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Abstract. The transferability of hydrological models over
contrasting climate conditions, also identified as model ro-
bustness, has been the subject of much research in recent
decades. The occasional lack of robustness identified in such
models is not only an operational challenge – since it af-
fects the confidence that can be placed in projections of cli-
mate change impact – it also hints at possible deficiencies in
the structures of these models. This paper presents a large-
scale application of the robustness assessment test (RAT) for
three hydrological models with different levels of complex-
ity: GR6J, HYPE and MIKE SHE. The dataset comprises
352 catchments located in Denmark, France and Sweden.
Our aim is to evaluate how robustness varies over the dataset
and between models and whether the lack of robustness can
be linked to some hydrological and/or climate characteris-
tics of the catchments (thus providing a clue as to where to
focus model improvement efforts). We show that, although
the tested models are very different, they encounter similar
robustness issues over the dataset. However, models do not
necessarily lack robustness in the same catchments and are
not sensitive to the same hydrological characteristics. This
work highlights the applicability of the RAT regardless of
model type and its ability to provide a detailed diagnostic
evaluation of model robustness issues.

1 Introduction

1.1 Hydrological modelling under climate change

Several recent international initiatives have raised concerns
about the issue of model robustness in hydrology. By model
robustness we mean the ability of a hydrological model to
adapt to contrasting climate conditions. For example, the
Panta Rhei decade of the International Association of Hy-
drological Sciences (IAHS) (Montanari et al., 2013) and the
Unsolved Problems in Hydrology (UPH) initiative of Blöschl
et al. (2019) (see e.g. UPH no. 19: How can hydrological
models be adapted to be able to extrapolate to changing con-
ditions?) questioned the applicability of hydrological models
in the context of global change. In parallel, a large number of
hydrological modelling studies have been carried out to un-
derstand how climate change impacts hydrology (see e.g. the
Intergovernmental Panel on Climate Change – IPCC – and
Pachauri et al., 2014), and it seems essential to verify that
the models used for this purpose withstand non-stationary
climate conditions.

Over the past decade, several publications (e.g. Refsgaard
et al., 2014; Thirel et al., 2015) have highlighted that hy-
drological models are not as independent of climate con-
ditions as was expected. Indeed, models can be sensitive
to the climate conditions of the period in which they were
set up or calibrated (see e.g. Vaze et al., 2010; Coron et
al., 2011). This dependency can be revealed using the split-
sample-testing (SST) approach proposed by Klemeš (1986),
which consists in testing the model on different time periods
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for calibration or evaluation (see Sect. 1.2). In split-sample
experiments, model performance commonly decreases when
switching from the calibration period to the evaluation pe-
riod, and it has been shown that this decrease is intensified
when the difference in climate conditions between periods
increases (Brigode et al., 2013; Westra et al., 2014).

Different ad hoc solutions have been proposed to address
this symptom. Varying the parameter values according to cli-
mate conditions is one such solution. For example, Gharari et
al. (2013) proposed a method to calibrate time-consistent pa-
rameters based on the distance to the Pareto optimum, while
other studies focused on time-variant parameters linked to
climate conditions (Stephens et al., 2019; Zeng et al., 2019;
Lan et al., 2020). Although these methods make it possible to
improve robustness, they are not curative. That is, they serve
as a “patch” for models that need to withstand changes in
climate. They do not explain the reasons for the symptoms:
why do model parameters exhibit this kind of unwanted de-
pendence on climate, and why does this occur in some catch-
ments and not in others?

1.2 Assessing model robustness from the perspective of
a changing climate

In hydrological practice, model robustness has traditionally
been assessed using SSTs (Klemeš, 1986). Klemeš (1986) in-
troduced four levels of an SST, of which the third one, called
a differential SST (DSST), aimed to evaluate a model over
a period where the climate conditions differ from those of
the calibration period. After a few early attempts to apply the
DSST scheme (e.g. Refsgaard and Knudsen, 1996; Donnelly-
Makowecki and Moore, 1999; Xu, 1999; Seibert, 2003), this
test was more extensively used over the past decade to check
the robustness of rainfall–runoff models in a changing cli-
mate (Vaze et al., 2010; Broderick et al., 2016; Dakhlaoui et
al., 2017; Rau et al., 2019).

In addition, some authors proposed improvements to the
DSST. Coron et al. (2012) suggested a generalized version
of the SST (GSST) designed to evaluate models over all
possible combinations of time periods. Gelfan and Million-
shchikova (2018) introduced in the DSST a component that
depends on model performance to avoid selecting appar-
ently robust models with poor performances. Dakhlaoui et
al. (2019) proposed a generalized differential SST (GDSST)
by adding a bootstrap selection tool to create a number of
contrasting climatic sub-periods. Gelfan et al. (2020) pro-
posed a more complex evaluation strategy that uses a DSST
in one step of the analysis. All of the aforementioned meth-
ods remain linked to the SST and include one or several cali-
bration steps. However, the use of calibration and evaluation
periods is not always suitable for assessing the robustness of
models that are calibrated manually, that have complex cali-
bration procedures or that even have no calibration at all.

When searching for a more widely applicable methodol-
ogy, Nicolle et al. (2021) proposed a test inspired by the

GSST of Coron et al. (2012) and by the subsequent work
of Coron et al. (2014): the robustness assessment test (RAT).
The RAT is designed to highlight unwanted correlations be-
tween climatic conditions and model performances, as these
may represent an issue in modelling the hydrological cycle
in a changing climate. The proposed RAT was found to give
results similar to the GSST for catchments in France. In ad-
dition, the RAT has the major advantage of requiring only
a single simulated flow time series (and an observed one for
comparison): there is no need to resort to multiple calibration
experiments. Therefore, the RAT can be used to compare the
robustness of different models with minimal effort.

However, detecting cases where a model lacks robustness
is not sufficient: we also need to understand the underlying
reasons for this flaw. For example, Sleziak et al. (2018) used
a DSST in Austria and identified an influence of land cover
and catchment wetness on robustness. Birhanu et al. (2018)
compared the model robustness of four models in order to
evaluate how model complexity influences robustness. They
concluded that catchment characteristics play a more impor-
tant role in the lack of robustness than model complexity.
However, it is often difficult to link the lack of robustness to
model characteristics or to specific hydrological processes.

1.3 Scope of the paper

This paper aims to move a step forward in our understand-
ing of what makes a model occasionally sensitive to climate
change. The RAT (Nicolle et al., 2021) is applied to a set of
352 catchments spanning four Köppen climate classes (tem-
perate and continental) in Denmark, France and Sweden, in
order to evaluate the robustness of three rainfall–runoff mod-
els with various process representations and parameter esti-
mation approaches (i.e. GR6J, HYPE and MIKE SHE). The
large test set is used to evaluate how model robustness varies
over a wide range of climatic and hydrological conditions
and to characterize catchments where models lack robust-
ness. The use of three different models will provide more
general conclusions for characterizing catchments that raise
robustness concerns in hydrological modelling.

2 Evaluation method

2.1 The RAT

The RAT (Nicolle et al., 2021) has been chosen since it can
be applied without controlling the model calibration process.
Indeed, the three models used for this experiment were cal-
ibrated once and separately at the three institutes involved
in this study. The RAT only requires observed climatic vari-
ables (to be used as potential predictors for the model bias) as
well as simulated and observed flows covering a sufficiently
long time period (at least 20 years, as shown in the study by
Nicolle et al., 2021).
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Figure 1. Flowchart of the robustness assessment test (RAT), with
the three steps necessary to evaluate the robustness of a hydrological
model (from Nicolle et al., 2021).

