: Locations of each of the four land covers with the highest number of detected flash drought events from 2000-2020,
as studied in Figure 1. Only pixels with at least one detected flash drought event are shown in colour. While this figure is
based on the land cover map from 2020 as an illustration, interannual variations in land cover are accounted for in the flash
drought composite analyses.
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Figure S2: Additional variables to accompany Figure 2. Each variable is composited over all flash droughts during the
period 2000-2020 with onset dates during the peak growing season, for the four land cover classes with the highest numbers
of events. The R,, composites shown here are identical to those in Figure 2, reproduced to provide context for the downwelling
shortwave (SW) radiation anomalies.



Table S1: Summary of datasets composited around flash drought event onsets.

Variable

Data source

Years used

Temporal resolution

Surface soil moisture

ESA CCI Soil Moisture combined
active/passive v08.1 (Dorigo et al.,
2017; Gruber et al., 2019;
Preimesberger et al., 2021)

2000-2020

Running pentad mean of
daily data

Land surface temperature

ESA CCI MODIS (Moderate resolution
Infra-red Spectroradiometer) on Aqua,
level 3 collated (L3C) global product
v4.00 (Ghent et al., 2019)

Jul 2002-Dec 2020

Daily (approx 1330 local
solar time), clear-sky only

ESA CCI All-weather MicroWave Land | 2000-2020 Daily at 1800 local solar
Surface Temperature (MW-LST) global time
data record v2.33 (Jimenez and
Prigent, 2023)
2m air temperature ERAS5 (Hersbach et al., 2020) 2000-2020 Daily maximum between

1200-1800 local solar time
(from hourly data)

Sensible heat flux (AT)

Computed as LST-T2m from ESA CCI
LST MODIS Aqua v4.00 and ERAbS
T2m

Jul 2002-Dec 2020

Daily (approx 1330 local
solar time), clear-sky only

Computed as LST-T2m from ESA CCI
MW-LST v2.33 and ERA5 T2m

2000-2020

Daily at 1800 local solar
time, all-sky

Precipitation GPM IMERG v06 (Huffman et al., Jun 2000-Dec 2020 | Daily
2019)
Latent heat flux GLEAM 4.2a (Miralles et al., 2025) 20002018 Daily
Root-zone soil moisture GLEAM v4.2a (Miralles et al., 2025) 20002018 Daily
Standardised Evaporative | GLEAM v4.2a (Miralles et al., 2025) 2000-2020 Daily
Stress Ratio
ERAS5 (Hersbach et al., 2020) 2000-2020 Daily
Vapour pressure deficit ERAS5 (Hersbach et al., 2020) 2000-2020 Daily mean between
1200-1800 local solar time
(from hourly data)
10m wind speed ERA5 (Hersbach et al., 2020) 20002020 Daily mean between

1200-1800 local solar time
(from hourly data)

Net radiation at surface CERES SYNldeg-Day Edition 4A Mar 2000-Dec 2020 | Daily
(Rutan et al., 2015)
Surface downwelling CERES SYNldeg-Day Edition 4A Mar 2000-Dec 2020 | Daily

shortwave radiation

(Rutan et al., 2015)

Vegetation Optical Depth

Vegetation Optical Depth Climate
Archive (VODCA) v2, CXKu-band
(Zotta et al., 2024)

2000-2020

Daily (night-time only)

Solar Induced
Fluorescence

Spatially downscaled GOME-2
(Duveiller et al., 2020), using retrieval
method of (Kdhler et al., 2015)

2007-2018

8-daily

Spatially downscaled GOME-2
(Duveiller et al., 2020), using retrieval
method of (Joiner et al., 2013)

2007-2018

8-daily
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Figure S3: Additional variables to accompany Figure 3. Each panel shows a composite over all events in rainfed cropland
during the period 2000-2020. Events are split into quartiles based on the maximum AT anomaly (computed with MODIS
Aqua LST) 0-20 days after onset. All composites have been smoothed with a 10-day running mean. In (f), VPD is computed
from ERA5 2m air temperature and 2m dewpoint temperature.
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Figure S4: Evolution of land-atmosphere variables during flash droughts as in Figure 3, but for all events occurring in
shrubland. Each panel splits the events into quartiles based on the maximum AT anomaly (computed with MODIS Aqua
LST) 0-20 days after onset. All composites have been smoothed with a 10-day running mean.
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Figure S5: Additional variables to accompany Figure S4. Each panel shows a composite over all events in shrubland during
the period 2000-2020. Events are split into quartiles based on the maximum AT anomaly (computed with MODIS Aqua
LST) 0-20 days after onset. All composites have been smoothed with a 10-day running mean.
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Figure S6: Evolution of land-atmosphere variables during flash droughts as in Figure 3, but for all events occurring in
grassland. Each panel splits the events into quartiles based on the maximum AT anomaly (computed with MODIS Aqua
LST) 0-20 days after onset. All composites have been smoothed with a 10-day running mean.
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Figure S7: Additional variables to accompany Figure S6. Each panel shows a composite over all events in grassland during
the period 2000-2020. Events are split into quartiles based on the maximum AT anomaly (computed with MODIS Aqua
LST) 0-20 days after onset. All composites have been smoothed with a 10-day running mean.
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Figure S8: Evolution of land-atmosphere variables during flash droughts as in Figure 3, but for all events occurring in
broadleaf deciduous tree cover. Each panel splits the events into quartiles based on the maximum AT anomaly (computed
with MODIS Aqua LST) 0-20 days after onset. All composites have been smoothed with a 10-day running mean.
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Figure S9: Additional variables to accompany Figure S8. Each panel shows a composite over all events in broadleaf deciduous
tree cover during the period 2000-2020. Events are split into quartiles based on the maximum AT anomaly (computed with
MODIS Aqua LST) 0-20 days after onset. All composites have been smoothed with a 10-day running mean.
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Figure S10: Distribution of P (Q4 > Q1) for 10000 cluster bootstrap samples, to test the relationship between peak sensible
heat flux and air temperature for each region shown in Figure 5a. Probabilities above 0.5 indicate that peak temperature
anomalies associated with the highest quartile of peak sensible heat fluxes are stochastically larger than those associated
with the lowest quartile of peak sensible heat fluxes. The solid red vertical line shows the value of P (Q4 > Q1) for the actual
observed pixels (i.e., no resampling). The dashed red line shows the lower end of the one-tailed 95% confidence interval. The
number of clusters in the region is indicated below each legend.

