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Abstract. Principal Component Analysis (PCA) of syn-
chronous time series of one variable, e.g. water level or dis-
charge, measured at multiple locations, has been applied in a
wide spectrum of hydrological analyses. The possibility that
the Principal Components (PCs) can exhibit domain depen-
dence (DD) found only little recognition in the hydrological
PCA literature so far. DD describes the situation in which
the spatial PC patterns are mainly determined by the spatial
extent of the analysed data set (domain size) and the spa-
tial arrangement of the data set’s locations (domain shape).
Thus, instead of the hydrological functioning of the analysed
system, the spatial PC patterns rather reflect the functioning
of the PCA within the context of the data set’s spatial do-
main. The effect is caused by homogeneous spatial autocor-
relation in the analysed series. DD patterns are distinct, with
strong gradients and contrasts. We show that it can come to-
gether with substantial accumulation of variance in the lead-
ing PCs. In addition, DD can cause effectively degenerate
multiplets, i.e. PCs which are not well separable. All these
features are highly suggestive and easily lead to wrong hy-
drological interpretations. Consequently, DD should be con-
sidered for any application in which the PCs are used to draw
conclusions about spatially distinct properties of the analysed
system. For most practical applications checking the first few
leading PC patterns should be sufficient. Visual comparison
of the spatial PC patterns from subdomains with markedly
different shapes and/or sizes can serve as quick qualitative
check. Reference patterns can be used to test whether spa-
tial PC patterns differ significantly from pure DD patterns.
We present two methods, one stochastic, one analytic, to cal-
culate DD reference patterns for defined spatial correlation

properties and arbitrary spatial domains. With a series of syn-
thetic examples, we explore the DD effect with respect to (a)
domain shape, (b) domain size and spatial correlation length
and (c) effectively degenerate multiplets. Particular focus is
given to the effect of DD on the explained variance of the
PCs and the contrasts of their spatial patterns. An application
example with a precipitation raster data set is presented and
different options to detect and diminish DD are discussed.
Accompanying this technical note, R-scripts to (i) demon-
strate and explore the DD effect, and (ii) perform the pre-
sented DD reference methods are provided.

1 Introduction

In hydrology, Principal Component Analysis (PCA), also
known as Empirical Orthogonal Function (EOF) analysis
or Karhunen-Loeve Transform, is a popular tool to analyse
spatio-temporal data sets. The analysed data can be struc-
tured in various ways (Richman, 1986; Demsar et al., 2013).
Here, the focus is on PCA of data sets comprising syn-
chronous time series of one observed variable, e.g. water
level, with the time series (a) being distributed in space at
multiple locations and (b) being used as variables for the
PCA. This is known as S-mode PCA (Richman, 1986) or
atmospheric science PCA (Demsar et al., 2013). In this set-
ting, the covariance among the time series from the different
locations is analysed (Richman, 1986; Isaak et al., 2018). For
each PC there is a temporal and a spatial pattern. The PCs
are series of the same length as the analysed time series and
can be plotted against the common time index (temporal PC
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patterns). The eigenvector of each PC is associated with the
complete set of locations and can be plotted against the loca-
tions’ coordinates (spatial PC patterns). All spatial patterns
are orthogonal, all temporal patterns are mutually uncorre-
lated. With this, the leading PCs provide a compact descrip-
tion of the spatio-temporal variability of the data set. S-mode
PCA can be applied to data from very different hydrological
systems such as catchments or soil columns.

A non-exhaustive list of hydrological applications com-
prises S-mode PCA to describe the spatio-temporal vari-
ability of streamflow (Smirnov, 1972, 1973; Bartlein, 1982;
Lins, 1985a, b, 1997; Kalayci and Kahya, 2006), groundwa-
ter level (Winter et al., 2000; Longuevergne et al., 2007; Lehr
and Lischeid, 2020), lake water level (Lischeid et al., 2010),
soil moisture (Korres et al., 2010; Nied et al., 2013; Hohen-
brink et al., 2016; Bieri et al., 2021), precipitation (Kumar
and Duffy, 2009; Thomas et al., 2012; Bieri et al., 2021),
drought (Karl and Koscielny, 1982; Santos et al., 2010; Ionita
et al., 2015), atmospheric rivers (Li et al., 2022), or river wa-
ter temperature (Isaak et al., 2018). In stark contrast to its
widespread use, the possibility that the PCs of such analysis
can exhibit domain dependence (DD) is rather unknown in
hydrological PCA literature.

DD describes the situation in which the spatial PC pat-
terns from S-mode PCA are mainly determined by the size
and shape of the analysed spatial domain, meaning the spatial
extent of the data set and the spatial arrangement of its loca-
tions (Buell, 1975, 1979; Richman, 1986). If the spatial auto-
correlation of the data set’s variable is homogeneous across
the domain, its size and shape induce distinct sequences of
spatial PC patterns due to the variance maximization of the
PCs and the orthogonality constraint of the PCs* eigenvectors
(Jolliffe, 2002; Wilks, 2006). Buell (1975) identified classical
sequences for data sets with basic geometric domain shapes
and isotropic spatial autocorrelation (e.g. Fig. 1). The spatial
pattern of PC 1 is a weighted spatial average emphasizing
the centroid of the network (“mean behaviour”). The PC 2
pattern is a gradient depicting the variability along the axis
of the longest extent of the domain. The PC 3 pattern covers
the next largest spread of spatial variability orthogonal to the
spatial patterns of PC 1 and PC 2, etc. Given the functioning
of the PCA, the sequence simply reflects (a) that the covari-
ance between the locations has its maximum in the centroid
of the network because it is the point which is on average
closest to all other locations, and (b) that the only structure
in the variability of the data set is the homogeneous decay of
covariance with distance (Dommenget, 2007). On a sphere
the resulting spatial PC patterns of such a data set would be
the spherical harmonics (North and Cahalan, 1981).

Ignorance about DD can easily lead to wrong interpreta-
tions of PCA results. DD patterns are distinct, with strong
gradients and contrasts, and therefore highly suggestive to
indicate physically meaningful drivers or properties of the
analysed system. In the climatological literature DD was in-
tensely discussed (Buell, 1975, 1979; Horel, 1981; Richman,
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1986, 1987, 1993; Jolliffe, 1987; Legates, 1991, 1993). Ap-
parently, the topic did not reach the hydrological commu-
nity, even though the effect of size and shape of the network
geometry on the results was observed in early hydrological
S-mode PCA applications (Smirnov, 1973; Bartlein, 1982;
Lins, 1985b). For that reason, we want to raise attention to
the DD effect among PCA users in the hydrological commu-
nity again to reduce the risk of drawing wrong hydrological
conclusions from spatio-temporal PCA.

DD is one aspect in the general discussion on the physical
interpretation of S-mode PCs. There are strongly diverging
opinions, ranging from “never physically interpret any PCs”
to “distinct processes can be meaningfully assigned to sin-
gle PCs”. For physical processes or modes of geosystems,
the S-mode PC properties orthogonality of spatial patterns,
linear uncorrelatedness of temporal patterns and successive
maximization of variance are heavy constraints (Buell, 1979;
Jolliffe, 2002; von Storch and Zwiers, 2003; Hannachi et al.,
2007; Monahan et al., 2009). By extracting maximal vari-
ance, different sources of variability can get pulled onto the
first eigenvector, thereby mixing the sources (e.g. Fig. 14A in
Karl and Koscielny, 1982). The successive order of the PCs
implies that they should not be interpreted isolated, but only
with reference to the preceding PCs. The spatio-temporal
patterns of the first PC set the reference for all subsequent
PC patterns. Forced by the orthogonality constraint, promi-
nent features of the first spatial PC pattern cascade down to
the spatial patterns of the other PCs (Cahalan et al., 1996).
The analysis is limited to linear relationships and assumes
stationarity of mean and variance of the analysed variable.
If single features are assigned to single PCs, this raises the
question whether the hydrological features in the analysed
system are expected to exhibit orthogonal spatial patterns, to
be linearly uncorrelated in time and to successively maxi-
mize variance. If not, PCA is simply the wrong model (Jol-
liffe, 1987, 2002).

Rotation of PCs can relax the aforementioned PCA con-
straints (Richman, 1986; Hannachi et al., 2007; Monahan et
al., 2009). It is regularly used in atmospheric mode detec-
tion. Several studies found that rotated PCA performed bet-
ter than unrotated PCA for this purpose, and that their spatial
patterns were less prone to DD (Richman, 1986; Compag-
nucci and Richman, 2008; Huth and Beranova, 2021). De-
spite these findings, unrotated PCA is still often used (Huth
and Beranov4, 2021). Regardless of whether rotated or un-
rotated PCA is used, the physical interpretation depends on
the spatial PC patterns and requires that they are not domain
dependent. The knowledge which locations carry the most
variance can already be helpful to improve the physical un-
derstanding of the analysed system (Monahan et al., 2009).
In hydrology, unrotated PCA is to our knowledge much more
common than rotated PCA. Therefore, we mainly focus on
unrotated PCA here.

DD is important for any application in which a PCA of
observed data is used to draw conclusions about spatially
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distinct properties of the analysed system. This concerns de-
scriptive applications in which the spatial PC patterns are
used to identify dominant hydrological modes (Smirnov,
1972, 1973; Bartlein, 1982; Lins, 1985a, b, 1997; Kalayci
and Kahya, 2006; Thomas et al., 2012; Ionita et al., 2015)
or regions with similar hydrological behaviour (regionalisa-
tion) (Karl and Koscielny, 1982; Santos et al., 2010; Nied
et al., 2013), as well as the interpretation that they repre-
sent the spatial variability of concrete hydrological signals
(Longuevergne et al., 2007; Lewandowski et al., 2009), hy-
drological processes (Hohenbrink et al., 2016; Isaak et al.,
2018; Scholz et al., 2024) or physical properties (Korres et
al., 2010; Lischeid et al., 2010). For all those applications it
is essential that there is a physical counterpart for the spatial
PC patterns in the analysed system. Thus, DD touches the
very basic question whether the applied combination of data
set and data analysis method allows inference on the anal-
ysed system.

DD is critical in particular for any interpretation of the PCs
based on correlation analysis with other variables (Korres
et al., 2010; Lischeid et al., 2010; Hohenbrink et al., 2016;
Isaak et al., 2018; Scholz et al., 2024). In case of “strong
DD” the correlation between their spatial patterns depends
mainly on the selected spatial domain. Consider for example
a soil texture gradient in west-east direction and the classi-
cal Buell patterns in Fig. 1. Depending on the selected do-
main the spatial patterns from different PCs would correlate
strongly, moderately or not at all with the gradient. Conse-
quently, those correlations would be neither useable for the
interpretation of the PCs nor for the identification of predic-
tors for their spatio-temporal patterns. Thus, spatial PC pat-
terns should be checked for DD prior to any interpretation
implying causal relationships.