Figure 1 summarizes the three steps of the RAT procedure:
(i) the time series of the climatic predictors and flow are ag-
gregated by hydrological year, (ii) a score assessing the dif-
ference between observed and simulated flows (here bias) is
computed for each year and (iii) the correlation between this
annual score and the annual values of a chosen predictor is
analysed. A significant correlation between the score and the
predictor will reveal suspicious dependencies that may af-
fect the model’s extrapolation capacity. We chose bias as the
score with which to assess model error every year because
we believe that it is the first metric to look at when looking at
robustness in a climate change context. In this case, we will
say for the sake of simplicity that the model “reacts” to the
RAT for the catchment in question. Similarly, the catchment
in which the model reacts will be termed a “reactive catch-
ment”. Behind these terms, let us stress that the “reaction”
is an unhealthy sign (it is definitely not what modellers aim
for), and this does not tell us the causes of the behaviour, i.e.
whether the issues are due to the model structure or parame-
ters or to the presence of a trend in the observed data.

In this study, we consider hydrological years to be between
1 October and 30 September. The relative bias is computed
every year between the observed and simulated flows (see

Eq. 1 in Nicolle et al., 2021). Three climatic variables are
used as potential predictors and compared with the bias: the
annual mean air temperature (°C), the annual precipitation
(mm yr−1) and the annual value of the humidity index, which
is the ratio between the annual precipitation and the annual
potential evaporation (–). The correlation test is based on the
Spearman correlation, so as to handle non-linear relation-
ships. The significance threshold is set to a p value of 0.05.

2.2 Catchment set

The RAT is applied to a large catchment set over western
and northern Europe (Fig. 2) to test the method and eval-
uate robustness over a variety of catchments. The dataset
comprises a total of 352 catchments, of which 146 are lo-
cated in France, 43 in Denmark and 163 in Sweden. The
dataset was set up by the partners that collaborated in this
work (INRAE in France, GEUS in Denmark and SMHI in
Sweden). The catchment area varies from approximately 1 to
27 000 km2 with a median of 530 km2. The catchments cover
a wide range of hydrological regimes (including contrasted
or non-contrasted pluvial regimes, nival regimes and mixed
regimes) and four Köppen–Geiger classes (Fig. 2; Cfb: tem-
perate with no dry season and warm summers, Csb: temper-
ate with dry and warm summers, Dfb: continental with dry
and warm summers and Dfc: continental with dry and cold
summers).

The hydrology of French rivers is under a double influ-
ence: geology and climate. The catchments located on the
sedimentary deposits in the north and south-west are strongly
buffered by the role of connected aquifers and are often
strongly karstified in Jurassic plateaux. By comparison, the
Hercynian granitic massifs (in central and western France)
show a more classic hydrology typical of superficial catch-
ments. In the Pyrenees, Alps, Jura and Vosges mountain
ranges, hydrology can be heavily influenced by snowmelt.
Around the Mediterranean Sea, and especially in the high-
lands, very heavy precipitation causes flash floods almost ev-
ery autumn. The rest of the French territory has a rather mild
(temperate) climate.

Swedish hydrology is characterized by decreasing air tem-
perature from south to north and decreasing wetness from
west to east. The highest runoff occurs in the mountain range
along the western border with Norway, where the largest
rivers originate, and also on the south-western coast. The
south-east is rather dry. In terms of geology, Sweden is dom-
inated by Precambrian crystalline and metamorphic rocks.
Faults are one of the main factors that create topography and
so influence catchment delineation. Most of the large rivers
are developed for hydropower production, and water is stored
in lakes and reservoirs for hydroelectricity production in the
winter. We tried to avoid catchments that were too influenced
by hydroelectricity production because this would have dis-
torted the analysis: GR6J does not take any regulation into
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Figure 2. Locations and boundaries of the catchments used for this
study. Background colours represent the Köppen–Geiger climate
classes (the data and legend are described in Beck et al., 2018).

account. Sweden also has many lakes, which act as natural
reservoirs.

In Denmark, hydrology varies from west to east. Geolog-
ically speaking, the western part of the Jutland peninsula
(continental part of Denmark) is dominated by glacial out-
wash sand and gravel formations that are easily infiltrated
by precipitation and that often form large inter-connected
aquifers. The eastern part of Denmark is characterized by
till and moraine deposits with a high clay content that are
drained by tile drains and numerous smaller streams. As a
result, fewer surface runoffs and other fast-flow components
(drain flow) are generated in the western part compared to
the eastern part. Therefore, streamflow in the western part of
the country is dominated by baseflow, while overland flow
is rarely an important flow component (van Roosmalen et
al., 2007). By contrast, the catchments in the eastern part of
Denmark are more responsive with more variable flow (Hen-
riksen et al., 2021).

Several climate characteristics, named climatic signatures,
were calculated for each catchment (see the statistics in Ta-
ble 1). Repartitioning maps and distributions of these climate
characteristics at a national scale are provided in Files S1
and S2 in the Supplement. Annual precipitation and poten-
tial evaporation show great variability over the dataset. The
catchments with the highest amounts of precipitation are lo-
cated in southern and eastern France, southern Denmark and
western Sweden, while the catchments with the lowest pre-
cipitation amounts are mostly found in eastern Sweden. Re-
garding the humidity index, the catchments are all relatively
humid, with the driest ones in south-eastern Sweden and in
south-eastern and northern France. The indexes of precipi-
tation variability and intensity are higher in eastern Sweden
and south-eastern France and lower in western Sweden. The
fraction of days without precipitation varies between 7 % and
64 % over the dataset; in half of the catchments the percent-
age of dry days is between 35 % and 45 %. This fraction is
higher in south-eastern France and lower in northern Swe-
den. The seasonality index (de Lavenne and Andréassian,
2018) characterizing the synchronicity between precipitation
and potential evaporation varies from 0.18 to 0.51. The low-
est seasonality index values (mainly found in north-western
Sweden) mean that runoff is favoured over potential evapo-
ration, because precipitation mainly occurs when the evapo-
rative demand is low. High seasonality index values, found
in northern France and south-eastern Sweden, mean that po-
tential evaporation is favoured. The snowfall fraction varies
between 0 % and 57 % with a south–north gradient, but more
than half of the catchments have less than 10 % snowfall. The
distribution of climate characteristics by country provided
in File S2 also shows that these characteristics vary greatly
across France and Sweden. In Denmark, however, the distri-
bution shows less spatial variability, with values around the
average of the dataset.

Statistics on flow signatures are compiled in Table 2,
where most of the flow signatures are calculated following
Westerberg and McMillan (2015). The repartitioning maps
and distributions at the national scale of these flow charac-
teristics are provided in Files S3 and S4, respectively. Mean
flow varies from 95 to 1344 mm yr−1, with low values in
northern France and south-western Sweden and high values
in western Sweden. Regarding the runoff ratio, values vary
between 15 % and 124 %, with the highest values in northern
Sweden and the lowest values in central France. Five catch-
ments, located in the mountains of north-western Sweden,
have values greater than 100 %. These values may be the re-
sult of an underestimation of the precipitation measurement
due to orographic effects that are not captured by the inter-
polation method used.