Cluster bootstrapping for identifying land surface feedbacks to air temperature

Flash drought events identified at the 0.25° scale are not all independent of one another due to the fact that many occur
as part of events with a larger spatial scale. Therefore, when testing whether the distributions of peak air temperature
anomalies differ between events with weak and strong sensible heat flux anomalies, we use a cluster bootstrapping method,
which accounts for clusters of 0.25° events not being independent (Davison and Hinkley, 1997; Field and Welsh, 2007; Ren
et al., 2010). We define clusters by aggregating any 0.25°-scale pixels that are in flash drought conditions on the same day
and are within 7 pixels’ distance of each other (equivalent to approximately 200 km). Through this aggregation procedure,
hundreds of pixels across multiple weeks may be identified as belonging to the same cluster. We assume that events occurring
in different clusters are independent.

We use the Mann-Whitney U test to determine whether peak air temperature anomalies are higher for events in quartile
4 (Q4) of peak sensible heat flux anomalies than for those with Q1 sensible heat flux. This is a non-parametric, ranking-
based test, which, for two distributions X and Y, computes the probability that a randomly selected observation from X
will be larger than a randomly selected observation from Y (Mann and Whitney, 1947). We denote the probability that a
temperature drawn from the distribution based on Q4 sensible heat fluxes is higher than one drawn from Q1 by P (Q4 > Q1).

For each region tested, we perform 10000 bootstrap iterations. Each iteration is conducted as follows. There are n
clusters of events in the region. From these, we sample n clusters with replacement. Within the cluster, we sample without
replacement, i.e. we simply include all 0.25° events; this method has been found to be preferable to performing an additional
sampling-with-replacement step within clusters (e.g. Davison and Hinkley, 1997, p. 100-102). All events from the resampled
clusters are pooled and P (Q4 > Q1) is calculated for this dataset. In this way, we obtain 10000 values of P (Q4 > Q1),
representing the results if different sets of large-scale flash droughts had been observed from within the overall population.

Figure S10 shows the distributions of these P (Q4 > Q1) values for each of the three regions studied. We compute a
one-tailed confidence interval, since we wish to test only for the possibility that higher sensible heat fluxes increase peak
temperatures. The lower bound of this interval is determined by the value of P (Q4 > Q1) that is exceeded by 95% of the
bootstrap samples. For all three regions, the 95% confidence interval lies entirely above 0.5, so we conclude that events in the
highest quartile of peak sensible heat flux anomalies have higher peak air temperature anomalies than events in the lowest
quartile.

An analogous procedure is performed to test whether lower precursor VOD anomalies are associated with higher peak
temperature anomalies, this time computing P (Q1 > Q4). The resulting distributions for each region are shown in Figure
S11. For West Africa (in JJA) and East Africa (in MAM), the 95% confidence interval for P (Q1 > Q4) lies entirely above
0.5, so we conclude that events with precursor VOD in the lowest quartile (i.e. lowest vegetation water content) exhibit
higher air temperature anomalies during the peak of the flash drought months later, compared to events with precursor VOD
in the highest quartile. For Southern Africa (DJF), the 95% confidence interval overlaps 0.5 so we cannot conclude that
there is a significant difference in temperature anomaly distributions between the VOD quartiles.
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Figure S11: Distribution of P (Q1 > Q4) for 10000 cluster bootstrap samples, to test the relationship between precursor
VOD and peak air temperature for each region shown in Figure 5a. Probabilities above 0.5 indicate that peak temperature
anomalies associated with the lowest quartile of precursor VOD (30-60 days before onset) are stochastically larger than
those associated with the highest quartile of precursor VOD. The solid red vertical line shows the value of P (Q1 > Q4) for
the actual observed pixels (i.e., no resampling). The dashed red line shows the lower end of the one-tailed 95% confidence
interval. The number of clusters in the region is indicated below each legend.
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Figure S12: Probability distributions of maximum T2m standardised anomalies during flash droughts, stratified by quartiles
of precursor sensible heat flux (30-60 days before drought onset, computed as AT = MODIS Aqua LST - ERA5 T2m),
for each region shown in Figure 5a. Red distributions indicate events with higher precursor sensible heat flux and blue
distributions indicate events with lower precursor sensible heat flux. The number of 0.25° flash drought events in each
region/season for which both AT and T2m data are available is denoted by n.
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Figure S13: Distribution of P (Q1 > Q4) for 10000 cluster bootstrap samples, to test the relationship between precursor
AT (computed using MODIS Aqua LST) and peak air temperature for each region shown in Figure 5a. Probabilities above
0.5 indicate that peak temperature anomalies associated with the highest quartile of sensible heat flux (30-60 days before
drought onset, computed as AT = MODIS Aqua LST - ERA5 T2m) are stochastically larger than those associated with
the lowest quartile of precursor sensible heat flux. The solid red vertical line shows the value of P (Q4 > Q1) for the actual
observed pixels (i.e., no resampling). The dashed red line shows the lower end of the one-tailed 95% confidence interval. The
number of clusters in the region is indicated below each legend.
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