When checking for DD, it has to be considered that DD
patterns are original for every combination of spatial domain
and spatial correlation properties of the analysed data set.
Thus, the “classical Buell patterns” are DD patterns for the
distinct combinations of size and shape of the domain, spa-
tial covariance function and spatial correlation length used
in Buell’s (1975) numerical experiments (e.g. Fig. 1). Spa-
tial PC patterns of real-world data sets can be expected to
deviate from those archetypes due to possible differences in
all these aspects. In addition, there might be a blurring effect
of measurement errors. For spatially regular distributed data
sets with strong homogeneous autocorrelation and domain
boundaries similar to one of Buell’s basic domains the DD
patterns of the leading PCs are commonly visually easy to
recognize as Buell-like. This is less clear for those of the PCs
with smaller eigenvalues (low ranked PCs). They are more
finely detailed and less robust against deviations from Buell’s
settings. Furthermore, there might be intermixing of the vari-
ance structures when the eigenvalues from successive eigen-
vectors are of very similar size (North et al., 1982; Quadrelli
et al., 2005). These PCs which are not well separated with the
PCA are called effectively degenerated multiplets (North et
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al., 1982). For their separation, additional post-processing is
required, e.g. rotation of eigenvectors (Richman, 1986; Jol-
liffe, 1989). DD patterns from data sets with more complex
domain shapes and spatially irregular distributed locations,
which is the common case in hydrology, can differ substan-
tially from Buell’s archetypes. All in all, visual recognition
by comparison with Buell patterns is rather limited. Compar-
ison with DD patterns calculated for the analysed spatial do-
main overcome these limitations (Cahalan et al., 1996; Dom-
menget, 2007). They can be used as reference to test whether
spatial PC patterns differ significantly from what has to be
expected from DD alone.

The objective of this technical note is to introduce (i) the
DD effect and (ii) the application of DD reference patterns to
the hydrological community. We illustrate our introduction
primarily with synthetic examples. This ensures that the sta-
tistical properties of the examples, in particular their spatial
correlation properties and spatial domains, are strictly de-
fined. It further clarifies that all observed effects are solely
caused by the specified statistical properties. Another advan-
tage is that series of examples with systematic differences
can be constructed to study the effects of specific properties,
e.g. spatial correlation length or spatial extent, on the PCA
results.

Note that we aim for an illustrative introduction for PCA
practitioners. For a mathematically rigid introduction to the
DD phenomenon see Buell (1975, 1979) and North and Ca-
halan (1981). All the here presented analyses were performed
in R (R Core Team, 2019). Scripts to reproduce the results,
explore the DD effect and calculate DD reference patterns
for defined spatial correlation properties and arbitrary spatial
domains are provided (Lehr, 2024). After presenting two DD
reference methods, a series of synthetic examples is used to
explore the DD effect with respect to (a) domain shape, (b)
domain size and spatial correlation length and (c) effectively
degenerate multiplets. Particular focus is given to the effect
of DD on the explained variance of the PCs and the contrasts
of their spatial patterns, both common indicators for the in-
terpretation of PCA results. Finally, an application example
with a precipitation raster data set is presented and different
options to detect and diminish DD are discussed.

2 Data
2.1 Synthetic data

The synthetic data sets consist of synchronous spatially dis-
tributed time series exhibiting spatial but no temporal auto-
correlation. Each data set is produced by concatenating re-
alizations of a random field with identical spatial correlation
properties (Fig. 2). The grid cells (cells) of the random field
represent the locations of a data set. The spatial autocorrela-
tion is defined with a spatial covariance model. Each realiza-
tion of the field represents one instant of time of a data set.
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Figure 1. Exemplary reproduction of some “classical Buell patterns” for differently shaped domains of relatively similar size: (a) 6 x 6
square, (b) 5 x 10 rectangle and (c) 8 x 8 triangle (Figs. 2, 5 and 4 adapted from Buell, 1975). The signs indicate positive and negative
values of the spatial PC patterns. The patterns are for data exhibiting exponentially decaying spatially isotropic autocorrelation with spatial
correlation length of 2 grid cells (function F1, scale parameter L = 2 in Buell, 1975). The spatial PC patterns of the rectangular shape are for
the gaussian covariance function (function F2 in Buell, 1975) but Buell noted that the patterns of the exponential function are essentially the
same. The dashed circle of PC 1 indicates that its pattern is of one sign in the entire domain with absolute values being highest within the

circle and fading out towards the domain boundaries.
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Figure 2. Three realizations of a 20 x 20 random field simulated with an isotropic exponential covariance model and spatial correlation length

of 10 cells representing three instants of time of a synthetic data set.

Thus, at each location the respective time series consists of
a sequence of random numbers. The number of field realiza-
tions gives the length of the simulated time series. The ran-
dom fields were simulated with the “RandomFields” package
(Schlather et al., 2015, 2020).

2.2 Precipitation data

As an application example based on observed data we use
time series of monthly precipitation sums from the years
1991-2020 out of a 200km x 200 km square in northeast
Germany (Fig. 3). The precipitation series were selected
from the 1km x 1km HYRAS-DE-PR precipitation grid
provided by the German Weather Service (Deutscher Wet-
terdienst, 2025). Amongst others, the HYRAS-DE-PR pre-
cipitation product is suggested as input data for hydrological
modeling (see the description file at Deutscher Wetterdienst,
2025). The monthly precipitation sums are based on daily
measurements of precipitation height at the monitoring sta-
tions. The raster layers are interpolated by combining mul-
tiple linear regression considering topography with inverse
distance weighting. The interpolation method preserves the
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measured precipitation values at the grid cells of the stations.
For details, see Rauthe et al. (2013) and the description file
of the data (Deutscher Wetterdienst, 2025). Except from z-
scaling, no pre-processing of the precipitation series was ap-
plied.

3 Methods
3.1 Principal Component Analysis

PCA maps a m x n data matrix X to n new linearly uncor-
related variables, the Principal Components (PCs), such that
the PCs successively maximise represented fractions of the
data set’s variance (Wilks, 2006). The data set’s variance is
defined as the sum of variances of the variables x. It equals
the sum of the diagonal elements (trace) of its covariance
matrix. PCA can be performed as eigenvalue decomposition
of the variables’ covariance matrix or as singular value de-
composition of the variables’ matrix with the variables being
centred to their mean (Jolliffe, 2002). Unfortunately, the ter-
minology is not used consistently throughout the literature.
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Figure 3. Maps of the precipitation data showing the permanent precipitation stations (crosses) that were used by the German Weather
Service to produce raster of monthly precipitation sums in the monitoring period 1991-2020. Left panel: Federal States of Germany (black
lines) and the domain selected for PCA (red square). Right panel: Sample raster of monthly precipitation sums (mm) from the first two
months of the selected data set. The Northing and Easting coordinates (10 km) of the maps are in the ETRS89/LAEA Europe projection.

Here, we follow the terminology used by Jolliffe (2002) and
Jolliffe and Cadima (2016) for the eigenvalue approach.

Each PC is associated with an eigenvalue A and an eigen-
vector a. The values of a PC are termed scores. The variance
of the scores of a PC equals its eigenvalue. The ratio of a PC
eigenvalue to the sum of all PC eigenvalues gives the frac-
tion of the data set’s variance assigned to that PC. Each PC is
calculated as linear combination of all n analysed variables x
(non-locality).

n
pCj =an=Zaijx,- (1)
i=1

The coefficients a;; in this linear combination are termed
loadings. The loadings of a PC j are the n elements of the
eigenvector a; associated with that PC. The eigenvectors of
all PCs define the orthogonal basis of the new ordination sys-
tem into which the analysed data is projected (orthogonal-
ity constraint). Subject to the eigenvectors being orthogonal
and the PCs being uncorrelated, the linear combinations of
the PCs provide the optimal linear functions to successively
maximise variance accounted for (variance maximization).
The maximum variance that can be described by a linear
combination of the analysed variables is assigned to the first
PC, the maximum of the remaining variance to the second
PC, and so forth. Thus, the leading PCs provide a compact
description of the data set’s variance. It is quite common that
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a few PCs suffice to summarize a major part of a data set’s
variance.

For the synthetic data, PCA was performed with the func-
tion “prcomp” from the default “stats” package (R Core
Team, 2019). For the precipitation data, a truncated PCA,
calculating the first 20 PCs only, was performed with the
“prcomp_irlba” from the “irlba” package to reduce compu-
tation time. The equivalence of the results of both PCA al-
gorithms with respect to the leading PCs was confirmed by
comparison of the results from smaller data sets.

3.1.1 S-mode PCA

In S-mode PCA, the analysed variables are synchronous time
series distributed in space at multiple locations (Fig. S1 in the
Supplement; Richman, 1986). Thus, the PCs are series of the
same length as the analysed time series (temporal PC pat-
terns) and the loadings yield values for each location (spatial
PC patterns), describing the weighting of the analysed time
series to calculate the PC scores. All temporal PC patterns
are linearly uncorrelated with each other, each temporal PC
pattern is associated with a spatial pattern and all spatial PC
patterns are orthogonal to each other. Note that in this study,
we perform S-mode PCA only.

Hydrol. Earth Syst. Sci., 29, 6735-6760, 2025
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3.1.2 Correlation matrix based PCA, correlation
loadings and contrasts of spatial PC patterns

Normalizing the variables to zero mean and standard devi-
ation one (z-scaling) prior to applying PCA ensures equal
weighting of the analysed variables. This is important if the
range of values between the analysed variables differs sub-
stantially. A PCA with z-scaled variables is identical to an
eigenvalue decomposition of the correlation matrix of the
analysed variables. In hydrology, correlation matrix based
PCA is to our knowledge more common than covariance ma-
trix based PCA.

For the eigenvectors, different scaling conventions exist
(Wilks, 2006). Here, the eigenvectors that are used to calcu-
late the PCs are of unit length (Eq. 1). In correlation matrix
based PCA, normalizing the loadings from the unit length
eigenvector a; of a PC by multiplying it with the square root
of its eigenvalue A ; is equivalent to the Pearson correlation r
between the scores pc; and the analysed variables X.

cj=aj/rj=r(pc;, X) @)

Thus, the loadings are normalized to the commonly well-
known Pearson correlation range from —1 to 1 which sim-
plifies reading and interpretation of the PCA results. Here,
we use the term “correlation loadings™ for these normalized
loadings c;. We do so to prevent confusion with the coeffi-
cients that are used in the linear combination to calculate the
PCs, which are not normalized to a common range (Eq. 1).
The sum of the squared correlation loadings c; of a PC equals
its eigenvalue A ;. Thus, they can be used to calculate the frac-
tions of variance associated with the PCs. In the following,
the spatial PC patterns are described with correlation load-
ings only.

For S-mode PCA, the normalization enables direct com-
parison of the contrasts of spatial patterns from different PCs
or PCAs. Here, we define the contrast of a spatial PC pat-
tern as the range between the minimum and maximum of the
correlation loading values of that PC. Thus, the maximum
contrast possible would be 2.

3.2 DD reference patterns

DD reference patterns are the DD patterns of a distinct com-
bination of spatial domain and spatial correlation properties.
They can be used as null hypothesis in pairwise statistical
tests to test whether spatial PC patterns differ significantly
from what has to be expected from DD alone.

3.2.1 Stochastic method

In the stochastic method, PCA is applied on synthetic data
sets (Sect. 2.1) to derive DD reference patterns. As the data
sets consist of spatially correlated white noise time series,
their temporal PC patterns are white noise as well. The spa-
tial PC patterns of the data sets are solely determined by the
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spatial domain and the spatial correlation properties defined
in the simulation. The spatial PC patterns of data sets simu-
lated with identically parameterized random fields differ due
to the randomness in the simulations. Therefore, a three-step
procedure is applied to get stable patterns (Fig. 4).