Low flows are characterized by several descriptors: the low
percentiles (0.01 to 5), the frequency and duration of low-
flow events, the baseflow index (IBF from Pelletier and An-
dréassian, 2020) and the variability of low flows. Catchments
with very low flows are located in southern and south-eastern
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Table 1. Distribution of climatic signatures over the catchment set (all three countries).

Signature description Abbreviation Quantile (%)

in this paper Minimum 25 50 75 Maximum

Mean annual precipitation (mm yr−1) PMA 408 676 826 960 1502

Mean annual potential evaporation (mm yr−1) EMA 222 478 563 668 843

Humidity index (PMA/EMA) (–) IHUM 0.81 1.24 1.44 1.73 5.47

Precipitation variability (coefficient of variation) (mm d−1) PCV 1.40 1.79 1.88 1.99 3.34

Precipitation intensity index (daily precipitation percentile Pint 6.38 8.23 8.72 9.46 17.11
99 divided by daily mean precipitation) (–)

Mean annual ratio of days without precipitation (–) DWoP 0.07 0.36 0.39 0.43 0.64

Seasonality index (synchronicity between precipitation ISeaso 0.18 0.40 0.42 0.44 0.51
and potential evaporation occurrence) (–)

Solid precipitation fraction (precipitation that occurs SFrac 0.00 0.03 0.06 0.15 0.57
when daily temperature is below 0 °C) (–)

Sweden and in central France. These catchments also have a
low variability of low flows and a high frequency and du-
ration of low-flow events. By contrast, catchments in conti-
nental Denmark (Jutland peninsula) and northern France are
characterized by higher values of low flows that are more
variable. The occurrence and duration of low-flow events are
lower in these regions, and high IBF values show that aquifers
play a key role in the hydrology of these regions.

High flows are determined by high quantiles (85 to 99)
as well as the frequency and duration of high-flow events
and their variability. The values of high quantiles vary con-
siderably over the dataset (e.g. Q99 varies from 0.67 to
27 mm d−1) and the highest values are located in western
Sweden. Regarding the frequency and duration of high-flow
events, no clear geographic pattern emerges. Flow variability
is higher in France and lower in Denmark.

Finally, three signatures are computed to measure flow dy-
namics: the slope of the flow duration curve that evaluates
flashiness, the overall flow variability and the 1 d autocorre-
lation. The slowest catchments are located in Denmark and
northern France, while the fastest-responding catchments are
found in south-eastern Sweden and south-eastern France.

The signatures listed in Tables 1 and 2 are used to inves-
tigate potential factors affecting the robustness of the three
models tested. Catchments in which each model reacts to the
RAT are compared with catchments where the model does
not react. We use a Mann–Whitney U test (Wilcoxon, 1945;
Mann and Whitney, 1947) to identify whether the distribu-
tions of the two signatures are significantly different (note
that the same method was used, for example, by Fowler et
al., 2016, to compare catchment characteristics). The Mann–
Whitney U test evaluates the probability of two groups origi-
nating from the same distribution by focusing on the relative
ranks of the groups. We use a classic (but nonetheless arbi-

trary) threshold for the p value: 0.05. These tests will allow
us to target the robustness issues within the models and to
better understand the RAT results.

2.3 Used data

For each catchment, daily precipitation, daily mean air tem-
perature (referred to as “temperature” in this paper) and daily
potential evaporation are available to run the models and to
apply the RAT. For French catchments, temperature and pre-
cipitation are extracted from the SAFRAN reanalysis (Vi-
dal et al., 2010). SAFRAN covers France on an 8 km grid
and climatic data are aggregated by catchments (Delaigue et
al., 2022). Potential evaporation is calculated using the for-
mula proposed by Oudin et al. (2005). These data are avail-
able over 61 calendar years from 1958 to 2018. It should be
noted that, for the interpretation of the results, the locations
of ground stations used by SAFRAN to build the reanalysis
can change over the available period and therefore have an
impact on the model robustness. River flow data are available
for each catchment outlet from the Banque HYDRO database
(Leleu et al., 2014). Periods of flow data availability vary for
each catchment: from 27 to 61 years between 1958 and 2018
with an average close to 50 years.

For Sweden, daily temperature, precipitation and observed
flow are available for the same 35 calendar years from 1981
to 2016. Potential evaporation is also calculated for each
catchment using the Oudin formula. Precipitation and tem-
perature data are extracted from the PTHBV database (Jo-
hansson, 2002). This database covers Sweden on a 4 km grid
and is based on extrapolation from measurement station data.
River flow data for the 163 gauged stations are extracted from
the official database of SMHI gauging stations. Meteorolog-
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Table 2. Descriptions and distributions of flow signatures over the catchment set (from Table 2 in Westerberg and McMillan, 2015). The
abbreviations in column 2 are used in Sects. 3 and 4.

Signature description Abbreviation Quantile (%)

in this paper Minimum 25 50 75 Maximum

Mean flow (mm yr−1) Qmean 95 248 347 447 1344

Flow percentiles (0.01 %, 0.1 %, 1 %, 5 %, 50 %, 85 %, 95 % and Q0.01 0.00 0.01 0.03 0.10 0.76
99 %) (mm d−1) Q0.1 0.00 0.01 0.05 0.11 0.85

Q1 0.00 0.03 0.07 0.16 1.02
Q5 0.00 0.06 0.11 0.23 1.10

Q50 0.10 0.38 0.54 0.80 1.91
Q85 0.41 1.23 1.67 2.17 7.58
Q95 0.54 2.15 3.07 4.14 14.36
Q99 0.67 3.60 5.47 7.80 27.01

High-flow-event frequency (mean number of days with flow over
9 times the median flow) (d yr−1)

Qhffreq 0.0 0.6 5.9 13.2 53.3

High-flow-event mean duration (d) Qhfdur 1.0 2.6 3.8 5.7 17.0

Low-flow-event frequency (mean number of days with flow be-
low 0.2 times the mean flow) (d yr−1)

Qlffreq 0.0 24.9 62.4 99.0 249.8

Low-flow-event mean duration (d) Qlfdur 1.0 11.6 17.1 27.8 130.5

Baseflow index (–) IBF 0.01 0.13 0.25 0.43 0.90

Slope of the flow duration curve (from 33 % to 66 % exceedance
values) (–)

SFDC 0.48 1.38 1.67 1.89 2.74

Overall flow variability (daily flow coefficient of variation) (–) QCV 0.24 0.95 1.20 1.43 2.70

Low-flow variability (mean annual minimum flow above the me-
dian flow) (–)

QLV 0.00 0.12 0.21 0.35 1.74

High-flow variability (mean annual maximum flow above the
median flow) (–)

QHV 1.6 6.4 11.7 19.4 88.1

One-day autocorrelation of flow (–) QAC 0.37 0.88 0.94 0.98 1.00

Runoff ratio (flow divided by precipitation) (–) RR 0.15 0.34 0.43 0.55 1.24

ical data are available at a sub-catchment scale of an average
size of 13 km2 and are aggregated at the catchment scale.

For Danish catchments, data on precipitation, temperature,
potential evaporation and flow are available for the same
30 calendar years from 1989 to 2019. A dynamic gauge catch
correction (Stisen et al., 2011) is applied to the precipitation,
and the results are subsequently interpolated to a 10 km grid
(Scharling and Kern-Hansen, 2012). Potential evaporation
is calculated using the Makkink equation adjusted for Dan-
ish conditions (Scharling, 1999). The Makkink equation is
a global-radiation-based simplification of the Penman equa-
tion. Both temperature and potential evaporation are avail-
able at a 20 km grid resolution. Daily data on river flow
are available from the national database ODA (surface wa-
ter database; https://odaforalle.au.dk/main.aspx, last access:
31 December 2024). To minimize the correlation between the
discharge time series, there are no nested catchments in the
Danish dataset.

2.4 Hydrological models

The robustness of three models is evaluated in this work. The
models were set up, calibrated and run by the three contribut-
ing groups of this work, according to their own expertise. Ta-
ble 3 presents a brief description of the three models.

GR6J (Pushpalatha et al., 2011) is a lumped bucket-type
model that simulates the catchment runoff response to rain-
fall using six free parameters which are adjusted during cal-
ibration. This model derives from the GR4J model (Perrin et
al., 2003) and is run using the airGR R package (Coron et
al., 2017, 2021). Snow accumulation and snowmelt are cal-
culated using the CemaNeige routine (Valéry et al., 2014)
that splits the catchment into five elevation bands and sim-
ulates snow processes with two additional parameters. The
GR6J model is calibrated against the observed flow for each
catchment using the Kling–Gupta efficiency (KGE) criterion
(Gupta et al., 2009) calculated on square-root-transformed

Hydrol. Earth Syst. Sci., 29, 683–700, 2025 https://doi.org/10.5194/hess-29-683-2025
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Table 3. Main characteristics of the three models used (OF: objective function).

GR6J HYPE MIKE SHE

Spatialization Lumped Semi-distributed
(sub-catchments + HRUs)

Distributed (grid to hillslope)

Model time step Daily Daily Daily

Parameter estimation procedure Automatic (OF = KGE in
square-root-transformed flows;
period = all available years
minus the 4 warm-up years)

Manual (aided by the NSE value;
period = 1999–2008)

Automatic (OF = 8 metrics,
including NSE, water balance
and ME (mean error); period =
2000–2010)

Number of estimated parameters
(and their spatialization)

Six parameters for the rainfall–
runoff model and two parameters
for the snow-accounting routines

About 100 (soil- and land-use-
dependent) + local tuning

Nine free parameters and several
tied parameters; homogeneity as-
sumed to a relatively high degree

Process complexity (as stated by
Hrachowitz and Clark, 2017)

+ ++ +++

flows as an objective function. The calibration is done au-
tomatically using a mixed global–local search optimization
algorithm presented by Coron et al. (2017). The period used
for calibration covers all the available flow data minus a 4-
year warm-up period to initialize the internal state variables
(store levels). GR6J is the only model that we are able to
apply to all the catchments of the dataset.

HYPE (Lindström et al., 2010) is a process-based semi-
distributed model that was designed for both quantity and
quality modelling. Here, we use it in Swedish catchments
only, i.e. the Sweden-scale version (S-HYPE; Strömqvist et
al., 2012). S-HYPE has been developed continuously since
the first version described by Strömqvist et al. (2012). In
the version used here (S-HYPE-2016b), the whole country
is divided into sub-catchments of an average size of 13 km2.
These sub-catchments are divided into hydrological response
units (HRUs) that depend on soil types and land uses. A
large number of parameters are used to adapt the model and
are spatialized by sub-catchments, land uses and soil types.
Local super-parameters, i.e. deviations in key characteris-
tics (see Lindström, 2016), are also calibrated for param-
eter regions in S-HYPE. Regulation of dams is taken into
account using simple regulation rules. However, this mod-
ule has a low impact on the results since the catchments
used for this study are not affected by major dams. The S-
HYPE model was calibrated manually. Since the model is
used (among other things) operationally for flood warning at
SMHI, the calibration was focused primarily on the timing of
the discharge and secondly on the volume errors. The Nash–
Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) is very
sensitive to timing errors and was therefore used as the main
numerical criterion in the calibration process. The results are
available at https://www.smhi.se/data/hydrologi/vattenwebb
(last access: 31 December 2024) for all Swedish catchments
in the dataset for the entire period of flow data availability.

The MIKE SHE or MIKE 11 modelling system (Graham
and Butts, 2005), only used for the Danish catchments, has a

physically based and fully distributed description of the ter-
restrial hydrological cycle. It is based on a three-dimensional
description of the saturated zone that is parameterized ac-
cording to a geological model. Drainage flow is conceptual-
ized as a linear reservoir assumed to occur when the water
table is above the positions of the drains. The unsaturated
zone is described by a simple water balance module termed
the “two-layer” method. Evaporation is described by a sim-
ple method accounting for the water balance in the root zone.
Two-dimensional overland flow is simulated using a diffusive
wave approximation. Flow is simulated as a one-dimensional
process by MIKE 11 using the kinematic routing approach.
The model is discretized into a 500 m horizontal grid with 11
computational layers and is run with daily inputs on climatic
forcing. More information on the model is found in the man-
ual (DHI, MIKE SHE, User Guide and Reference Manual).
For this work, the MIKE SHE version set up and applied by
the National Water Resources Model (Højberg et al., 2013)
is used. The model is calibrated using autocalibration pro-
vided by PEST (Højberg et al., 2013). Based on a sensitivity
analysis, the most sensitive parameters are selected as free
parameters, including hydraulic conductivities of the geolog-
ical units, a drainage time constant, a river–aquifer exchange
coefficient and the root depth of the dominant soil type. Sev-
eral less sensitive parameters are tied to the free parameters.

As shown in Table 3, the three models have different pro-
cess representations. They also have different spatial resolu-
tions and different methods for parameter estimation. Since
these three models cover various modelling approaches, they
potentially have differences in robustness, and this work
analyses how their structure influences their robustness.
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Figure 3. Locations of the catchments where GR6J reacts to the
RAT (in red) using temperature (a), precipitation (b) and humidity
index (c) as predictors. The numbers at the top of the maps rep-
resent the numbers of reactive catchments out of the total of 352
catchments.

3 Lessons learnt from a single model applied to the
entire dataset

Out of the three models used in this paper, we were able to
apply only one model, GR6J, to the entire dataset (because
of its relative simplicity of calibration). The results of GR6J
are therefore used to evaluate how robustness varies over the
three countries studied. A geographic analysis is first carried
out, followed by an analysis to link the occasional lack of
robustness to catchment characteristics.

3.1 Overall evaluation

Figure 3 shows the locations and number of catchments
where GR6J reacts to the RAT (i.e. a significant correla-
tion exists between the bias and a given predictor) for the
three predictors used (temperature, precipitation and humid-
ity). When temperature is used as a predictor for the RAT,
GR6J fails the robustness test over 99 catchments (28 % of
the total). When precipitation and humidity index are con-
sidered, GR6J fails the robustness test in 16 % and 18 % of
the catchment set. Note that these numbers are above the 5 %
threshold that we would expect to observe if only chance
were playing a role. This shows that the model has a sig-
nificant robustness issue over the dataset.