Step 1: An ensemble of data sets with identical spatial do-
main and spatial correlation properties is simulated. Each of
the data sets is analysed separately with a PCA, resulting in
a PCA ensemble.

Step 2: The stability of the spatial PC patterns is assessed
by pairwise correlating the spatial patterns of all possible
combinations of PCs with identical ranks from the PCA en-
semble. For each PC rank, the mean R? of the correlations is
used to describe the overall similarity of the respective spatial
PC patterns.

Step 3: For each PC rank (a) the mean spatial patterns from
all PCAs of the ensemble and (b) their standard deviation
patterns are calculated. They are calculated as the mean and
standard deviation of the correlation loadings of PCs with
identical rank from the PCA ensemble.

The mean spatial PC patterns are the DD reference pat-
terns for data sets with the spatial domain and the spatial cor-
relation properties defined in step 1. The standard deviation
patterns serve as their spatially discrete uncertainty estima-
tion. The variance represented with the DD reference pat-
terns (“explained variance”) is estimated with the mean and
standard deviation of the explained variances of PCs with
identical rank from the ensemble.

PCs with identical rank from different data sets of an en-
semble might exhibit basically the same spatial pattern but
with opposite signs due to the randomness of the field sim-
ulations, i.e. the pattern of one data set might be basically a
negative version of another one. For the calculation of mean
and standard deviation of the spatial PC patterns of an ensem-
ble (step 3), the spatial patterns of PCs with identical rank are
therefore harmonized such that they all are correlating posi-
tively. Thus, the correlation loadings of PCs that are correlat-
ing negatively with those of identically ranked PCs from the
first data set are multiplied by —1 and therefore reversed.

Note that the suggested method requires the use of corre-
lation loadings to describe the spatial PC patterns. Thus, it is
restricted to correlation matrix-based S-mode PCA, meaning
the analysed series have to be z-scaled (Sect. 3.1.1 and 3.1.2).
Furthermore, the mean spatial PC patterns are derived from
a data set ensemble, not from a distinct single data set. Thus,
they cannot be used to calculate PC scores.

3.2.2 Analytic method

Another possibility to produce DD reference patterns is
to perform a PCA with the “analytic”, or “exact”, covari-
ance matrix (North et al., 1982; Cahalan et al., 1996; Dom-
menget, 2007) of a spatially homogeneous covariance func-
tion (Fig. 5). The analytic covariance matrix consists of the
covariances among all of the data set’s locations calculated
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Figure 4. Stochastic DD reference method. n: number of locations, m:

number of time steps, N: number of data sets, respectively PCAs.

Index j: PC rank, c: correlation loadings, a: loadings, A: eigenvalue. S: stability of the spatial PC patterns, indices d, e: running indices for
PCAs from the ensemble, r: Pearson correlation. ¢: harmonized correlation loadings. V': explained variance.

directly with their interpoint distances from the function.
For consistency with the stochastic method (Sect. 3.2.1),
the eigenvectors (spatial patterns) were scaled to correlation
loadings (Sect. 3.1.2). A brief review of different variants us-
ing the analytic covariance matrix to produce PCA reference
patterns is given in Appendix A.

For the synthetic examples, the analytic method was per-
formed as eigendecomposition of the analytic covariance ma-
trix with the function “eigen” from the default “base” pack-
age (R Core Team, 2019). For the precipitation data, a trun-
cated PCA, calculating the first 20 PCs only, was performed
with the function “eigs_sym” from the “RSpectra” package
to reduce computation time. The equivalence of the results
of both algorithms with respect to the leading PCs was con-
firmed by comparing the results from smaller data sets.

3.3 Matching of spatial PC patterns

The matching of the spatial patterns from different PCAs
was quantified with the congruence coefficient (Lorenzo-
Seva and ten Berge, 2006) and Pearson correlation. The con-
gruence coefficient ¢ is defined as the cosine of the angle
between two vectors of component or factor loadings a; and
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as, both being based at the origin.

Y aiar

T raya

In contrast, Pearson correlation gives the cosine of the angle
between two vectors, both being based at the mean loading.
Thus, the matching coefficient @ in the following equation
gives the Pearson correlation r when b = a1, d = a» and the
congruence coefficient ¢ when b = d = 0 (see the help of R-
function “factor.congruence”).

o > (a1 —b) (a2 —d)
S @ -2y @ —ap?

If the compared vectors have zero mean values (a| =a; =
0), both indices are identical. In all other cases, the results
differ. The congruence coefficient is sensitive to the addi-
tion of constants, because the vector means are not removed
(Lorenzo-Seva and ten Berge, 2006). Two eigenvectors with
different means can be closely correlated even though their
magnitude patterns differ substantially such that some vari-
ables load high on the one PC and low on the other (Richman,

3)
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Figure 5. Analytic DD reference method.

1986; Lorenzo-Seva and ten Berge, 2006). In the S-mode
PCA case, this means that two spatial PC patterns with differ-
ent means can be closely correlated even though some loca-
tions load high on the one PC and low on the other (thus, the
maximum loadings of the two PCs could be in different loca-
tions). If that is the case, the congruence coefficient would be
low, indicating the difference in magnitude patterns. Thus, in
contrast to Pearson correlation it incorporates vector magni-
tudes in the comparison (Richman, 1986). This is desirable
for the comparison of eigenvectors from PCA or factor analy-
sis because the magnitude of the loadings is important for the
interpretation of the components (Richman, 1986). There-
fore, the congruence coefficient is recommended as match-
ing coefficient over Pearson correlation for the comparison of
eigenvectors from PCA or factor analysis (Richman, 1986).
However, a major benefit of Pearson correlation is that it is
well known and the results in terms of 7 or R? can easily be
contextualized by the analyst.

Note that the stability analysis of the stochastic DD refer-
ence method (step 2, Sect. 3.2.1) was performed with Pear-
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son correlation only, because all compared PC patterns (i)
were of identical rank and (ii) were based on synthetic data
sets simulated with identical spatial correlation properties
and identical domains. For this setting, we considered the ef-
fect of the pattern mean subtraction by Pearson correlation as
negligible.

Both indices have a value range from —1 to 1, with 1 in-
dicating a perfect match, O no relationship and —1 a perfect
inverse match (Richman, 1986). Compared with Pearson cor-
relation, the congruence coefficient is biased towards higher
values (Richman, 1986). Several guidelines were suggested
that assign specific ranges of absolute congruence coeffi-
cients (aCC) to categories of goodness-of-match, or specific
thresholds as indication for the identity of components/fac-
tors (Richman, 1986; Lorenzo-Seva and ten Berge, 2006).
Here, we follow Lorenzo-Seva and ten Berge (2006) who
suggested that aCC values between 0.85 and 0.94 indicate
fair similarity of the two components, values larger than 0.95
indicate that they can be considered equal and values below
0.85 should not be interpreted as indication for similar com-
ponents.

The congruence coefficient was calculated with the func-
tion “factor.congruence” from the “psych” package. The sta-
tistical significance of the correlations was assessed with
t-tests and the significance level 0.05 using the function
“cor.test” from the default “stats” package (R Core Team,
2019).

3.4 North’s rule of thumb

Confidence limits to identify clearly separated eigenvalues
and eigenvectors can be estimated e.g. with North’s rule
of thumb (North et al., 1982; Hannachi et al., 2007) based
on the data set’s effective sample size n*, also known as
number of independent observations in the sample or the
number of degrees of freedom (Hannachi et al., 2007). The
95 % confidence interval of the eigenvalue A, is given by
8hg ~ dg+/2/n*. In our case here, n* equals the length of
the analysed time series because the series do not exhibit
temporal autocorrelation. The confidence interval for the as-
sociated eigenvector ug can then be estimated with dug ~
(5Ag/Ak) u; where u; is the eigenvector of A, the closest
eigenvalue to Ag, and AA the spacing (A i—A g) between both
eigenvalues.

3.5 Varimax rotation

Rotation aims at separating a subset of PCs more clearly
such that the association between the eigenvectors and the
PCs is more distinct. The goal is to reach a so called “sim-
ple structure” with the loadings being either close to zero
or close to the maximum possible absolute values as much
as the data permit (Wilks, 2006). Thus, the magnitudes of
the loadings are changed. The total variance of the rotated
subspace is preserved, but the variance among the rotated
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PCs is redistributed more evenly (Jolliffe, 2002), potentially
affecting which PCs are rated dominant. Different rotation
methods are available (Richman, 1986). The rotation is per-
formed by multiplication of the selected eigenvectors by a
rotation matrix. If the rotation matrix is orthogonal, the ro-
tation is called orthogonal, otherwise oblique (Wilks, 2006).
To support the interpretability of the results, the rotation ma-
trix is chosen to optimize a simplicity criterion (Jolliffe and
Cadima, 2016). Depending on the selected simplicity crite-
rion, the rotation changes the properties of the eigenvectors
and PCs. The results can depend on the number of eigen-
vectors that are rotated (Jolliffe, 2002; Wilks, 2006). This is
different from standard PCA where the patterns and the as-
sociated variances from a set of PCs do not depend on the
number of considered PCs. For example, in standard PCA
the patterns and variance distributions of the first two PCs
are identical, regardless of whether only the first two PCs are
considered or, say, the first four PCs. Often the results are
affected more by the choice of how many eigenvectors are
rotated than by the choice of the simplicity criterion (Han-
nachi et al., 2006; Jolliffe and Cadima, 2016).

Here, we applied varimax rotation with Kaiser normaliza-
tion (Kaiser, 1958). It is the most popular rotation method
(Wilks, 2006). Varimax is an orthogonal rotation that maxi-
mizes the sum of the variances of the squared elements from
the r selected eigenvectors b by iteratively rotating pairs of
eigenvectors (Richman, 1986; Wilks, 2006). With the Kaiser
normalization the eigenvectors b are normalized with the
communalities 42 of the n analysed variables (here the time
series from the n different locations) prior rotation and renor-
malized afterwards. The communality hl2 of variable i is the
fraction of variance from the variable that is depicted by the
k rotated PCs. The normalized varimax criterion V can be
calculated as

vy En e[l em] ) ®

Note that the scaling of the eigenvectors that are rotated af-
fects the varimax results (Jolliffe, 1995; Wilks, 2006). Either
the orthogonality of the eigenvectors, the uncorrelatedness of
the PCs or both get lost. The most popular scaling and the de-
fault in many software packages is to use eigenvectors scaled
to the square root of their eigenvalues, derived from correla-
tion matrix PCA (what we term correlation loadings here). In
that case, the orthogonality of the eigenvectors and the uncor-
relatedness of the PCs are lost. Other options are to use unit
length eigenvectors which preserves the orthogonality of the
eigenvectors, or to divide the unit length eigenvectors by the
square root of their eigenvalues which preserves the uncor-
relatedness of the PCs. For the introductory purpose we use
the most popular variant and rotate correlation loadings only.
Varimax rotation was performed with the function “varimax”
from the default “stats” package (R Core Team, 2019).
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4 Exploring the DD effect

4.1 Exploring Buell patterns and their stability

As a start, we estimated DD reference patterns for Buell’s
(1975) three basic geometric domain shapes (Fig. 1) using
the stochastic method (Sect. 3.2.1). Ensembles of 100 data
sets were simulated for each of the three shapes. The domain
boundaries are shown in Fig. 6. All cells within the bound-
aries were used. Note that the shape of a domain means the
spatial arrangement of the data set’s locations. It should not
be confused with the shape of its boundary. The sides of the
square, the long side of the rectangle and the legs of the per-
pendicular triangle were 20 cells long, the short side of the
rectangle was 10 cells long. Thus, the rectangular and the
triangular domain were of half the size of the square. Each
data set was simulated with a spatially isotropic exponential
covariance model and a spatial correlation length of 10 cells.

For the reliability of the stochastic DD reference patterns,
their stability is essential. Figure 7 summarizes the results
of the stability analyses (step 2 of the stochastic method,
Sect. 3.2.1) from a series of ensembles with identical spatial
domain and spatial correlation properties but different time
series lengths. Thus, the plot shows for each PC rank the de-
pendency of its spatial patterns’ stability from the time series
length if all other parameters used in the simulation are iden-
tical. Based on that information it can be decided whether
additional ensembles with longer time series shall be simu-
lated to improve the estimation. Here, we considered a time
series length of 10 000 sufficient for all three domains.

Here and in the following, the results are shown for the
ten leading PCs, merely for illustrative purposes. We found
it to be a good balance between showing the DD pattern se-
quences and some degree of detail, but not too much detail
that it is still visually easy to grasp. There was no other spe-
cific truncation criterion, e.g. based on eigenvalue magnitude
or percent variance extracted, applied. The plots of the spa-
tial PC patterns are overview plots designed for direct vi-
sual comparison with the classical Buell patterns shown in
Fig. 1, and among each other. The focus is on the spatial
patterns only — not their magnitudes. With few exceptions
in Sect. 4.4 and the Supplement, we therefore do not show
the scales. This is analogue to the schemes in Buell’s orig-
inal work (Buell, 1975). In contrast to Buell, we use colour
gradients — instead of &+ schemes — to picture the spatial pat-
terns. We think that this further improves the readability of
the figures, especially for the more fine-structured patterns
of the PCs with small eigenvalues (lower ranked PCs). Fig-
ure 8 shows the mean spatial PC patterns of the ensembles.
Those are the stochastic DD reference patterns. Most of them
correspond to the Buell patterns shown in Fig. 1. Some ex-
hibit switches in the ranking, e.g. PC 344 of the rectangular
domain or PC 7+8 of the square domain. The uncertainty es-
timation of the stochastic DD reference patterns, given by the
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Figure 6. (a) Square, (b) rectangular and (c) triangular domain boundaries on the 20 x 20 grid. The grid cells represent locations from a data

set.
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respective row.

standard deviation of the spatial PC patterns from the data set
ensembles, is shown in Fig. 9.

Exemplarily, the scales of the mean and standard devia-
tion patterns of the square domain are shown in a detail plot
in Fig. S2. To make use of the standard deviation patterns
(Fig. S2b) as uncertainty estimation of the DD reference pat-
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terns, it is necessary to consider their magnitudes in relation
to the contrast from the mean spatial patterns (Fig. S2a). In
addition, the detail plot shows the percentages of variance
assigned to the DD reference.

The stability of the DD patterns reflects their distinctness
in the sequence of spatial PC patterns according to the PCA
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Figure 8. Overview of the leading ten mean spatial PC patterns (DD reference patterns), estimated with the stochastic method from the data
set ensembles with time series length 10 000 shown in Fig. 7. All cells within the three geometric domain boundaries of Fig. 6 were used
(AC). The focus is on the spatial patterns only — not their magnitudes. Therefore, no scales are shown. Instead of the & schemes used by
Buell (1975) (Fig. 1), colour gradients picture the spatial patterns. In each subplot, the gradient depicts from blue to yellow the range between

the minimum and maximum values of the respective pattern.
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Figure 9. As in Fig. 8 but for the standard deviation patterns (uncertainty estimation of the stochastic DD reference patterns). From blue to

yellow the colour gradients depict increasing uncertainty.

constraints. It depends on the specific combination of do-
main size and shape and spatial correlation properties of the
data set. For example, for the properties here, PCs 8 to 10
of the triangle are more stable than the ones of the rectangle
(Fig. 7c, b). Generally, there is the tendency that the spatial
patterns of low ranked PCs, which contain also more fine-
details, require longer times series to gain stability. At first,
for the rectangular domain, it seems counter intuitive that PC
2 stabilizes faster than PC 1 (Fig. 7b). It indicates that for
the properties of the simulated data the rectangular domain
shape gives a clearer orientation for the spatial pattern of PC
2 than for the one of PC 1. Thus, especially for short time
series the orientation of the gradient along the long side of
the rectangle (PC 2) is more distinct than the position of the
monopole in the centroid of the rectangle (PC 1) (Fig. 8b).
Similarly for the triangle, the orientation of the gradient pat-
terns of PC 2 and 3 induced by its long side are more distinct
than the position of its PC 1 monopole (Figs. 7c and 8c).
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PCs with ambiguous orientation of spatial patterns are
more likely to occur for symmetric domain shapes than for
asymmetric ones (North et al., 1982). The basic geometric
domain shapes used here exhibit rotational symmetry of or-
der 4 (square), order 2 (rectangle) and order 1 (triangle). Or-
der 1 means no rotational symmetry. Accordingly, within the
range of the analysed time series lengths the number of PCs
that exhibited unstable spatial patterns differed between the
domain shapes (square: 8, rectangle: 5, triangle: 2 in Fig. 7).
Unstable spatial PC patterns are indicative for effectively de-
generated multiplets and will be discussed in Sect. 4.4.

The R script to apply the stochastic reference method en-
ables the production of catalogues of stability plots and DD
patterns like in Figs. 7 and S2 for data sets with different spa-
tial domains and spatial correlation properties (for sample
catalogues see Lehr, 2024). The combination of both plots
can be used to explore how the properties of a data set affect
the DD patterns. Here, we neglect the effect of measurement
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errors. However, it can be simulated by adding noise to the
realizations of the random field (Fig. 2).

4.2 Effects of the domain shape

For data sets with identical spatial correlation properties and
similar domain size, the DD patterns are original for every
domain shape. This is obvious for domains of such simple
and clearly different shape like the three geometric shapes
used so far. The sequence of their DD patterns is visually
easy to recognize. For more complex shapes, the DD patterns
are less predictable, a priori, and visual recognition is more
limited.

For demonstration, we compared the DD patterns from
data sets with identical spatial correlation properties in the
variant in which all cells within the three geometric bound-
aries of Fig. 6 were selected (AC) (Fig. 8) with two vari-
ants in which only 40 % of the cells were randomly selected.
In the first variant the subsampling was spatially homoge-
neous (Hom40) (Fig. 10), in the second spatially heteroge-
neous (Het40) (Fig. 11). The domain of the Het40 variant
contained a subregion with higher sampling probability than
the rest of the domain, i.e. within each domain there is one
area in which the locations cluster. Clusters of locations have
more weight in the calculation of the PCs analogue to the cal-
culation of a weighted spatial mean (Karl et al., 1982). For
the DD pattern of PC 1 the effect is obvious. Its monopole is
placed in the centroid of the network. In comparison with the
regular variants (Figs. 1, 8 and 10) it is therefore shifted ac-
cording to the density of the locations (Fig. 11). The patterns
of all other PCs are not predictable without calculating DD
reference patterns.

Visually, the domains of the subsampling variants are still
clearly of square, rectangular and triangular shape. Their
leading DD patterns are recognizable as distinct spatial pat-
terns. Most of the leading DD patterns from the Hom40 vari-
ant (Fig. 10) appear as noisy counterparts of the AC patterns
(Fig. 8). In the Het40 case (Fig. 11), the patterns of the square
domain appear again relatively similar, whereas for the trian-
gular and rectangular domain only a few PCs exhibit visually
similar patterns, e.g. PC 2.

The similarity of patterns formed by congruent selections
of cells from the different variants is of particular interest. It
addresses the question whether the spatial PC patterns cal-
culated from two different domains result in different rela-
tions between the values at locations with coincident coordi-
nates. This is visually only poorly assessable. Therefore, we
correlated the patterns of the subsampling variants with the
patterns formed by the corresponding subsets from their AC
counterpart (that is, the AC patterns clipped with the coordi-
nates of the subsampling variant). For example, the patterns
from the Hom40 square (Fig. 10a) were correlated with the
patterns from the AC square (Fig. 8a) clipped with the coor-
dinates of the subsampled square.

Hydrol. Earth Syst. Sci., 29, 6735-6760, 2025

For the spatial patterns of the Hom40 variant and the AC
variant, the correlation analysis confirmed the visual impres-
sion of overall similarity (Table 1). But it also showed the
originality of the patterns and that there are clear differences
between the variants. The patterns of the Hom40 variant can
be:

1. simply noisy variants of the AC patterns (e.g. PC 1 and
2 from all domains),

2. simply noisy variants of the AC patterns but with dif-
ferent ranking (e.g. PC 3 and 4 from the rectangular do-
mains),

3. a mix of AC patterns (e.g. PC 4 and 5 from the square
domains!), or

4. very different from the AC patterns (e.g. PC 10 from all
domainsz).

Transitions between (3) and (4) are possible (e.g. PC 6 and
7 of the rectangular domain). Generally, the differences in-
crease towards the low ranked PCs with the more detailed
patterns. But there are also substantial differences between
the patterns from relatively high ranked PCs possible (e.g.
PC 4 and 5 from the square domains). Thus, even for rather
homogeneous subsampling, like the Hom40 variant, the DD
patterns are not necessarily simply noisy variants of the clas-
sical Buell patterns. The comparison with the Het40 vari-
ant yielded substantially stronger deviations (Table 2). Thus,
generally, visual recognition of Buell like patterns in S-mode
PCA results is a concrete indication for DD. However, it is
so in particular for the leading PC patterns from domains
with rather homogeneous spatial arrangement of locations
within boundaries similar to Buell’s archetypes. For domains
of similar size and identical spatial correlation properties, de-
viations from strictly regular distribution of locations alone
can result in DD patterns substantially deviating from what
one might expect with the classical Buell patterns in mind.

Side note: The spatial PC patterns of the subsampling vari-
ants required shorter time series lengths to stabilize (Figs. 12
and S3) than the AC variant (Fig. 7). This indicates that the
subsampling resulted in a more unbalanced arrangement of
locations and therefore a more distinct orientation for the or-
der of the orthogonal spatial PC patterns.

Un the AC variant, PC 4 exhibits two maxima in the upper left
and lower right corner and two minima in the lower left and up-
per right corner, PC 5 exhibits the maximum in the centre and four
minima in the four corners. In the Hom40 variant, PC 4 exhibits two
maxima in the upper left and lower right corner and the minimum
in the centre, PC 5 exhibits basically the same structure but rotated
by 90°.