The spatial distribution of the reactive catchments follows
different patterns when temperature or precipitation is used
as a predictor in the RAT. (i) When temperature is used as a
predictor, 70 reactive catchments of a total of 99 are located
in France. (ii) When sensitivity to precipitation is considered,
there are fewer reactive catchments in France but more in
Denmark. (iii) Results obtained with the humidity index and
precipitation are very similar (this was expected because the
humidity index is calculated as the ratio of the precipitation
amount to the potential evaporation amount: since the annual
variability of precipitation is much higher than the variability

of potential evaporation, it is logical to observe similar results
when the two variables are used as predictors).

Overall, the reactive catchments where GR6J is identified
as lacking robustness are often grouped together geograph-
ically, which indicates that some common (regional) hydro-
logical features cause this problem. For example, catchments
react more often in the Jutland peninsula and in northern
Sweden when precipitation or humidity index is used as a
predictor.

However, we cannot identify any obvious reason for the
spatial pattern of the reactive catchments. For example, it is
not clear why so many reactive catchments are located in
France when temperature is used as a predictor. An exam-
ple of these is given in Fig. 4, in which the temperature is
clearly correlated with the bias (bottom-left panel), while no
clear correlation appears for the precipitation and humidity
index time series (bottom-centre and bottom-right panels).
One reason could be the higher values of potential evapora-
tion in the country, which could explain a higher sensitivity
to trends in temperature over time. The fact that data time
series are longer in France does not seem to play a role, as
the results are similar when the time period is reduced step
by step from 40 to 20 years (not shown here).

The conclusion of this series of tests on GR6J is that the
model seems to have robustness issues over the dataset but
that, at this point, the RAT results cannot be explained by
the locations of the reactive catchments alone. Thus, catch-
ment characteristics are included in the analysis to evaluate
whether robustness issues could possibly be explained by the
specificities of local hydrology and whether this could be
linked to the structure of the models.

3.2 Link to catchment hydro-climatic characteristics

In order to investigate potential factors affecting the robust-
ness of the GR6J model, we analyse catchment characteris-
tics. Catchments in which GR6J reacts to the RAT are com-
pared with those where GR6J does not react to the RAT.
Figure 5 shows an example of the methodology for mean
annual precipitation over the catchment. The boxplot repre-
sents the distribution of mean annual precipitation, on the
left for catchments where GR6J reacts to the RAT and on
the right for catchments where GR6J does not react to the
RAT. This shows that GR6J is less robust in the drier catch-
ments (with temperature used as a predictor). For the precipi-
tation and humidity index, no significant differences in mean
annual precipitation exist between reactive catchments and
non-reactive ones.

Following the same methodology, Fig. 6 shows the re-
sults of the Mann–Whitney U test described above for the
climatic signatures listed in Table 1. It indicates those sig-
natures for which the difference between reactive and non-
reactive catchments is significant. If the colour is red (blue),
the Mann–Whitney U test indicates that reactive catchments
have lower (higher) values of the signature than non-reactive
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Figure 4. Illustration of the RAT results for the GR6J model applied to the Ognon River at Chavigny-sur-l’Ognon (north-eastern France):
panel (a) represents the annual streamflow bias time series, the four middle plots in panel (b) represent the time series of the annual flow
values and the three climatic predictors and the bottom scatterplots represent the correlation between the bias and annual temperature (c),
precipitation (d) and humidity index (e).

Figure 5. Comparison of the catchment area distribution for catch-
ments where GR6J reacts or does not react to the RAT using tem-
perature (a), precipitation (b) and humidity index (c) as predictors.

catchments. The shade of the dot colour indicates how signif-
icant the difference is: if it is grey, no significant difference
exists (p value higher than 0.05); if it is dark red or blue, the
difference is highly significant (p value lower than 0.01).

When temperature is the predictor, Fig. 6 shows that the
catchments in which GR6J reacts to the RAT have higher
precipitation and potential evaporation amounts and a higher
number of dry days. The higher seasonality index indicates
that precipitation mainly occurs during the low potential
evaporation season (low synchronicity between high precip-
itation and high potential evaporation). The amount of pre-

cipitation that falls as snow is also lower than the dataset av-
erage.

These results are not straightforward to interpret. The low
synchronicity between precipitation and potential evapora-
tion emphasized by the seasonality index values reveals that
the reactive catchments have drier warm seasons (high po-
tential evaporation and low-precipitation seasons). The re-
active catchments are also mainly located in France, where
potential evaporation is highest. The link between these two
signatures may lead to dry seasons on which potential evap-
oration has a major impact. Given that potential evaporation
is directly calculated from temperature, changes in tempera-
ture may influence hydrology during the warm season, and it
is possible that GR6J has difficulties in handling these inter-
annual changes in potential evaporation.

If either precipitation or humidity index is used as a pre-
dictor, the difference between the two distributions does not
show a similar pattern. Lower differences in the climatic sig-
nature are evident between reactive and non-reactive catch-
ments. The only discernible result is that, when precipitation
is the predictor, catchments in which GR6J reacts to the RAT
have less solid precipitation and/or a higher potential evapo-
ration amount.

Consequently, it is difficult to find an explanation in terms
of model representation based on climatic considerations,
and therefore we now address flow signatures. We can only
stress that the snow module is not the source of the lack of
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Figure 6. Results of the Mann–Whitney U test to evaluate the dif-
ference in climatic signatures (see Table 1) between catchments
in which GR6J reacts to the RAT and catchments in which GR6J
does not react. The number of catchments in each subset can be
found in Fig. 5. Blue (red) circles mean that the signature is signif-
icantly higher (lower) for reactive catchments. PMA: mean annual
precipitation, EMA: mean annual evaporation, IHUM: humidity in-
dex, PCV: precipitation variability, Pint: precipitation intensity in-
dex, DWoP: ratio of days without precipitation, ISeaso: seasonality
index and SFrac: snow fraction.

robustness here, since the snow fraction is lower for reactive
catchments.

We now look at flow signatures to interpret robustness fail-
ures. Figure 7 complements the description of catchments in
which GR6J reacts to the RAT. When temperature is used as a
predictor, the reactive catchments are characterized by a low
runoff ratio. The low autocorrelation and the short durations
of low-flow and high-flow events suggest that the reactive
catchments are more responsive than the dataset average.

Similarly to what was explained for Fig. 6, the low runoff
ratio for reactive catchments indicates that potential evapora-
tion may have more influence on these catchments.

When precipitation and the humidity index are used as pre-
dictors, low flows also seem to have relatively high values
(Q0.01 to Q5 and high IBF) and high variability in reactive
catchments. Regarding the slope of the flow duration curves,
the catchments that react to the RAT seem slower than av-
erage. Only when precipitation is the predictor are the total
flow variability and high-flow variability also below normal.

The catchments with potential robustness issues are char-
acterized by slow responses with high baseflow. Similar ob-
servations were made by Sleziak et al. (2018), who showed
that the lack of robustness in Austrian catchments was higher
for catchments with slow responses (“dominant soil moisture
regime”). In the present work, this can be explained since, in
this kind of catchment, the conditions of precipitation and
humidity of a given year may influence flow during several
subsequent years (possibly due to groundwater storage). It

Figure 7. Results of the Mann–Whitney U test to evaluate the dif-
ference in the flow signature between catchments in which GR6J
reacts to the RAT and catchments in which GR6J does not. The
number of catchments in each subset can be found in Fig. 5. Blue
(red) squares mean that the signature is significantly higher (lower)
for reactive catchments. Qmean: annual mean flow, Q[0.01−99]: flow
percentiles, Q[hf−lf]freq: frequency of high- or low-flow events,
Q[hf−lf]dur: duration of high- or low-flow events, IBF: baseflow
index, SFDC: slope of the flow duration curve, Q[C−L−H]V: total
low- or high-flow variability, QAC: flow 1 d autocorrelation and RR:
runoff ratio.

is known that GR6J has difficulties in representing this be-
haviour, described by de Lavenne et al. (2022) as the “catch-
ment memory”. The RAT results suggest that this flaw in the
model may lead to robustness issues.

To summarize, these evaluations do not lead to clear ex-
planations of the lack of robustness of GR6J. However, two
paths can be explored to improve its robustness: (i) when
temperature changes over the catchment, the robustness of
GR6J could be increased by improving its ability to handle
inter-annual changes in potential evaporation; and (ii) when
a precipitation trend impacts the catchment, the robustness
of GR6J could be improved by better consideration of the
catchment memory within the model.

4 Comparing model robustness in Denmark and
Sweden

Here, we compare the robustness of the three models pre-
sented in Sect. 2.4. By applying the RAT to these models,
our goal is to understand whether the catchments detected by
the RAT as reactive are model-specific. In addition to this,
we aim to highlight the differences between the models and
try to interpret these differences.
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Figure 8. Locations and number of Swedish catchments in which
S-HYPE and GR6J react to the RAT using temperature (a), precip-
itation (b) and humidity index (c) as predictors. The numbers at the
top of the maps represent the numbers of reactive catchments out of
163 for each model.

4.1 S-HYPE vs. GR6J in Sweden

Figure 8 compares the catchments in which GR6J and S-
HYPE react to the RAT in Sweden. The numbers of reactive
catchments are similar for the two models, but their locations
vary, even if some catchments are common to the two mod-
els. When temperature is used as the predictor, catchments
in which S-HYPE reacts to the RAT are mainly located in
the Scania region (extreme south of Sweden). Catchments in
which GR6J reacts to the RAT are scattered over Sweden,
but the large number observed for S-HYPE in Scania is not
observed for GR6J. It is, however, interesting to note that
catchments in central and western Sweden seem to present
a robustness issue for both models. When precipitation and
humidity index are taken as predictors, GR6J reacts in the
northern regions, while S-HYPE reacts more in central and
south-eastern Sweden. Overall, Fig. 8 shows that S-HYPE
and GR6J react differently to the RAT and indicates that their
lack of robustness probably has different origins.

Figure 9 compares how robustness is linked to catch-
ment climate characteristics. The figure shows that there is a
large difference in the catchment climate characteristics be-
tween HYPE and GR6J. GR6J reacts to the RAT for humid
catchments with a higher number of rainy days, less aridity
and lower potential evaporation. It is interesting to note that
GR6J responds differently for Sweden than for the rest of the
dataset, probably because of the specificity of Swedish hy-
drology (e.g. the influence of snow). Northern catchments
seem to cause more robustness issues for GR6J. In these
catchments, streamflow is regulated by hydroelectric power
stations. Since regulation is not explicitly represented in the
GR6J model, it is possible that this aspect of the catchment
hydrology may lead to flaws in the models. Snow, which
strongly influences hydrology in northern Sweden, may also
be a reason for the issues in GR6J. The snow module that
adds two parameters to be calibrated may then create ro-

Figure 9. Results of the Mann–Whitney U test to evaluate the dif-
ferences in climatic signatures in Sweden. The left plot represents
differences between Swedish catchments in which GR6J reacts and
catchments in which it does not, and the right plot represents dif-
ferences between catchments in which S-HYPE reacts to the RAT
and catchments in which it does not. The number of catchments in
each subset can be found in Fig. 8. Blue (red) squares mean that
the signature is significantly higher (lower) for reactive catchments.
PMA: mean annual precipitation, EMA: mean annual evaporation,
IHUM: humidity index, PCV: precipitation variability, Pint: precip-
itation intensity index, DWoP: ratio of days without precipitation,
ISeaso: seasonality index and SFrac: snow fraction.

bustness issues (even if this is not the case over the whole
dataset).

In the case of S-HYPE, where temperature is used as a
predictor, reactive catchments seem to have a lower-than-
average snow fraction and more potential evaporation. This
is possibly due to the fact that latitude is not taken into
account in the evaporation calculation in the HYPE model
(the Oudin formula is not used in the model). This may
lead to robustness issues in the catchments where evapora-
tion has an impact. However, the significance is relatively
weak, and no clear difference exists between reactive and
non-reactive catchments: model robustness cannot really be
linked to catchment characteristics.

Similarly to Fig. 9, Fig. 10 compares how the RAT results
are linked to flow signatures for GR6J and S-HYPE. It also
shows large differences in behaviour between the two mod-
els. When the precipitation and humidity index are taken as
predictors, GR6J reacts for wet catchments with high flow
and a high runoff ratio. This confirms the results from Fig. 9.
GR6J seems to react to the RAT in specific types of catch-
ments (which are large and have a higher-than-average spe-
cific flow). In these catchments, streamflows are more often
regulated by human activities and, since there is no regulation
module in GR6J (unlike in HYPE), this can create robustness
issues in the model.

For S-HYPE, again, no clear difference exists between re-
active and non-reactive catchments. This result suggests that
the HYPE model has robustness issues in random catchments
(at least regarding the signatures evaluated here). One possi-
ble hypothesis to explain this could be that it is calibrated
manually, often using super-parameters, and this may lead to
different robustness issues for different locations. The choice
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Figure 10. Results of the Mann–Whitney U test to evaluate the
differences in flow signatures in Sweden. The left plot represents
the differences between Swedish catchments in which GR6J re-
acts and catchments in which it does not, and the right plot rep-
resents the differences between catchments in which S-HYPE re-
acts to the RAT and catchments in which it does not. The num-
ber of catchments in each subset can be found in Fig. 8. Blue (red)
squares mean that the signature is significantly higher (lower) for
reactive catchments. Qmean: annual mean flow, Q[0.01−99]: flow
percentiles, Q[hf−lf]freq: frequency of high- and low-flow events,
Q[hf−lf]dur: duration of high- and low-flow events, IBF: baseflow
index, SFDC: slope of the flow duration curve, Q[C−L−H]V: total
low- to high-flow variability, QAC: flow 1 d autocorrelation and RR:
runoff ratio.

of objective function (i.e. the NSE) and the focus on flood
forecasting also led the modeller to place more emphasis on
timing than on water balance, which could explain why the
bias error is less significant for S-HYPE. The calibration pro-
cedure may lead to additional issues in terms of robustness
that do not depend on catchment location or regime.

In summary, S-HYPE and GR6J have equivalent numbers
of reactive catchments. Also, GR6J seems to behave differ-
ently in Sweden compared to France and Denmark, perhaps
due to river regulations and higher snow fractions. It is very
difficult to understand the issues found for S-HYPE since
the reactive catchments do not differ significantly from the
non-reactive ones. This could be due to the different calibra-
tion treatment of the model, which was calibrated manually
and for a flood forecasting purpose. Since S-HYPE is cali-
brated primarily for flood forecasting, the long-term bias is
taken into account for a second time, which may influence
the RAT results for a catchment. Manual tuning specific to
some catchments may introduce differences that make it dif-
ficult to identify a type of catchment that has robustness is-
sues.