ZFor PC 10, the patterns of the AC variant are for all domains
already so fine-structured that the subsampling results in quite dif-
ferent patterns.
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Figure 10. DD reference patterns as in Fig. 8 but for a random selection of only 40 % from the cells within the three geometric domain
boundaries of Fig. 6 (Hom40). The sampling probability was homogeneous across the domain (spatially homogeneous case).
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Figure 11. DD reference patterns as in Fig. 8 but for a random selection of only 40 % from the cells within the three geometric domain
boundaries of Fig. 6 (Het40). The sampling probability within the small square in the lower left was three times higher than in the rest of the

domain (spatially heterogeneous case).

4.3 Effects of the domain size and spatial correlation
length

The ratio between domain size and the spatial correlation
length affects the fractions of variance allocated to the PCs
(Fig. 13) as well as the contrasts of the spatial PC patterns
(Fig. 14). If there is no spatial correlation (spatial “white
noise”), the spatial patterns of all PCs are white noise. All
PCs represent the same fraction of variance, one divided by
the total number of PCs. The magnitudes of the contrasts of
their spatial patterns are small and on the same level. For spa-
tial correlation length increasing from zero towards infinity,
the data sets’ series from all locations get more and more
similar, converging towards identity of all series (perfect cor-
relation). If the latter is reached, there is no variance in the
data that could be distributed and, consequently, there are no
patterns or contrasts in the PC patterns. In between the two
extremes, successive allocation of variance to the PCs and
spatial PC patterns with distinct contrasts appear.

For the variance allocation, increasing correlation lengths
result in increasing accumulation of variance in the leading
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PCs, converging towards accumulation of the total variance
in PC 1.

For the contrasts, it is more complex. The maximum con-
trasts appear for correlation lengths in the order of magnitude
of the domain size. The exact maximum is specific for the
different PCs and depends on the particular domain shape.
For example, for the triangular domain here (Fig. 14c), the
contrasts of the PC 1 patterns peak at a correlation length
of 13 cells, the ones of the PC 2 patterns at a correlation
length of 21 cells (not shown). The increase of the contrasts
between zero correlation length and the correlation lengths
of the maximum contrasts reflects the increasing fraction of
covarying locations that support the poles of the DD patterns.
The decrease of the contrasts between the correlation lengths
of the maximum contrasts and infinite correlation length re-
flects the increasing similarity of all locations which leads to
smoother spatial PC patterns with contrasts converging to-
wards zero.

Within a DD sequence, the magnitude of the contrasts dif-
fers between the PCs. Generally, they peak at PC 2 (Fig. 14)
and decay with decreasing PC order (Fig. S4). Starting with
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Table 1. Best matches between the DD patterns of the square, rectangular and triangular domains from the homogeneous subsampling variant
(Hom40) (Fig. 10) and the patterns formed by the corresponding subsets from their all cells (AC) counterpart. That is, the AC patterns (Fig. 8a
to c) clipped with the coordinates of the Hom40 variant (Fig. 10a to c), quantified by the absolute values of the Congruence Coefficient (aCC)
and R2. Mostly, the best matches were of identical PC rank. If the best match was with an AC pattern subset of different rank, that rank is
given after the “/”. Hom PC: PC ranks from the Hom40 variant. Bold aCC values indicate PC patterns that can be considered equal; italic
aCC values indicate fairly similar PC patterns (Sect. 3.3).

Hom PC 1 2 3 4 5 6 7 8 9 10
Square aCC 1 099 096 0.73/5 0.64/4 0.88 0.85 0.74 0.77/10  0.62/9
R? 094 097 093 0.52/5 0.45/4 0.79 0.73 0.55 0.59/10 0.38/9
Rectangle aCC 1 098 090/4 0.88/3 090 0.72/7 0.56 0.66/9 0.64/8 0.48
R? 0.87 097 0.80/4 0.78/3 0.83 0.52/7 032 0.43/9 0.40/8 0.23
Triangle aCC 0.99 0.96 0.96 0.93 0.96 089 091 0.92 0.65/10 0.53/9
R? 0.89 0.95 0.92 0.86 0.93 0.80 0.84 0.84 0.42/10 0.28/9

PC 2 it is first the coarse structures with stronger contrasts
that are depicted and then the more fine-detailed structures
which tend to be smoother (Figs. 8 and 14). The “spatial
average” pattern of the PC 1 monopole generally exhibits
contrasts on low to intermediate level compared with the
“strongest contrast” pattern of the PC 2 dipole.
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Substantial accumulation of variance in the leading PCs is
commonly interpreted as indication for dominant processes
or modes of the analysed system. In particular the combina-
tion with distinct PC patterns exhibiting strong contrasts is
highly suggestive. The results demonstrate that both aspects
are rather limited indicators and not sufficient for such inter-
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Table 2. As in Table 1 but for the Het40 variant (Fig. 11).
Het PC 1 2 3 4 5 6 7 8 9 10
Square aCC 093 082/3 0972 0.67 0.77/6  0.55/5 0.65 0.66/9 0.50 0.54
R? 0.56/3 0.85/3 0.97/2 043 0.61/6 0.32 0.44 0.43/9 0.25 0.30
Rectangle aCC 0.91 0.65 0.73/4 0.93/3 0.69/6 0.60/7 0.69/10 0.61 0.75 0.43/7
R? 0.85/2 0.76  0.52/4 0.85/3 0.48/6 037/7 0.49/10 0.39 0.56  0.18/7
Triangle aCC 0.98 0.80 0.61 0.71 0.93/6  0.53/8 0.64 0.62/10 0.39/10  0.70/9
R? 0.73 0.64 0.43 0.49 0.86/6  0.29/8 0.42 0.39/10 0.15/10  0.49/9
(a) Square (b) Rectangle (c) Triangle
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Figure 13. Variance representation of the ten leading PCs modelled with the analytic DD reference method using an isotropic exponential
covariance model, nine different spatial correlation lengths and the domain boundaries (a) square, (b) rectangle and (c) triangle from Fig. 6.
All cells within the boundaries were used. The scale of the Y-axis is square root transformed for better readability.

pretation. Quite the contrary, if spatially homogeneous auto-
correlation is dominant in the data, both have to be expected.

The effect of the autocorrelation is spread over all PCs.
Thus, for process identification etc., it is the question whether
the features of interest cause signatures (spatio-temporal het-
erogeneities) distinct enough to be salient against the homo-
geneous background (Cahalan et al., 1996). Next question is
whether they get clearly assigned to single PCs or whether
they are as well smeared over several, if not all, PCs.

When rotation of PCs (Sect. 5.2.2) is applied to improve
the identifiability of the features of interest, the domains size
must exceed the correlation length of the respective features.
Otherwise, the simplification of the PC patterns by the rota-
tion will not be meaningful for this purpose.

4.4 Effectively degenerate multiplets

Effectively degenerate multiplets are PCs with consecutive
ranks, often PC pairs, which are not well separated by the
PCA (North et al., 1982). They are indicated by noticeably
similar eigenvalues (fractions of explained variance) consid-
ering their position in the ranking of the PCs, e.g. PC 243 in
Fig. 13a and PC 3+4 in Fig. 13b, both for spatial correlation
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length of 10 cells. Within the subspace spanned by the multi-
plets’ eigenvectors their rotation is arbitrary. All eigenvectors
of the multiplet are needed to adequately describe the multi-
plets’ subspace (North et al., 1982). Consequently, the mul-
tiplet should not be split if the subsequent use of the PCs re-
quires an adequate representation of multiplet subspaces, for
example in rotation (Jolliffe, 1987, 1989), interpretation of
PC patterns or if PCA is used as preprocessing step for other
analyses. In particular, special care has to be taken that the
truncation point of a PCA does not split a multiplet (North
et al., 1982), especially when the amount of variance associ-
ated with the excluded PCs is relatively large compared to the
amount of variance extracted by those retained. The concept
of effectively degenerate multiplets (short: effective multi-
plets, as in Wilks, 2006) is closely related to degeneracy of
eigenvalues. For clarification we provide a brief introduction
in Appendix B.

In S-Mode PCA, spatial and temporal patterns are associ-
ated to the PCs. Often the hope is that the leading PCs rep-
resent the dominant spatio-temporal features of the data set.
In case of effective multiplets, one spatio-temporal feature is
described by the two or more PCs forming the multiplet. This
feature can be described with any linear combination of the
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Figure 14. As in Fig. 13 but for the contrasts of the DD patterns.

spatio-temporal patterns of the involved PCs (Appendix B).
For example, a degenerated PC pair could indicate “a signal
that is propagating in space” (von Storch and Zwiers, 2003;
Roundy, 2015) like the Madden-Julian Oscillation (Kessler,
2001). Note that such signal might be further modified by
lower ranked PCs that are clearly separated from the degener-
ated pair (Kessler, 2001; Roundy, 2015). Thus, at first glance
an effective multiplet could be considered indicative for a
rather complex spatio-temporal feature. But as we showcase
here, it might as well simply result from DD.

The presented examples only consider spatial autocorre-
lation. Temporal autocorrelation has been excluded, result-
ing in white noise for the temporal PC patterns (Sect. 3.2.1).
Thus, the issue of one spatio-temporal feature being repre-
sented by two or more PCs is reduced to spatial features
only. Effective multiplets are built by PCs of which the ori-
entation of their eigenvectors, i.e. their spatial patterns, in
the DD sequence is ambiguous. Therefore, their patterns are
very sensitive to even small variations in the analysed data.
All the multiplet members in combination describe a spatial
feature of the data set. Thus, in case of a degenerated pair,
a variation in one pattern of the pair implies a complemen-
tary variation in the other. For the simple geometric shapes
here, the pair’s spatial patterns from an ensemble of data sets
simulated with identical spatial domain and spatial correla-
tion properties will usually exhibit two predominant patterns
with ambiguous ranking. Gradual variations of the predom-
inant patterns and the switches in the ranking result simply
from the randomness of the simulations.

For example, the two predominant spatial patterns of the
degenerated pair formed by PC 3 and 4 from data sets simu-
lated with rectangular domain (20 x 10 cells), isotropic spa-
tial correlation with exponential decay and a correlation
length of 10 cells (Fig. 8b) randomly switch rank between
distinct data sets (Fig. 15). This results in the low stabil-
ity of the PC 3 and 4 patterns from the respective ensemble
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(Fig. 7b). For both PCs, the correlation of the ensemble’s pat-
terns converge for long simulated time series to a R? close to
0.5, indicating that the degeneracy of this pair cannot be re-
solved with longer time series. The complementarity of both
parts of the pair is visible in the ensemble’s mean and stan-
dard deviation patterns. The standard deviation pattern of PC
3 reflects an absolute variant of the mean spatial pattern of
PC 4, and vice versa (Figs. 9b and 8b). The R2s of the corre-
lation between the two patterns were 0.64 and 0.78, respec-
tively. The aCCs of the two patterns were 0.95 and 0.96.

Degeneracy might cause domain dependent patterns that
don’t seem to be DD patterns because they are intermixed
into new patterns. For example, in Fig. 15 the patterns of
the multiplet pairs of simulations 1, 4 and 5 exhibit different
patterns than those of simulations 2 and 3.