4.2 MIKE SHE vs. GR6J in Denmark

Figure 11 presents the catchments in which GR6J and MIKE
SHE react to the RAT in Denmark. Overall, reactive catch-
ments are mainly located in the Jutland peninsula (which
corresponds to continental Denmark). In Denmark, unlike
in Sweden and France, there are more reactive catchments
when precipitation and humidity index are used as the pre-

Figure 11. Locations and number of Danish catchments in which
MIKE SHE and GR6J react to the RAT using temperature (a), pre-
cipitation (b) and humidity index (c) as the predictors. The numbers
at the top of the maps represent the number of reactive catchments
out of 43 for each model.

dictors than when temperature is the predictor. However, as
for the rest of the dataset, reactive catchments are almost the
same when precipitation and humidity index are the predic-
tors. The fact that MIKE SHE reacts to the RAT in fewer
catchments than GR6J (13 vs. 22) shows that MIKE SHE is
more robust than GR6J in Denmark. Despite this, there are
several common reactive catchments between MIKE SHE
and GR6J: 57 % of the catchments in which MIKE SHE re-
acts were also reactive with GR6J. This shows that GR6J and
MIKE SHE have common causes that may explain their lack
of robustness.

To confirm the relationship between the robustness of
MIKE SHE and GR6J, Fig. 12 shows the differences in cli-
mate characteristics between reactive and non-reactive catch-
ments. Here, as for Sweden, we can identify differences be-
tween the part of the dataset in which GR6J reacts to the
RAT and the part of the dataset in which it does not. Reactive
catchments are more humid with more regular precipitation
and a lower seasonality index.

In the case of MIKE SHE, very few differences seem to
exist between the catchments in which the model reacts and
the catchments in which it does not (Fig. 12). If temperature
is the predictor, the catchments in which the model reacts are
less snowy than the average. If precipitation or humidity in-
dex is the predictor, the reactive catchments are characterized
by less potential evaporation and fewer days without rainfall
(for humidity index as the predictor).

Regarding flow signatures (Fig. 13), GR6J shows different
results in Denmark than in the entire catchment set (Fig. 7).
Reactive catchments are characterized by high baseflow and
slow responses (precipitation and humidity index as the pre-
dictors). The reason may be the same as for the whole dataset
(Sect. 3.2).

MIKE SHE shows some similarities to GR6J regarding the
characteristics of the catchments in which it reacts to the RAT

Hydrol. Earth Syst. Sci., 29, 683–700, 2025 https://doi.org/10.5194/hess-29-683-2025



L. Santos et al.: Lack of robustness of hydrological models 695

Figure 12. Results of the Mann–Whitney U test to evaluate the
differences in climatic signatures in Denmark. Panel (a) represents
differences between Danish catchments in which GR6J reacts and
catchments in which it does not, and panel (b) represents differ-
ences between catchments in which MIKE SHE reacts to the RAT
and catchments in which it does not. The number of catchments in
each subset can be found in Fig. 11. Blue (red) squares mean that
the signature is significantly higher (lower) for reactive catchments.
PMA: mean annual precipitation, EMA: mean annual evaporation,
IHUM: humidity index, PCV: precipitation variability, Pint: precip-
itation intensity index, DWoP: ratio of days without precipitation,
ISeaso: seasonality index and SFrac: snow fraction.

Figure 13. Results of the Mann–Whitney U test to evaluate differ-
ences in flow signatures in Denmark. Panel (a) represents differ-
ences between Danish catchments in which GR6J reacts and catch-
ments in which it does not, and panel (b) represents differences be-
tween catchments in which MIKE SHE reacts to the RAT and catch-
ments in which it does not. The number of catchments in each subset
can be found in Fig. 11. Blue (red) squares mean that the signature is
significantly higher (lower) for reactive catchments. Qmean: annual
mean flow, Q[0.01−99]: flow percentiles, Q[hf−lf]freq: frequency of
high- and low-flow events, Q[hf−lf]dur: duration of high- and low-
flow events, IBF: baseflow index, SFDC: slope of the flow duration
curve, Q[C−L−H]V: total low- to high-flow variability, QAC: flow
1 d autocorrelation and RR: runoff ratio.

when the humidity index is taken as a predictor. The reac-
tive catchments for MIKE SHE have a higher baseflow and a
slower response than the average, similarly to GR6J. Surpris-
ingly, this is not the case when precipitation is taken as a pre-
dictor, even if the reactive catchments are almost the same.

To summarize, the GR6J model shows robustness issues
for the same type of catchment in Denmark as for the whole
dataset. Comparing the models, fewer catchments react for
MIKE SHE than for GR6J, even if some similarities exist

Table 4. Number of reactive catchments for each country and
model and proportion in terms of the total number of catchments
(N = 352: 163, 43 and 146 for Sweden, Denmark and France, re-
spectively).

Model

Country Predictor GR6J S-HYPE MIKE SHE

Sweden Temperature 21 (13 %) 35 (21 %) –
Precipitation 13 (8 %) 18 (11 %)
Humidity index 19 (12 %) 19 (12 %)

Denmark Temperature 8 (19 %) – 2 (5 %)
Precipitation 15 (35 %) 9 (21 %)
Humidity index 17 (40 %) 10 (23 %)

France Temperature 70 (48 %) – –
Precipitation 26 (18 %)
Humidity index 28 (19 %)

All three Temperature 99 (28 %) – –
Precipitation 56 (16 %)
Humidity index 64 (18 %)

between the catchments that react for the two models. It is,
however, difficult to characterize these catchments for the
MIKE SHE model due to their low number.

4.3 Summary and discussion of the model comparison

The RAT was used to compare the robustness of GR6J and
S-HYPE in Sweden and GR6J and MIKE SHE in Denmark.
Overall, the number of RAT-reactive catchments (Table 4)
can be seen as a rough indicator of model robustness. The
results show that GR6J is slightly more robust than S-HYPE
in Sweden and that MIKE SHE is slightly more robust than
GR6J in Denmark. However, these numbers should not be
the only indicator of model robustness since their use does
not facilitate our understanding of the robustness issues.

To improve this understanding, characterization of the re-
active catchments shows that MIKE SHE and GR6J both re-
act to the RAT in catchments with high baseflow, which indi-
cates that both models have difficulties in representing long-
term groundwater evolution. This seems to be a critical issue
for model robustness (and thus a possible priority topic for
model improvement). The characterization also shows that
GR6J and S-HYPE robustness is sensitive to potential evap-
oration. The calculation of potential evaporation for the mod-
els may also lead to robustness issues (this was also shown
by, for example, Birhanu et al., 2018). To confirm this, we
tested GR6J in the French catchments using the Penman–
Monteith evaporation formula (which is less dependent on
temperature). This test showed that, even if the number of re-
active catchments decreases when temperature is the indica-
tor, the number of reactive catchments increases when both
precipitation and humidity index are the indicators, which
shows that the choice of formula is not straightforward. This
is probably due to the fact that the model is not built to take
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this into account and that calibration may have led to dis-
torted values of parameters.