Symmetry of the domain shape triggers degeneracy (North
et al., 1982). Thus, generally, it is recommendable to check
spatial PCA results from data with symmetric domains for
DD induced degeneracy. For example, the data sets simulated
with the square domain yielded the four effectively degen-
erated PC pairs PC 243, PC 5+6, PC 748 and PC 9+10
(Fig. 7a). Again, the complementarity within the pairs yields
standard deviation patterns of the one PC reflecting an abso-
lute version of the mean spatial patterns of the counterpart
PC (Fig. S2). The match of the respective two patterns was
very close, with all R%s being larger than 0.80 and all aCCs
being larger than 0.95.

Asymmetrical distribution of locations diminishes the
probability of DD induced degeneracy. In the subsampling
variants Hom40 and Het40 (Figs. 12 and S3) most of the de-
generated PC pairs of the AC variant (Fig. 7) disappeared.
The subsampling reduced the symmetry of the domain shape,
resulting in a less ambiguous orientation for the eigenvec-
tors. Consequently, the order of the DD sequence is clearer
defined.
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Effective degeneracy depends not only on the spatial do-
main but also on the effective sample size of the series, which
equals here the time series lengths (Sect. 3.4). For exam-
ple, in the triangular domain the effective degeneracy of the
PC pair 6+7 which is prominent at a time series length of
2000 gradually disappears with increasing time series length
(Fig. 7¢c). However, for very symmetric domains no sample
size might be sufficient to resolve the degeneracy (e.g., see
PC 2+3 and 5-10 of the square domain in Fig. 7a or Table II
in Richman, 1986).

Commonly, degenerated multiplets are detected qualita-
tively by checking for noticeably similar eigenvalues of PCs
with adjacent ranks, forming steps in the sequence of the
PC eigenvalues, or quantitatively with North’s rule of thumb
(Fig. S6). Analogue steps in the sequence of contrasts can
serve as additional indication (Fig. 14). With the stochas-
tic DD reference method these steps are particularly pro-
nounced, standing out as PCs of adjacent ranks with similar
and rather low contrasts given their position in the DD se-
quence, e.g. PC 243, PC 54-6, PC 748 and PC 94-10 for
most correlation lengths in Figure S5a, and PC 344 for spa-
tial correlation length of 10 cells in Fig. S5b. It is an effect
of averaging patterns that switch ranks between the data sets
from an ensemble. The magnitude of the drop depends on the
specific patterns that are averaged.

Intermixing might be easier overlooked for the smaller
eigenvalues that are more closely spaced. If the analysist se-
lects PCs to separate noise from signal, this could possibly
result in truncation within a multiplet and consequently inter-
mixing of noise and signal in the last considered PCs. Here,
we selected the first ten PC merely for the illustrative pur-
pose (Sect. 4.1). If the goal would be to further analyse PC
10, it would be necessary to check its patterns for intermixing
— also with the subsequent PCs, in particular PC 11. Indica-
tions for intermixing in the PC 10 pattern can be seen in the
stability plots of Figs. 7a, 12c and S3a, c. In case of Fig. 12c,
PC 9 does not show sign of intermixing, thus, in this case the
intermixing is probably with PC 11.

5 Approaches to consider DD

The preceding section introduced different aspects of DD. It
demonstrated the strong effect the domain’s size and shape
can have on spatial PC patterns from S-mode PCA. In this
section we continue with suggestions how to detect and di-
minish DD.

5.1 Detecting DD

5.1.1 Comparing spatial PC patterns from markedly
different subdomains

The simplest way to check whether the spatial PC patterns of
a data set are affected by DD is to visually compare the spa-
tial PC patterns from sub-data sets with markedly different
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domains. Such a comparison can serve as quick qualitative
check to detect cases in which DD is a prominent feature. We
recommend partitioning of the original domain with basic ge-
ometric domain shapes like we used here. Thus, first take a
subset with a square shaped domain, then taking from the
square domain further subsets with rectangular and triangu-
lar domains of different orientation and compare the spatial
PC patterns of these subsets. This procedure is demonstrated
in the associated demo scripts (Lehr, 2024).

A real-world data case is shown in Fig. 16 using raster of
monthly precipitation sums from the years 1991 to 2020 in
northeast Germany (Sect. 2.2). Three sets of spatial PC pat-
terns with square, rectangular and triangular domains were
derived. The square domain is the 200 km x 200 km square
from the 1km x 1km precipitation grid in Fig. 3. The rect-
angular and triangular domains were fitted in the square do-
main, analogue to the procedure with the synthetic examples
(Fig. 6). Thus, the data sets consist of time series with 360
months length and 40 000 locations in case of the square do-
main, and 20 000 locations in case of the rectangular and tri-
angular domains. The DD of the spatial PC patterns is clearly
visible (Fig. 16). Visually, the spatial PC patterns appear
as noisy variants of the already well-known Buell patterns
(Figs. 1 and 8). The very strong accumulation of variance in
the centred monopole pattern of PC 1 (Table 3, Fig. 16) is
another indication for DD. Thus, in this case the quick check
already clarifies the DD of the PCA results.

If the subdomains are of similar size, the focus is primarily
on the domain shape aspect. Analogue, the PCA results can
be checked for dependency from the selected domain size.
However, we assume that commonly an analysis is focused
on a specific scale and the domain size as well as the inter-
pretation of results fit to that scale. Thus, usually the depen-
dency from the domain’s shape should be more an issue than
the dependency from its size.

5.1.2 Comparison with DD reference patterns

DD reference patterns can be tailored for defined spatial do-
main and spatial correlation properties of a data set. Spatial
PC patterns can be visually compared against the reference
or checked for significant deviations from the reference with
the congruence coefficient or simple correlation analysis (Ta-
ble 1). The stability analysis of the stochastic method (Fig. 7)
or the confidence intervals of the analytic method (Fig. S6)
can be used to identify for each PC rank which time series
length is required to reach stable and clearly defined DD pat-
terns. Consequently, PCA results from (observed) data sets
with identical spatial domain and spatial correlation proper-
ties but shorter time series have to be interpreted with the
reservation that the DD might be stronger than the compari-
son with the reference suggests.

As a real-world data case we look again at the precipita-
tion PCAs (Fig. 16). DD reference patterns were fitted for all
three domains using an isotropic spherical covariance model
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Figure 15. Spatial patterns of the degenerated PCs 3 and 4 from five distinct data sets, each simulated with rectangular domain (20 x 10 cells),
isotropic exponentially decaying spatial autocorrelation of correlation length 10 cells and time series length 10 000. Identical properties were
used to simulate the ensembles from Figs. 7b, 8b and 9b. The spatial patterns that belong to the same data set are plotted above each other
with PC 3 on the top (white panel titles) and PC 4 on the bottom (grey panel titles). The index of the simulated data set and the fraction of

assigned variance is given in the panel titles.
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Figure 16. Overview of the leading ten spatial PC patterns from the PCAs of the precipitation data with the square, rectangular and triangular
domain. The location of the square domain is marked in Fig. 3. The two other domains are fit in the square domain. In each subplot, the
colour gradient depicts from blue to yellow the range between the minimum and maximum values of the respective spatial pattern.

and the analytic method (Fig. S7). The spatial patterns of
the leading precipitation PCs exhibited strong similarity with
their DD reference counterparts (Table 4), clearly indicat-
ing DD. For the first four PCs, the main difference was the
separation of PCs 243 from the square domain in the pre-
cipitation PCAs (Fig. S8) which form a multiplet in the DD
reference (Table S1 in the Supplement). In other words, al-
though typical DD patterns occurred, the deviations of the
precipitation PCA patterns from the pure theoretical DD case
were strong enough to result in a clear ranking of the PC pat-
terns. In accordance with the findings of the synthetic exper-
iments (Fig. 13), the very large fraction of variance assigned
to PC 1 of the precipitation PCAs (Table 3) is reflected in the
very large theoretical correlation length of the DD reference
(Fig. S7), being substantially longer than the domain size.
The patterns of the low ranked PCs exhibited stronger de-
viations from the DD reference than those of the leading PCs.
However, this is no indication against DD. Recall that PCs
should not be analysed in isolation, but only in reference to
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all PCs with preceding ranks. If the leading PCs exhibit DD,
DD for the whole sequence of PC patterns can be concluded.
It is not necessary to find DD reference patterns that perfectly
fit to the patterns of the low ranked PCs for such conclu-
sion. Because of the more finely structured spatial patterns,
it can be expected that the patterns of the low ranked PCs
from real-world data will deviate stronger from the DD ref-
erence than those of the leading PCs. Thus, the comparison
with the DD reference confirmed the finding of strong DD
from the visual comparison of the patterns from the three do-
mains (Sect. 5.1.1).

We introduced building DD reference patterns for data sets
exhibiting isotropic spatial but no temporal autocorrelation.
It enables to test the null hypothesis that the spatial PC pat-
terns from observed data merely result from simple isotropic
spatial autocorrelation between random white noise time se-
ries. The main feature of the null hypothesis is the ratio of
spatial correlation length to the domain size, in particular to
the distances between the data set’s locations. To our knowl-
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Table 3. Percentages of assigned variances from the PCAs of the precipitation data with the square, rectangular and triangular domain

(Fig. 16).
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PCIO
Square 7996 493 369 158 116 090 055 044 044 037
Rectangle 8322 506 249 130 092 0.67 061 042 036 032
Triangle  82.79 5.04 301 135 078 061 056 047 039 031

edge, such test was suggested first by Cahalan et al. (1996).
They fitted models to observed precipitation and temperature
data and compared the eigenvalues and spatial PC patterns of
observed and modelled data. Significant differences between
the two eigenvalue spectra were considered to be “signal”
and indicative for spatial anisotropies and inhomogeneities,
“inhomogeneous processes”, combined space and time cor-
relation, or (secular) trends.

However, DD is not restricted to the isotropic case (see
Section “Directional correlation functions” in Buell, 1975).
An anisotropic example for our three basic domains is given
in the Supplement. Compared with the “default” isotropic
case, the DD patterns are distorted according to the direc-
tion and the ratio between longest and shortest spatial cor-
relation length of the anisotropy (Fig. S9 vs. Fig. 8). The
spatial PC patterns tend to stabilize for shorter time series
length (Fig. S10 vs. Fig. 7) and the PCs which form degen-
erated pairs are better separated (see the bigger differences
between the fractions of assigned variance and the smaller
magnitudes of the standard deviation patterns in Fig. S11 vs.
Fig. S2). Both aspects reflect that the anisotropy gives a less
ambiguous orientation for the DD sequence.

Elaborating on the DD of PC patterns from data sets with
homogeneous autocorrelation in space and time is beyond
the introductory scope here. However, spatially inhomoge-
neous temporal trends are indicative for distinct processes,
modes or alike. They are likely to spread over more than one
PC (Hannachi et al., 2007; Hannachi, 2007) and to affect the
variance distribution among the PCs (Vejmelka et al., 2015).
Thus, if the goal is not DD assessment but to construct ref-
erence patterns for the identification of distinct features, they
should be considered.