The choice made in this paper was essentially to try to ex-
plain the model robustness flaws on the basis of issues in the
model structure (e.g. the water balance function of GR6J).
However, the model comparison cannot be fully understood
without taking into account the difference in the calibration
process. In particular, Fig. 10 shows that catchments in which
S-HYPE presents robustness issues are difficult to character-
ize. The manual calibration with local tuning may provide a
potential explanation for this. In addition, it is important to
note that S-HYPE was only calibrated on a sub-period (be-
tween 1999 and 2008), which may consequently affect the
robustness of the model compared to GR6J, which was cali-
brated over the whole period. The objective function is also
an important factor in explaining the results of the RAT. In-
deed, GR6J and MIKE SHE were calibrated by taking into
account the water balance bias (within the KGE for GR6J
and as one of the objective functions for MIKE SHE). S-
HYPE was only calibrated with regard to the NSE with a
focus on flood forecasting, which does not include an ex-
plicit water balance component. Because of the way the RAT
is designed (using the water balance bias as a metric), this
has probably also affected the results of the S-HYPE model.
Consequently, although this is most likely not the only fac-
tor, calibration choices may explain why S-HYPE appears
slightly less robust than GR6J and why the reactive catch-
ments are so difficult to characterize. These differences in
terms of calibration processes are difficult to overcome since
the models have different structures that require different cal-
ibration processes. It is, then, difficult to avoid here since one
of the aims of the paper is to compare models with different
modelling philosophies.

4.4 While all that glitters is not gold, not all that is dull
is worthless

The meaning of a reaction to the RAT needs to be discussed.
By itself, it only indicates that the annual model bias is cor-
related with a given climate indicator. Although it is a bad
omen regarding the capacity of extrapolation of the model,
its interpretation is not straightforward: it is a “yes-or-no”
test that requires interpretation. The slope of the relationship
between bias and indicator may also be interesting to exam-
ine, since a low slope is certainly not as problematic as a high
one.

If a model reacts to the RAT, it could also be for “good”
reasons, i.e. because of a time-dependent bias in the forc-
ing data or a drift in the measured streamflow. Even a robust
model will be affected by a trend in input data, giving the im-
pression that the hydrological model lacks robustness. Such
an erroneous conclusion could also be due to widespread
changes in land use, construction of an unaccounted-for stor-
age reservoir or evolution of water uses.

If a model does not react to the RAT, this does not mean
that it has no robustness issue at all; indeed, the RAT is de-
signed to only give an initial diagnosis of model health. How-
ever, the large-sample analysis carried out in this paper gave
an overall idea of the robustness of the models by using a
large dataset. It allowed us to find patterns in the model ro-
bustness issues that served as a diagnosis to improve these
issues in the future without having to deploy a complex ex-
perimental set-up.

In the same vein, it is interesting to evaluate how much the
results of the RAT are influenced by the performance of the
models. Indeed, the performance can have two possible ef-
fects: if the performance is too low, the model may react to
the RAT because it does not represent the hydrological pro-
cesses in the catchments correctly, but if the performance is
very high, it may be that the model is over-adapted to the
calibration period and will react to the RAT. However, if the
model does not show high performance over the observed
period, it is likely that the performance in a future climate
will remain low, leading to high uncertainties in flow projec-
tions. It is therefore important to add a performance check
to the RAT. For example, Gelfan et al. (2020) proposed such
a method in which the model is not seen as robust if it re-
mains under a certain performance threshold. In the case of
our study, the performances are good overall. All three mod-
els have a KGE value higher than 0.7 in 329 catchments of
the 352.

Although we are confident that the RAT is useful, it is not
a universal panacea for hydrological models.

5 Conclusions

5.1 Synthesis

This paper presented a large-sample analysis of the robust-
ness of three models to a changing climate. The RAT allowed
us to evaluate the robustness of the three different models
without controlling their calibration process, and the analy-
sis of the hydrological signatures of the catchments that react
to the RAT suggested some potential issues specific to each
model. Our objective was not to compare models, as we have
shown that they all suffered from a lack of robustness for
safe application in a changing climate context, but to iden-
tify the hydrological features that could be the cause of this
lack of robustness. Overall, the models reacted to the RAT in
a significant number of catchments (between 33 % and 42 %,
depending on the model and the datasets), and this indicates
that much work is needed to make models more robust in the
context of climate change.

5.2 How generic are our results?

The issue of genericity is central to science. With the appli-
cation of the RAT in three models, in three countries and in
a total of 352 catchments, the work presented in this paper
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presents a significant improvement over what had initially
been done in the work describing the method (Nicolle et al.,
2021). Because models are used more than ever to predict
the impact of a changing climate, we believe more than ever
in the need to test them more thoroughly and in the need to
challenge their extrapolation capacity. Because the RAT is
so simple to apply and because it can be applied to models
requiring calibration that run in seconds and to models that
need hours to produce a single run, we consider it a useful
investment for modellers and model users, one that is likely
to “increase their confidence” in their results, as de Marsily
et al. (1992) recommend.

Of course, we keep in mind the advice that the late Vit Kle-
meš (personal communication) gave one of us. Asked how he
looked back at the impact of his famous paper discussing the
different options of split-sample testing (Klemeš, 1986), he
answered that he had in fact always been sceptical about the
capacity of hydrologists to validate their models rigorously:
he said he knew in advance that the tests he had suggested
would be “avoided under whatever excuses available because
modelers, especially those who want to “market” their prod-
ucts, know only too well that they would not pass it”, adding
that he had “no illusions in this regard” when he wrote his
paper. We do not have any illusions either, and we do not
wish to fight against windmills. We modestly think it is part
of our scientific duty to keep expressing our concerns on this
topic.

5.3 Perspectives

Our analysis pointed out flaws in the models in terms of ro-
bustness to a changing climate.

First, the climatic and flow signatures used in the paper
do not seem to be sufficient to explain the robustness issues
of the models (especially in the case of S-HYPE). In Swe-
den and Denmark, more snow signatures may help to refine
the analysis regarding snow processes and to better under-
stand potential issues in the model snow modules. S-HYPE
may also be more sensitive to land use or soil cover since the
model parameters are regionalized by HRUs (soil and land
use combination). This analysis would be useful for pointing
out any region or parameter in which robustness issues exist.
The evolution of land use in time may also be interesting to
examine, since it is also an indicator of changing climate and
can induce some errors in models that are parameterized by
HRUs like S-HYPE.

The analysis also highlighted some issues that are due to
potential evaporation calculation. It would thus be interesting
to test several formulas for the calculation of potential evapo-
ration so as to check whether it is possible to optimize model
robustness. Birhanu et al. (2018) tested the robustness of dif-
ferent formulas and concluded that the simplest of them do
not necessarily decrease the robustness. However, these con-
clusions were made using an SST, and it may be interesting
to test them using the RAT. We ran such a test in the French

catchments using the Penman–Monteith equation and GR6J
(see File S5). The test yielded conflating results, which are
difficult to interpret (fewer reactive catchments when temper-
ature is the indicator but more catchments when precipitation
is the indicator).

More systematic tests are needed to better understand the
influence of the calibration set-up. The RAT could, for ex-
ample, be used to evaluate the effect of objective functions
by using several types of criteria and flow transformations.
It could also be interesting to test the influence of the period
used for calibration and how period selection can be opti-
mized to better satisfy the RAT. In the same vein, most sys-
tematic evaluations can be made in combination with pro-
gressive changes in model structure to test the robustness
issues attributed to model structure and to optimize model
robustness.
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applicable to model simulations, without the need to access the orig-
inal models. The RAT code is available, in the R language, from the
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