DD reference patterns are rather well behaved. The main
decisions for their construction are the choice between an
isotropic or an anisotropic model, and the selection of the
correlation length. The first primarily defines the typical pat-
terns that appear (e.g., Fig. 8 vs. Fig. S9), the second the
variance distribution (Fig. 13, Sect. 4.3). In comparison, the
effects of different spatial covariance model types like expo-
nential, gaussian or spherical are less important. For practical
applications, the comparison with the spatial patterns is the
main point rather than the exact reproduction of the variance
distribution. A perfect fit is not required. The spatial patterns
are very similar for a wide range of correlation lengths. This
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holds in particular for those of the leading PCs which are
commonly used in practical applications.

5.2 Approaches to diminish DD
5.2.1 Subsampling of the spatial domain

Analysing a subsampled data set with enlarged minimal dis-
tance between the locations can be used to diminish the DD
of the PCA results. Reducing the symmetry of the analysed
spatial domain can remove effective multiplets. Both can
help to carve out features other than DD. On the other hand,
informative local details might be filtered out together with
the excluded locations. If there is still DD, the new DD pat-
terns of the subsampled data set might be harder to recog-
nize visually because of the smaller number of locations per
area. The selected minimal distance, respectively the selec-
tion of locations, is critical for the analysis. Depending on the
choice, different features in the results might stick out, get di-
minished or even disappear. In any case, the spatial resolution
of the analysed data set has to be considered in the interpre-
tation of the results. Also, only stable PC patterns should be
used to draw conclusions on the analysed system. The sta-
ble PC patterns are those which are rather insensitive to the
specific selection of analysed locations. They can be identi-
fied by comparing the PCA results from different subsamples
(Smirnov, 1973; Lins, 1985a; Lehr and Lischeid, 2020).

5.2.2 Rotation of PC eigenvectors

Another option that can diminish DD is to rotate the eigen-
vectors from the PCs of interest (Richman, 1986; Dom-
menget, 2007; Compagnucci and Richman, 2008). Often un-
rotated PCA results exhibit DD patterns, whereas rotated
PCA seem to be less affected (Richman, 1986; Huth and
Beranova, 2021). This finding is supported by experiments
using synthetic data. Compagnucci and Richman (2008) ana-
lyzed different synthetic sequences of basic sea level pressure
flow patterns (“plasmodes”). The unrotated S-mode patterns
were systematically affected by DD. In the rotated variants
the DD patterns vanished.

Exemplarily, we varimax rotated the leading spatial PC
patterns of the precipitation PCAs (Fig. 16) in three variants,
using the first two PCs (2rPCs), the first three PCs (3rPCs)
and the first four PCs (4rPCs) (Fig. 17). No multiplets were
split by the rotations (Fig. S7) to ensure that the results of
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Table 4. As in Table 1 but for the comparison of the spatial PC patterns from the precipitation data (Fig. 16) and the corresponding DD

reference patterns (Fig. S7).
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Precip PC 1 2 3 4 5 6 7 8 9 10
Square aCC 1 095/3 0952 095 0.94 0.94 0.81 0.84 0.74/10 0.54/9
R2 0.77 091/3 090/2 0.90 0.88 0.88 0.65 0.71 0.54/10 0.29/9
Rectangle  DDref PC 1 0.99 098 094 0.91 0.85 0.67 0.77 0.44/7  0.35/9
R? 0.73 0.98 096 0.88 0.83 0.72 0.45 0.59 0.19/7  0.12/9
Triangle DDref PC 1 0.95 093 096 091 0.86/7 0.89/6 0.69/9 0.77/8 0.69
R2 0.76 0.90 086 093 0.82 0.74/7 0.80/6 0.47/9 0.59/8 0.48
rPC 1 rPC 2 rPC 1 rPC 2 rPC 3 rPC 1 rPC 2 rPC 3 rPC 4

B

(b)

(c)

the rotation were not affected by multiplet effects (Sect. 4.4).
As expected, the variance distribution among the rotated PCs
(Table 5) was much more even compared to the unrotated
PCs (Table 3). The newly assigned fractions of variance did
not any longer decrease continuously with the PC ranks in
all cases. However, that depends on the software being used.
Some packages will sort the rotated PCs by their variance ex-
plained. Note that the fractions of variance that are assigned
to distinct patterns, for example to the diagonal gradient of
the triangular domain, depend on the number of PCs that are
rotated (Table 5). The magnitude of the pattern contrasts was
more evenly distributed among the rotated PCs (Table S2)
than among the unrotated PCs (Table S3). Most of the rotated
patterns exhibited only positive or only negative loadings
(Table S2), indicating a more “simple structure” (Sect. 3.5;
Richman, 1986) than in the unrotated patterns (Table S3).

In all three varimax rotation variants, the patterns were
clearly dependent on the domain geometries (Fig. 17). While
the dominant PC 1 monopole of the unrotated PCA disap-
peared, the new dominant patterns are gradients reflecting the
domain shape. For example, the patterns of the 2rPCs variant
showed gradients from southwest to northeast in the square
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Figure 17. Leading varimax rotated spatial PC patterns from the PCAs of the precipitation data with the square, rectangular and triangular
domain (Fig. 16). The rotation was performed with the first two PCs (2rPCs), the first three PCs (3rPCs) or the first four PCs (4rPCs). In

each subplot, the colour gradient depicts from blue to yellow the range between the minimum and maximum values of the respective spatial
pattern.

domain, from west to east in the rectangular domain and from
north-west to south-east in the triangular domain. The gra-
dients of the square domain from the 4rPCs variant reflect
the rotational symmetry of the square (Fig. 17a, right panel).
The gradients of the rectangular and triangular domain asso-
ciated with the major fractions of variance (Table 5) depict
in all three rotation variants the longest extent of the domain
(Fig. 17bc). Thus, here, varimax rotation was not successful
in resolving DD.

For the introductory scope here, the experiment with the
three varimax rotation variants was kept deliberately simple.
It is not a full-scale rotation study that would involve finding
the best suitable set of rotated PCs for physical interpretation
or alike. We did neither investigate which number of rotated
PCs resulted in more or less DD, nor did we aim to find an
optimum number of rotated PCs with respect to DD. There-
fore, the results and their significance are limited. It cannot be
ruled out that the DD of the presented results might be an ef-
fect of keeping too few PCs (underfactoring). In other words,
unrelated signals might be forced on a single PC causing the
observed DD. Keeping too many PCs (overfactoring), on the
other hand, might split the correlation patterns, respectively
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the representation of a hydrological feature. However, over-
factoring is not an issue here due to the small number of PCs
retained.

Despite its limitations the experiment shows that the ap-
plication of varimax rotation per se — that is without optimiz-
ing the number of rotated PCs — is not necessarily sufficient
to resolve DD. For practical applications this implies that,
whereas rotated eigenvectors are generally considered to be
less prone to DD than unrotated ones (Richman, 1986; Wilks,
2006), it is not assured that simply taking the first few PCs
of an analysis and varimax rotating them suffices to resolve
DD.

Except from being less prone to DD (Richman, 1986;
Wilks, 2006), rotated PCA results were found to be robust
against sampling errors in case of eigenvalue degeneracy
(Richman, 1986), and more robust against spatial (Richman,
1986) and temporal (Cheng et al., 1995) subsampling. Note
that spatial instability may be inter-related to DD. In particu-
lar, subdomain instability can be a corollary of DD (Rich-
man, 1986). Rotation can support the interpretation of ef-
fective multiplets if the resulting PCA patterns are of more
simple structure (Jolliffe, 1987, 1989). Rotating only multi-
plet members limits thereby the changes in the PC properties
(Sect. 3.5) to the multiplet (Jolliffe, 1989, 1995), in particu-
lar the dependency of the rotated PC patterns on which and
how many PCs are rotated. That rotation results typically in
a rather even variance distribution between the PCs is not
much of an issue, because the variance in the multiplet is al-
ready rather equally spread between the multiplet members
before rotation (Jolliffe, 1989). Also, the effects of the scal-
ing of the eigenvectors (meaning the loss of uncorrelatedness
and orthogonality in the spatial and/or temporal patterns, see
Sect. 3.5) are diminished, because the eigenvalues of the mul-
tiplet are of similar size (Jolliffe, 1989, 1995).

Rotated PCA results were also found to be easier to in-
terpret physically (Richman, 1986). Rotation can be used
to systematically relax distinct PCA constraints that ham-
per physical interpretation (Hannachi et al., 2007; Monahan
et al., 2009) by choosing between orthogonal and oblique
rotation and selecting a simplicity criterion that suits best
to the analysed system. In the aforementioned analysis of
synthetic sea level pressure flow patterns, Compagnucci and
Richman (2008) found the rotated PC patterns to be superior
in depicting the “true” flow patterns. In a study using atmo-
spheric reanalysis data, Huth and Beranova (2021) compared
the spatial patterns from four PCA derived modes of climatic
variability with autocorrelation maps of the analysed data to
identify the true modes of climatic variability. Only the one
mode based on rotated PC patterns (North Atlantic Oscil-
lation) corresponded well to underlying autocorrelation pat-
terns, the modes based on unrotated PCA did not. However,
these studies indicating that rotated PC patterns are more
suitable for physical interpretation focused primarily on at-
mospheric mode detection.
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For future work, we suggest to perform a study similar to
Compagnucci and Richman (2008), but with a hydrological
focus. Synthetic data from a hydrological simulation model
could be analyzed, to test which hydrological features of the
model can be uncovered by the patterns of the PCs. The test
data could be, for example, spatially distributed groundwa-
ter level series simulated with a groundwater model. The ex-
periments could be used to compare the performance in hy-
drological feature identification of unrotated versus rotated
PCA, different orthogonal and oblique rotation methods, but
also of S-mode versus T-mode PCA (Richman, 1986; Com-
pagnucci and Richman, 2008; Isaak, et al., 2018) and differ-
ent scaling of the eigenvectors (Jolliffe, 1995; Wilks, 2006).

6 Conclusions

Spatial patterns from S-mode PCA are regularly used for
hydrological interpretations. In such analysis, homogeneous
spatial correlation between the data sets’ time series results in
spatial PC patterns that are determined by the size and shape
of the analysed spatial domain (domain dependence: DD).
DD patterns are distinct, with strong gradients and contrasts.
We showed that DD can come together with substantial ac-
cumulation of explained variance in the leading PCs. Thus,
in contrast to what one might expect, neither distinct spatial
PC patterns nor large fractions of explained variance in the
leading PCs do necessarily indicate dominant hydrological
processes or hydrologically meaningful properties. In addi-
tion, DD can induce effectively degenerated multiplets (ef-
fective multiplets). Without knowledge about DD, the multi-
plets can be misinterpreted as indication for complex spatio-
temporal features. Without knowledge about multiplets, the
multiplet members can be mistaken as effects of independent
hydrological processes. Without knowledge about the effects
of multiplets, DD can be overlooked because the degeneracy
can mask the expected DD patterns.

In summary, if DD is predominant, the spatial PC patterns
do not reflect the hydrological functioning of the analysed
system but rather the functioning of the PCA within the con-
text of the data set’s spatial domain. Ignoring DD and effec-
tive multiplets easily leads to wrong hydrological interpreta-
tions. Consequently, DD should be considered for any appli-
cation in which the PCs are used to draw conclusions about
spatially distinct properties of the analysed system. In other
words, it should be checked whether the spatial PC patterns
differ significantly from patterns that result from the trivial
case of nearby locations being homogeneously more related
than those further apart. If PCA is used purely for data re-
duction, DD is of no interest as the patterns are never ex-
amined; they serve only as an efficient set of basis vectors.
If, however, the subsequent use of the PCs requires an ade-
quate description of multiplet subspaces, for example if PCA
is used as preprocessing step for other analyses, care should
be taken that no multiplet is split by the selection of retained
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Table 5. Percentages of assigned variances from the varimax rotated spatial PC patterns from the precipitation PCAs (Fig. 17).

2rPCs ‘ 3rPCs ‘ 4rPCs
PC1 rPC2 | PC1 (PC2 PC3 |PC1 rPC2 1PC3 1PC4
Square 4484 4005 | 3295 3092 2471 | 2777 2444 2092 17.03
Rectangle 44.00 4428 | 1836 3743 3497 | 1928 3685 33.16 278
Triangle ~ 46.69 41.14 | 26.61 3426 2996 | 478 3293 2636 28.11

PCs. This applies in particular when the amount of variance
associated with the excluded PCs is relatively large compared
to the amount of variance extracted by those retained.

Classical Buell patterns (PC 1: “mean behaviour”, PC 2:
gradient along the longest extent of the domain, lower rank-
ing PCs: regular multipoles) and leading PCs with remark-
ably similar eigenvalues (effective multiplets) are an alert for
DD. However, deviating patterns or clearly separated PCs are
no contra-indication. DD patterns are original for every com-
bination of spatial domain and spatial correlation properties.
Thus, visual detection of DD is rather limited. Still, visual
comparison of the spatial PC patterns from subdomains with
markedly different shapes and/or sizes is practical as quick
qualitative check.

To test whether spatial PC patterns differ significantly
from DD patterns, reference patterns can be used as null hy-
pothesis in pairwise statistical tests. For most practical ap-
plications checking the first few leading PC patterns should
be sufficient. If the spatial PC patterns do not differ signifi-
cantly from DD reference patterns, we recommend to report
that and stop any interpretation of individual spatial PC pat-
terns as distinct hydrological features.

We presented two methods to produce DD reference pat-
terns. For the introductory purpose, we focussed on the
stochastic method. The comparison of data sets simulated
with identical spatial domain and spatial correlation prop-
erties showed directly the ambiguity of the PC ranking
within DD induced multiplets, including the variations of the
predominant patterns. Furthermore, working with simulated
data is less abstract than working with the analytic covari-
ance matrix. For practical applications the analytic method is
preferable. Its short computation time is a big advantage, es-
pecially when producing DD reference patterns for data sets
with many locations.

Passing the check for DD and accounting for effective
multiplets in the selection of the PCs are necessary but
not sufficient conditions to assure physical meaningfulness.
When single PCs, or combinations of PCs, are assigned to
distinct hydrological features, it should be carefully con-
sidered whether the S-mode PCA constraints (i) successive
maximization of variance on the PCs, (ii) orthogonality of
spatial PC patterns and (iii) linear uncorrelatedness of tem-
poral PC patterns support such interpretation. The spatio-
temporal PC patterns should not only be checked for resem-
blance with the postulated features, but also the invariance
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of the spatial and temporal PC patterns against subsampling
should be approved. Building on this study, a next research
task could be to conduct systematic experiments with syn-
thetic test data derived from hydrological simulation models
to evaluate which PCA modes, rotation methods and scaling
of the eigenvectors work best for hydrological feature identi-
fication.

Appendix A: PCA reference patterns based on the
analytic covariance matrix

Deriving reference patterns with the analytic covariance ma-
trix to evaluate PCA results was applied earlier by Cahalan et
al. (1996) and Dommenget (2007). They modelled the evo-
lution of a continuous meteorological field as stochastic spa-
tially isotropic diffusion process, i.e. a spatial first order auto
regressive (AR(1)) or “spatial red noise” process, and used
the spatial PC patterns derived from the analytic covariance
matrix of the model as null hypothesis for the spatial struc-
ture of climate variability.

Dommenget (2007) presented two adaptations of the ana-
Iytic covariance matrix. In the first, for each pair of locations,
the product of the standard deviations from the time series of
the two locations is multiplied with their covariance calcu-
lated with the covariance function. The resulting spatial PC
patterns provide the smooth pattern of the globally fitted co-
variance function weighted with the data set’s spatial distri-
bution of covariance magnitude. In the second, the analytic
covariance matrix is adapted to simulate the effect of areas
with increased stochastic forcing. Areas with larger variance
than the surrounding are defined and used for the weighting
of the covariance matrix. In numerical experiments the effect
of monopole, dipole or multipole structures in the data on the
spatial PC patterns can be tested. Note that both variants are
adaptations of the covariance matrix. Thus, other than in this
study, the data must not be z-scaled prior PCA.

In addition, Dommenget (2007) suggested using the spa-
tial PC patterns from an analytic covariance matrix as null
hypothesis to find spatial PC patterns “that are most dis-
tinguished from those of the null hypothesis”. These so
called Distinct Empirical Orthogonal Functions (DEOFs) are
derived by rotating the eigenvectors of the observed data
to maximum difference in explained variance between the
EOFs of observed data and those of the analytic covariance
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matrix. A Matlab script to perform DEOF analysis is avail-
able as supplementary material to Dommenget (2007). The
DEOFs were suggested as starting point to identify telecon-
nections patterns or physical processes. Even though not in
focus, DD patterns of the null hypothesis were observed
and described as hierarchy of multipoles, “starting with a
monopole as EOF-1, followed by a dipole, and then by higher
order multi poles”. In analogy to the spectrum of time se-
ries the DD sequence was interpreted as reflection of dif-
ferent spatial scales. The DEOF approach can be also used
to compare the spatial variability modes from different data
sets (Bayr and Dommenget, 2013). For data sets exhibiting
temporal trends detrending prior applying DEOF is recom-
mended (Hannachi and Dommenget, 2009).

Appendix B: Effectively degenerated multiplets

An eigenvalue is called degenerate if it is associated with
more than one linearly independent eigenvector. That is, the
eigenvalue is repeated (non-distinct), its multiplicity is larger
than one. In the PCA case, the algebraic multiplicity of an
eigenvalue (the multiplicity of the eigenvalue as a root of the
characteristic polynomial) equals always its geometric mul-
tiplicity (the dimension of its eigenspace) (Hefferon, 2020;
Meyer, 2000) because PCA performs an eigenvalue decom-
position of a symmetric matrix (see “spectral theorem for
symmetric matrices”, e.g. in Lay et al., 2016 or “real spec-
tral theorem” e.g. in Larson and Falvo, 2009). A degener-
ate eigenvalue together with its eigenvectors is called degen-
erate multiplet. The eigenvectors span the subspace of the
degenerate multiplet. Within this subspace their orientation
is not uniquely defined and they can be arbitrarily rotated
(von Storch and Zwiers, 2003). Any linear combination of
the eigenvectors from the multiplet is as well an eigenvector
of the eigenvalue (North et al., 1982; Hefferon, 2020).

In real-world data sets, perfectly symmetric distribution of
variance such that degeneracy in the strict sense appears is
unlikely to happen. However, if the eigenvalues of the “true
population” are of very similar size, the sampling variabil-
ity and errors can lead to “effective degeneracy” (North et
al., 1982) with eigenvalues that are “indistinguishable within
their uncertainties” (Hannachi et al., 2007) and eigenvectors
that are random mixtures of the true population’s eigenvec-
tors (North et al., 1982).

This shall be illustrated with a slightly extended variation
of an illustration given by Wilks (2006). We start with degen-
erated multiplets in the strict sense, i.e. an eigenvalue with
more than one eigenvector. Consider a 3D point cloud with
perfectly spheroid shape (idealized rugby ball). It has one
long axis and two short axes of identical size. The cloud’s
first eigenvector is aligned with the long axis and its eigen-
value depicts the variance of the cloud in this direction. The
second and the third eigenvector can be any pair of orthog-
onal vectors that are orthogonal to the long axis. They share

https://doi.org/10.5194/hess-29-6735-2025

6757

a common eigenvalue. Thus, the variance representation is
split in equal parts in the plane orthogonal to the first eigen-
vector. If we compare the eigenvectors from random subsam-
ples of this data set, the orientation of the first one would be
very stable, yet the orientation of the second and third would
exhibit large sampling variability. This correctly reflects the
ambiguous orientation of the second and third true popula-
tion eigenvector.

In the “effective degeneracy” case the eigenvalues are
merely of very similar size. Consider again a spheroid shaped
cloud but this time with the two shorter axes being of slightly
different size (a slightly deflated rugby ball squeezed perpen-
dicular to its long axis). Now the orientation of the second
and third true population eigenvectors is distinct and both
have distinct eigenvalues. Their share to the variance repre-
sentation differs. If we compare again the eigenvectors from
random subsamples of the data set, the question is whether
the sampling is accurate enough to detect the slight difference
in size of the two shorter axes and whether the detection of
the difference is stable among the subsamples? If this is not
the case, the second and third sample eigenvalues are ‘“‘ef-
fectively degenerate”. Together with their eigenvectors they
build an “effective degenerate multiplet”. Thus, again the ori-
entation of the second and third eigenvectors exhibits large
sampling variability but this time because of the limited sam-
pling accuracy. Due to the ambiguity of their orientation the
pair is a potentially arbitrary mixture of the unknown true
population eigenvectors (Wilks, 2006). Within the “accuracy
range” determined by the subsampling, the fraction of the
cloud’s variance depicted by the plane orthogonal to the first
eigenvector is approximated with the ratio of the sum of the
multiplets’ eigenvalues to the sum of all three eigenvalues.

Code availability. A selection of scripts
panying this technical note is freely available at
https://doi.org/10.5281/zenodo.11213430 (Lehr, 2024). It contains:
(1) a demo in which the DD of PCs is demonstrated by visual
examination of the spatial PC patterns from single simulated data
sets, (2) an implementation of the stochastic DD reference method
(Sect. 3.2.1), and (3) an implementation of the analytic method
(Sect. 3.2.2) based on Dommenget (2007) and the associated
Matlab scripts. The user can define domains with distinct sizes and
shapes, and the spatial correlation properties. The scripts and their
documentation can directly be used for educational purposes. We
recommend going first step by step through the demo to get into the
functioning and logic of the scripts. For the demo and the stochastic
reference script, it is best to start with the pdf documentation which
includes a formatted version of the script, extra annotations and
sample results. All scripts are written in R (R Core Team, 2019).
For the colour figures in this paper we used the colour-vision
deficiencies friendly palettes “Cividis” from the default R-package
“grDevices” (https://www.R-project.org/, R Core Team, 2019) and
“lajolla” from the “scientific colour maps” implementation in the
R-package “scico” (https://doi.org/10.32614/CRAN.package.scico,
Pedersen and Crameri, 2023).

accom-
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Data availability. Data sets containing the spatial domains and
spatial correlation properties used in this technical note can
be produced with the associated scripts. The grids of the
monthly precipitation sums are freely available at the German
Weather Service (https://opendata.dwd.de/climate_environment/
CDC/grids_germany/monthly/hyras_de/precipitation/, last access:
26 March 2025). Here, the version HYRAS-DE-PR v6.0 was used.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/hess-29-6735-2025-supplement.
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